
 1 

 

 
Technisch-Naturwissenschaftliche  
Fakultät 

 
 
 
 
 

Register Allocation on the Intel® Itanium® 
Architecture 

 
 
 

DISSERTATION 
 

zur Erlangung des akademischen Grades 
 

Doktor  
 

im Doktoratsstudium der 
 

TECHNISCHEN WISSENSCHAFTEN  
 
 
 
 
 
Eingereicht von: 
Dipl.-Math. Gerolf Fritz Hoflehner 
 
Angefertigt am: 
Institut fuer Systemsoftware 
 
Beurteilung: 
o.Univ.-Prof. Dr. Dr.h.c. Hanspeter Mössenböck (Betreuung) 
 

a.Univ.-Prof. Dr. Andreas Krall 
 
  
 
San Jose, März 2010  



 2 

Abstract 
 

Register allocators based on graph-coloring have been implemented in commercial and 

research compilers since Gregory Chaitin’s and colleagues pioneering work in the early 

1980’s.  A coloring allocator decides which live range (a program or compiler generated 

variable) is allocated a machine register (“allocation problem”). The Itanium processor 

architecture supports predicated code, control- and data speculation and a dynamic 

register stack. These features make the allocation problem more challenging. This thesis 

analyses and describes efficient extensions in a coloring allocator for the Itanium 

processor. 

• Predicated code: The thesis describes compile time efficient coloring methods in 

the presence of predicated instructions, without compromising run-time 

performance of a more elaborate allocator based on the predicate query system, 

PQS. In particular it classifies predicated live ranges and shows that classical 

register allocation techniques can be used effectively to engineer efficient 

coloring allocators for predicated code. When predicated code is generated from 

compiler control flow more expensive predicate analysis frameworks like PQS 

don’t have to be employed. 

• Speculated code: The thesis describes a new method of efficiently allocating 

speculated live ranges avoiding spill code generated by a more conservative 

method. In particular the NaT propagation problem is solved efficiently. 

• Dynamic register stack: The thesis reviews methods to use the dynamic register 

stack effectively in particular regions with function calls and/or pipelined loops. 

• Scalable allocation: A generic problem of coloring allocators is that they can be 

slow for large candidate sets. This thesis proposes the scalable allocator as a 

generic coloring method capable of allocating effectively programs with large 

register candidates sets. The methods can also be used for parallel allocation e.g. 

on multi-core machines. 

The experimental results on the CPU2006 benchmark suite illustrate the effectiveness of 

new methods. Finally, the thesis reviews the development of coloring allocators since 

Chaitin. 
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Kurzfassung 
 

Gregory Chaitin und seine Kollegen haben um 1980 die Pionierarbeit für 

Registerallokation basierend auf Graphfärbung („Farballokator“) geleistet. Diese 

Allokatoren entscheiden, welchen „Lebensspannen“ (d.h. deklarierte oder vom Compiler 

erzeugte Variablen, engl. live ranges) Maschinenregister („Farben“) zugeteilt werden 

(Allokationsproblem).  Der Itanium-Prozessor unterstützt Instruktionen mit Prädikaten 

(bedingt ausführbare Instruktionen), Kontroll- und Datenspekulation sowie einen 

dynamischen Register Stack. Diese Eigenschaften erschweren die Lösung des 

Allokationsproblems. Die vorliegende Dissertation untersucht und beschreibt effiziente 

Erweiterungen in einem Farballokator für den Itanium-Prozessor. 

• Prädikate: Es werden effiziente Methoden (zur Übersetzerzeit) für  

Farballokatoren vorgestellt, die Lebenspannen in Code mit bedingt ausführbaren 

Instruktionen allokieren. Insbesondere werden „prädikatierte“ Lebensspannen 

klassifiziert und es wird gezeigt, das klassische  M ethoden zu einem effizienten 

Farballokator für diese Lebensspannen erweitert werden können. In einem 

Compiler kann die Allokation mit diesen Methoden genau so effizienten Code 

generieren wie aufwendigere Verfahren, insbesondere Verfahren, die das 

„predicate query system“ (PQS) benutzen.  

• Spekulation: Es wird eine neue Methode erläutert, die – im Vergleich zu 

konservativen Verfahren – Spill Code für spekulative Lebensspannen vermeiden 

kann. Inbesondere wird eine effiziente Lösung für das NaT Propagation Problem 

vorgestellt. 

• Dynamischer Register Stack: Es wird beschrieben, wie der dynamische Register 

Stack in Code mit Funktionsaufrufen oder „pipelined“ Schleifen (engl. „software-

pipeline loops“) effizient verwendet werden kann. 

• Skalierbare Allokation: Es wird der skalierbare Allokator vorgeschlagen für die 

Lösung Allokationsprobleme beliebiger Grösse. Skalierbare Allokation erlaubt 

insbesondere die Parallelisierung des Allokationsproblems und ist unabhängig 

von der Prozessor-Architektur. 
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Die experimentellen Resultate für die CPU2006 Benchmark Suite zeigt die Effizienz 

der vorgestellen Verfahren. Schließlich enthält diese Dissertation einen ausführlichen 

Überblick über die Forschungsergebnisse für Farballokatoren seit Chaitin. 
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1 Introduction 

1.1 Compilers and Optimizations 

Optimizing compilers can be thought of a 3-stage process, which transforms a source 

code program into a linkable object file for a target machine: in the first stage, the front-

end translates a source language like C or Fortran into an intermediate representation. 

The second stage, the optimizer, applies a set of local and global transformations 

(=optimizations) with the goal to speed-up run-time performance of the final executable. 

Local transformations work on a sequence of branch-free statements.  Global 

transformations gather information about e.g. expressions and variables in the entire 

routine using dataflow analysis. Classical optimizations like partial-redundancy 

elimination, common sub-expression elimination, dead code elimination, or loop-

invariant code motion apply this information. Optimizers may apply also loop 

transformations like loop unrolling, loop splitting, loop fusion or software pipelining. 

More aggressive optimizers gather interprocedural optimizations and perform 

optimizations like procedure inlining. Finally, the third stage, the code generator (=back-

end), translates the intermediate representation produced by the optimizer into object 

code. Typically, the final stage involves several phases including instruction selection, 

instruction scheduling and register allocation.  

1.2 Register Allocation based on Graph-Coloring 

A register is the fastest memory location in a CPU. Each CPU has a limited set of 

registers. During program execution registers hold the values of program variables or 

compiler temporaries. In general an optimizing compiler performs optimizations under 

the assumption that an infinite number of registers is available in the target machine. 

Thus optimizations are register pressure unaware, which simplifies their design. Pressure 

refers to the fact that machine register resources are limited. It is the job of the register 

allocator to map the symbolic registers in the intermediate representation of the compiler 

to actual registers of the target machine. A graph-coloring based register allocator 

abstracts the allocation problem to coloring an undirected interference graph with K 
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colors, which represent K machine registers. The nodes in the graph are the symbolic 

registers, and two nodes are connected by an edge when they cannot be assigned the same 

register. As a rule the program executes faster the more symbolic registers can be 

allocated to machine registers.  

1.3 Itanium Processor Family 

The Itanium processor family -or IA-64- is a commercially available implementation of 

the EPIC (“Explicitly Parallel Instruction Computing”) computing paradigm. In EPIC the 

compiler has the job of extracting instruction level parallelism (ILP) and communicating 

it to the hardware. Itanium enhances concepts usually seen in VLIW processors. The long 

instruction words are fixed-size bundles that contain three instructions (operations). It is a 

64-bit computer architecture distinguished by a fully predicated instruction set, a dynamic 

register stack, rotating registers and support for control- and data speculation. Predication 

and speculation allow the compiler to remove or break two instruction dependence 

barriers: branches and stores. With predicates the compiler can remove branches (“branch 

barrier removal”), with control speculation it can hoist load instructions across branches 

(“breaking the branch barrier”), and with data speculation it can hoist load instructions 

across stores (“breaking the store barrier”).  Using predication and rotating registers the 

compiler can generate kernel-only pipelined loops. The dynamic register stack gives the 

compiler fine-grain control over stacked register usage. In general exploiting instruction-

level parallelism using Itanium features increases register pressure and poses new 

challenges for the register allocator. 

1.4 Overview 

This thesis describes extensions of graph-coloring based register allocation methods that 

exploit the distinguishing IA-64 features. The methods have been implemented in the 

Intel Itanium production C/C++/Fortran compiler and are hardware specific. Orthogonal 

to the Itanium specific methods is the scalable allocator, which is applicable to other 

architectures and/or compilation environments. It can address compile time problems for 

programs with large candidate sets, e.g. some generated programs in server applications, 

and demonstrates how allocation can be parallelized. The rest of the thesis is organized as 

follows: The first three sections develop background. Chapter  2 gives an overview of the 
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IA-64 (micro-) architecture emphasizing aspects relevant for register allocation. Chapter 

 3 reviews register allocation literature since Chaitin’s seminal work.  Chapter  4 takes a 

look at the major code generator phases in the Intel Itanium compiler. The following 

three sections cover IA-64 specific allocation techniques: Chapter  5 discusses register 

stack allocation. Chapter  6 gives an in-depth discussion of predicate-aware register 

allocation. Chapter  7 describes allocation for control- and data-speculated code. Chapter 

 8 proposes scalable register allocation that addresses compile time issues for large 

register candidate sets and is a method for parallelizing coloring allocators. This chapter 

is general and not specific to Itanium. Chapter  9 discusses related work with respect to 

the core contributions of this thesis. Chapter  10 has implementation and experimental 

results. Chapter  11 concludes the thesis and lists future work. The Appendix has an 

Itanium assembly code example, reviews the concept of irreducible control flow graphs 

and code for PQS query functions. 
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2 Background on IA-64  

Fundamental for any computer architecture is the instruction set architecture (ISA). The 

first section gives a high-level survey of Itanium instructions. The goal is to provide 

sufficient background knowledge for reading basic Itanium assembly code. The 

remainder of this section focuses on the aspects of Itanium that are relevant for register 

allocation, including register files, register classes, register stack, predicated and 

speculated code. In general, the sections cover material at the architecture level. The term 

architecture specifies how to write or compile semantically correct Itanium programs. 

Only the discussion of the register stack will involve a (high-level) description of the 

micro-architecture. The micro-architecture specifies how the Itanium processor actually 

implements an architectural feature. Knowledge of the micro-architecture enables the 

compiler (or assembler writer) to generate faster programs. However, micro-architecture 

details may change from one processor generation to the next. In this case, programs 

relying on micro-architectural details must be re-compiled (or re-tuned) for the newer 

generation to achieve best possible run-time performance. The basic references for the 

background material are the Intel manuals  [42] [43] [44]. Winkel  [76] has an overview of 

the IA-64 ISA and instruction dispersal rules, which we don’t discuss. 

2.1 IA-64 Instructions 

IA-64 instructions are grouped into bundles. A bundle is a simple 128 bit structure that 

contains three 41 bit instruction fields (“slots”) and a 5 bit template that describes the 

execution unit resource each instruction requires. The template bits can also specify the 

location of a stop bit, which delimits instructions that can execute in parallel. In general 

instructions can execute in parallel as long as there are no read after write (RAW ) or 

write after write (WAW ) dependencies between instruction operands. A set of 

instructions that could execute in parallel is an instruction group. Two instructions with a 

write after read (WAR) dependence can be contained in the same instruction group. Per 

cycle Itanium can execute up to 6 instructions or two bundles in parallel, although 

instruction groups may contain any number of instructions. The task to extract instruction 
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level parallelism, forming instruction groups and grouping instructions in bundles is with 

the compiler. Instructions between two stop bits are in the same instruction group. 
 

 

Figure 1 IA-64 Programming Building Blocks 
 

Figure 1 illustrates the Itanium instruction format, bundles and instruction groups. 

“qp” is the qualifying predicate.  It is encoded as a predicate register (see  2.3). It guards 

whether the instruction result is committed (“retired”) or not. An instruction is retired 

only when the qualifying predicate is set (=True). Mnemonic is a unique identifier 

(“opcode”) for an IA-64 instruction. Compl is a set of modifiers (“completers”) to the 

basic Mnemonic functionality. Completers are optional. An instruction may have no 

completer, one or more than one. Dest is a comma-separated list of output registers or a 

store address. Src is a comma-separated list of input registers, constants, or a load 

address. Specific examples of Itanium instructions are below. 

Itanium instructions are grouped into types (Table 1). A type is a qualifier that 

suggests on which functional unit an instruction can execute. There are: 

• Six instruction types: M-type, I-type, A-type, F-type, B-type, and LX-type 

• Four types of execution units M-Unit, I-Unit, F-Unit, and B-unit  

• 12 basic bundle template types MII, MI_I, MLX, MM I, M_MI, MFI, MMF, MIB, 

MBB, BBB, MMB, and MFB.  A “_” in the bundle template type indicates a stop 

bit and is encoded in the template bits. There are only two template types that 

allow a stop in the middle of a bundle: M_MI has a stop bit after the first 

  127   87   46   5 0 

         slot 2          slot 1          slot 0 template 

Instruction:  
[(qp)] mnemonic.[compl]* dest=src 

 
Bundle: 
 

Instruction Group: 
 
 …;; MFI MFI MLX ;; …  
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instruction, and MI_I has a stop bit after the second instruction. A stop bit 

separates instruction groups. Therefore in M_MI the first M -type instruction is the 

last instruction of an instruction group, while the second M -type together with the 

I_type instruction is in a different instruction groups. Similar, in MI_I the M -type 

and the first I-type instruction are in the same instruction group, while the second 

I-type instruction is the first instruction of a new instruction group. 

 

With the information about instruction types the hypothetical instruction group MFI MFI 

MLX in Figure 1 consists of eight instructions that could execute in parallel: three M -

type, two F-type and two I-type instructions as well as one LX-type instruction. 

 

Table 1 IA-64 Instruction Types and Execution Unit Types 
 
Instruction Type Description Execution Unit Type 

A-type Integer ALU Instructions Executes on I-unit or M-unit  

I-type Integer Non-ALU Instructions Executes on I-unit 

M-type Memory Instructions Executes on M -unit 

F-type Floating-point Instructions Executes on F-unit 

B-type Branch Instructions Executes on B-unit 

LX-type Extended (2 slot) Instructions Executes on I-unit 

 

A-type instructions can execute in a memory (M) unit or integer (I) unit. There is one 

LX instruction (“movl”). It consumes two bundle slots to move a 64bit constant into a 

register and executes on an I-unit. The Itanium-2 processor has four M  [M0, M1, M2, 

M3], two F [F0, F1], two I [I0, I1], and three B [B0, B1, B2] execution units, which is 

sufficient to sustain a throughput of six instructions per cycle. Each of the 12 basic 

bundle templates may have a stop set after the third instruction, so Itanium supports 24 

bundle template types. A future generation Itanium processor may define up to four new 

bundle types. This is determined by the 5 bits in the template bit field.  The execution 

order of the instructions in a bundle is in-order proceeding from slot 0 to slot 2.  
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The remainder of this section gives specific examples for Itanium instruction. This 

will be sufficient to read small Itanium assembly programs like the example in Appendix 

 12.1 on p. 138). In all tables the instruction semantics is in C-style pseudo-code or 

informal. Subscripted letters ii pr , or if represent general, predicate and floating-point 

registers respectively.  

Table 2 has examples for A-type instructions. They include arithmetical operations 

like integer “add”, logical operations like “and complement”, “or” and compare “cmp” 

instructions, where crel denotes a comparison relation. Examples for comparison 

relations are ‘eq’ (=”equal”), ‘ne’ (=”not equal”), or ‘gt’ (=”greater than”).  
 

Table 2 A-type Instructions 
 
 Instruction Type                             Examples 
   Syntax Semantics 
1 A-type (qp) add r1=r2,r3 r1=r2+r3 
2 A-type (qp) andcm r1=r2,r3 r1=r2&~r3 
3 A-type  (qp) or r1=r2,r3 r1=r2|r3 
4 A-type (qp) cmp.crel p1,p2=r1,r2 qp=1 and r1 crel r2:  

    p1=1     p2=0 
qp=1 and !(r1 crel r2):  
    p1=0    p2=1 

5 A-type (qp) cmp.crel.unc p1,p2=r1,r2 qp=0: 
    p1=0    p2=0 
qp=1 and r1 crel r2: 
    p1=1    p2=0 
qp=1 and !(r1 crel r2): 

6 A-type (qp) cmp.crel.or p1,p2=r1,r2 qp=1 and r1 crel r2: 
    p1 = 1    p2 = 1 

7 A-type (qp) cmp.crel.and p1,p2=r1,r2 qp=1 and !(r1 crel r2): 
    p1=0    p2=0 

 
 

Instruction 5 in Table 2 is an unconditional compare instruction. This instruction has 

two completers, crel for the actual comparison relation, and ‘unc’ to indicate the compare 

is unconditional. This means, that the two destination predicate registers, p1 and p2, are 

initialized to zero even when the qualifying predicate is clear (=False). Unconditional 

compares are used to initialize predicates in if-converted code (Section  2.2). Remarkable 

also are parallel compares, like instruction 6 and 7: they set or clear both destination 
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predicates when the qualifying predicate is set, depending on the compare type and result. 

Parallel compares are used to evaluate logical ‘or’ and ‘and’ expressions in parallel 

(within the same bundle or instruction group). 

I-type instructions (Table 3) include bit manipulations like deposit (“dep”, instruction 

8), extract (“extr”, instruction 9), arithmetical shifts (“shr” , instruction 12) and zero 

extension (“zxt”, instruction ). Table 3 shows also the 64-bit move instruction, which has 

LX-type, consumes two slots in a bundle and executes on an I-Unit. 

Table 3 I-type and LX-type Instructions 
 
 Instruction Type                             Examples 

   Syntax Semantics 

8 I-type (qp) dep r1=r2,r3,pos,len 

Deposit bit field merges 
bit field of length len 
starting at bit 0 in r3 with 
r2 at bit position pos. The 
result of the merge is 
placed in r1. 

9 I-type  (qp) extr r1=r3,pos,len 

Extract bit field of length 
len starting  at bit pos in 
r3, sign extend and store 
right-justified in r1 

10 I-type (qp) chk.s r1, target 

Control speculation 
check: 
Branch to target when 
NAT bit is set in Register 
r1. 

11 I-type (qp) mov r1=pr Read predicate registers 
and store in r1 

12 I-type (qp) shr r1=r2,r3 
Arithmetic shift right: 
    r1= r2>>r3 

13 I-type (qp) zxt4 r1=r3 
Zero extend value of r3 
above bit 31 and store in 
r1 

14 LX-type (qp) mov r1=imm_64 Move 64bit immediate 
value imm_64 into r1 

 
M-type instructions (Table 4) include loads, stores and the alloc instruction, which 

manages the register stack. They also contain transfer instructions between floating-point 

unit and integer units. A getf instruction is used to move data from a floating-point 

register to an integer register, while a setf instruction transfer the value from an integer 
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register into the 64 bit significant of a floating-point register. These transfers are 

necessary, since integer multiply and divide must be performed in a floating-point unit.  

Table 4 M-type Instructions 
 
 Instruction Type                             Examples 
   Syntax Semantics 

15 M-type (qp) ld8 r1=[r3] 
Load 8 bytes into r1 from 
address in r3 

16 M-type (qp) ld4.s r1=[r3] 
Control speculated 4 
byte load 

17 M-type (qp) ld2.a r1=[r3] 
Data speculated 2 byte 
load 

18 M-type (qp) ld1.sa r1=[r3] 
Control and data 
speculated 1 byte load 

19 M-type (qp) st8 [r3]=r1 
Store 8 byte content of r1 
at address in r3 

20  M-type (qp) getf.sig r1=f2 
Store 64bit significant of 
f2  in r1 

21 M-type  (qp) setf.sig f1=r2 
Store value of r2 in 
significant of f1. 

22 M-type alloc r1=ar.pfs,i,l,o,r See Figure 5. 
 

F-type instructions (Table 5) are floating-point instructions. Itanium supports single, 

double and extended (82 bit) floating point operation. A fundamental building block of 

all floating-point operations is the ‘floating-point multiply and add’ instruction, fma.   

Table 5 F-type Instructions 
 
 Instruction Type                             Examples 
NR   Syntax Semantics 

23 F-type (qp) fma.s f1=f3,f4,f2 
f1=f3*f4+f2 rounded to 
single precision (‘s’ 
completer). 

24 F-type (qp) xma.l f1=f3,f4,f2 

f1=f3*f4+f2 as 64-bit 
integer operation. The 
low (‘l’ completer) 64-
bit of the result are 
stored in f1. 

25 F-type  (qp) fadd.d f1=f2,f3 
f1=f2+f3 rounded to 
double precision (‘d’ 
completer). 
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The fma instruction computes the product of f3 and f4 and adds f2 in infinite precision, 

and rounds the final result to the format specified in the completer.  The xma instruction 

computes f3 * f4 + f2 , where the FP registers are interpreted as 64 bit integers. The 

intermediate value of the product is 128 bit. This instruction is used to perform integer 

multiply. 

Table 6 B-type Instructions 
 

 Instruction Type                             Examples 
   Syntax Semantics 

26 B-type (qp) br.cond.sptk.many target 

qp=1: 
IP-relative conditional branch. 
The condition is encoded in qp 
which is set in a separate cmp 
instruction. 

27 B-type (qp) br.call foo qp=1:  
Invoke procedure foo 

28 B-type (qp) br.cloop target 
qp=1 and loop count LC is not 
zero:  Decrement LC and 
branch to target 

29 B-type (qp) br.ctop target 

In software pipelined loops: 
branch to target if qp=1 and 
(LC != 0 or EC > 1), where LC 
is the loop count and EC the 
epilog count. In this context 
epilog count EC is the number 
of iterations that must finish 
before the pipelined loop can 
exit. 

30 B-type (qp) br.ret qp=1: 
Procedure return 

31 B-type  clrrrb Clear register rename base 
registers 

 

B-type instructions (Table 6) include IP-relative branches, calls, return, loop branches 

and clrrrb, which is used to rotating register bases for software pipeline loops. All 

branches can be conditional when a qualifying predicate is specified. They may have 

‘whether’ completers like sptk, which the compiler issues when it statically predicts a 

branch is taken. The compiler can also specify whether the processor should fetch “few” 
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or “many” bundles at the target address. The values for “few” and “many” are micro-

architecture dependent. 

 

2.2 Predication 

Predication is the conditional execution of an instruction guarded by a qualifying 

predicate. On IA-64 the qualifying predicate is a binary (“predicate”) register that holds a 

value of 1 (=True) or 0 (=False). The (qualifying) predicate register is encoded in the 

instruction. When its value is 1 at run-time, the predicate is set. When the value is 0 at 

run-time, the predicate is clear.  When the value of the predicate register is set, the 

instruction executes, potential exceptions get raised, and results are committed to the 

architectural state. When the value of the predicate register is clear, the instruction still 

executes, but no exception is raised and results are not committed. This means that the 

instruction “flows” through the instruction pipeline and gets discarded only in the last 

pipeline stage, the write-back (WRB) stage, even when the qualifying predicate of the 

instruction is clear.  The default qualifying predicate is the constant predicate register p0, 

which is always set. An unpredicated instruction e.g. on a classical RISC architecture can 

be considered a special case of a predicated instruction which has its qualifying predicate 

always set. On IA-64 there are 64 predicate registers. Therefore the encoding of the 

qualifying predicate consumes 6 bits, which is one of the reasons why operations 

(instructions) are 41 bit wide. Another reason for the odd number of bits per instruction is 

the huge register file (see Section  2.3) with 128 general and 128 floating-point registers. 

The predicate registers are written by compare instructions. A compare instruction has 

two target predicate registers which – in the case of conditional or unconditional 

compares - represent a true and false condition value at run-time.  The typical consumer 

of a predicate register is a branch instruction. On IA-64 conditional branches are 

predicated branches.  When the qualifying predicate of a branch is set at run-time, the 

branch is taken. When the qualifying predicate of the branch is clear, the branch is not 

taken and the instruction following (statically) the branch gets executed. On IA-64 almost 

all instructions are predicated. This means they may contain a qualifying predicate that is 

either set (=true) or clear (=false) at run-time.  As (almost) fully predicated architecture 

IA-64 supports if-conversion. If-conversion is a compiler optimization that eliminates 
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conditional forward branches and its associate branch miss-prediction penalty, if the 

branch is hard to predict by the hardware branch predictor.  Branch miss-prediction 

penalty is the re-steer cost when the hardware branch predictor predicts a branch 

direction incorrectly. The instructions dependent on the branch are predicated up to a 

merge point in the original control flow graph. This eliminates the conditional branches 

and converting control dependencies into data dependencies  [2]. As a result it transforms 

a control flow region to a linear (“predicated”) code region. The paths in the control flow 

graph become execution traces in the predicated code. In the predicated region all paths 

of the original control flow region overlap. Therefore the processor supporting if-

conversion must have sufficient resources to potentially execute any of N program paths, 

although at any given point in time only one actually executes. If-conversion is illustrated 

in Figure 2. It shows a simple if-then-else structure (“hammock”), the unpredicated code 

with branches a compiler generates without if-conversion, and the if-converted code. 

There are two paths in the original control flow graphs and correspondingly two 

execution traces in the if-converted code (one trace contains cmp – (p2) V1 … , the other 

trace cmp  – (p3) V2=...). B4 in the original control flow serves is a merge point. All 

branches have been eliminated in the if-converted code. In case the conditional branch is 

mis-predicted in unpredicated code, the if-converted code is more efficient. 

 

 

Figure 2 Unpredicated and If-converted Hammock 
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The notion that if-conversion eliminates branch mis-predictions is correct for “closed” 

regions like hammocks, where all branches can be eliminated. Theoretically it is possible 

that if-conversion transfers, but does not eliminate a branch mis-prediction. This scenario 

could happen if a branch remains in the if-converted region. Figure 3 is making the case. 

The predicated region again is a hammock with merge point B4, but it has an “exit” 

branch to a block B5 outside the region. In this case a conditional branch (instruction 5 in 

the predicated code) remains in the region. It could happen that in the unpredicated code 

the first conditional branch was mispredicted (instruction 2), but after if-conversion the 

remaining conditional branch is mis-predicted, so if-conversion is not guaranteed to be 

effective in this case. In practice we have not observed this scenario, but it seems the 

notion that if-conversion eliminates branch mis-predicts is valid for the case of “closed” 

regions only, where if-conversion can eliminate all branches. 

 

 

 

Figure 3 If-converted Region with Exit Branch 
 

Like any compiler optimization, if-conversion must consider trade-offs: cost of if-

conversion includes code size increase (both static and dynamic) and execution time 

increase for execution paths in the if-converted region. The potential benefits, which 

include elimination of branch mis-predicts and potential code size decrease, must 
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outweigh the costs. If-conversion also competes with other optimizations like speculation 

for resources, e.g. instruction slots. It is conceivable that if-conversion may enable or 

disable control-or data speculation by consuming hardware resources. From these 

considerations it is clear that the heuristics that govern if-conversion cannot be simple. In 

general the compiler has no perfect knowledge of branch mis-predicts, execution counts 

or the dynamic interaction of optimizations. The Intel compiler employs an if-conversion 

Oracle that carefully evaluates the benefits of if-conversion for a given region, and 

decides to if-convert only when the Oracle suggests the estimated average execution time 

for the predicated code is better than for the original (unpredicated) code.  

Another benefit of if-conversion is that it enables the compiler to remove control flow 

in innermost loops for kernel-only software pipelining (Rau  [65]). The problem of 

register allocation for predicated code will be discussed in chapter  6. 

2.3 Architected Registers 

The Itanium processor has a large number of architected registers supporting predicated 

instructions, control- and data speculation, register rotation and a dynamic register stack. 

Relevant for register allocation are the 128 general (integer) registers r0-r127, 128 

floating point register f0-f127, 64 predicate registers p0-p63 and 8 branch registers b0-b7 

(Figure 4). The register types are partitioned into preserved and scratch registers by the 

ABI  [44]. The content of a preserved (=callee saved) register may not be destroyed by a 

callee (=a function called). If the callee is using a preserved register, it must restore the 

original value before return. The content of a scratch (=caller saved) register can be 

destroyed by a callee. Itanium has four registers representing constants: integer value 

zero in r0, floating-point value 0.0 in f0, floating-point value 1.0 in f1 and predicate value 

1 in p0. Special integer registers are reserved for data access (r1 is the global pointer to 

access global data, r12 is the stack pointer and r13 the thread pointer) and the return 

address (b0). The floating point and predicate register files contain rotating registers f32-

f127 and p16-p63 respectively. Unique for a processor are the 96 stacked integer 

registers, r32-r127, which are controlled by a special processor unit, the Register Stack 

Engine (RSE). Rotating registers and the register stack necessitate the distinction between 

architectural and physical registers. For example, architectural register r32 can be any 
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physical register from r32 up to the number of stacked registers implemented by the 

micro-architecture. Note that some but not all stacked registers may rotate. The actual 

number of rotating stacked registers is specified by the alloc instruction. Sections  2.4 and 

 2.5 cover the details about stacked and rotating registers. 

 
Figure 4 Register Files and Partitions 
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8 outgoing parameter registers. The outgoing parameter registers are scratch and become 

the incoming arguments in the register stack of the callee. The number of incoming 

argument and outgoing parameter register is dictated by the Itanium ABI  [44]. 

 The alloc instruction (Figure 5), which is an example for an instruction that cannot be 

predicated, specifies the register stack frame of a procedure:  the number of incoming 

parameters (in), the number of local registers (loc) and the number of outgoing 

parameters (out). The total number of registers in a register stack is in+loc+out <= 96.  

Usually a register stack has up to 8 incoming argument register and up to 8 outgoing 

parameter registers. Parameters that do not fit into the out section of the register stack are 

passed on the memory stack following the rules of the Itanium ABI  [44]. The local 

registers are determined by the register allocator. The number of rotating stacked 

registers must be specified in the last parameter rot of the alloc instruction in routines that 

contain software pipelined loops. The architectural register ar.pfs contains fields that 

describe the register stack of the caller (“previous function state”) and is saved into the 

destination register <dest> of the alloc instruction for register stack unwinding.  

 

 

Figure 5 Alloc instruction and Register Stack Frame 
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after the return from bar (3 :). Note that to simplify matters the alloc instructions in 

Figure 6 don’t specify rotating registers since the fact that some stacked registers can be 

rotating is irrelevant in this context. Combined, foo() and bar() use 140 stacked registers. 

Since more than 96 stacked registers are used on the call stack, the processor recognizes a 

stack register overflow at the call of bar() and saves 50 registers from the register file to 

memory so that the register stack frame of bar() can reside in the register file. The 

memory that contains the saved registers is called the “backing store” and is managed by 

the operating system. Similar, since registers allocated by foo have been saved and 

overwritten by operations in the callee, at the return from bar() the processor would 

recognize a stacked register underflow and restore registers from the backing store to the 

register file. The saves and restores of stacked registers are transparent to the program 

and controlled by the RSE. More details about the backing store are in Section  2.5. 
 

 
 

Figure 6 Snapshots of Stacked Register Usage 

 

The values of the procedure frame parameters are maintained in the Current Frame 

Marker (CFM) field of the Current Function State (CFS) application register. When a call 

is executed, the content of the CFM is copied to Previous Frame Marker (PFM) field of 

the Previous Function State application register. The caller’s output area becomes the 
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area. The stacked registers are renamed such that r32 becomes the first register on the 

stack. The alloc instruction creates the register stack frame for the callee. The input 

section of the local area in the new frame matches the output area of the caller’s frame. In 

other words, the input registers in the callee’s frame are the renamed registers of the 

caller’s output area. This effectively passes the caller’s register parameters to the callee. 

When the return executes, the CFM field is restored from the PFM field and the original 

register stack frame of the caller is re-instantiated.  Figure 7 shows an example with a 

register stack frame of size 21 with 7 outgoing registers (r46-r52). After the execution of 

the call the register stack frame of the callee exists of 7 incoming registers. Registers r46-

r52 have been renamed to r32-r38. The new register stack frame has been recorded in the 

sol (“size of local”) and sof (“size of frame”) fields of the CFM. There sol is 0, while sof 

is 7. 

 
 

 
 

Figure 7 Register Stack - Growth and Shrinkage  
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2.5 Register Spilling and Backing Store 

 
The register stack engine (RSE) manages the 96 stacked register partition of the physical 

register file as a circular buffer. The stacked partition of the register file is partitioned into 

three parts: mapped registers belong to some stack frame of a procedure on the call stack, 

unmapped registers do not belong to any frame and active registers (which can be viewed 

as special mapped registers) are the frame of the running (“active”) procedure. Overflows 

occur when a new frame is allocated and overlaps with mapped registers. In this case, the 

RSE makes room for the new frame by spilling overlapped mapped register to memory, 

the backing store. Each process has its own backing store. Underflows occur at procedure 

returns when unmapped registers of the caller must be filled from the backing store. The 

RSE manages the register file and the backing store, with a set of internal pointers. Figure 

8 shows a snapshot with three frames in the register file.  

 

 
Figure 8 Register File, Frames and Backing Store 
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which is hold in the BSP (“backing store pointer”). StoreReg points to the mapped 

register that is saved to address BSPSTORE in case of an overflow. In case of an 

underflow registers get restored starting from address BSPSTORE-8. The actual RSE 

actions depend on whether the call stack, and thus the register stack, will grow or shrink 

in future. It is clear that RSE register saves and restores (“RSE traffic”) for an application 

increases proportionally to the size of register frames and the depth of the call stacks. 
 

2.6 Speculation 

Speculation means early execution of an operation. At this early point it is unknown if the 

result of the operation is needed. Itanium supports two major explicit forms of 

speculation: control- and data speculation. Both types of speculation are non-exclusive 

and can coexist. 

2.6.1 Control Speculation 

Control speculation (breaking the branch barrier) is an optimization that hoists a chain of 

instructions starting at a load above one or more controlling branches. Instructions can be 

divided into two classes: speculative and non-speculative instructions. Speculative 

instructions, which defer exceptions, may execute prematurely. In general, all 

arithmetical instructions, which write result to general or floating-point register, are 

speculative.  Loads are non-speculative instructions that raise exceptions if they occur 

and cannot be speculated. Therefore Itanium provides speculative loads (ld.s, ldf.s, ldfp.s) 

in addition not non-speculative loads (ld, ldf, ldfp). A failed speculative load (e.g. due to 

a page fault) causes a deferred exception token to be written into destination register of 

the speculated load. For general registers, the token is an extra bit (NaT) for each register.  

Thus the general registers are 65 bits wide. When the NaT (“Not a Thing”) bit is set 

(value is 1), the register contains a deferred exception token. Otherwise the NaT bit is 

clear (value is 0). In floating-point registers the deferred exception token is set when it 

contains a special zero encoding, the NaTVal. The speculative loads are the only 

producers of deferred exceptions tokes, which propagate across the chain of speculated 

instructions: the destination register will inherit the deferred exception token if it is set in 

any source.  
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Since control speculation can yield invalid result, a validation mechanism must be 

provided. For this Itanium provides a chk.s instruction (for both, general and floating-

point registers), which must execute at the point of the original load when the result is 

needed.  If the source register in the chk.s contains a deferred exception token, execution 

branches to recovery code, which re-executes a non-speculative instance of the 

speculative load and all instructions in the dependence chain, therefore clearing the 

deferred exception token in the chain, and branches back to the bundle after the chk.s. 

Example 1 shows a simple example for control speculation of a single load and a 

dependent add instruction. In case of an exception, recovery code executes and computes 

the result. Program execution continues at the bundle after the chk.s. 

 

 

 

Example 1 Control Speculation with Recovery Code 

 

Speculation can offer many benefits: it can decrease critical path length, increase ILP 

and hide memory latency. This is balanced by potential cost:  First, there is the 

opportunity cost of wasted resources when the result is not needed. Second, an exception 

results in dynamic code duplication, chk.s branch overhead and potential I-cache 

pollution from executing recovery code.  Third, careless speculation can increase critical 

path length. Finally, like any code hoisting optimization, control speculation can increase 

register pressure. 

           Original Code     Control Speculated Code  
 
  1:  ld8  V3=[V1];;  ld8  V3=[V1]    
2:  cmp.eq V10,p0=V3,0 ld8.s  V8=[V7];;   
3:      cmp.eq V10,p0=V3,0   

  4:  add  V5=V4,V3  add  V5=V4,V3   
  5:      add  V9=V9,V8   
  6: (V10) br cont;;  (V10) br  cont;;   
  7:  ...    ... 
  8:  ld8 V8=[V7];;   r1: chk.s  V8,rec   
  9:   add V9=V9,V8        
 10: cont: ...    cont: ...  
 11:  ...    ... 
 11:     rec: ld8  V8=[V7] //recovery 
 12:      add  V9=V9,V8 //code  
 13:      br     cont;; 
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The register allocator must be aware of deferred exception tokens. For integer 

registers, st8.spill/ld8.fill instructions are defined to save/restore a general register and its 

NaT bit. The NaT bit of the spill/fill is stored in/restored from a preserved 64bit 

application register, the ar.unat. Bits 8:3 (six bits) of the memory address of the spill/fill 

determine the specific ar.unat bit that correspond to the spill source/fill destination 

register. For floating-point registers, stf.spill/ldf.spill save/restore a register without 

raising an exception if the source/destination register contains a NaTVal. 

2.6.2 Data Speculation 

Data speculation (breaking the store barrier) is an optimization that hoists a chain of 

instructions starting at a load above one or more ambiguous stores. A load and store are 

ambiguous, when it is unknown at compile (assembly) time whether the load and store 

address overlap. Itanium provides advanced loads (ld.a, ldf.a, ldfp.a), an advanced load 

check (chk.a) and load check (ld.c, ldf.c, ldfp.c) instructions for data speculation. When a 

chain of instructions is speculated, the result must be checked with a chk.a, which is 

similar to chk.s. When the chain is only a single load, a load check instruction can be 

used. An advanced load records information about its physical destination register, 

memory address and data size in the Advanced Load Address Table (ALAT)  [42]. When 

a subsequent store overlaps, the processor invalidates the corresponding ALAT entry to 

indicate the collision. A load check only reloads the correct value when it finds no valid 

ALAT entry. As with control speculation, a chk.a branches to recovery code and re-

executes the speculated instruction chain (Example 8), when an address overlap has 

happened. For data speculation, the code generator has to handle two performance issues: 

ALAT conflicts and ALAT collisions. On the first Itanium processor (“Merced”) the 

ALAT is a 2-way set associative cache with 16 entries per set. The four least significant 

bits of the physical ld.a destination register form the set index. When two ALAT live 

ranges interfere, the register allocator has to assign them two (mod 16) different physical 

registers to avoid ALAT conflicts. The register allocator can guarantee this only if both 

registers are in the same class: static, stacked or rotating. When the two registers are in 

different register classes, e.g. one static, one stacked, in general the compiler cannot 
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derive their physical register number. On the Itanium-2 the ALAT has 32 entries and is 

fully associative  [42] and the register allocator does not have to worry about collisions. 

 

 

Example 2 Data Speculation with Recovery Code 
 

2.6.3 Combined Control- and Data Speculation 

Control- and data speculation can co-exist and be performed simultaneously to break 

both, branch and store barriers. Itanium supports control-speculative variants of advanced 

loads (ld.sa, ldf.sa, ldfp.sa). When such loads generate a deferred exception token, no 

ALAT entry for the (physical) destination registers will exist. Thus an advanced load 

check or a load check instruction validates the control-and data speculated result like for 

“pure” data-speculated code. 

   Original Code   Data Speculated Code 
 
1:      ld8.a  V4=[V1]  
2:      add  V5=V4,V6 

  3:                   ... 
  4:    st4 [V10]=V11  st4  [V10]=V11 
  5:  ld8  V4=[V1]  chk.a  V4, rec 
  6:  add V5=V4,V6   cont: ... 
  7: 
  8:                  rec: ld8  V4=[V1] // recovery  
  9:                   add  V5=V4,V6 // code 
 10:                   br  cont  // 
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3 Review of Graph-Coloring based Register Allocation 

This chapter gives an overview of the rich body of literature on graph-coloring based 

register allocation. While it cannot be complete, it does review many key ideas of the 

subject. For a perspective, a fundamental building block of Chaitin’s graph-coloring 

based register allocator (“coloring allocator”), the simplification algorithm, was 

described by Kempe  [47] in 1879. 

3.1 Foundations 

Register allocation solves the decision problem which symbolic register should reside in 

a machine register. A symbolic register represents a user variable or a temporary in a 

compiler-internal program representation. Register assignment solves the decision 

problem which specific machine registers to assign a given allocated symbolic register. 

Solutions to both problems must take into account constraints between symbolic 

registers. A coloring allocator abstracts the allocation problem to coloring an undirected 

interference graph with K colors, which represent K machine registers. The red thread of 

the relevant literature starts with Chaitin’s paper  [16], which describes the first complete 

implementation of a coloring allocator in an experimental IBM PL/I compiler. In a 

follow-up paper Chaitin describes - in “broad brush strokes” - the fundamental building 

blocks of coloring allocators  [17].  Chow introduced priority-based graph coloring as part 

of the optimizing UCODE compiler  [20].  Chaitin’s and Chow’s papers inspired many 

developments in the field. A short account of the history of graph coloring methods in 

computer science before Chaitin can be found in Briggs’ thesis  [12]. 

3.1.1 Chaitin-style Register Allocation 

A Chaitin-style graph-coloring algorithm has six phases (Figure 9): “rename”, “build”, 

“coalesce”, “simplify”, “spill” and “select”. At the start of the algorithm each symbolic 

register corresponds to a single register candidate node (“renaming”). This phase may 

split disjoint definition-use chains of a single variable into multiple disjoint live ranges. It 

also ensures contiguous numbering of candidates reducing memory requirements for 

dataflow-analysis and interference graph. Node interference relies on dataflow analysis to 
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determine the live range of a node. The live range of a node consists of all program points 

where the register candidate is both live and available. Dataflow analysis is necessary 

only once, not at each build step.  The “build” phase constructs the interference graph. 

The nodes in the interference graph represent register candidates. Two nodes are 

connected by an interference edge when they cannot be assigned the same register. The 

number of edges incident with a node are the degree of the node. Building the 

interference graph is a two pass algorithm. In the first pass, starting with the live out 

information, node interference is determined by a backward sweep over the instructions 

in each basic block. Interference is a symmetric relation stored in a triangular matrix. 

This is usually a large, sparse bit matrix inadequate for querying the neighbors of a given 

node. To remedy this for each node an adjacency vector is allocated in a second pass. The 

length of the vector is the degree of the node. It contains all neighbors of the node. 

 

 
 

Figure 9 Chaitin-style Register Allocator 

The next phase, “coalescing” (aka “subsumption”, “node fusion”), is an optimization 

not needed for solving the register allocation problem, but was introduced in the original 
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register candidate has fewer than K interference edges (low degree node that has fewer 

than K neighbors), then it can always be assigned a color. Low degree nodes and their 

edges are removed from the graph (“simplify”) and pushed on a stack (“coloring stack”). 

Node removal may produce new low degree nodes. When only high degree 

(“significant”) nodes that have K or more neighbors are left, then simplification is in a 

blocking state. It transitions out of a blocking state using a heuristic-based priority 

function that determines the “best node” to be removed from the graph. A node that is 

removed from the graph in blocking state is “spilled” and appended to a spill list. Spilling 

is an allocation decision and a spilled node will reside in memory (stack) rather than in a 

register. The edges of a spilled node are removed from the graph, so new low degree 

nodes can get exposed and simplification continues until all nodes have been pushed to 

the coloring stack or appended to the spill list. The cost function that decides on the “best 

node” estimates the execution time increase caused by spill code normalized by the 

degree of the node. The higher the degree the less likely a node will be allocated a 

register. The formula for the cost function is in Equation 1. The sum is over all basic 

blocks that contain a reference to node n. In Equation 1 id  is the number of definitions of 

n, iu  the number of uses and if  an estimate of the execution frequency of basic block i . 

The expected execution time of a load and store on specific target architecture is S and L 

respectively. 

 
Equation 1 Cost Function in Chaitin Allocator 

 
The node with the smallest cost is picked for spilling. When the spill list is not empty 

at the end of “simplify”, the “spill” phase substitutes a spilled candidate with possibly 

multiple new register candidates. In the worst case a new candidate is introduced for each 

definition and use of the original register candidate. Figure 10 shows the original code 

and the code a spilling. The register candidate of a definition is replaced with a new 

register candidate rc1, which is spilled immediately after definition to the address 
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contained in the spill register. Similar, a fill is inserted before a use. Note that the move 

of the spill address into register sp is not shown in Figure 10. The replacement of the 

original spill candidate rc with new candidates rc1 and rc2 splits the original live range 

for rc into two small live ranges for rc1 and rc2. When spilling has occurred, the allocator 

must restart at the build phase and iterates until all register candidates are colored. 

 

Figure 10 Illustration of Spill Code Insertion 
 

 After a few build-coalesce-simplify cycles, the spill list is empty. At this point the 

allocation problem is solved: original candidates that are in the coloring stack have been 

allocated to registers. The coloring stack is fed into the coloring or “select” phase. This 

phase picks one node at a time starting from the top of the stack and assigns a color to the 

node while it ensures that interfering nodes receive different colors. For this the 

adjacency vectors are used: colors that have been assigned to neighbors get blocked and 

cannot be assigned to the current node.  

The order in which candidates are assigned registers impacts allocation. Simple 

examples show that some graphs with nodes of degree K or higher can be colored with K 

or less colors. Briggs et al.  [13] used this insight and modified the Chaitin allocator by 

pushing all nodes onto the coloring stack during simplification. The actual spill decision 

is delayed until after register assignment. This delay technique is known as optimistic 

coloring, since significant nodes could get assigned a register rather than being spilled 

like in Chaitin’s original allocator (Briggs  [12]). With optimistic coloring (Figure 11), 

register assignment solves the allocation problem: when a candidate has been assigned a 

register, it has been allocated to a register. When all candidates on the coloring stack get 

assigned a register, the algorithm terminates. Otherwise it spills the unassigned 

candidates and restarts allocation at the build phase. 

Original Code    After Spilling 
 
1: add rc=…    add rc1=… 
2:      st8[sp]=rc1 
3: …     … 
4:      ld8 rc2=[sp] 
5: sub …=rc    sub …=rc2 
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Figure 11 Chaitin-style Allocator with Optimistic Coloring 
 
 

3.1.2 Priority-based Register Allocation 

Priority-based register allocation was introduced by Chow  [20]. This coloring allocator 

uses the basic building blocks of a Chaitin-style allocator except for the coalescing phase. 

A priority function estimates the execution time decrease when a live range is assigned a 

register rather than residing in memory. The live ranges are composed of one or more live 

units. A live unit is a basic block where a given symbolic register could reside in a 

register. The more expensive (relative to Chaitin) representation of a live range supports 

live range splitting, which splits a given live range into a set of smaller live ranges when 

no color can be assigned. Rather than spilling the entire live range, live range splitting 

dissolves a given live range into new candidates that could become colorable. The phases 

of a Chow allocator (Figure 12) are “rename”, “build”, “simplify”, “select I”, “split” and 

“select II”. A Chow allocator works on two pools of nodes: the constrained and the 

unconstrained node pool. These pools are the result of the Chow simplification phase: 

unconstrained live ranges, which are the low degree nodes with less than K neighbors, are 

collected in the unconstrained pool, and constrained live ranges, which are the significant 

nodes with K or more neighbors, are collected in the constrained pool. 
 
 
 

   Allocation 

 
   Assignment 

rename build coalesce simplify select 

spill 
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Figure 12 Chow-style Allocator 
 

Unlike in a Chaitin allocator, the simplification phase sweeps over the nodes only 

once. In assignment phase “select I” a priority function estimates the potential execution 

time savings from a register assignment. This function is normalized to the length of the 

live range. The rational is that longer live ranges get lower preference since they consume 

registers longer reducing the chances of other live ranges to be assigned registers. The 

live range with the highest priority is assigned a register first. Equation 2 shows the 

priority function of a live range n: the sum is over all basic blocks that contain a reference 

to node n.  id  is the number of definitions, iu  the number of uses m the number of 

reconciliation moves, which could be necessary to reconcile assignments to split live 

ranges segments, and if  an estimate of the execution frequency of the basic block i . The 

expected execution time of a load, store and move is L, S and M respectively.  
 

 

Equation 2 Priority Function in a Chow Allocator 
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The numerator in the priority function is similar to the numerator in Chaitin’s cost 

function, except that it is interpreted as the execution time benefit of register assignment 

and models the reconciliation cost ( imM × ) for a split live range.  

 When no color is available in the priority select phase, the Chow allocator is in a 

blocking state. It transitions out of a blocking state by splitting a live range into two or 

more live range segments, which form new live ranges.  Splitting starts at the first block 

where the node could be assigned a register and determines in a breadth-first search the 

maximal segment (= first new live range) that can be colored. This is done recursively 

until the original node is split entirely into smaller live ranges and the constrained and 

unconstrained pools are updated accordingly. When all live units in a live range are 

constrained, the node cannot be split. In this case the Chow allocator spills the node by 

removing it from the constrained pool (“spill”). After coloring of the constrained nodes 

has terminated, all unconstrained nodes are colored in “select II”. The original Chow 

allocator does not support coalescing, operates at a high-level intermediate 

representation, assumes all candidates reside in memory initially, and reserves machine 

registers for spilling, using fewer colors than machine registers available. The complexity 

of the select I phase is ( )( )KLKO −× , where L is the total number of live ranges (Chow 

 [20], [22]). 

3.2 Worst-case Time and Space Analysis 

This section reviews time and space complexity of the phases of a Chaitin-style allocator. 

In its simplest form “rename” is a linear pass over the control flow graph renaming 

symbolic registers. It may allocate a table to record information about each candidate. 

The impact of renaming on the intermediate representation is illustrated in Figure 13. 

Renaming can compact the candidates since the compiler may introduce new symbolic 

registers and dispose used symbolic registers before it calls the allocator. Compaction 

reduces memory requirements in particular for the interference graph. Rename may also 

select candidates: for example, the Intel compiler, which is discussed in more detail in 

chapter  4 , separates allocation for integer and floating-point candidates. In this case the 

“rename” phase will select only the candidates of the class that gets allocated. A more 

elaborate implementation of “rename” could also split a live range into disjoint 
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components. For example, the live range of D in Figure 13 has two disjoint components 

from lines 1-5 and lines 10-18 respectively and could get splits into two candidates RC3 

and RC4. 

 

 
Figure 13 Illustration of simple “rename” phase 

 

Live ranges formation as part of the “build” phase relies on available variable and live 

variable analysis. The live range of a variable is the set of all program points where the 

variable is both live and available. Time and space complexity is similar for both 

standard bit vector-based dataflow analysis algorithms (Figure 14), except that available 

variable analysis does not require the kill vector. The notation in Figure 14 follows Aho 

et al.  [1]. It assumes that a control flow graph is normalized with two distinguished 

nodes: a single START and a single EXIT node. For a reducible control flow graph the 

deepest loop nesting level of the function is an upper limit for the trip count of the 

dataflow solver. When the control flow graph is irreducible, worst-case time for a 

dataflow routine can be quadratic in the number of basic blocks.  

Available variable analysis is used to identify undefined variables in acyclic code and 

to stop live range extension for non-strict live ranges at basic block boundaries where the 

live range is undefined. A live range is non-strict when there is a path from the function 

entry to a use that may contain no definition. When a non-strict live range is contained in 

a loop, its live range spans the entire loop. Figure 15 has an example for a non-strict live  

 

 

 

 Source  Intermediate Representation  after Rename 
 
 1: D=A+B  add V5=V4,V3   add RC3=RC2,RC1 
… …  …     … 
 5:  =D  =V5      =RC3 
… …  …     … 
10: D=  V5=     RC4= 
… …  …     … 
18:  =D  =V5      =RC4 
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Figure 14 Live Variable and Available Variable Analyses 

 

 
Figure 15 Example for a non-strict Live Range 

 
range V. In the cyclic case, the live range of V extends from the exit of pre-header B1 to 

the use of V. In the acyclic case, the live range extends from the definition to the use V. 
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The result of live range construction is live vectors at the exit of basic blocks. To 

construct the interference graph, the allocator sweeps backwards over the instructions of 

the basic block updating the live vector at each instruction. In parallel it records 

interferences in the triangular interference matrix.  Figure 16 shows a snippet of a basic 

block with five register candidates. Candidates RC2, RC4 and RC5 are live at exit. In the 

last instruction RC 4 is defined. Thus it interferes with all candidates live and the 

interferences with RC2 and RC5 are recorded in the interference matrix. Since RC4 is 

defined, RC4 is then removed from the live vector. Also, in the last instruction RC1 is 

used. Thus it is recorded as live in the live vector. There is no interference at this step 

between RC1 and RC4.  The interference matrix shows the interferences after all 

instructions in the block have been visited. After the interference matrix has been 

recorded, the degree for each variable is known. In the second pass of the “build” phase 

all neighbors of a node are recorded in the adjacency vector. In the worst case the 

adjacency vectors can consume even more space than the interference matrix. This can 

happen for example for a complete graph with |V| nodes. A graph is complete when each 

pair of nodes is connected by an edge. In a complete graph with |V| nodes each node n 

has degree (n) =|V| - 1. 

 

Figure 16 Interference Graph Construction Scheme 
 

Figure 17 shows the interference graph for the basic block snippet in Figure 16. 

Assuming K = 2, the simplification phase will push node 3, which has only one neighbor, 

on the coloring stack. Since 1 < K=2, this node is “unconstrained” and guaranteed to get 

assigned a register. After removing node 3, simplification is in a blocking state. Based on 

Basic Block

RC1 RC2 RC3 RC4 RC5 RC1 RC2 RC3 RC4 RC5
Live-at-entry 0 1 0 0 0 RC1 X X

RC3 = op(RC2) 0 1 0 0 0 RC2 X X X
RC1 = op(RC2,RC3) 0 1 1 0 0 RC3
RC5 = op(RC1,RC2) 1 1 0 0 0 RC4 X
RC4 = op(RC1) 1 1 0 0 1 RC5  

Live-at-exit 0 1 0 1 1

Live Vector Interference Matrix

 



 41 

the cost function, it may pick node 4 as a spill node and place it “optimistically” onto the 

coloring stack, as illustrated in Figure 17, or in a spill list. The remaining nodes, 1, 2 and 

5 still form a clique of 3 nodes, thus simplification is still blocked. It may decide to 

remove node 1. At this point node 2 and 5 have fewer than 2 neighbors and are pushed 

onto the coloring stack, terminating simplification. The select phase will assign colors to 

the candidates in reverse order they have been pushed onto the stack. 

 

Figure 17 Simplification Phase and Coloring of Interference Graph  
 

Figure 17 shows one possible assignment. Since node 1 and 4 did not get a register 

assigned, they get spilled and allocation restarts. In this particular example original 

Chaitin and optimistic coloring would produce identical spill code. In this example, the 

influence of node order on the allocation and assignment result is visible (“NP-noise”, cf. 

Briggs  [13]): assuming that node 2 is the cheapest node to spill in the first blocking state 

of the simplification phase it will be removed from the interference graph together with 

its neighbors. Then the remaining nodes will have only one neighbor and become 

unconstrained. In this scenario only node 2 may get spilled. So the allocation outcome 

depends on the assignment and the order of the nodes 1, 4, and 5 in the final coloring 

stack.  If nodes 1 and 4 end up on the top of the stack and are assigned r1 and r2 

respectively, node 5 will be spilled. But if nodes 1 and 4 are assigned r1, only node 2 
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must be spilled. The simplification algorithm can be implemented in time complexity 

))log(( NNO ×  where N is the number of nodes. The assignment (or coloring) phase is a 

single linear pass over all nodes on the coloring stack. 

3.3 Developments 

Since Chaitin’s work literature on register allocation progressed proposing new 

extensions, heuristics, scopes and alternatives. These developments can be summarized in 

six categories (Table 7). 

 

Table 7 Research Categories and Goals 

 
First, spill code reduction improves on Chaitin’s spilling heuristics to reduce spill and 

fill instructions. Splitting methods are heuristics to split live ranges into smaller pieces. 

Smaller live ranges should have less interference and could yield better allocation results. 

Second, the goal of scoping is to improve register allocation compile time or extend 

allocation scope, for example, allocating candidates across procedure boundaries rather 

than within a procedure. One idea to save compile time is to partition the control flow 

graph into a disjoint set of regions, perform register allocation per region and reconcile 

allocations at region boundaries. Implicitly, the walk over the regions also prioritizes 

register candidates and can impact allocation and thus run-time performance.  Third, over 

time researchers and practitioners have implemented and proposed extensions to the 

classical coloring allocator to cope with architecture peculiarities. Fourth, coalescing 

almost is a field of its own, separate from register allocation. Fifth, in addition to graph-

 Category Goals 

1 Spill code reduction Performance (heuristics, remat., 
premat.) 

2 Scoping Compile time, Performance 

3 Extensions Functionality (e.g. load pairs), 
Performance 

4 Coalescing Performance, Compile time 
5 Alternative Models Compile time, Performance 

6 Theory Complexity analysis, Polynomial time 
solutions 
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coloring based register allocation many other approaches have been proposed. Finally, 

there is rich amount of literature on the theory of register allocation.  The remainder of 

the section surveys the six categories. 

3.3.1 Spill Cost Reduction 
 
The goal is to issue as little spill code as possible. To this end clever heuristics including 

preferencing, rematerialization, live range shrinking (a.k.a. pre-materialization) and live 

range splitting methods get employed. 

3.3.1.1 Spill Heuristics 
 
Two references of a live range are close when no other live range dies (“goes dead” in 

Chaitin  [17]) between them. In other words, two references of a live range are close when 

no other live range ends between them. In this case, no new register can become available 

at the second reference. So, in the relevant case that the second reference is a use, the fill 

would have to use the same register the candidate is assigned to at the first reference and 

load the same value. Effectively the fill becomes a dead instruction. Chaitin’s spilling 

heuristics a) exploit this fact and attempts to avoid spilling in basic block when 

“closeness” for live range references can be detected, and b) replace loads with simpler 

operations when possible (Rule 1 below, “rematerialization”):  

• Rule 1: If a value is easy to re-compute, do it. 

• Rule 2: If two uses of a live range are close, don’t reload at the second use (“load 

forwarding”) 

• Rule 3: Don’t spill a live range when all its uses are close 

• Rule 4: If a use is close to its definition, use the stored value directly and don’t fill 

(“store forwarding”) 

• Rule 4’: If the use is close to its definition, and both references are within one 

basic block, don’t spill the live range  

It can be more effective to re-compute the value of a live range rather than spilling it. 

Trivial examples are live ranges that represent constants or easy to re-compute values like 

stack pointer + offset. This technique is called “rematerialization”. Chaitin  [17] uses it as 

a spill heuristic. Briggs  [12] generalizes Chaitin’s observation and constructs a dataflow 
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framework to model rematerializable live ranges. Figure 18 illustrates Chaitin’s rules for 

two live ranges X and Y in one basic block. When no rule is applied, X is filled before 

each use. With rule 1, the load is replaced by an assumingly cheaper add instruction. Rule 

3 is a generalization of rule 2: When all uses are close, only the first load of X is 

necessary. In case of live range Y there is a definition and use in one basic block. When 

no rule is applied, Y is spilled after the definition and filled before the use. If use and 

definition are close, rule 4 applies and only the spill is needed. If Y is local live range and 

the basic block contains all its references, it does not get spilled at all based on rule 4’. 

 

 

Figure 18 Illustrations of Chaitin's Spill Rules 
 

 

Bernstein et al. [7] introduces the “best of three” simplification heuristic, which 

decides which node to spill when the Chaitin allocator is in blocking state. Chaitin’s cost 

function (see Equation 1) prefers spilling a node with low cost and high degree, but it 

ignores register pressure. Bernstein et al. add weighted approximations to the cost 

function and use the inverse of the square of the degree of a node. Using the square of the 

degree rather than the degree makes it more likely that high degree nodes get spilled, 

which in turn could expose more unconstrained nodes ( [7]). The three Bernstein spill 

heuristics are listed in Figure 19. 

 
Spilled X Rule 1   Rule 3  Spilled Y Rule 4  Rule 4’ 
 
load X add X=sp,12  load X def Y  def Y  def Y 
use X  use X   use X store Y store Y … 
…  …   …  …  … 
load X add X=sp,12  
use X  use X   use X load Y   
      use Y  use Y  use Y 
load X add X=sp,12 
use X  use X   use X 
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Figure 19 Bernstein et al: Three heuristic Spill Functions 

 
Bernstein et al. experiment with all three heuristic functions, where Area(n) is a 

measure for the weighted register pressure of live range n (Figure 19). In their 

experiments, none of the 3 heuristics is found to be superior to others, but the minimum 

of all three actually does give a superior select routine in all their tests: 

 

 

Equation 3 Modified Cost Function in a Chaitin Allocator 

 

3.3.1.2 Splitting 

Cooper and Simpson  [24] exploit “containment” to reduce spill code: a live range L1 is 

contained in a live range L2, when L1 is not live at any definition or use of L2. The idea 

is that spilling a live range that is contained in another, is in-effective since it does not 

reduce interferences or provide any benefit for the spill cost. “Containment” is encoded 

as a directed interference graph: when L1 is contained in L2, there is a directed edge from 

L1 to L2. When neither L1 is contained in L2 nor L2 is contained in L1, and both live 
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LIVE(n):  set of all instructions where n is live at exit 
depth(I):  loop nesting level of instruction I 
width(I):   # of simultaneous live register candidates at instruction I 
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ranges interfere, the interference edge remains un-directed. Containment–based splitting 

is a lazy technique: for a spilled live range L it estimates the cost of splitting neighbors 

that contain L. If this is not effective the algorithm tries to split L across live ranges that 

are contained in L. For example, assume L2 is spilled and L2 is contained in L1. The 

algorithm spills L2 “around” L1 first if this results in faster code (as estimated by 

heuristics in the algorithm). Otherwise, it attempts to spill L1 “around” live ranges it 

contains. The containment-based algorithm would split L1 at the boundaries of live 

ranges that it contains, if it (likely) benefits run-time performance. 

Bergner et al.  [6] introduce interference region spilling. The interference region for 

two live ranges is the set of program points where both live ranges are simultaneously 

live. The idea is that spilling a live range in an interference region only (“partial spilling”) 

is cheaper than spilling the entire live range. It is a lazy technique: for any spilled live 

range it evaluates the cost of only partially spilling the live range. For each spilled node 

their algorithm groups edges into K classes, one class for each color. Each class 

represents an interference region and contains interference edges to neighbors assigned 

color k. A color k is chosen that minimizes overall spill costs and the edges in class k are 

removed from the interference graph. When a live range L1 is contained in live range L2, 

the interference region for L1 and L2 is all of L1. In this case, interference region spilling 

and Chaitin spilling give the same results. The basic idea of splitting live ranges in 

“zones” of register pressure is also mentioned in Section 5 in Chow  [22]. 

Pre-materialization shrinks re-computable live ranges before register allocation, when 

there is no cost to do so. Baev and al.  [5] apply this technique in the HP-UX Itanium 

compiler, when empty slots are found where the “rematerializable” live range can be pre-

computed without impacting execution time. This reduces register pressure but does not 

increase schedule length. A more aggressive implementation could trade off the register 

pressure reduction with schedule length increase.  

Bernstein et al. [7] describe a splitting technique called “cleaning”. It is applied at a 

basic block level in the first two iterations of a Chaitin allocator: when a live range is 

spilled, only one load (store) is inserted at the first use (definition), independent of the 

number of references to the live range in the block. Also, the live range is renamed and 

becomes local in the block. Intuitively “cleaning” should reduce spills in regions of low 
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register pressure. “Cleaning” is aggressively applying Chaitin’s heuristics by ignoring 

“closeness”. Since this could result in more allocation iterations, the technique is limited 

to the first two iterations only. 

3.3.1.3 Preferencing 

Preferencing methods attempt to reduce spill code by influencing the register assignment. 

The direct method, which is usually applied in region-based allocators, attempts to assign 

the same register in all regions. Other methods are more indirect and opportunistic. They 

attempt to influence the ordering of the nodes on the coloring stack for both constrained 

and unconstrained live ranges so that the eventual assignment is more likely to yield a 

better allocation. For example, Lueh and Gross  [54] compute the benefits for assigning a 

preserved or scratch register to a live range. The data is used to sort live ranges that 

contain function calls on the coloring stack prior to coloring. By examples they show that 

this can result in better allocations. Koseki et al.  [50] developed an elaborate preferencing 

allocator. They introduce four classes of register preferences (dedicated, limited, 

preferred, and dependent, build a register preference graph (RPG), which is a weighted 

directed graph where each node represents a candidate, register, or register class, and 

each edge represents a dependence. The coloring stack is partially ordered based on 

simplification precedence. This gives a lattice for the candidates. In their selection phase 

they sieve candidates starting at the top elements in an attempt to satisfy the preference 

that gives the most benefit. But their method is compile time intense and performance 

gains are not certain. 

3.3.2 Scoping 

In this category methods address compile time and performance. The contributions can 

be broken down into four sub-categories: 

• Extension of scope to interprocedural allocation 

• Partitioning of control flow graph into allocation regions 

• Partitioning of interference graph 

• Partitioning of candidates 

The sub-categories are not independent. For example, smaller allocation regions usually 

result in a smaller interference graph.  
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Interprocedural methods attempt to color candidates across call boundaries. Chow  [21] 

describes a simple method where the routines in the call graph are visited in reverse-post 

order (“depth-first order”). The allocation results in the callee are used by the caller to 

assign registers, which are unused by the callee, to live ranges that cross that call. This 

can avoid spilling of scratch registers at call sites and spare preserved registers. 

Steenkiste and Hennessy’s method  [73] is similar to Chow’s. They also traverse the call 

graph bottom-up. Cycles in the call graph are broken by replacing strongly connected 

components with single compound nodes. They don’t necessarily follow strict calling 

conventions when it is beneficial to do so. Usually the interprocedural allocator runs out 

of registers in the routines on top of the call stack. If this happens, their allocator falls 

back to a regular (priority based) intra-procedural allocator.  

Callahan and Koblenz  [15] describe a general region allocation scheme (“Hierarchical 

Graph Coloring”). They partition the control flow graph into a set of tiles. Tiles are sets 

of basic blocks with additional properties, so that a tile tree can be constructed: two tiles 

are either disjoint or contained (tile 1 is subset of tile 2 or vice versa) and there is a single 

root tile. Then graph-coloring is applied to each tile (region) in a bottom-up walk of the 

tree. At tile boundaries the allocations are reconciled. Reconciliation is necessary since a 

live range L1 may get assigned register r1 in tile 1 and register r2 in tile 2. At the tile 

boundary of tile 1 and tile 2 a “reconciliation” move from e.g. r1 to r2 must be inserted. 

Hierarchical graph coloring covers loop trees and graph-partitions based on single-entry 

single-exit (“SESE”) regions. It is noteworthy that their allocator uses “pseudo” registers, 

which are assigned physical registers in a reconciliation phase. Norris and Pollack  [61] 

pursue region based allocation in a similar fashion, but based on the program dependence 

graph (“PDG”). Statements guarded by the same control statement form an allocation 

region. Their region may have multiple exits. Fusion-based allocation partitions the 

control flow graph into arbitrarily disjoint regions (Lueh et al.  [55]). The idea of the 

fusion allocator is to delay spilling until the interference graphs of two simplifiable 

regions get fused. When the combined graph would be no longer simplifiable, the fusion 

operator, based on feedback profiling information, attempts to split live ranges in order to 

minimize spill code at the region boundaries. 
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 Gupta et al.  [33] proposed clique separators for partitioning the interference graph. A 

clique separator is a clique that partitions a graph into two disjoint components. The 

clique allocator computes spans (definition-use chains) and identifies a set of clique 

separators. Each span can be contained in at most a fixed number of sub-graphs. Each 

sub-graph is colored separately, while it includes the nodes of a separating clique. The 

final graph is composed from the sub-graphs possibly with renumbering of assigned 

registers and spilling (or register copies) at separator boundaries.  Given n nodes and m 

clique separator the clique separator consumes )/( 22 mnO space and )/( 2 mnO  time. 

Splitting the candidates is often implicit in the coloring heuristics. Well-known 

examples include coloring basic block local candidates first, then the global candidates 

(e.g. Briggs  [12] ). 

3.3.3 Coalescing 

Chaitin’s coalescing is aggressive and can yield un-colorable interference graphs. This 

problem can  be avoided by conservative coalescing (Briggs  [12],  [13]): the live ranges S 

and T representing the source and destination of a move instruction respectively are 

combined when they don’t interfere and when the fused node ST has fewer than K 

neighbors of significant degree. This rule ensures that the fused node does not trigger a 

new blocking state in the simplification phase. Therefore conservative coalescing cannot 

transform a colorable into an un-colorable graph. Iterative coalescing is an attempt to 

make the conservative method more effective.  An allocator with iterative coalescing 

interleaves “simplification” and “coalesce”. Simplification removes only nodes that are 

non-move related. Here a node is non-move related if it is neither the source nor the 

destination of a move instruction. In a blocking state “simplify” has only high degree or 

move-related nodes. It calls “coalesce”, which applies conservative coalescing.  When at 

least two nodes can be coalesced, simplification continues. Otherwise a low-degree 

move-related node is marked as non-move related (“freeze”), so simplification can find a 

low-degree node and transitions out of blocking state. If no node could be freezed, 

“spilling” must unblock “simplify”. Optimistic coalescing (a delay technique like 

optimistic coloring) allows conservative coalescing, but undoes the coalescing decision if 
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the simplification phase can’t leave a blocking state because the graph has become un-

colorable. 

Biasing, introduced by Briggs ( [12],  [13]), is an opportunistic and non-intrusive 

method for fusing two nodes. For a single live range L, the sources or destinations in 

move instructions that reference L are collected in a partner list for L. When “select” 

colors L, it checks if a color can be used that has been assigned to a partner. If successful, 

biasing can coalesce nodes when conservative coalescing could not be applied, while 

creating little time and implementation overhead. In other words, biasing expresses a 

coalesce preference. The actual coalesce decision is delayed and made at coloring time.  

3.3.4 Extensions 

Nickerson  [60] introduces the concepts of weighted degree and asymmetric interference 

matrix to handle “cluster” register candidates. Cluster register candidates must be 

assigned 2 or more register, dependent of the size of the cluster. Additional constraints 

are that the assigned register “cluster” must be aligned (e.g. first element in cluster must 

start at a register number divisible by cluster size) and consist of adjacent registers (e.g. 

when register rx is assigned to the first cluster element, rx+1 must be assigned to the 

“mate” in a pair cluster).  The key observation is that modeling interferences with edges 

for each element in the cluster would yield conservative results. Instead the interferences 

must be “normalized” with respect to the first element in the cluster. Smith et al. 

developed a more general colorability criterion that can handle clusters and overlapping 

(“alias”) registers. But their allocator could give more conservative results than 

Nickerson’s method.  

3.4 Alternative Models 

The probabilistic allocator (Proebsting and Fischer  [63]) generalizes “furthest next use” 

of a variable to a probability. The probability prob(v) of variable to stay in a register at a 

given program point is approximately the inverse of the distance to the next use. When 

the probability is low, the live range may get split at this point. The allocator has three 

phases, local and global allocation, and assignment, which uses a coloring allocator. The 

global allocation phase proceeds from inner loops to outer loops, where allocation is 

based on probabilities. Every time a global live range is allocated a register, the 
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probabilities get recomputed, because “probabilities and allocations interact”. Global 

allocation iterates until the probability that more live ranges can be assigned registers is 

zero. For a prototype implementation the authors report a 100x slowdown on a sample of 

six small test kernels. This approach demonstrates the cost of register allocation by 

attempting to steer allocation one node at a time. 

Linear scan methods1 project live ranges onto a line. The blocks of the CFG are put in 

a linear order, instructions of the blocks are numbered consecutively and live ranges are 

sorted in ascending order of their first instruction. A scan line moves sequentially through 

the ordered set of live ranges and assigns them registers or spill slots as soon as they are 

hit by the scan line.  A best-fit first-end allocator can find an optimal coloring for the 

ranges in linear time in a single scan. Simplicity comes at the loss of structure, since the 

projections may generate overlaps that don’t exist in the original control flow graph. This 

can happen (only) when a live range L1 is contained entirely in a life time hole of a live 

range L2. A linear scan allocator can model life time holes, but at the cost of its 

simplicity. In general, linear scan allocators are less powerful and produce slower code 

than coloring allocators: a linear scan allocator assigns (“locally”) a register immediately 

when the scan line hits a live range without considering all interferences (“globally”) like 

the coloring allocator.  But they can provide good allocation results at lower compile time 

compared to a coloring allocator. 

Other methods model register allocation as a mathematical programming problem 

applying (integer) LP (examples are Goodwin and Wilken  [32], Fu and Wilken  [29], 

Appel and George  [4]) and quadratic solvers (Scholz and Eckstein  [68], Hirnschrott et al. 

 [36]). The benefit of these methods is modeling accuracy and optimality of the solvers. 

Therefore these methods target mainly, but are not limited to, “irregular” architectures. 

Irregularity means constraints. Examples for constraints include partial register usage and 

register alignments for groups of candidates. For example, on Itanium a pair of floating-

point register must be allocated to consecutive registers fi, fi+1. The benefit of modeling 

accuracy seems to be offset by low scalability and long compile times. But common 

irregularities can be modeled in graph-coloring allocators as well (e.g. Nickerson  [60] or 

Smith et al.  [72]). To the best of our knowledge there is no study that compares the 

                                                        
1 This explanation of linear scan methods is from Prof. Mössenböck. 
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methods (linear scan, graph-coloring, and mathematical models) in a detailed cost/benefit 

analysis across a rich set of applications and architectures. 

3.5 Theory 

This section reviews the basic foundation of coloring algorithms. In general, the register 

allocation problem is equivalent to finding a K-coloring of a graph and is NP-complete 

when K > 2. In this case there is a polynomial algorithm that verifies a solution, but no 

polynomial time algorithm exists (unless P = NP) that can decide if an arbitrary 

interference graph is K-colorable for a fixed K. When K is 2, a linear algorithm that 

decides 2-colorability exists. In this case the interference graph must be a bipartite graph. 

For special interference graphs, linear or polynomial algorithms are known. There is a 

hierarchy of structure: for interval graphs optimal linear time algorithms exist, and for 

perfect graphs polynomial time algorithms are known. Hack et al.  [34] show that 

interference graphs derived from SSA-form are chordal. Chordal graphs are a sub-family 

of perfect graphs that contain interval graphs. Like for interval graphs optimal efficient 

linear algorithms for coloring chordal graphs exist. But in general the interference graph 

does not exhibit enough structure for a polynomial time solution (unless P = NP). In fact, 

the exploit of structure is the red thread in the register allocation literature. This can be 

seen on many examples like containment graphs, preference graphs, live range splitting 

etc., which can improve allocation results. It seems to be the quintessence of an NP-

complete problem that the information to determine the next step towards its solution in 

any solver is equivalent to finding the solution itself. Attempts to add structure to the 

interference graph to make better allocation choices (“solution step”) can consume lots of 

energy (=compile time) for no clear gain. Perhaps the probabilistic allocator (Proebsting 

and Fischer  [63]) is an illuminating example. 

3.5.1 Definitions of Interference 

The key property of interference is that two interfering live ranges cannot be assigned the 

same register. Register allocation literature uses two different definitions of interference, 

“definition” and “simultaneous” interference. Both are conservative, because they can 

result in allocating more registers than necessary. For Chaitin two live ranges interfere 

when one is live at the definition of the other (or vice versa). The alternative is that two 
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live ranges interfere when they are live simultaneously at any program point. Both 

definitions can be shown to be equivalent for strict programs. In strict programs a 

variable is defined on every path from function entry to a use. For non-strict programs, 

two live ranges that are live simultaneously do not need to interfere in Chaitin’s sense. In 

Figure 20 there are 5 basic blocks forming a cross and two live ranges, V1 and V2, which 

are clearly live simultaneously. But, when the control flow graph is acyclic, V1 and V2 

do not interfere based on Chaitin’s definition, since V1 is not live at the definition of V2 

and vice versa. But there are also cases when definition interference is too conservative: 

when two live ranges interfere in Chaitin’s sense, they can still be assigned the same 

register when they hold the same value at all points of interference. “Value” interference 

could be relevant to reduce register pressure for programs in SSA-form, where every 

variable has a single definition.  
 

 
 

Figure 20 Definitions of Interference 

3.5.2 Coloring Inequality 

Let ),( EVIG = be an interference graph with a set of nodes V (variables, live ranges) and 

a set of interference edges, E. 
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Then the following coloring inequality holds: 

 
Equation 4 Fundamental Coloring Inequality for Strict Programs 

 
The coloring inequality is folklore. It defines the lower and upper bounds for the 

colors needed for coloring the interference graph “IG”. Perfect graphs are defined 

by )()( IGIG χω = . Chordal graphs have the additional property )(IGMaxlive ω=  

(Bouchez et al.  [10]).  In non-strict programs the leftmost inequality is not necessarily 

valid. 

1)()( +≤≤≤ MIGIGMaxlive χω  



 55 

 

4 The Intel Itanium Compiler 
 
The Intel Itanium C/C++/Fortran compiler employs state-of-the-art analysis and 

optimizations.  It incorporates inter-procedural data analysis and optimizations (IPO), 

high-level optimizations (HLO) focusing on loop and data transformations, a global 

scalar optimizer (IL0) and an optimizing code generator (ECG). All optimization 

techniques can be profile-guided and tuned for the Itanium architecture. This chapter 

gives a high-level overview of the code generator, develops an intuitive understanding of 

modulo scheduling and predicates, and reviews the register allocators. 

The first phase of ECG, translation, converts the optimizer’s intermediate program 

representation (IL0) into a low level intermediated representation (EIL), which models 

closely Itanium instructions. The four major optimizations in the code generator are the 

software pipeliner, the predicator, the global scheduler and the register allocator (Figure 

21).  

 
Figure 21 Components and Flow of Itanium Compiler Backend 
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The four major phases interface with the machine model, which describes in detail the 

microarchitecture, and a predicate database, which contains relations between qualifying 

predicates. The most important relation is predicate disjointness. Two predicates are 

disjoint when they cannot both be true at the any point in the program. In this respect 

pipelined loops are special. Associated with each software pipelined loop is a predicate 

disjointness vector. It has the predicate disjointness information for all qualifying (block) 

predicates in the loop, which is used during modulo scheduling. For non-pipelined code a 

single interface, the predicate query system (PQS) is used. 

 

Figure 22 Five Iterations of Pipelined Loop with three Stages and II=4 
 

Modulo scheduling is a loop scheduling technique modeled after a hardware pipeline 

with SC (“stage count”) stages. Each stage has a height of II (“Initiation Interval”) cycles. 
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23 Epilogue Phase
24
25 … =s
26
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It takes SC-1 stages to fill the pipeline. Filling happens in the Prologue phase , which 

starts a new iteration starts every II cycles. Symmetrically it takes SC-1 phases to drain 

the pipeline. Draining happens in the Epilogue phase, which ends a single iteration every 

II cycles. In steady state (Kernel phase) the pipeline is full and SC iterations execute in 

parallel. Every II cycle a new iteration SCN >  starts, and iteration SCN −  ends. Figure 

22 illustrates the concept of software pipelining with its three phases: Prologue, Kernel 

and Epilogue. It shows a loop with single iteration schedule length of 12 and five 

iterations (Iter 1, …, Iter 5) of the loop. We assume the loop can be scheduled with an II 

of 4. Therefore the loop has a stage count SC=3 (=schedule length/ II = 12/4). In the 

Prologue phase every II (=4) cycles a new iteration starts. In steady state (Kernel phase) 

the pipeline is full: there execute 3 stages in parallel. Each stage belongs to different loop 

iteration. Pipelining is a throughput optimization. In the Kernel phase SC iterations 

execute in parallel. Assuming we execute 5 iterations, the Epilogue phase starts at cycle 

20. In the Epilogue phase one loop iteration ends every II cycle.  

We briefly explain the relation between one loop iteration and the module schedule of 

a loop. Figure 23 shows one loop iteration and modulo schedule of a three stage loop 

with an II of 4. Each stage has its own stage predicate starting with p16, which is the first 

rotating predicate register. p16 is the stage predicate for the first stage, p17 for the second 

stage and p18 for the third stage. The stage predicates control the phases of the pipelined 

loop. Before execution of the pipelined loop p16 is set. So when the modulo scheduled 

loop runs, all instructions of the first stage of the first loop iteration execute. The loop 

branch instruction then sets p17 in addition to p16. In the second run the instructions in 

the second stage of the first loop iteration and the first stage of the second loop iteration 

execute.  The next loop branch sets p18 also and execution of the pipelined loop leaves 

the Prologue phase and enters the Kernel phase2. Entering the epilogue phase, p16 is 

cleared first, (=set to False) then p17 etc. The single iteration schedule length is II times 

SC. The II is determined by two factors: machine resources available and data 

recurrences. In the pipelined loop at time T (referred to as “Modulo” in Figure 23) 

instructions of all stages with cycle time % II = T may execute in parallel (in the Kernel 

phase) and may not exceed machine resources available per cycle (“resII”). For example, 

                                                        
2 It is possible that a pipelined does not enter the Kernel phase and still give performance benefits 
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when T=1, instructions of cycle 1, 5 and 9 from the single iteration schedule execute in 

parallel in module schedule (in the Kernel phase). In addition, the II must be large 

enough to cover the maximal dependence distance of all loop data, so the following 

equation must hold: 

 II * (iteration) distance >= maximal dependence cycle length (“recII”) 

When a value is computed in iteration k and used in iteration k+n, the recII guarantees  

that there are n loop iterations to cover the dependence distance between the definition 

and the use. Combining both, resource and recurrence, constraints results gives Min II = 

Max (resII, recII), where MinII is the best II possible. 

IA-64 supports rotating registers, predication, and special loop branches (br.ctop, 

br.cexit, br.wtop, br.wexit ) to enable kernel-only innermost modulo scheduled loops, 

where the kernel contains the prologue, steady state and epilogue phases controlled by 

stage predicate and state registers like ar.lc (loop count) and ar.ec (epilog count). 

 

 
Figure 23 One Iteration and Kernel Schedule for a Loop 

 

Cycle Modulo
0 I000 I001 I002 0 (p18)I200 (p18)I201 (p17)I100 (p16)I000 (p16)I001 (p16)I002

1 I010 I011 1 (p18)I210 (p17)I110 (p17)I111 (p16)I010 (p16)I011

2 I020 2 (p17)I120 (p17)I121 (p17)I122 (p16)I020

3 I030 3 (p18)I230 (p18)I231 (p17)I130 (p17)I131 (p16)I030

4 I100
5 I110 I111

6 I120 I121 I122 Legend:

7 I130 I131
8 I200 I201 s: stage
9 I210
10
11 I230 I231

Kernel

One Iteration Schedule Kernel Modulo Schedule

One Iteration

Pipelined loop with 3 stages and II=4
Ismi - Itanium  instruction, where

m: modulo cycle (mod. II)
i: instruction nr.  (0<=i<= 5)

(p16), (p17),(p18): stage predicates for stage 0, 1, and 2

 



 59 

As for register allocation, live ranges that span multiple stages of a pipelined loop are 

allocated to rotating registers. The allocation of these live ranges to rotating registers is 

handled by the software pipeliner. There is one uncommon feature. Since the rotating 

registers are multiples of 8 on the register stack, the pipeliner uses them carefully. It 

leaves small live ranges that have a length less than II to the register allocator. As long as 

the live range is contained within a pipeline stage, all references are under the same stage 

predicate. But it can happen that a small live range crosses a stage. Then the definition 

and use are under different stage predicates. For example, in Figure 22 symbolic register 

s is defined in cycle 6 of stage 2 and used in cycle 9 of stage 3. The dependence distance 

is zero, since the definition and use are within the same iteration. Since the length of the 

live range of s is 3 (9-6=3), its length is less than II and it is left for allocation to the 

coloring allocator. Unless the coloring allocator is pipeline aware, however, the 

references to s in the ‘modulo’ schedule will look as if there is a use of s before there is a 

definition. The reason is this: the use is in cycle 9. The ‘modulo’ cycle for the use is 1 

(9%4=1). On the other hand, the ‘modulo’ cycle for the definition is 2 (6 %4=2), so the 

use appears before the definition in the ‘modulo’ schedule. Applying live variable 

analysis naively would allow the live range of s to escape to the outermost loop that 

contains the pipelined loop. Since cross stage live ranges are well defined, the live 

variable analysis recognizes them and ensures that they cannot escape the pipelined loop. 

It will stop live propagation into the predecessor block of the pipelined loop, but ensures 

the live range is live across the loop back edge. 

Predication is the conditional execution of an instruction guarded by a qualifying 

predicate. Using predication the compiler can merge multiple control flow paths into a 

single predicated region. Predication can remove mispredicted branches, may decrease 

code size, increase code motion flexibility, remove control flow in pipelined loops and 

can increase ILP. Cost of if-conversion includes a possible increase in code size, an 

increase in schedule length and the potential for a mere transfer of a misprediction rather 

than its removal.  

The predicator in the compiler performs if-conversion in a series of steps. In a 

preparation step it assigns a predicate to each block using the RK algorithm  [62], where R 

and K are the names of mappings used to determine control flow equivalence. The 
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characteristic of the RK algorithm is that control-dependent equivalent nodes get 

assigned the same predicate. The next steps are region picking, benefit evaluation and if-

conversion: First, it picks a region. In the Intel compiler all candidate regions are single 

entry and multiple exit regions. Second, it evaluates the benefits of if-converting the 

region by estimating the execution times for the predicated and unpredicated (=control 

flow region). The estimates take the machine resources, schedules and feedback profiling 

data (static or dynamic) into account. Third, it materializes the predicates by generating 

compare instructions. Each instruction in the predicated region is predicated with the 

basic block predicate. The materialized block predicate becomes the qualifying predicate 

of the instruction. An example is in Figure 24. It shows a snippet of the control flow 

graph, which is a single entry – single exits region. Basic blocks B1 and B7 are control-

dependent equivalent and get assigned the same block predicate, P1. The edges from 

block B2 to B4 and from B2 to B7 are critical, because B2 has more than one successor 

and each successor (B4 and  B7 respectively) have more than one predecessor.  The 

completion phase inserts new basic blocks Bx and By with predicates Px and Py 

respectively. The predicated code in this case is a basic block. In the general case, when 

the control flow graph region is a superblock with multiple exits, the predicated region is 

a hyperblock. All paths in the original control flow graph overlap and correspond to 

execution traces in the hyperblock. The instructions in the hyperblock are guarded by 

qualifying predicates. Proper predicate initialization ensures that each path in the control 

flow graphs maps 1:1 to an execution trace in the predicated code. An execution trace in 

the predicated code is a set of predicated instructions, where the qualifying predicate is 

set. For predicate initialization IA-64 provides unconditional compare instructions 

(exemplified by CMPU in Figure 24) together with regular compare instructions. When 

the qualifying predicate of an unconditional compare is clear, the predicate destinations 

are initialized with zero. Otherwise an unconditional compare behavior matches 

corresponding regular compares.  

The global code scheduler picks acyclic regions for scheduling. Like the predicator it 

can nest scheduled regions and hoist instructions across regions. The code scheduler 

generates control- and data speculated code as well as predicated code. It is a major phase 

in the compiler and responsible for extracting ILP. It is well described in  [9]  [8]. 
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Figure 24 Control Flow-and Predicated Region 
 

The high-level architecture of the register allocator is in Figure 25. The input to the 

register allocator is local and global virtual registers, as well as physical registers. A 

virtual register is local if all its references are confined within a basic block. All virtual 

registers have a unique number. All live ranges are coherent. They cannot be split into 

disjoint components. Non-coherent live ranges are split into their disjoint parts and 

renamed before allocation.3 The allocator is region based. There can be multiple region 

entries and exits. Each region is allocated invoking a Chaitin-style coloring allocator. 

Allocations are reconciled at region boundaries. At region transitions reconciliation must 

follow store (register – memory), move (register – register) and load (memory – register) 

order. For example, if a candidate resides in a register in region 1, in memory in region 2 
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and transition is from region 1 to region 2, then the store must happen before any 

reconciliation move or load of any other candidate. There are two allocation steps: first, 

floating-point, predicate, and branch registers are allocated. Spilling such register 

candidates introduces integer register candidates. Second, the integer registers are 

allocated. After the allocations, memory stack layout is finalized. Register stack layout is 

determined during allocation, but the alloc instruction is issued in a later phase. The 

following describes the features of the register allocator in terms of the categories of 

Section  3.3, although the actual implementation may differ from the descriptions. 

 

 

Figure 25 Register Allocator Architecture 
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Spill code reduction:  

• The allocator supports Chaitin’s heuristics, rematerialization, and pre-

materialization. It has benefit –driven simplification for speculated live ranges 

and a set of heuristics for ordering candidates on the coloring stack, although not 

all candidates are pushed onto the coloring stack. The assignment phase is also 

benefit-driven and computes benefits for assigning scratch, preserved or stacked 

registers.  

Scoping: 

• The global register allocator is region-based and allocation starts with the 

innermost loops. Pipelined loops are allocated first. When there is no loop in the 

control flow graph, the entire function is the only allocation region. All candidates 

in the region are mapped to physical registers. The mapping is stored as a global 

register preference, which subsequent allocations try to honor. 

• The inter-procedural register allocator is opportunistic. Register usage is recorded. 

The caller avoids spills of scratch registers at call sites that don’t use this register, 

if the live range contains the call. 

Extensions:  

• The register allocator is predicate-aware, pipeline-aware (pipelined loops), 

speculation-aware and employs efficient allocation schemes for the register stack. 

Itanium has load pair instructions requiring even-odd or odd-even allocation for 

the load pair destinations, which the allocator takes into account. 

Coalescing:  

• The allocator implements a form of biasing. It has associated with each candidate 

a set of prioritized preferences.  

 

In addition the code generator has a local register allocator that can allocate register 

candidates within a basic block. It can get invoked for functions that have huge memory 

requirements because of many candidates. Such functions are usually generated by 

program generators in large server applications. Since memory requirement of the 

interference matrix grows quadratic with the number of register candidates, a routine with 
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e.g. 200000 register candidates would require more than 0.3 Gb of memory just to 

represent the interference matrix. In huge functions, memory consumption is the reason 

for long compile times of a coloring allocator. 
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5 Exploring the Register Stack 
 
On IA-64, each procedure has its own variable size register stack (Figure 5) with its own 

variable number of rotating registers. The alloc instruction specifies the register stack 

frame of a procedure:  the number of incoming parameters (in), the number of local 

registers (loc) and the number of outgoing parameters (out). The total number of registers 

in a register stack is in+loc+out <= 96.  Usually a register stack frame has up to 8 

incoming argument register and 8 outgoing parameter registers. The architectural 

registers ar.pfs contains fields that describe the frame of the caller (“previous function 

state”) and is saved into the destination register of the alloc instruction for register stack 

unwinding. In the standard code generation model the compiler issues a single alloc 

instruction to create the register stack frame. The drawback of this method is that the 

frame must be large enough for the entire procedure. For example, if a procedure has two 

different calls with 2 and 8 outgoing parameters respectively, the alloc instruction needs 

to reserve 8= max(2,8) outgoing registers. This example can be generalized: when the 

alloc instruction reserves more stacked registers than the dynamic execution trace uses, 

unnecessary spills to the backing store (Section  2.5, p. 26) could result. IA-64 allows 

resizing the register stack by using more than one alloc instruction within a function 

(“multiple alloc”, Hoflehner and Pierce  [38], Settle et al. [69], Hoflehner et al. [39] ). 

Again, the key here is that alloc instructions in different functions on the call stack 

increase the register stack, but multiple alloc instructions within a single function only 

resize its register stack frame, but do not add or remove frames. The effectiveness of the 

method is demonstrated in the example in Figure 26 (where the ar.pfs and alloc 

destination register are omitted). The register stack is at first increased by two functions 

on the call stack, foo and foo1, causing spilling to the backing store. Originally, the 

compiler generates a single alloc instruction (alloc rx=1,2,1,0) in foo and foo1. In the 

assembly listing we increase the number of stacked registers so that the back to back call 

of foo and foo1 incurs RSE spills. In the last step we shrink the register stack before the 

calls to foo1 and foo2. Inserting multiple alloc instructions that shrink the stack before 

any RSE traffic can be triggered gives a 6.5X speed-up on Itanium compared to the 
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version with a single alloc instruction. The performance of the multiple alloc versions 

matches the original, unmodified version.  

 

 
Figure 26 Proof of Concept to show Effectiveness of Multiple Alloc 

 
 

More details about register stack resizing are in  

Figure 27. The register stack is shrunk before a call site and restored to its original size 

afterwards. This can reduce the total number of registers consumed by the caller and 

callee and consequently the overall RSE traffic for the application. In the example 

procedure foo uses 90 stacked registers. At the point of the call to bar, 60 registers on the 

stack are found dead and the register stack gets resized accordingly. Procedure bar uses 

50 stacked registers. The combined register stack of foo and bar uses 80 registers. It fits 

into the register file and spilling to the backing store is avoided.  Without resizing the 

combined register stack would be 140=90+50 registers, resulting in 46 = 140 – 96 spills 

to the backing store. Dead registers on top of the stack are determined by live range 

analysis. If the number of dead registers on top of the register stack exceeds a given 

threshold, the register stack is reduced by the amount of dead registers before the call. 

Parameter registers have to be remapped so that they stay on top of the resized register 

stack. This parameter mapping is not shown in the example. There is no principal 
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Original and modified register stack for foo() and foo1(): 
 
Original  with Increased Frame with Multiple Alloc 
 
alloc rx=1,2,1,0 alloc rx=1,50,1,0  alloc rx=1,50,1,0 

… 
alloc ry=1,2,1,0 
  
br.call {foo1|foo2} 
 
alloc ry=1,50,1,0 
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difficulty. Since the register allocator does not know the size of the register stack, it 

cannot pre-determine the parameter (=out) registers. Therefore it assigns symbolic 

registers which are mapped to the proper physical registers in a post-pass. With multiple 

alloc this routine has to determine the actual size of the register stack at the call site.  

The optimization is opportunistic in the sense that the compiler cannot have a perfect 

knowledge of the state of the RSE when it inserts the extra alloc instructions. 

Specifically, the compiler does not know if the reduction of the register stack will 

actually decrease the RSE traffic at run-time. On the other hand, the cost of the 

optimizations is extra alloc instructions, which have scheduling constraints (e.g. alloc 

must be the first instruction in an instruction group) and may contribute to an increase in 

code size. 

 

 

 

Figure 27 Shrinking Register Stack before Call 
 

Multiple alloc can be effective only on paths that contain a call or a return. The 

algorithm in the Intel compiler forms regions of different register pressure after register 

allocation. Extra alloc instructions are inserted at region boundaries when the difference 

of the register stack sizes exceeds a threshold. Candidates for regions with high register 

pressure are software pipelined loops, since many loop iterations can execute in parallel. 

In the Itanium compiler rotating register allocation is handled by the pipeliner. Register 

lifetimes that fit within II are passed on to the graph-coloring allocator. The pipeliner 
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foo()                            bar() 
 
alloc rx=0,90,0,0 
1: 
alloc rx=0,30,0,0 
2: 
br.call bar;;  
       alloc ry=0,50,0,0 
                 3:  
             ... 
       br.ret;; 
alloc rz=0,90,0,0 
4: 
...             
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controls the numbers of interferences and checks the availability of registers with a 

register server. This guarantees spill free code in pipelined loops, since a) pipelined loops 

get allocated first and b) the pipeliner ensures that sufficient registers are available to 

allocate all candidates. 

The rotating registers within a procedure cannot simply be assigned to global virtual 

registers that span software-pipelined loops. Consider live range V1 in Example 3, which 

is defined before (line 2) and used after the loop (line 7). Assume the first loop executes 

eight times and r40 (r32-r39 are used in the first loop, which uses eight rotating registers) 

is assigned to V1. Then the register allocator would have to perform context-sensitive 

register renaming to ensure correctness. After the swp loop r40 has to be accessed as r48 

because of register rotation. For this reason the allocator avoids such assignments to live 

ranges spanning pipelined loops. It also has to assume that such a live range interferes 

with all rotating registers. This is different from usual interferences since rotating 

registers can be implicit. For example, in the loop only r32 may be visible. But, with 8 

registers rotating, r32 represents all registers r32-r39, so registers r33-r39 are implicit and 

not directly ‘visible’ for the allocator. 

 

 
Example 3 Two Pipelined Loops in Single Alloc Routine 

 
There is another unusual aspect of pipelined loops. They need multiple alloc to remain 

spill free after register allocation. In single alloc procedures, the code generator has to 

specify the maximal number of rotating registers any swp loop in the procedure demands. 

In Example 3 the code generator specifies 32 =Max (8, 32) rotating registers in the alloc 

   .proc foo 
  1:   V2 = alloc ar.pfs, 2, 88, 2, 32 
  2:   mov V1=  // mov r40  
  3: prolog1: ... 
  4: loop1: // swp loop with 8 rotating registers 
  5:   br.cloop loop1 
  6: epilog1: ... 
  7:   add V3=V4,V1 // add r41=r44, r48 
  8:   ... 
  9: prolog2: ... 
 10: loop2: // swp loop with 32 rotating registers 
 11:   br.ctop loop2 
 12: epilog2:  ... 
 13:   br.ret 
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instruction, since the first loop uses 8, while the second loop requires 32 rotating 

registers. Therefore the pipeliner may underestimate the register pressure for the 

candidates in the first loop that in fact uses only 8 rotating registers. Since the pipeliner 

works on one loop at a time, it is unaware of register requirements of subsequent loops. 

For example, with 8 registers, the pipeliner assumes 88=96-8 registers available for the 

allocator. But since the alloc instruction must specify 32 rotating registers, de facto the 

allocator has only 64=96-32 registers. This can result in spills in pipelined loops with a 

significant (run-time) performance cost. 

 
Algorithm 1 Multiple Alloc for SWP Loops 

 
Spilling in pipelined loops can be avoided with multiple allocs. An alloc instruction 

can resize the number of rotating registers [13 Vol. 1, p. 4.2]. This can be used by the 

register allocator to adapt to the needs of rotating registers in a pipelined loop. In 

procedures that contain multiple swp loops with various numbers of rotating registers, 

Algorithm 3 inserts alloc and clrrrb instructions in the prolog and epilog of swp loops. 

The clrrrb instruction resets the rotating register base. This is usually necessary when 

dynamically an alloc instruction can follow in the same procedure. Otherwise the RSE 

could fault at the alloc. This also means that in general a live range spanning a clrrrb 

instruction cannot reside in a rotating register. Wrapping the pipelined loop with an alloc 

 1: procedure insert_alloc_instr(BLOCK P, INT r) 
 2:  before first definition of  
 3:        physical rotating register in B:  
 4:   insert alloc rx=ar.pfs, i,l,o,r; 
 5: endproc 
 6: procedure insert_clrrrb_instr(BLOCK B) 
 7:  after last use of a physical rotating register 
 8:      in B:  
 9:   insert clrrrb 
10: endproc 
11: procedure ma_for_swp_loops 
12:    foreach software_pipelined_prolog P 
13:   r = #rotating registers in pipelined loop; 
14:   insert_alloc_instr(P, r); 
15:   endfor 
16:    foreach software_pipelined_epilog E 
17:   insert_clrrrb_instr(E); 
18:    endfor 
19: endproc 
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instruction ensures that the register allocator can match the estimate of the pipeliner and 

avoid spills in the loop.  

Example 4 shows the effect of Algorithm 1. The swp loops are encapsulated by 

alloc/clrrrb instructions. As only 8 registers are rotating in the first loop, the register 

allocator can use 26 more registers reducing the register pressure overall in the procedure. 

Register r40 can be assigned to V1 and r41 can be assigned to V2.  

 

Example 4 SWP Loops with Multiple Alloc 

 

There is cost to the extra alloc instructions: the alloc instruction must be the first 

instruction in an instruction group. It is WAW  dependent on a call and needs a result 

register. 

.proc foo 
 1:   V2 = alloc ar.pfs, 2, 62, 2, 0 
 2:   mov V1=  // mov r40= 
 3: prolog1: V<dummy> = alloc ar.pfs, 2, 62, 2, 8 
 4: loop1: // swp loop with 8 rotating registers 
 5:   br.cloop loop1 
 6: epilog1: clrrrb 
 7:   add V3=V4,V1 // add r43=r44, r40 
 8:   ... 
 9: prolog2: V<dummy> = alloc ar.pfs, 2, 62, 2, 32 
10: loop2: // swp loop with 32 rotating registers 
11:   br.wtop loop2 
12: epilog2: clrrrb 
13:   …  
14:   br.ret  
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6 Register Allocation for Predicated Code 

The IA-64 architecture is a fully predicated architecture with 64 predicate registers  [42]. 

Each instruction (with some exceptions like the alloc instruction) is guarded by a 

qualifying predicate. If the qualifying predicate is clear (= set to zero or False) the 

instruction is discarded in the write back stage of the processor pipeline. If the qualifying 

predicate is set (= set to one), the instruction is retired. This means the results are 

committed to architectural state. A fully predicated architecture supports if-conversion, 

an optimization that eliminates forward branches (Allen et al.  [2]). If-conversion 

transforms a region of the control flow graph to linear (“predicated”) code. In this 

predicated region all execution paths of the original control flow region overlap. 

Instructions that were control-dependent on a branch that gets eliminated become data 

dependent on the qualifying predicates introduced during if-conversion. The compiler 

picks a single entry acyclic control flow region as a candidate for if-conversion. Basic 

blocks where the paths originating from the single entry meet, are merge points and mark 

a potential end node for the region former. The candidate region may have multiple exits, 

so in general it can be considered to be a superblock. The compiler limits the size of the 

candidate region by setting a threshold for the number of basic blocks that can be in 

region. The decision whether or not to if-convert a candidate region is driven by a 

predication oracle. It computes and compares the estimated execution times of the 

predicated and control flow version of the candidate region. When the estimated 

execution time for the predicated region is faster than the estimated execution time for the 

original control flow regions, the candidate region is if-converted into a hyperblock 

(Mahlke et al.  [56]). The register allocator must handle predicated code formed from 

control flow graph regions. This chapter investigates the impact of predicated code on the 

register allocator, discusses the predicate query system (PQS), classifies predicated live 

ranges and interference tracking, and presents a family of predicate-aware register 

allocators. In particular the “use-plus-partition” allocator is equivalent to a PQS based 

allocator. 
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  Source Code  IR with Predicated Code LR for V1 
 
 1:  a=5;   mov V1=5    
 2:  ...    ... 
 3:  if (cond)  cmp P1,p0 = cond 
 4:      a = 1;   (P1) mov V1=1  
 5:      ...   ... 
 6:  ...   ... 
 7:  c+=a;   add V2=V2,V1  
 
Legend: 
IR  Intermediate Representation 
LR  Live Range 
  
 

6.1 Impact of Predicated Code  

On a predicated architecture completeness and soundness of live variable and disjoint live 

range information are harder problems than for unpredicated code. For example, for live 

variables, completeness means at any program point where a variable is actually live, 

liveness computation reports it as live. Soundness means that at any point where the 

liveness computation reports a variable as live, it is actually live. The remainder of this 

section discusses live range extension, interference graph construction for predicated live 

ranges and global disjointness information. 

In unpredicated code a definition is the start of a live range. This is not necessarily true 

for predicated code. In Example 5 the predicated live range for virtual register V1, which 

corresponds to variable “a” in the source code, must span lines 1 to 7.  This shows that a 

predicated definition of V1 (line 4) is not necessarily the start of the live range. 

Otherwise, the live range for V1 would extend incorrectly from line 4 to 7 in the 

predicated code. 
 

 

Example 5 Source Code,  Predicated Code and Predicated Live Range 
 

On the other hand, if no predicated definition is the start of a live range, predicated 

live ranges would extend to more program points than necessary increasing register 

pressure and consumption. All predicated live ranges would behave like live ranges of 

undefined or partially defined variables in unpredicated code. A variable is partially 

defined if there is (at least) one definition-free path from function entry to a use and (at 

least) another path that contains a definition. Depending on the run-time execution path 
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the variable is defined or undefined. In cyclic code, the live range of a partially defined 

variable typically spans the entire loop nest that contains the definition. This is a result of 

the dataflow algorithms that determine a live range. Available variable analysis (forward) 

propagates the is_available property to every point in the loop nest. Live variable 

analysis (backwards) propagates the is_live property from the use to every point in the 

loop nest. Thus the live range, which consists of all program points where a variable is 

both available and live, spans the entire loop nest. This is correct since usually the 

variable is defined in the first iteration and used in all subsequent iterations. Since the 

variable is live across the entire loop nest, it interferes with all variables in the loop. 

Therefore it will not be “destroyed” after being defined in the first iteration.  

 

Example 6 Live Range Extension in Predicated Code 

 

In acyclic code, live range extension cannot occur because a live range cannot extend 

to a program point where it is not available. Example 6 illustrates live range extension in 

cyclic code for the predicated live range of V1: unless a predicated definition is 

recognized as the start of the live range for V1, it will extend across the entire loop nest 

(the large live range from line 2-10).  The correct live range is the small live range from 

line 5, the first predicated definition of V1, to line 8, the use of V1. Live range extension 

for predicated code could also cause non-termination of a coloring allocator: When the 

allocator spills a predicated live range, it introduces one or more new predicated live 

   Source Code IR with Predicated Code LR for V1 
 1:    ...   ...   
 2:  loop:   loop: 
 3:   ...   ... 
 4:       if (cond)  cmp P1,P2=cond 
 5:        a=2; (P1) mov V1=2 
 6:   else a=1; (p2) mov V1=1 
 7:   ...   ...  
 8:   c+=a;  add V2=V2,V1 
 9:   ...   ... 
10:   goto loop; br.cond loop 
 
Legend: 
IR  Intermediate Representation 
LR  Live Range 
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ranges replacing the original. But the new live ranges share the same predicate. Due to 

live range extension the interferences in the round of allocation may actually increase. 

Since the new live ranges introduced for spilling are marked as non-spillable the allocator 

may no longer find spill candidates in the simplification phase. At this point the allocator 

would have to give up. So there is not only potential performance degradation from extra 

register pressure, but also a stability reason why a predicate-aware allocator must 

recognize the start of predicated live ranges. This impacts two building blocks of the 

allocator: live range analysis (in particular, live variable analysis) and interference graph 

construction. 

In unpredicated code interference is a function of liveness. In predicated code 

interference is a function of liveness and predicate disjointness. Disjoint live ranges do 

not interfere and can be assigned the same register. The allocator queries a PDB for 

disjointness information when it constructs the interference graph: if the sets of predicates 

that guard two live ranges A and B are disjoint, no interference edge needs to be added 

between them. 

Interference graph construction for predicated code is similar to unpredicated code: it 

is a backward scan of the instructions in a basic block with a single, unpredicated live 

vector initialized with the live-at-exit candidates. For each candidate, the predicates under 

which the candidate is live can be recorded as predicate sets associated with the live 

range in a separate table. The inference routine takes the qualifying predicate of the 

current instruction that defines a candidate, the candidate and the live vector as 

arguments. For each live candidate in the live vector it checks if the qualifying predicate 

is disjoint from all predicates in its predicate set. Interferences are recorded in the 

interference graph. Each candidate defined in the current instruction is removed from the 

active live set when it is the start of the live range. Each candidate used in the current 

instruction is added to the live vector and the qualifying predicate is recorded in its 

predicate set. The candidate is live under the predicates in its predicate set. The candidate 

is dead when its predicate set is empty.  

Algorithm 2 shows the code for interference graph construction for predicated live 

ranges.  
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Algorithm 2  Interference Graph Construction for Predicated Code 

Finally, a predicate-aware live variable analysis must treat predicated live ranges 

conservatively across back edges in any practical scenario. For example, in Figure 28 

variable B is live under P2 and variable A under predicate P1. In one scenario, P1 could 

be true in the first iteration and false in the second. If B were live only under P2, the 

allocator would recognize A and B as disjoint and could assign them the same physical 

 1: procedure interfere(PREDICATE qp, VAR v, SET s) 
 2:  foreach member s in S 
 3:   P = s.predicates; // SET of predicates 
 4:           // under which  
 5:       // s is live 
 6:   if (any p in P and qp are NOT disjoint) 
 7:    add_interference(v,s); // not shown. 
 8:   fi 
 9:  endfor  
10: endproc   
11: procedure add(PREDICATE qp, VAR v, SET S) 
12:  - add v to S and update set of predicates 
13:    under which v is live. 
14: endproc 
15: procedure delete(PREDICATE qp, VAR v, SET s) 
16:  - update set of predicates under which  
17:    v is live. 
18:  if (isEmpty(predicate set of v))  
19:   remove v from s; 
20:  fi 
21: endproc 
22: procedure build_interference_graph() 
23:    foreach basic block B 
24:    L = live_out [B]; 
25:   foreach instruction I backwards 
26:    qp = qualifying predicate(I); 
27:    foreach definition d in I 
28:     delete(qp, d, L); 
29:    endfor 
30:    foreach definition d in I 
31:     interfere(qp, d, L); 
32:    endfor 
33:    foreach use u in I 
34:     add(qp, u, L); 
35:    endfor 
36:   endfor // foreach instruction 
37:  endfor //foreach basic block  
38: endproc 
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register. In this case the assignment to A in the first iteration would overwrite B, which is 

used in the second iteration. W hen the live range of B becomes live under p0 (the True 

predicate) along the back edge, then–since p0 interferes with every predicate–the live 

ranges for A and B are no longer disjoint.  

 

 

Figure 28 Liveness must be propagated under “p0” across Back Edge 
 

For general graphs, global disjointness can be represented like interference in a 

triangular matrix of size )|(| 2BO , where |B| is the number of basic blocks in the routine. 

Global disjointness calculation is reaching-definition analysis for block predicates on the 

acyclic control flow graph. This graph is derived from the original control flow graph by 

removing back edges. Attention must be paid to irreducible graphs, which have retreat 

edges that are not back edges. The prototype of an irreducible graph is the triangle graph 

in Aho  [1]. Removing retreat edges gives an acyclic graph, but disjointness is not 

necessarily consistent with local disjointness, which is based on an arbitrary acyclic 

region in the graph. Irreducible graphs and disjointness are discussed in more detail in 

Appendix  12.2.  

V=… 
B=… 

 

 

     CMP P1,P2=V,r0 
(P1) A=... 
       ... 
(P1)  ...=A 
(P2)  ...=B 

V=… 

- P1 and P2 are disjoint 

- Assume P1 is true in first iteration 

- Assume P2 is true in second 

iteration 

- If A and B are assigned same 

register, then use of B under P2 

actually uses value of A from the 

previous iteration. 

   Propagate liveness property under 

p0 across back edges. In irreducible 

graphs propagate liveness property 

under p0 across retreat edges. 
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6.2 Predicate Partition Graph (PPG) and Query System (PQS) 

The predicated query system (PQS) is one possible implementation of the PDB referred 

to in Figure 21. In predicated code the allocator and dataflow algorithms must reason 

about predicates. The interference computation phase of the allocator and live variable 

analysis must find the start of a live range. Interference computation must recognize 

disjoint live ranges. The predicate query system provides predicate information to solve 

both problems. It is a set of predicate query routines on the predicate partition graph 

(PPG). The PPG is a directed acyclic graph whose nodes represent predicates and whose 

labeled edges represent partition relations between predicates. A partition 2|1 PPP =  is 

represented by labeled edges 1PP r→  and 2PP r→ . The common label indicates 

both edges belong to the same partition (Johnson and Schlansker  [45]). The partitions 

represent execution paths and are derived in one traversal of the control flow graph. The 

PPG is built by the following rules: 

• The start block is assigned the root predicate, e.g. P0. The construction assumes 

there is always one start block for the CFG of predicate region. The root predicate 

is unique. 

• Successor Rule: For each block in the graph that has two or more successors the 

partition PNPPP |...|2|1→  is added to the graph, where P is the block 

predicate of the block and predicates Pi (i=1,…,N) are the block predicates 

corresponding to the successors (“forward edges  PiP → ”) 

• Predecessor Rule: Similar to successor rule, except that the partition is added 

when a block has two or more predecessors (“backward edges PiP → ”). For 

distinction backward edges are shown as “dashed” edges in the graph. 

• Completion Rule: When 2|1 PPP → is partition and P is not reachable from the 

root, then the graph in incomplete. If P1 and P2 are reachable from the root, there 

is a lowest common ancestor of P1 and P2, lca(P1, P2). Since P is reachable from 

lca(P1,P2),  a partition lca(P1, P2) = QkQP |...|1| can be created, where the 

union of the Qj , j=1,…,k, is the relative complement of P with respect to 

lca(P1,P2). 
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Intuitively the PPG can always be completed. For simplicity our running example does 

not require the completion rule. But an example for a PPG that does will be given later 

(see Figure 38 ). PQS queries are based on the complete PPG and on the interpretation of 

predicates as sets: each predicate represents an execution set, which is a set of execution 

traces for which it is true. The execution traces in if-converted code correspond to paths 

in the original control flow graph. The interpretation of a predicate as a set makes 

available set relations like subset, intersection etc. for predicates. The implementation of 

PQS is based on the set interpretation (see Appendix  12.3). 

There are two preparation steps before the partition graph is built: first, the control 

flow graph is completed. Completion is necessary for the uniqueness of the predicate 

partitions and preciseness of disjointness. Completion requires one pass over the control 

flow graph and inserts empty basic blocks on critical edges. A critical edge is defined as 

follows: If basic block B1 has two or more successors and basic block B2 has two or 

more predecessors, then the edge B1 → B2 is critical. The inserted basic block is referred 

to as JS (“Join-Split”) block. Second, a block predicate is assigned to each basic block. 

For this, the compiler uses the RK algorithm. The characteristic of the RK algorithm is 

that it assigns the same block predicate to a set of control-equivalent basic blocks. 

Informally two basic blocks B1 and B2 are control-equivalent when B1 executes 

whenever B2 executes and vice versa. Using a single predicate for a class of control-

equivalent blocks results in a more compact representation of the PPG of the predicate 

relations derived from the control flow graph. 

We use a rolling example, which is a more elaborate version of the example in 

Johnson and Schlansker [40], to illustrate the predicate partition graph and PQS. Figure 

29 shows the control flow graph and source code snippets. Associated with each basic 

block B is a block predicate P. Control-equivalent basic blocks are assigned the same 

block predicates. For example, B2 and B7 are control-equivalent. So are B1 and B8. The 

edge from B3 to B8 is critical, and the completion phase inserted JS block Bx on the 

edge.  A JS block splits a critical edge. The acyclic predicate partition graph 

corresponding to the control flow graph is in Figure 30. Partitions (edges “1”),   (edges 

“5”) and (edges “3”) are forward partitions, partition (edges “4”) is a backward partition, 

and partition (edges “2”) is both, a forward and a backward partition. The corresponding 
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if-converted code is in Figure 39, which will also discuss live ranges under PQS. 

 

 

Figure 29 Example with Control flow Graph and Source Code Snippets 
 
 
 
 
 
 

B10 
P9 

B9 
P8 

B8 
P1 

B7 
P2 

B6 
P6 

Bx 
Px 

B5 
P5 

B4 
P4 

B3 
P3 

B2 
P2 

B1 
P1 D=…; 

  x<y? 

A=…; 
B=…; 
B1=…;…=C; 
 

a=…; 
C=…; 
  a==3? 
 

A=…; 
B=…; 
B1=…;…=C; 
 
 

…=B;…=B1; 
 

A=…; 
b=…;                 
   b>10? 
 
 

…=D;…=A; 
…=B; 
   i<5? 
 
 



 80 

 
 
 

Figure 30 Predicate Partition Graph (PPG) for Example in Figure 29 

 

Both live variable analysis and interference calculation use PQS queries that walk the 

predicate partition graph (PPG) to compute accurate liveness information at each 

instruction. Figure 31 shows four predicated live ranges A, B, B1 and C and their 

predicated sets during a backward traversal of the instructions 1-20 in the if-converted 

code fragment of the rolling example. The figure shows the predicate set at the entry of 

each instruction for each variable. The predicate set is derived from the predicate set at 

the exit of the instruction and the qualifying predicate of the instruction. The algorithms 

PQS uses to find the predicate sets are in Figure 32. It specifies the “add” and “delete” 

interfaces the general predicate-aware interference build routine uses (see Algorithm 2).  

The PQS queries that traverse the PPG to find the predicate sets for candidates are listed 

in Appendix  12.3.  
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4 
2 2 

P1 

P2 

P4 P5 

P3 

Px P6 

 P7 P8 

 “Forward” Edge 

 “Backward” Edge 

 
Root:    1P  
Forward Partitions:  3|21 PPP → (“1”) , 5|42 PPP → (“2”), 6|3 PPxP → (“3”), 

8|71 PPP →  (“5”) 
Backward Partitions: 6||21 PPxPP → (“4”) 
Completed Partitions:  none. 
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Figure 31 Predicated Live Ranges under PQS 

 
 

PQS is powerful, but has costs. First, it requires the construction of the predicate 

partition graph, which—although it is linear in space and time in the order of the number 

of basic blocks—consumes extra memory. Second, unlike classical live variable analysis, 

which operates on basic blocks, PQS-based predicate live variable dataflow operates on 

• Variable A is a “partition” live range. At instruction 12 A is live under P1 
and defined under P5. Since P1 = P2|P4=P3|P4|P5, A is live under P3 and 
P4 at the beginning of instruction 12. After (reading backwards) the 
definition of A under P4 in instruction 9, A is live under P3. Finally, 
instruction 6 is the start of the live range of A. 

• Variable B is a “partition” live range. At the definition under P5 in 
instruction 13, it is live under P1 and P2. Since P1=P3|P4|P5 and P2=P4|P5, 
B is live under P3 and P4 at the beginning of instruction 13. Since there is 
no definition under P3, B is live at then entry of the predicated region under 
P3. 

• Variable B1 is a “partition” live range similar to A or B. 
• Variable C is a “dominate” live range. The definition under P2 in instruction 

4 is the start of the live range since P2=P4|P5, so P2 dominates P4 and P5). 
 

Predicated Code 
A B B1 C

1: (P1) D= {} {P3} {} {}
2: (P1) cmp P2,P3=(x<y) {} {P3} {} {}
3: (P2) a=… {} {P3} {} {}
4: (P2) C=… {} {P3} {} {}
5: (P2) cmp P4,P5=(a==3) {} {P3} {} {P4, P5}
6: (P3) A=… {} {P3} {} {P4, P5}
7: (P3) b=… {P3} {P3} {} {P4, P5}
8: (P3) cmp P6,p0=(b>10) {P3} {P3} {} {P4, P5}
9: (P4) A=… {P3} {P3} {} {P4, P5}

10: (P4) B=…; (P4) B1=…; {P4, P3} {P3} {} {P4, P5}
11: (P4) …=C {P4, P3} {P4, P3} {P4} {P4, P5}
12: (P5) A=… {P4,P3} {P4, P3} {P4} {P5}
13: (P5) B=…; (P5) B1=…; {P1} {P4, P3} {P4} {P5}
14: (P5) …=C {P1} {P1, P2} {P2} {P5}
15: (P2) …=B; (P2)…=B1; {P1} {P1, P2} {P2} {}
16: (P6) … {P1} {P1} {} {}
17: (P1) …=D {P1} {P1} {} {}
18: (P1) …=A {P1} {P1} {} {}
19: (P1) …=B {} {P1} {} {}
20: (P1) cmp P7,P8=(i!=5) {} {} {} {}

Predicate Sets For Variables
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instructions, which requires customized dataflow routines. Finally, PQS queries get 

invoked at every predicated instruction during the backward traversal of interference 

graph construction (Algorithm 2). These compile time, implementation and maintenance 

costs motivate the search for alternatives. 

 

Figure 32 Add and Delete Routines in PQS-based Allocator 

procedure mark_live(Set P’) 
    foreach p’ ∈ P’  
        if (p’ ∈ B)  

      live[p’]+=x; 
   else  
       foreach pb ∈ B 
                if (! IsDisjoint(p’,pb))  
          live[pb]+=x; 
       fi; 
            endfor 
        fi 
    endfor 
endproc 
 
procedure add(Predicate qp, Var x) 
    Pset P, P’; 
    // Collect all predicates p in Basis B such that 
    // x is live under p. 
    P = { p∈B | x live under p}; 
    if (qp ∈ P) return; // x live under qp already. 
    P’ = lub_sum(qp, P);  
    mark_live(P’); 
endproc     
procedure delete(Var x, Predicate qp) 
    Pset P, P’ 
    // Collect all predicates p in Basis B such that 
    // x is live under p. 
    P = { p∈B | x live under p}; 
    if (qp ∈ P) live[qp]-=x; // x dead under qp. 
    P’ = lub_diff(qp, P); 
    // kill x under all predicates in B 
    foreach pb in B 
        live[pb]-=x; 
    endfor  
    mark_live(P’) 
endproc 
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6.3 A Family of Predicate-Aware Register Allocators 

This section assumes all predicate code is compiler generated. We propose predicate-

aware allocation schemes based solely on classical techniques. This is based on the 

observation that computing partitions based on PQS at every instruction during 

interference graph construction and live variable analysis is not necessary for all live 

ranges. Specifically, PQS partitions are not necessary when either the qualifying 

predicates for the definitions and uses of a live range match or a definition dominates all 

uses. “Dominance” is derived from the control flow graph. Since each instruction has a 

predicate and the predicate is a block predicated, predicate dominance is control flow 

dominance. For other live ranges, partitions can be pre-computed at each use on demand. 

Building and repeatedly querying the PPG is not necessary.  

There are four fundamental relations between predicated definitions and uses (Figure 

33). Predicated live ranges are classified based on the original control-flow region the 

predicated code is derived from. It is important to keep the correspondence between 

blocks and qualifying predicates in mind. A definition is clearly the start of the live range 

when the qualifying predicates of the definition and use match. This is also the case when 

the qualifying predicate of the definition dominates the qualifying predicates of the uses. 

When multiple definitions reach a use, two cases are possible. First, when definitions 

form a partition, the qualifying predicates of the definitions are mutually disjoint and the 

first definition in the hyperblock is the start of the live range. In this case the allocator 

gets precise disjointness by tracking liveness under all predicates that reach the use. 

Therefore it can track liveness under all definition predicates reaching a use rather than 

the qualifying predicate of the use (instruction). For example, in the partition case in 

Figure 33, instead of tracking liveness under P3, recording liveness under P1 and P2 

would give precise disjointness information. In this scenario, the definition of V under P2 

(or P1) would kill liveness under P2 (or P1). Any subsequent–in the backward traversal–

variables (defined or used) under P2 (or P1) do not interfere with V. This would not be 

the case if the live range were tracked using P3, unless a system like PQS partitioned P3 

at the definition of V qualified under P2. Second, when definitions don’t form a partition 

(“overlap”), recording liveness under the reaching predicates would find the start of the 

live range, but disjointness would be conservative. For example, variables under 
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qualifying predicate P2 could interfere with V, although V might have been killed under 

P2, since V would be live under P1, too (see “overlap” in Figure 33).  

The live range for a variable defined in the region and live is completed (=made strict 

relative to the region) by adding pseudo definitions into region blocks based on two rules: 

first, if the variable V is live at entry of two successors, follow both paths. Second, if 

block B1 has two successors, B2 and B3, and variable V is live at entry in B2, but dead at 

entry in B3, insert a pseudo definition at the beginning of B2. The pseudo definition does 

not start the live range, but splits it into separate components. We note that the predicated 

live ranges can be classified based on the original control flow graph. 
 

 

 

Figure 33 Fundamental Relations between Predicated Definitions and Uses 
 

Our rolling example (Figure 30) illustrates the four fundamental relations. Live ranges 

D, a, and b are defined and used under a single predicate (“match”). In live range C the 

definition under (P2) dominates the uses under (P4) and (P5) (“dominate”). In live range 

A the qualifying predicates of the definitions (P3, P4 and P5) form a partition for the use 

under (P1) (“partition”).  Live range B has uses under (P1) and (P2). The qualifying 

predicates (P4) and (P5) form a partition for (P2) (“partition”). For (P1) there is no 

partition. Since B is live at the entry of the predicated region, there is a pseudo definition 

of B in block 3 under (P3), since B is live at entry in block 3, but dead at entry in block 2. 

The start of predicated live ranges can be found performing live variable analysis 

before if-conversion. After a region is if-converted, first definitions can be marked in a 

forward sweep over all instructions in the (linear) if-converted region, starting at the first 

match dominate partition overlap 

(P1)V=   (P1) V= (P1)V= 

(P2) V= 

(P3) =V (P3) =V (P1) =V 
V= 

(P2) =V (P3) =V 

(P1)V= (P2)V= 
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instruction in the region entry block with the live-at-entry vector and recording 

definitions: if a variable is defined under a predicate, the variable is not live-at-entry and 

no other definition of the variable has been seen, this must be the first definition.  

Based on the types of predicate live ranges, three strategies for predicate-aware 

register allocation can be defined that model predicate live ranges with increasing 

accuracy:  

Strategy 1: Dominate-or-Match 

The qualifying predicates of instructions that use a variable form the predicate set for the 

variables. For live ranges with matching qualifying predicates for definition and uses, 

interference is precise. This is true also when the definition predicate dominates all use 

predicates. 

Strategy 2: Partition Tracking 

In addition to Strategy 1, live ranges are recorded under qualifying predicates of the 

(possibly pseudo) definitions that reach a use, if this set is a partition and the qualifying 

predicate of the use post-dominates each definition predicate. The qualifying predicates at 

the definitions are either in the partition or -in case the predicate is from a pseudo 

definition- dominate a partition predicate. 

Figure 34 has the predicated code from our example and considers two live ranges A 

and B to illustrate strategy 2. For live range A, {P3, P4, P5} reach the use under (P1). 

Since P3, P4 and P5 are mutually disjoint and the use post-dominates the definitions, this 

partition is the predicate set at the use of A. Live range B is similar to live range A, 

except that B is completed by a (implicit) pseudo definition at the entry of block 3.  

Completion ensures that all live ranges with uses in the region are strict and enables 

partition formation at uses. A live range is strict when there is a definition on every path 

to a use. 

After if-conversion each read operand (“use) is augmented with a list of qualifying 

predicates that represent the qualifying predicates of its reaching definitions. Strategy 2 

relies on reaching definition analysis per predicated region. When more than one 

definition predicate reaches a use and the predicates are disjoint, record the partition that 

represents reaching qualifying predicates at each use. In this case, the original 
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(qualifying) predicates at the definitions are either in the partition or dominate a partition 

predicate. 
 

 

Figure 34 Predicate-aware Allocation with Partitions 
 

The following theorem lists the live ranges whose interferences can be modeled 

precisely by strategy 2.  

Theorem  6-1 (Characterization of Simple Live Range Tracking) 
Strategy 2 can model interferences precisely for the following live ranges: 

• Definition and use predicate match 

• Definition predicate dominates use predicate 

Predicated Code 
A B B1 C

1: (P1) D= {} {P3} {} {}
2: (P1) cmp P2,P3=(x<y) {} {P3} {} {}
3: (P2) a=… {} {P3} {} {}
4: (P2) C=… {} {P3} {} {}
5: (P2) cmp P4,P5=(a==3) {} {P3} {} {P4, P5}
6: (P3) A=… {} {P3} {} {P4, P5}
7: (P3) b=… {P3} {P3} {} {P4, P5}
8: (P3) cmp P6,p0=(b>10) {P3} {P3} {} {P4, P5}
9: (P4) A=… {P3} {P3} {} {P4, P5}

10: (P4) B=…; (P4) B1=…; {P3,P4} {P3} {} {P4, P5}
11: (P4) …=C {P3,P4} {P3,P4} {P4} {P4, P5}
12: (P5) A=… {P3,P4} {P3,P4} {P4} {P5}
13: (P5) B=…; (P5) B1=…; {P3,P4,P5} {P3,P4} {P4} {P5}
14: (P5) …=C {P3,P4,P5} {P3,P4,P5} {P4,P5} {P5}
15: (P2) …=B; (P2)…=B1; {P3,P4,P5} {P3,P4,P5} {P4,P5} {}
16: (P6) … {P3,P4,P5} {P3,P4,P5} {} {}
17: (P1) …=D {P3,P4,P5} {P3,P4,P5} {} {}
18: (P1) …=A {P3,P4,P5} {P3,P4,P5} {} {}
19: (P1) …=B {} {P3,P4,P5} {} {}
20: (P1) cmp P7,P8=(i!=5) {} {} {} {}

Predicate Sets For Variables

 

• Variable A is a “partition” live range. The use of A in instruction 18 is reached by 
definition of P3, P4 and P5, which form a partition of the qualifying predicate P1. 
Liveness of A is tracked under P3, P4 and P5. 

• Variables B and B1 are “partition” live ranges similar to A. The live range of B is 
“completed” with a pseudo-definition in Block B3.  P3, B is live at then entry of the 
predicated region under P3. 

• Variable C is a “dominate” live range. The definition under P2 in instruction 4 is the 
start of the live range since P2=P4|P5 (so P2 dominates P4 and P5). 
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• Definition predicates form a partition. Use predicate post-dominates all 

partition predicates. 

• Two definition predicates reaching a use are on at most one execution 

trace (or execution path in the original control flow region). 

Proof:  

Precise interference means for each predicated live range L:  

When L is recognized as live at a given program point, L is actually live.  

When L is recognized as dead, it is actually dead. 

When L is recognized as disjoint from another live range L’, it is actually disjoint. 

When L is recognized as interfering with L’, it is actually interfering. 

The theorem is clear for the simple cases, match and dominate. In this case the 

predicate set of a live range consists of the qualifying predicates seen at its uses. The 

matching or dominating definition stops the live range (strategy 1). For the remaining 

cases we need to develop some intuition first. Tracking a live range under the qualifying 

predicate of the use ensures that in the predicated region disjointness is precise with 

respect to instructions that are not on a path to the use in the original control flow graph. 

In case the definition predicates form a partition and the use predicate post-dominates all 

partition predicates, then all paths starting at definitions end at the use. There cannot be 

an off path instruction in the predicated region that would introduce an interference that is 

not visible in the original control flow graph. Therefore tracking the live range under 

partition predicates cannot introduce new interferences. The case of two definitions 

reaching a use but the definition predicates don’t form a partition can be reduced to the 

partition case. Since there is only one path that contains both definitions, there must exist 

a split block dominated by the first definition. Inserting a pseudo-definition in the 

successor of the split block that is not on the path to the second definition ensures the 

partition property: since the qualifying predicate of the pseudo def is disjoint from the 

qualifying predicate of the second definition, they form a partition at the use. In this case 

one partition predicate (from the pseudo definition) will not be a definition predicate, but 

dominated by it (the definition predicate of the first definition). This proves the theorem 

for two definitions. The general case of N definitions is similar to this special case.        □ 
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Consider the example code in Figure 35 to visualize the difference between use and 

partition tracking, when the use does not post-dominate the definition. P2|P3 form a 

partition for live range B, but the use under P5 does not post-dominate P2. In the 

predicated code there could be an off-path instruction like the definition of E under P4 

“before” the use of B under P5. If liveness of B were tracked under partition predicates 

P2|P3, E and B would interfere, since P2 and P4 are not disjoint. On the other hand, if 

liveness of B is tracked under P5, E and B cannot interfere, since clearly P4 and P5 are 

disjoint. This scenario cannot happen when the use post-dominates all partition 

predicates, since there cannot be an “off-path” instruction on the execution trace. 

The remaining live ranges require a more sophisticated method to model interferences 

precisely. There are two cases left: First, the use does not post-dominate the partition 

predicates. Second, two or more definitions overlap on more than one execution trace (or 

execution path in the original control flow graph). The first case can be handled by 

tracking the live range under the use and the partition predicates. The second case is 

reduced to partition, dominate or match live ranges by splitting. Splitting is described 

below.  

 

 

Figure 35 Extra Interference with Partition Tracking 
 
 

Control-Flow Region with Block Predicates Predicated Region 

 

(P1) CMP  P2,P3 = … 

(P2) CMPU P4,P5 = … 

(P1) D = ... 

(P2) B = ... 

(P3) A = ... 

(P2) A = ... 

(P4) E = ... 

(P5)     ...= B 
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P1 

B4 
P4 

B2 
P2 

B5 
P5 

B6 
P1 

  …=B E=… 
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B3 
P3 
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Strategy 3: Use-and-partition Tracking 

In addition to strategy 2, track live variables under use-and-partition predicates and 

“split” live ranges when two definitions overlap on more than one path. 

When the use does not post-dominate the definition, the use predicate (=qualifying 

predicate of the instruction containing the use) gets associated with the partition 

predicates. This is necessary for precise disjointness information: when the use does not 

post-dominate all predicates in a partition (of two or more predicates), disjointness could 

be conservative. Therefore, the live range is tracked under the qualifying predicate of the 

use and the partition predicates. Since the partition predicates represent disjoint portions 

of execution traces, precise disjointness is due to the following rule used during 

interference calculation: at any given instruction, if the qualifying predicate of a 

definition of live range L1 interferes with the use predicate of live range L2, but not with 

any of its associated partition predicates, then live ranges L1 and L2 are (actually) 

disjoint at this point. This gives precise disjointness: First, when the use does not post-

dominate the definitions, there can be instructions on the execution trace that are not on 

any path from the definition to the use. Since the qualifying predicate of the use is 

disjoint from the qualifying predicate of these instructions, no imprecise interference can 

be encountered. Second, false interferences could be recorded with variables in 

instructions on paths to a definition, but the rule above is preventing this, since at every 

definition the qualifying predicate is removed from the partition. This argument has been 

used in the proof for Theorem  6-1 also. 

In case of definition overlap on more than one execution path, additional live range 

splitting is necessary. This is achieved by inserting an identity move under the qualifying 

predicate of the definition. This move only changes predicate tracking for the live range. 
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Figure 36 Complex Live Range Tracking 
 

Figure 36 illustrates a live range V in a control flow graph snippet. The definitions for 

V overlap on more than one path to the use. There are two definitions of V in blocks B1 

and B2. The use in block B4 post-dominates the definitions, but the definitions in blocks 

B1 and B2 overlap on paths 21 →  and 231 →→ . Tracking the live range of V under 

the reaching predicates P2|P1 would give extra interferences, since P1 interferes with P2. 

The trick is adding an identical move in block Bx, which is inserted by control flow 

graph completion. The use in block B4 is recorded under P2 and Px, which form a 

partition. Since P1 dominates Px, the original live range has been split into a “simple” 

live range (handled by strategy 2) and a “dominate” live range. In general, splitting can 

also result in a partition live range, where the use does not post-dominate the definitions. 

We note that this kind of live range splitting can be achieved with SSA representation 

 [59]) in the original control flow region. When translating out of SSA we would get the 

moves that split a complex live range. 

From the discussion it is clear that strategy 3 models interference precisely when a live 

range has two definitions that overlap on one execution path. The identity move can be 

inserted where the two definitions merge. The general case is  

 

• On paths B1-B2 and B1-B3-
B2 definitions of V overlap.  

• In this case the live range for 
V cannot be transformed into 
a partition live range. 

• The pseudo move in JS block 
Bx splits the live range of V 
into a “partition” and a 
“dominate” live range. 

V=V 

B2 
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B1 
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B3 
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B4 
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Theorem  6-2 (Characterization of Complex Live Range Tracking) 
Strategy 3 can model interferences precisely for the following live ranges: 

• Use predicate does not post-dominate partition predicates 

• When definitions overlap on more than one path, the live range can be split and 

handled by strategy 2 or the case above. 

Proof:  

Preciseness for the first case is clear: The qualifying predicate of the use avoids 

interferences with an off-path instruction, which could be on the trace from a definition to 

a use. Partition tracking asserts there is no conservative interference with an instruction 

on the path from the entry code to the definition. The interference rule is modified: if, at a 

given instruction in the interference graph construction, a qualifying predicate interferes 

with the use predicate from a live candidate, but not with the associated partition 

predicates, the live range under the qualifying predicate is disjoint from the live 

candidate. 

Overlapping live ranges on multiple paths can be split into simpler live ranges: 

Assume the live range has n> 2 definitions. Like in Figure 36 an identical move can be 

inserted at a merge point of any two definitions. The live range section with the two 

definitions and the use in the identical “mov” is either a partition live range or can be 

modeled by use-and-partition tracking. This splitting technique can be applied iteratively 

until a split live range has only two definitions. This proves the theorem since it holds in 

case n=2. 

                                                                                                                                        □ 
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Figure 37 Completed Candidate Region and Live Ranges 

 

We identified four types on predicated live ranges – match, dominate, partition and 

overlap –and two methods for interference modeling– “simple” and “complex”, and three 

implementation strategies. The simple method models interferences of all “match”, 

“dominate” and some “partition” live ranges precisely, and remaining live ranges 

conservatively. The complex method models all live range precisely. In implementation 
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strategy 1, only match and dominate live ranges are modeled precisely. Strategy 2 models 

all simple live ranges, which include all “match”, “dominate” and some “partition” live 

ranges, precisely, and strategy 3 models interferences of all live range precisely. Strategy 

3 is equivalent to a PQS based implementation when predicated code is derived form 

control-flow code. The rest of the section discusses a detailed example. Figure 37 shows 

the snippet of a completed control flow graph with block predicates. Bu, Bv, Bx, By and 

Bz are JS blocks inserted during completion. The candidate region for if-conversion 

includes all blocks but B7, which is an exit block.  Block 6 is the merge point for the 

region. Shown are also six live ranges A, B, C, D, E and V. A is defined in the region, but 

used outside. B and C are examples for “dominate” live range, D is used in the region and 

escapes at the entry B1, E is a “partition” live range and V an “overlap” live range, which 

has multiple definitions on a path that can reach a use.  

Figure 39 shows the core predicated code (“hyperblock”) corresponding to the 

superblock region in Figure 37. For the six live ranges their predicate sets are shown as 

they are recorded in a backward traversal of the hyperblock.  The definition of live range 

A under predicate P4 dominates the exit at which A is live (Line 16, B7). Thus A is 

tracked under P4 when it enters the predicated region. For live range B, the definition 

predicate P1 dominates the use predicates P2 and P3. The same holds for live range C, 

where P1 dominates the use predicate P6. Live range D has no definition. At the entry of 

the region D becomes live under P0, the true predicate. E is an example for a partition 

live range, but the use predicate P5 does not post-dominate the definition predicate P2. In 

this case, a partition can be formed because the control flow graph has been completed 

before if-conversion. The partition for E is (Pv, P3), where P2 dominates Pv and P5 post-

dominates all partition predicates.  

 

Figure 38 Predicate Partition Graph for Figure 37 

Root:    1P  
Forward Partitions:  3|21 PPP → , PvPuP |2 → , PyPxP |4 → , PzPP |65 →  
Backward Partitions: PvPP |34 → , PxPzP |5 → , PyPzP |7 →  
Completed Partitions: PuPP |41 → , PyPP |51 → , 6|71 PPP →  
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Figure 39 Predicate Sets for Live Ranges Figure 37 with Complex Tracking 

Predicated Code 
A B C D E V

1: (P1) B= {} {} {} {P4} {} {}
2: (P1) C= {} {P2, P3} {P7} {P4} {} {}
3: (P1) cmpu P7,P0=... {} {P2, P3} {P7} {P4} {} {}
4: (P1) cmpu P4,P5=... {} {P2, P3} {P7} {P4} {} {}
5: (P1) cmpu P2,P3=... {} {P2, P3} {P7} {P4} {} {}
6: (P2) V= {} {P2, P3} {P7} {P4} {} {}
7: (P3)     =B {} {P2, P3} {P7} {P4} {} {Pz(Pv)}
8: (P2) E= {} {P2} {P7} {P4} {} {Pz(Pv)}
9: (P3) E= {} {P2} {P7} {P4} {Pv} {Pz(Pv)}

10: (P3) V= {} {P2} {P7} {P4} {Pv,P3} {Pz(Pv)}
11: (P2)     =B {} {P2} {P7} {P4} {Pv,P3} {Pz(Pv,P3)}
12: (P4) cmpu Px,Py=... {} {} {P7} {P4} {Pv,P3} {Pz(Pv,P3)}
13: (P5) V= {} {} {P7} {P4} {Pv,P3} {Pz(Pv,P3)}
14: (P5) cmpu P6,Pz=... {} {} {P7} {P4} {Pv,P3} {Py, Pz(Pv,P3)}
15: (P5) A= {} {} {P7} {P4} {Pv,P3} {Py, Pz(Pv,P3)}
16: (P4)     =E {P5} {} {P7} {P4} {Pv,P3} {Py, Pz(Pv,P3)}

   17: (P4)     =D {P5} {} {P7} {P4} {} {Py, Pz(Pv,P3)}
18: (P5) br .b6 {P5} {} {P7} {} {} {Py, Pz(Pv,P3)}
19: (Pz) V=V {} {} {P7} {} {} {Py, Pz(Pv,P3)}
20: (P7)     =C {} {} {P7} {} {} {Py, Pz}
21: (P7)     =V {} {} {} {} {} {Py, Pz}

Predicate Sets For Variables

 

• A is a “dominate” live range. It is used in B6 under predicate P6. P5 (or B5) dominates P6 
(or B6) and the definition under P5 is the start of the live range for A. 

• B is a “dominate” live range with one definition and two uses. 
• C is a “dominate” live range with one definition and one use. 
• D has no definition inside the hyperblock. It is tracked under the qp of its use. 
• E is a “partition” live range. The use does not post-dominate its definitions. E is partitioned 

into a “dominate” and  a “partition” live range, where the use in block B4 post-dominates the 
definition in block B3 and the definition in the pseudo move E=E  in block Bv. Liveness for 
the partitioned live range is tracked under partition predicate Pv and P3. Since P2 dominates 
Pv, the start of the live range for E is recognized at instruction 8. 

• V is a “complex” live range, since the definition in B2 or B3 can overlap with the definition 
in B5 on a path to the use in B7.  The live range of V is split into  two “dominate”, one 
“partition” and one “complex” (with two definition) live range: The two “dominate” live 
ranges stretch from B2-Bv and B5-Bz respectively, the partition live range is Bz-By-B7, and 
the complex live range with two definitions is Bv-B3-By. In line 21 the two definitions 
(from pseudo moves V=V) in By and Bz reach the use of V under P7. Thus liveness of V is 
tracker under {Py, Pz}. In instruction 19, liveness under Pz is killed. The use in the same 
(pseudo move) instruction is the end of the “complex” (sub-) live range of V. Since the use 
does not post-dominate its reaching definitions, liveness is tracked under the use predicate 
Pz, and the reaching definitions predicates Pv, P3. Instruction 13 kills liveness under Py, 
since P5 dominates Py. Instruction 6 kills liveness under Pv, since P2 dominates Pv. Since 
Pv is the “last” predicate under which V is live, instruction 6 is the start of the live range. 
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Figure 40 Predicate Sets for Live Ranges in Figure 37 with PQS 
 

The live range for V is another example for a complex live range, but – unlike E – it is 

characterized that multiple definitions on one path reach the use in B6. In this case the 

live range is first split by inserting an identity move into JS block Bz into two partition 

Predicated Code 
A B C D E V

1: (P1) B= {} {} {P7} {P4} {} {}
2: (P1) C= {} {P2, P3} {P7} {P4} {} {}
3: (P1) cmpu P7,P0=... {} {P2, P3} {P7} {P4} {} {}
4: (P1) cmpu P4,P5=... {} {P2, P3} {P7} {P4} {} {}
5: (P1) cmpu P2,P3=... {} {P2, P3} {P7} {P4} {} {}
6: (P2) V= {} {P2, P3} {P7} {P4} {} {}
7: (P3)     =B {} {P2, P3} {P7} {P4} {} {Pv}
8: (P2) E= {} {P2} {P7} {P4} {} {Pv}
9: (P3) E= {} {P2} {P7} {P4} {Pv} {Pv}

10: (P3) V= {} {P2} {P7} {P4} {P4} {Pv}
11: (P2)     =B {} {P2} {P7} {P4} {P4} {Py}
12: (P4) cmpu Px,Py=... {} {} {P7} {P4} {P4} {Py}
13: (P5) V= {} {} {P7} {P4} {P4} {Py}
14: (P5) cmpu P6,P7=... {} {} {P7} {P4} {P4} {P7}
15: (P5) A= {} {} {P7} {P4} {P4} {P7}
16: (P4)     =E {P6} {} {P7} {P4} {P4} {P7}

  17: (P4)     =D {P6} {} {P7} {P4} {} {P7}
18: (P5) br .b6 {P6} {} {P7} {} {} {P7}
19: (P7)     =C {} {} {P7} {} {} {P7}
20: (P7)     =V {} {} {} {} {} {P7}

Predicate Sets For Variables

 

• A is a “dominate” live range. It is used in B6 under predicate P6. P5 (or B5) dominates 
P6 (or B6) and the definition under P5 is the start of the live range for A. 

• B is a “dominate” live range with one definition and two uses. 
• C is a “dominate” live range with one definition and one use. 
• D has no definition inside the hyperblock. It is tracked under the qp of its use. 
• E is a “partition” live range. The use does not post-dominate its definitions. At 

instruction 9 is  live at exit under predicate P4 and defined under predicate P3. Since 
there is a partition P4=Pv|P3in the PPG, E becomes live at entry under Pv. In 
instruction 8, E is defined under P2. Since P2 dominates Pv, instruction 8 is the start of 
the live range of E. 

• V is a “complex” live range.  At instruction 13 it is defined under P5. Since Py is the 
relative complement to P5 and P7 (the lowest common ancestor of P5 and P7 is P1, 
and Py is not on any path from P1 to P5), V becomes live under Py at the entry of 
instruction 13. At instruction 10, V is defined under P3. Since  
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live ranges. The first live range is spanned by the definition predicates P4 and Pz, and the 

use predicate P6. Since P6 does not post-dominate P4, the partition in Line 19 is {Py, 

Pz}, where P4 dominates Py and P6 post-dominates both Py and Pz. The second live 

range is spanned by the definition predicates P2 and P3, and the “pseudo” use in Pz. 

Since Pz post-dominates neither P2 nor P3, the partition records both the use predicate 

and the definition predicates. Only after all definitions have been seen, the live range is 

no longer live under Pz (Line 4). 



 97 

 

7 Register Allocation for Speculated Code 

IA-64 supports control- and data speculation to enable the compiler to speculatively hoist 

a load and its dependent uses across a branch (control), a store (data) or both (control and 

data). Compiler heuristics decide when speculation is beneficial. The compiler has to 

prepare for the case of an exception or fault at a speculated load. It provides for mis-

speculation by generating recovery code, which may re-execute (at runtime) the 

speculated dependence chain non-speculatively. Re-execution starts at the original 

program point where the load would have been executed non-speculatively. The 

challenge for the register allocator with respect to control speculation is correctness. In 

data speculated code the allocator can reduce the interferences for the “tail” of some data 

speculated live ranges. 

7.1 Control Speculation 

Itanium provides a speculative load (ld.s) and a validating check speculation (chk.s) 

instruction for control speculation (breaking the branch barrier). An ld.s causes a 

deferred exception token being set in the destination register of the speculated load in 

case of an exception or fault, e.g. in the case of a page fault. For integer registers, the 

NaT (= Not a Thing) is encoded in an extra bit (“NaT bit”) for the register. For floating-

point register, the deferred exception token is encoded as a special value in the register. 

We focus on the integer case, which—for the register allocator—is more challenging. 

The Itanium processor propagates NaTs to the destination register of an instruction when 

any source register has its NaT bit set.  If a NaT bit is set for the source register of the 

chk.s, execution branches to recovery code, which re-executes a non-speculative instance 

of the speculative load and all speculated instructions of its dependence chain, and 

branches back to the bundle after the chk.s. Non-speculative re-execution of the 

speculated code at the place where the code would have been executed without 

speculation ensures program correctness in case of a mis-speculation. Example 7 shows 

an example for control speculation and two ways of generating recovery code. The two 

loads in lines 7 and 8 are control speculated across the branch in line 6. The “add” in line 

9, which is flow dependent on the load in line 8, is speculated also. The first method for 
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generating recovery code duplicates the dependence chain for the speculative load and all 

its speculated, dependent instructions. The speculated load becomes non-speculated in the 

recovery code. The second method shows no speculative load in the recovery code. This 

method saves one chk.s and code size in the recovery code sections. Note that in the 

optimized recovery code sequence the ld.s destination and the chk.s use don’t match: the 

chk.s will fire when the NaT bit for V9 is set. This is the case when V9 inherits the NaT 

bit from V7 or V8. In other words, NaT bits may be propagated along the dependence 

chain originating with a speculated load ld.s. 

                   a. Original Code           b. Speculated Code        c. Optimized Recovery Code 
            
 1: 
 2:          ld8.s V7=[V6]  ld8.s V7=[V6] 
 3:          ld8.s V8=[V7]  ld8.s V8=[V7] 
 4:    add   V5=V4,V3       add   V5=V4,V3;;  add V5=V4,V3;; 
 5:          add   V9=V9,V8  add V9=V9,V8 
 6:    br    cont       br    cont  br cont 
 7:    ld8   V7=[V6]       chk.s V7,rec1  
 8:    ld8   V8=[V7];; r1:  chk.s V8,rec2  chk.s V9,rec1 
 9:     add   V9=V9,V8        
10:cont: ...       cont: ...   cont: ... 
11:       rec1: ld8   V7=[V6] rec1: ld8 V7=[V6] 
12:        ld8.s V8=[V7];;  ld8 V8=[V7];; 
13:        add   V9=V9,V8  add V9=V9,V8 
14:        br    r1   br cont 
15:       rec2: ld8   V8=[V7];; 
16:       add   V9=V9,V8 
17:        br    cont 
 
 

   Example 7 Control Speculation and Two M ethods of Recovery Code Generation 
 

7.1.1 NaT Propagation and Spill Code 

The Itanium processor propagates NaTs to the destination register of an instruction when 

any source register has its NaT bit set. The compiler has to model NaT propagation of the 

processor to avoid NaT consumption faults. A NaT consumption fault occurs, for 

example, when the source register of a regular store has the NaT bit set. To avoid the 

NaT consumption fault, the Itanium ISA supports a special store instruction, st8.spill, 

which saves the NaT bit of the source register in the 64bit AR.UNAT application register 

and does not cause a NaT consumption fault. In Example 7 b. and c., a NaT bit may be 

set (at run-time) for the physical registers assigned to V7, V8 and V9: it could be set for 
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V7 at the speculated load in line 2 and propagate to V8 and V9. Or the NaT bit of the 

register assigned to V8 could be set at the speculated load in line 3 and propagate to (the 

assigned register of) V9 at the “add” in line 5. A set NaT bit is cleared when the 

speculated dependence chain that produces the NaT gets (re-)executed non-speculatively 

in recovery code. Modeling processor NaT propagation is crucial for register spilling to 

avoid possible NaT consumption faults. At a spill the register allocator must know 

whether or not the NaT bit of the register to be spilled could be set. The modeling can be 

done in a separate data flow analysis pass for speculated loads or in the code scheduler, 

which is responsible for generating the recovery code. As a result, the code generator 

marks each instruction (or even each operand per instruction) that could have a 

destination register with a set NaT bit.  

 

Figure 41 Spill Addresses and AR.UNAT Register 

 

The rest of this section assumes that a register may have its NaT bit set. When such a 

register is spilled, the code generator has to use a special spill/fill instruction 

(st8.spill/ld8.fill), which save/restore the registers NaT bit to/from the AR.UNAT 

application register. The bit location in the AR.UNAT is determined by 6 significant bits 

(bits 8:3, see manual [13]) of the spill (=stack memory) address.  To track the AR.UNAT 

bit vs. memory address correspondence, the register allocator has to allocate contiguous 

memory in the local stack frame to the spilled speculated live ranges (Figure 41). Spilled 

Content Address Bit
0 1 63

… …
… …

ar.unat 0x208
Spill N65 0x200
Spill N64 63

… …

Spill N3 0x10 2
Spill N2 0x8 1
Spill N1 0x0 0

Stack Memory 
 AR.UNAT Register

…

 

• N1-N65 are interfering live 
ranges  

• At run-time the NaT bit of 
the registers they are 
assigned to may be set 

• If spilled, N1-N64 must be 
spilled to consecutive 
memory addresses, since the 
memory address determines 
the bit in the AR.UNAT 
register that saves the NaT 
bit. 

• For N65, there is no bit left in 
the AR.UNAT. In this case 
the compiler saves the NaT 
bit for N65 on the memory 
stack also. 
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live ranges that don't interfere may share the same spill address. Spilled live ranges that 

interfere can neither spill to the same address nor to addresses that map to the same bit in 

the AR.UNAT, which is a 64-bit register and can hold 64 (NaT) bits that are live 

simultaneously. When more than 64 speculated live ranges are live simultaneously, the 

AR.UNAT would overflow. Perhaps the best way to think about spilling of a speculated 

live range (its assigned register may have its NaT bit set) is spilling of a pair (value, 

NaT). Both components of the pair can have interferences.  When more than 64 

speculated live ranges interfere simultaneously and have to be spilled, 64 spill addresses 

are not enough. This means, the AR.UNAT register would overflow and could not hold 

all corresponding NaT bits. In this case the allocator can use the following “naïve” 

spill/fill scheme for speculated live ranges (Figure 42).  
 

 

Figure 42 Spill/Fill Code in case of AR.UNAT overflow 
 

When the AR.UNAT overflows the allocator saves the AR.UNAT in a general 

register, spills the (register of the) speculated live range, then spills the AR.UNAT and 

finally restores the original AR.UNAT. Filling is reversing the spills: after saving the 

original AR.UNAT in a general register, it loads the spilled AR.UNAT, then the spilled 

live range, and finally restores the original AR.UNAT. The sequences ensure that the 

Spill code sequence in case of AR.UNAT overflow 
 
mov rs=ar.unat  // save ar.unat register 
st8.spill [rm]=rx, 8;; // rm = rm + 8 
    // if rx has NaT bit set, 

// it is stored in the ar.unat 
st8[rm]=rs   // save ar.unat for later fill 
mov ar.unat=rs;;   // restore ar.unat register 
 
Fill code sequence in case of AR.UNAT overflow 
 
mov rs=ar.unat  // save ar.unat register 
ld8 rh=[rm],-8;;  // rm = rm – 8.  
mov ar.unat=rh  // ar.unat now contains NaT bit for  

// candidate to be loaded in rx 
ld8.fill rx=[rm] 
mov ar.unat=rs;   // restore ar.unat register. 
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NaT bit of the spilled (filled) live range is in the spilled (filled) AR.UNAT (Figure 42). In 

this naïve approach the entire AR.UNAT register is spilled to save and restore one NaT 

bit. Spilling of the AR.UNAT register could be avoided, if the compiler ensured that no 

more than 64 live ranges with a potentially set NaT bit interfere, but control speculation 

in the compiler is register pressure unaware. 

While general NaT propagation enables more efficient recovery code, it can result in 

many spills of the AR.UNAT register, since the NaT bit must be potentially preserved for 

any symbolic register in the dependence chain originating at an ld.s. If such a symbolic 

register is spilled, its NaT must be available at a fill.  If the compiler requires that the ld.s 

destination and the chk.s must match, modeling NaT propagation becomes simpler. Then 

only the NaT bit of a speculated load destination must be preserved. When any other 

speculated live range (in the dependence chain of an ld.s destination) is spilled, a st8.spill 

must still be used to avoid a NaT consumption fault at any program point where its NaT 

may be set. But the NaT bit does not need to be preserved and a regular load—rather than 

an ld8.fill—can be used to load the value. This means that for most speculated live ranges 

the NaT bit value can be ignored and does not need to be preserved (in the case of 

spilling) in the AR.UNAT application register. The next section describes the algorithm 

that exploits “matching” ld.s and chk.s. 
 

7.1.2 An advanced NaT Propagation Algorithm 

Modeling general NaT propagation in the compiler is challenging. It is conceivable to 

develop a predicate-aware NaT propagation algorithm based on available NaT and live 

NaT data flow algorithms, similar to available variable and live variable algorithms used 

for live range approximation. But two observations give a simpler method for NaT 

modeling. First, under the assumption that each ld.s destination has a matching chk.s 

source (in other words, they are the same virtual or symbolic register), the compiler does 

not need to model the NaT propagation of the processor entirely. Instead, it can model 

NaT propagation only for the destination registers of ld.s. Second, the compiler can 

partition the bits of the AR.UNAT application register into two classes: preserved and 

scratch. A preserved bit corresponds either to the NaT bit of a static preserved general 

register (r4, r5, r6 or r7 in Figure 4, p.22) or to the NaT bit of a destination register in a 
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speculated load.  The scratch bits correspond to any other register that may have its NaT 

bit set, like a symbolic registers in the dependence chain of a speculated load. Ld.s 

destinations are the only NaT producers. So only for them (and the used preserved 

registers r4-r7, which are spilled at function entry and filled at function exit(s)) the NaT 

bit must be preserved in case of a spill and restored at a fill. To filter the symbolic 

registers that need only a scratch NaT bits it is sufficient to mark instructions in the 

dependence chain from the ld.s to the matching chk.s. This can be done either in the 

scheduler or the chain can be recomputed in a separate phase before register allocation. 

When a symbolic register in a marked instruction is spilled, a st8.spill must be used. In 

case of a fill, only when the symbolic register is the destination of a NaT producer (ld.s) 

and its NaT bit could be checked by a following chk.s, an ld8.fill must be used. To find 

all places where an ld8.fill must be used we introduce the concept of a live NaT. This is a 

sub-live range of a ld.s destination where the NaT could be set.  Live NaTs start at ld.s 

and end at chk.s. A live NaT analysis similar to a live variable analysis gives all program 

points of the live NaT range. We note that the compiler can use a pseudo ld.s and chk.s 

instructions to model general NaT propagation under the restriction that ld.s must have a 

matching chk.s. The pseudo chk.s instruction marks the end of one NaT range and the 

pseudo ld.s instruction the beginning of another.  Although the actual ld.s and chk.s 

mismatch like V7 and V9 in    Example 7, the pseudo instructions partition the speculated 

live ranges so that the live NaT analysis is applicable. 

Figure 43 illustrates the effect of the algorithm and choices for stack memory layout 

for a hypothetical 5bit AR.UNAT register. For illustration we assume one preserved 

register r4, which is spilled and filled at function entry and exit respectively, 10 “scratch” 

spills s1, …, s10 for candidates that may set a NaT and two interfering ld.s  destinations 

l1 and l2. Assume s1,…, s10 interfere with l1 and l2. In layout 1 r4 and l1 are associated 

with AR.UNAT bit 4 and 3 respectively. Bit 4 cannot be overwritten, since it must be 

preserved for the entire function. Thus no other st8.spill can go to a memory address that 

would write the NaT of its source register to this bit. For bit 3 the situation is different: a 

non-interfering candidate can be written to bit 3 and even stored at the same memory 

address, but an interfering live range must ensure not to destroy bit 3. Therefore the 
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memory address corresponding to bit 3 can be used when the allocator determines that 

there is no conflict with l1. 

 

 
Figure 43 5-bit AR.UNAT Register and Stack Memory Layout Options 

 
The scratch spills interfere, but they can share the same NaT bit (bit 0 – bit 2), since 

for them the NaT bit does not need to be preserved. It only needs to be saved to avoid a 

Content Address Bit Content Address Bit

0 1 2 3 4 — 0xc0 4 0 1 2 3 4
— 0xb8 3
— 0xb0 2

AR.UNAT 0xa8 s1 0xa8 1
l2 0xa0 s2 0xa0 0
— 0x98 4 — 0x98 4
— 0x90 3 — 0x90 3
— 0x88 2 — 0x88 2
— 0x80 1 s3 0x80 1
s1 0x78 0 s4 0x78 0
— 0x70 4 — 0x70 4
— 0x68 3 — 0x68 3
s2 0x60 2 — 0x60 2
s3 0x58 1 s5 0x58 1
s4 0x50 0 s6 0x50 0
— 0x48 4 — 0x48 4
— 0x40 3 — 0x40 3
s5 0x38 2 — 0x38 2
s6 0x30 1 s7 0x30 1
s7 0x28 0 s8 0x28 0
r4 0x20 4 r4 0x20 4
l1 0x18 3 l1 0x18 3
s8 0x10 2 l2 0x10 2
s9 0x8 1 s9 0x8 1

s10 0x0 0 s10 0x0 0

Layout 2: No AR.UNAT spillsLayout 1:  AR.UNAT spills possible

5-bit AR.UNAT

Bits 0-1: scratch
Bits 2-4: preserved

Stack Memory

Memory and AR.UNAT Register

Bits 3-4: preserved

Memory and AR.UNAT Register

Stack Memory
5-bit AR.UNAT

Bits 0-2: scratch
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NaT consumption fault. To save the NaT bit of l2, the entire AR.UNAT register is spilled 

as in the conservative method. But, unlike for the conservative method, for s1 to s7 the 

AR.UNAT register is not stored, which saves 7 spill/fills and 14 AR.UNAT moves. In the 

second layout one more AR.UNAT bit is preserved. This saves the AR.UNAT spill (and 

2 AR.UNAT moves) for l2 at the expense of larger stack memory. 

In layout 2 three bits (3, 4 and 5) in the AR.UNAT are used as preserved bits. In this 

scenario l1, l2 and r4 can preserve their NaTs. Since there are only two scratch bits, 

which s1,…,s10 can use, the memory stack increases compared to layout1, but spills of 

the AR.UNAT can be avoided. 

The algorithm applies also to a live range that combines control-and data speculation. 

Data speculated live ranges have their own unique characteristics that can be exploited 

with special register allocation techniques. 

7.2 Data Speculation 

IA-64 provides an advanced load (ld.a) and two advanced load check (chk.a, ld.c) 

instructions for data speculation. This enables the code generator to schedule a load 

across a potentially overlapping store (breaking the store barrier). At execution, an 

advanced load records information about its physical destination register, memory 

address and data size in the Advanced Load Address Table (ALAT) [13]. If a subsequent 

store overlaps, then the hardware invalidates the corresponding ALAT entry to indicate 

the collision. As with control speculation, the compiler generates recovery code that will 

execute only in case speculation fails (Example 8). There is something peculiar about 

data speculated live range, which the register allocator can exploit to reduce its 

interferences. Data speculated live ranges that end in a chk.a have a range where 

interferences with non-alat live ranges can be ignored. Since the chk.a only checks the 

register number, but not the value in the alat, the chk.a destination register can be shared 

with a non-data speculated candidate in a special circumstance. If the non-speculated 

candidate has a live range that is contained entirely in the range from the chk.a to the 

penultimate use of the data speculated live range, the interferences of the two live ranges 

can be ignored and both candidates be assigned the same register. We call the section of a 

data speculated live range from the ending chk.a to its penultimate use the ALAT shadow. 
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Rather than building a containment graph (Cooper and Simpson  [24]), the Itanium 

compiler associates an shadow ALAT live range to each data speculated live range 

ending in a chk.a. It uses pseudo instructions for modeling the shadow, i.e. the live range 

section from the chk.a (which is the last use and ends the live range) to its penultimate 

use (if it exits). In the shadow all interferences with regular live ranges (not data 

speculated) get ignored. Interference with another data speculated candidate must be 

taken into account, since two overlapping data speculated live ranges cannot share the 

same register. Example 8 gives an illustration. Live range V4 is data speculated.  The 

load in line 5 is hoisted above the store in line 4. The dependent add in line 6 is 

speculated also. We assume there is no use of V4 after the chk.a, so the live range for 

candidate V4 ends at the chk.a.  A shadow live range V4’ modeling the ALAT shadow 

for V4 is introduced ranging from the chk.a to the penultimate use at the “add” in line 2. 

 

Example 8 Data Speculation with Recovery Code and Alat Live Range 
 
The modeling of the ALAT shadow is accomplishing by the use of pseudo instructions. 

Again, Example 8 shows the pseudo instructions “puse” and “pchk”. The live range for 

candidate V4 has two components: First, it starts at the advanced load in line 1 and ends 

at the chk.a in line 5.  Second, the non-speculated dependence chain in the recovery code 

from line 8 to line 9. The shadow live range V4’ ranges from line 2 (“puse”) to line 5 

(“pchk”). 

          Original Code  Data Speculated Code  Pseudo Code     LR of V4 
 
1:     ld8.a  V4=[V1] 
2:     add  V5=V4,V6   puse V4’ 
3:     ... 
4:  st4 [V10]=V11  st4  [V10]=V11 
5: ld8 V4=[V1]  chk.a  V4, rec pchk V4’ 
6: add V5=V4,V6   cont: ... 
7:          ... 
8:                 rec: ld8  V4=[V1] 
9:                  add  V5=V4,V6 
10:                  br  cont 
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8 Scalable Register Allocation 

A coloring allocator is usually a fast and efficient compiler phase. It can cause a compile 

time problem because of memory consumption due to a large number of candidates. To 

address the memory problem multiple strategies can be employed. This section discusses 

the pros and cons of these methods, and proposes scalable register allocation, which can 

solve the allocation problem in general for an arbitrary set of register candidates. Using a 

scalable allocation scheme, coloring allocators can handle fast and efficiently any large-

size allocation problem. 

The register allocator in the Intel Itanium compiler supports a variety of allocation 

strategies: 

1. Region based allocation 

a. This is the default strategy in the compiler. A region is either a loop or 

outer acyclic region.  

2. Conversion of local candidates to global candidates 

a. The register candidates consist of local and global candidates. For local 

candidates all references are within a basic block. All locals are numbered 

consecutively. For example, when the first basic block has local virtual 

registers v1-v10, the first local in the next block will be v11. When the 

allocator recognizes that the number of locals exceeds an internal 

threshold for the entire control flow graph, it will hash locals to global 

virtual registers effectively reducing the overall number of register 

candidates. Hashing is interference agnostic, but locals in one basic block 

cannot hash to the same (new) global. Only locals from different basic 

block can hash to the same global. The method works since the number of 

locals per basic block is limited to a few hundred candidates. Therefore 

the thousands of locals in the entire routine can be hashed to relatively few 

new global candidates at the cost of extra interference: the interferences of 

a hashed global variable are the union of all interferences of the locals that 

have been hashed to it. 
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3. Basic block allocation only 

a.  In this approach the candidates are allocated per basic block. Global 

virtual registers are always spilled at basic block boundaries. No dataflow 

analysis is employed. This approach can be seen a simple variant of a 

region based allocator, where the regions are simply basic blocks. 

All methods can reduce memory usage and compile time, but they have disadvantages 

as well. Region-based methods rely on global dataflow analysis, which itself can cause 

compile time problems. These methods also have the cost of maintaining global 

information necessary to reconcile allocations in different regions at the region 

boundaries. In case of loop based region allocators, they may not be able to handle large 

routines that have no loops. In the case of basic block allocators that spill global 

candidates at block boundaries they can cause huge performance regressions. Hashing 

local candidates and replacing them by global virtual registers reduces the number of 

register candidates and therefore the size of the interference graph, but is useful only 

when local candidates by far outnumber global candidates. 

Functions generated in the framework of large server applications may contain 

hundreds of thousands of global register candidates in a single, loop-free procedure and 

expose the memory problem. Among the methods above, only the third method can be 

used to compile the application in reasonable compile time, but at a potentially big 

performance cost. This thesis proposes scalable coloring allocation that can be applied to 

procedures with any number of global variables.  

The scalable register allocator is based on the observations that a coloring allocator 

solves small to medium sized allocation problems in almost linear time and space. 

Scalability is then achieved by a two step process. First, the scalable allocation partitions 

the set of register candidates directly. Second, it runs the coloring allocator on each set. 

Effectively it partitions the original allocation space into many small subspaces that can 

be solved quickly. Rather than solving the original allocation problem for all candidates 

at once, the algorithm avoids exponential compile time increase by partitioning the 

candidates into smaller subsets. Using the ideas in this chapter we show that a coloring 

allocator can be parallelized and allocate independent (disjoint) sets of variables in 

parallel.  
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Figure 44 Serial and Parallel Scalable Register Allocation 
 

Figure 44 shows the high level view of the scalable allocator. It may use techniques 

like live range splitting and pre-materialization in a preparation phase. This phase may 

also renumber the virtual register candidates in case of a hierarchical allocator that uses 

virtual rather than physical colors. The hierarchical allocator will be discussed in more 

detail later in this section. After renumbering a selection phase uses filters to partition the 

candidates are partitioned. There are many possible choices for a filter. Some specific 

examples for a filter are: 

• Select all candidates of same type, e.g. all floating point or all integer candidates. 

This specific filter has been implemented in the Intel compiler. Floating-point 

Input: },....1{ nSSS = , a set of sets of candidates 

 
procedure scalable_serial_allocation() 

foreach iS  in S  

  Allocate( iS ); 

endfe 
AllocSpillMemory(); 

 
endproc 
 
procedure scalable_parallel_allocation() 

- Partition physical or virtual target registers: 

},...,1{ jRRR = . 

- Partition candidate set into sets of j subsets, where j 
is the number of register partitions: 

}...,)1(,...,2...,,1,,...,1{ njSjnSjSjSjSSS −+=  

 
while  ∅≠S  do 

  select worklist },..,{
1 jxSxSW = ; 

  PAllocate ),( RW ; 
 
  WSS \= ; 

od; 
AllocSpillMemory(); 

endproc 
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candidates must be either allocated first or together with integer candidates, since 

spilling of a floating-point candidate introduces new integer candidates. 

• Select candidates referenced in certain regions, unless they have been selected 

already.  For example, all candidates in innermost loops can be picked. The 

difference to a region-based allocator is that the scalable allocator would assign 

the same register to a candidate across the entire routine. This is not necessarily so 

for a region-based allocator. It may assign different registers to the same 

candidate in different regions. The assignment is then reconciled (by adding 

reconciliation code, i.e. mov, store or load) at region boundaries. 

• Select candidates based on profile data. When basic block profile data is 

available, one choice is to pick “hot” candidates first, where hotness is determined 

by a heuristic threshold based of reference frequencies of the candidates. All hot 

candidates are allocated first, and if a candidate is assigned a register, the 

assignment -unlike in a region-based allocator- holds in the entire routine. 

Selection by hotness is an idea that goes back to the Chow allocator (at least). 

 

The outcome of the selection phase is a set S of n partitions nSS ,...,1 . Each partition is 

a set of candidates. The number of candidates per partition can vary. They don’t have to 

be the same in each partition. The key is to control the number of candidates in each 

partition so the coloring allocator can solve the allocation problem for the partition 

efficiently. In the result section we will analyze a simple partition scheme where each 

partition contains N/n candidates, where N is the total number of candidates and n the 

number of partitions. 

In the serial version the register allocator is invoked for each set of candidates. The 

full register set available (except for reserved registers and spill registers) is used for 

allocation. After allocating the first partition, all candidates are mapped to physical 

registers. Subsequent allocations will not change physical registers and take interferences 

with physical registers into account. Internally access functions in the allocator and 

dataflow routines check that a specific candidate is in the selected candidate set. 

Candidates that are not in the set get ignored. Candidates in the set interfere only with 

each other or physical registers. Each invocation of the register allocator uses symbolic 
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stack memory accesses for spill code. Therefore the memory stack must be finalized after 

the last set of candidates has been allocated, because only after the last allocation all stack 

references can be resolved. In Figure 45 is an example for a serial scalable allocator 

assuming eight physical register r1, …, r8. In the example, two sets have been selected 

and the partitions are: 

}}9999,...,5000{},4999,2,1{{},{ 21 VVVVVSSS ==  

The first instance of the allocator assigns e.g. r1 and r2 to V1 and V2 respectively, r8 to 

V9999 and spills V1000.  When the allocator is invoked for the second partition, V9999 

e.g. is assigned r8, since V9999 does not interfere with r8. After the second and final 

partition, spill addresses can be allocated in the memory stack. 

 

Figure 45 Example for Serial Scalable Allocator for registers {r1, …,r8} 
 

The parallel version of the scalable allocator is configurable depending on the number 

of candidates and processors/cores available. Also, parallelization can be achieved in 

many ways. For example, the physical register set can be partitioned },...,{ 1 nRRR =  into 

n sets.  Similar the set of candidates can be partitioned into n or a multiple of n sets: 

},..,,,...,{ 11 knnn SSSSS += . In this case registers in iR get assigned to candidates in 

nkinii SSS )1(,...,, −++ . Partitioning ensures that the candidates and the physical registers are 

compatible. This means, for example, that a set iS  of floating point candidates is 

allocated to a partition of physical floating point registers iR . In Figure 46 a simple 

register file with general registers r1,..,r4 and floating-point register f1, f2 is partitioned 

into three sets. Any filter as described above may be used to partition the candidates. 

Candidates Result
V1 V1 r1 r1 r1 r1
V2 V2 r2 r2 r2 r2
… … … … … …
V1000 V1000 spill spill spill spill 16
… …
V4999 V4999 r8 r8 r8 r8
V5000 V5000 ignore V5000 spill spill 24
… … … … …
V9999 V9999 ignore V9999 r8 r8

1st Allocation 2nd Allocation
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Global candidates V1-V10 can be assigned r1 or r2, V11-V100 can be assigned r3 or r4, 

and V101-V120 and local candidates, v1- v9, can be assigned f1 or f2.  The PAllocate() 

routine will then span three allocations ),(),,( 2211 RSRS and ),( 33 RS  in  parallel. 

 

Figure 46 Example for Partition of Register File and Candidates 
 

Partitioning the physical register file could be too restrictive. Since relatively few 

physical registers are available, either the number of partition sets or (and) the number of 

registers available per partition set must be restricted. The number of partition sets is an 

upper limit to the parallelism available for an allocation problem. Partitioning could also 

result in avoidable spill code. Since the registers in the partition sets must be disjoint, a 

single partition has relatively few registers available for assignment. But these restrictions 

can be worked around by staging the allocation. A more general method is using virtual 

registers for each partition in a first allocation step. This reduces the size of the allocation 

problem, unless the interference graph is a complete graph.  In the second and final step, 

the allocation algorithm assigns physical registers to all candidates. The point of this two 

step (or hierarchical) allocation scheme is that in the first step no physical register is 

committed and the number of candidates is reduced by virtual allocation. The original 

interference graph does not have to be built. In this scheme no limit of virtual target 

registers is assumed. A suitable set of virtual colors may be chosen for each candidate set 

and all virtual target registers can be assumed to be disjoint enabling parallel incarnations 

of the allocator. Figure 48 illustrates the concept. The candidates are split into three 

integer sets and one floating-point set (Figure 47). They are allocated in parallel to virtual 

target registers. In the example, there are 768 integer and 128 floating point virtual target 

registers. Therefore, after the parallel allocation, the allocation problem has been reduced 

to 896 candidates. The target size of the virtual register partition can be dynamically 

chosen so that spill code in the parallel step can be avoided. This is evident from the 

fundamental inequality (Equation 4, p. 54): for a candidate partition the maximal number 

 

 

}}2,1{},4,3{},2,1{{},,{ 321 ffrrrrRRRR ==  

}}9,..,1,120,...,101{},100,...,11{},10,...,1{{},,{ 321 vvVVVVVVSSSS ==  
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M of neighbors in the interference graph can be determined for the set before coloring. 

Forming a set of M+1 virtual target register is then sufficient to color the set. 

 

Figure 47 Example for Virtual Register and Candidate Partitions 
 
 

 

Figure 48 3-Way Parallel Scalable Allocator with Staged Allocation 
 
 
There can be more partitions in the set S of candidates than in the set R of registers, but 

the number of partitions in R is the maximal number of parallel allocations.  After all 

candidate sets have been allocated in parallel, the virtual colors get allocated to physical 

registers in a final round of allocation, but on a much smaller problem space. Like in the 

serial configuration the parallel scalable allocator must take care of the memory stack 

layout in a post-allocation phase. It is conceivable to allow multiple stages of allocation 

with virtual target registers.  

Candidates 1st Allocation: Parallel Result

V1 ivr10 ivr10 r1 r1
V2 ivr30 ivr30 spill r2
… … … … …
V750000 ivr10 ivr10 r1 spill 16

fvr12 f5
V75000 fvr12 fvr100 f6 r8
… fvr100 … … …

fvr12 spill spill24
V150000 fvr12 ivr257 r1 r8

ivr258 r8
V150001 ivr257 … … r8
… ivr258 ivr500 spill spill 32

…
V225000 ivr500

  2nd Allocation: Serial    

 

 }}512,...,257{},256,...,1{},256,...,1{{},,{ 321 ivrivrfvrfvrivrivrRRRR ==  
 

 }}225000,....150001{},150000,...,75001{},75000,...,1{{},,{ 321 VVVVVVSSSS ==  
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In summary the scalable allocator partitions the set of candidates. Partitioning can as 

simple as dividing the candidates (of one class, e.g. integer or floating-point) into equal 

subsets. Since the candidates are partitioned before allocation, data flow analysis runs 

only for the selected subset (and physical registers). In the serial allocation scheme the 

allocator is invoked one subset of a time. The input to invocation N+1 is the output of 

invocation N. Invocation takes into account interferences with physical registers that have 

been assigned in previous invocations. In the parallel allocation scheme the physical 

registers are partitioned also. Allocation can be run for subsets of candidates. There can 

be as many allocations run in parallel as there are partitions of the physical registers. In 

the parallel scheme interferences between subsets of candidates can be ignored since they 

are guaranteed to get assigned different registers. In either scheme (serial or parallel) a 

hierarchical allocator can use virtual registers to avoid spills at the first stage of allocation 

and reduce the number of candidates.  
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9 Related Work 
 
This thesis describes extensions of a coloring allocator covering features provided by the 

Itanium architecture like dynamic register stack, control- and data speculation and 

predicated code. The idea of dynamically resizing the register stack is in the original IA-

64 design, and can be seen in the resize semantics of the alloc instruction (Intel manuals 

 [42]). The first description of compiler algorithms exploiting the semantics of the alloc 

instruction and applying it to general regions is Hoflehner and Pierce  [38]. Douillet et al. 

 [27] evaluated the idea in the ORC compiler on paths with high register pressure, but they 

measured negative results on six CINT2000 benchmarks: although they saved RSE 

traffic, they measured a slowdown of 27.34% in the geomean and suggested the cost of 

the alloc instruction is responsible for it. Other papers come to different conclusions. 

Settle et al.  [69] apply multiple alloc to call sites and show static improves, although the 

run-time of CPU2000 benchmarks did not improve for their prototype implementation in 

the Intel Itanium compiler. For the production version of the algorithm Hoflehner et al. 

 [39] report a 1% speed-up on Oracle TPC-C. This thesis gives a review of this algorithm 

and shows results for an improved version on the CPU2006 benchmark suite. The gains 

for this suite are still at about 1%, but this has to be seen in perspective. Overall the 

performance cost of RSE traffic is much less than 10% (Desai et al.  [26]), so a 1% 

performance run-time performance gain is from reducing the dynamic RSE traffic by 

more than 10%. Yang et al.  [78] take an interprocedural approach, which they call the 

“quota assignment problem”. The observation is that when RSE traffic kicks in for the 

function on the call stack, it might be cheaper by actually spilling some register in the 

compiler and reducing the stack frame size. In this form it is somewhat reminiscent of 

Chow’s shrink-wrapping approach  [21]. Yang et al. report improvements from their 

interprocedural approach on two CINT2000 benchmarks, perlbmk (13%) and crafty 

(3.7%). Their numbers are for the ORC compiler, for which they report very high RSE 

traffic number compared to the Intel Itanium production compiler  [26]). They don’t 

compare their method with a multiple alloc implementation for call sites, which might 

have given them performance gains at a smaller implementation cost. Weldon et al.  [75] 
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is studies the effectiveness of the RSE and proposes hardware mechanisms to reduce RSE 

spills and fill. 

Register allocation for speculated code seems to be neglected in literature. The focus 

there is on headroom studies for performance gains from speculation (e.g. Wu et al.  [77] ) 

and general frameworks to handle recovery code (e.g. Lin et al.  [53]). One major purpose 

of these papers is to expose speculation at a higher level IR, pass it on to lower level IR 

and show how classical optimizations like PRE can exploit it. On the other hand, this 

thesis shows how to extend a coloring allocator to handle control- and data speculated 

code effectively. Our concern about control speculation is program correctness. In 

particular the compiler needs to generate code that cannot cause a NaT consumption fault 

at run-time. With respect to data speculation, this thesis describes how the allocator can 

reduce interferences for data speculated live ranges that end in chk.a and have a 

penultimate use. 4 This idea was also mentioned in Bharadwaj et al.  [9], but not described 

in detail.  

There is a rich body of literature covering predication and representing predicate 

relations. The IMPACT compiler uses the Predicate Hierarchy Graph (PHG) (Mahlke et 

al.   [56]).  For each definition of a predicate the PHG tracks the predicates that guard the 

definition. It can also handle basic Boolean expressions and is applied to analyze 

predicated code of a hyperblock. A hyperblock is a predicated superblock, which is an 

acyclic single entry multiple exit region in a control flow graph. The PHG is mainly used 

to derive predicate disjointness. Rather than applying the PHG for predicate-aware 

dataflow analysis, the IMPACT compiler uses reverse if-conversion (Warter et al.  [74]) 

to convert predicated code to control flow. On this graph it performs classical data flow 

analysis. A more sophisticated approach than the PHG is the predicate query system 

(PQS), which is based on the predicate partition graph (PPG). For PQS the key references 

are Johnson and Schlansker  [45] and Gillies et al.  [31]. Johnson and Schlansker  [45] 

focus on the analysis of predicated code. They model predicate relations in terms of 

relations between execution sets and introduce the predicate partition graph to answer 

queries about predicate relations. PQS can determine accurately predicate relations that 

                                                        
4 If a live range ends is chk.a but has no penultimate use, an ld.c (load check) should have been used 
instead. But IA-64 architecture does not require the use an ld.c. 
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can be expressed as logical partitions. Two predicates P2 and P3 form a predicate 

partition P1 when P1 is the union of P2 and P3, and P2 and P3 cannot both be true 

simultaneously (=at the same program point). In their paper Johnson and Schlansker  [45]  

show how to build the PPG starting from predicated code, give pseudo-code for the PQS 

queries-including lub_sum and lub_diff (see Appendix  12.3, p.141) and apply their 

system for predicate-aware live variable analysis. But their paper has no experimental 

evaluation of their method. Gillies et al.  [31] can be seen as the follow up to Johnson and 

Schlansker [40]. Their paper shows how to construct the predicate partition graph from 

the control-flow graph and discusses in some detail predicate-aware live variable analysis 

and predicate-aware interference construction. They show that predicate-aware allocation 

reduces register pressure for predicated code statically between 20% -70%  on 23 

procedures picked from the SPEC92 benchmark suite. Their paper has no run-time data. 

In preparation of PPG construction they add basic blocks (JS-blocks) on critical edges, 

but they only claim to so to “simplify the creation of partitions” (p.118). We showed that 

the blocks increase the accuracy of predicated analysis (cf. discussion of partition and 

overlap live ranges in Chapter  6.3, p.83). Gillies et al.  [31] also discuss the start of a live 

range problem (see Figure 15) and mention a case where predicate-aware data flow must 

be conservative across back edges, which is similar to our example in Figure 28. Since 

PQS bases analysis can determine the start of a live range, PQS papers do not discusses 

predicate-aware available variable analysis. In the classical case (= no predication) the 

purpose of available variable analysis is determining the start of a live range. For acyclic, 

if-converted regions predicate partitions are sufficient to derive this information.  Our 

approach is close to Gillies in the sense that we assume predicated code is derived from 

compiler generated control flow graphs. But rather than focusing on the predicate 

analysis system, we ask the basic question of what kind of live ranges exist and what 

information is necessary to model their interferences in the presence of predicated code.   

We identified four types on predicated live ranges – match, dominate, partition and 

overlap –and two methods for interference modeling– “simple” and “complex”, and three 

implementation strategies. The simple method models interferences of all “match”, 

“dominate” and some “partition” live ranges precisely, and remaining live ranges 

conservatively (Theorem  6-1). The complex method models all live range precisely 
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(Theorem  6-2). In implementation strategy 1, only match and dominate live ranges are 

modeled precisely. We show that this method gives run-time performance compared to 

PQS at lower compile-time and-implicitly-lower implementation and maintenance cost. 

Strategy 2 models all simple live ranges, which include all “match”, “dominate” and 

some “partition” live ranges, precisely, and strategy 3 models interferences of all live 

range precisely. Strategy 3 is equivalent to a PQS based implementation when predicated 

code is derived form control-flow code. We don’t build extra structure like a PPG and use 

“classical” techniques only to handle different classes of predicated live ranges. But PQS 

based allocator, which includes the PPG, is used as a reference implementation to show 

the effectiveness of our method. Our result depends on two parameters:  First, the if-

converter is conservative and if-converted regions are relatively simple. This may give a 

bias to “match” and “dominate” live ranges. Second, an increase in register due to 

handling “partition” and “overlaps” live ranges conservatively (by allowing false 

interferences for them) can be tolerated by the (relatively to other architecture) large 

register file of IA-64. When the two assumptions are not valid, the choices are to 

implement strategy 2 or strategy 3 or a scheme like PQS. The implementer has also the 

option to pick and choose different allocation strategies for different function or even 

region at compile-time. The core of Chapter  6 that discusses register allocation for 

predicated code can be found also in Hoflehner  [40].  

More subtle predicate analysis methods that derive accurate predicate relations for 

already predicated code have been developed also. Eichenberger  [28] represents logical 

predicate relations, so called P-facts, and determines predicate relations, in particular 

predicate interference, using a logic solver. He applies this information for register 

allocation in a hyperblock. Sias et al.  [71] developed the predicate analysis system (PAS), 

which is as accurate as Eichenberger’s, but can determine predicate relations globally 

using a BDD solver. Eichenberger’s and Sias approach is evaluated in a research 

environment. It is not clear that their methodologies are practical for a production 

compiler. In contrast this thesis makes no attempt to address the general predicate relation 

problem, based on the premise that the key predicate relation the coloring allocator needs 

is predicate disjointness. Two predicates are disjoint if they are not true at the same 

program point. Since predicates materialize as block predicates, this information can be 
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derived directly from the control flow graph. Our allocator is built on the assumption that 

predicated code is derived from acyclic control flow graph regions. If this assumption 

were violated, the allocator would still produce correct results by assuming all 

“unknown” predicates interfere with each other an the block predicates.  

Coloring allocators cannot handle allocation problems of any size. Too resolve this 

compile time problem many methods have been devised to reduce the allocation space. 

The ideas revolve around partitioning a given routine into regions (e.g. Hank  [35]) or 

partitioning the interference graph.  Callahan and Koblenz  [15] describe a general region 

allocation scheme (“Hierarchical Graph Coloring”). They partition the control flow graph 

into a set of tiles. Tiles are sets of basic blocks with additional properties, so that a tile 

tree can be constructed: two tiles are either disjoint or contained (tile 1 is subset of tile 2 

or vice versa) and there is a single root tile. Then graph-coloring is applied to each tile 

(region) in a bottom-up walk of the tree. At tile boundaries the allocations are reconciled. 

Reconciliation is necessary since a live range L1 may get assigned register r1 in tile 1 and 

register r2 in tile 2. At the tile boundary of tile 1 and tile 2 a “reconciliation” move from 

e.g. r1 to r2 must be inserted. Hierarchical graph coloring covers loop trees and graph-

partitions based on single-entry single-exit (“SESE”) regions. It is noteworthy that their 

allocator uses “pseudo” registers, which are assigned physical registers in a reconciliation 

phase. Norris and Pollack  [61] pursue region based allocation in a similar fashion, but 

based on the program dependence graph (“PDG”). Statements guarded by the same 

control statement form an allocation region. Their region may have multiple exits. 

Fusion-based allocation partitions the control flow graph into arbitrarily disjoint regions 

(Lueh et al.  [55]). The idea of the fusion allocator is to delay spilling until the 

interference graphs of two simplifiable regions get fused. When the combined graph 

would be no longer simplifiable, the fusion operator, based on feedback profiling 

information, attempts to split live ranges in order to minimize spill code at the region 

boundaries. In all these methods the allocation problem is partitioned into a set of sub-

problems that can be solved more efficiently than the original problem. The cost of the 

methods is extra book-keeping to glue together the local (per region) solutions at 

boundaries. But there are functions generated in the framework of large server 

applications that exhibit hundreds of thousands of register candidates.  Region based 
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methods are usually focused on loops, but can be tuned to handle general regions and 

partition large programs. But they also rely on global dataflow computation, which itself 

can consume a significant amount of memory. In addition, they rely on global data 

structures to reconcile allocations at region boundaries. Also, it seems a hard problem to 

parallelize region-based allocators without synchronization in form of region 

reconciliations.  

Gupta et al.  [33] proposed clique separators for partitioning the interference graph. A 

clique separator is a clique that partitions a graph into two disjoint components. The 

clique allocator computes spans (definition-use chains) and identifies a set of clique 

separators. Each span can be contained in (at most) a fixed number of sub-graphs. Each 

sub-graph is colored separately, while it includes the nodes of a separating clique. The 

final graph is composed from the sub-graphs possibly with renumbering of assigned 

registers and spilling (or register copies) at separator boundaries.  Given n nodes and m 

clique separator the clique separator consumes )/( 22 mnO space and )/( 2 mnO  time. Like 

for region based methods, additional cost is from extra book-keeping to glue together the 

allocations for the sub-graphs and rely on global dataflow computation, which itself can 

consume a significant amount of memory.  

In contrast this thesis proposed a family of scalable allocators, which do not rely on 

region shapes and take the scalability of dataflow algorithms into account. Since the 

focus is on partitioning the symbolic registers before allocation, the dataflow analysis to 

determine live ranges needs to consider only the candidates contained in that partition 

and physical registers.  A scalable allocator can be engineered to solve the allocation 

problem in parallel and does not need boundary reconciliation. It is capable of allocating 

effectively programs with very large sets of register candidates. We showed how a 

scalable allocator can be used also for parallel allocation e.g. on multi-core machines, so 

each core can run an “allocation thread” for a subset of candidates. Parallel allocation 

applies in particular to machines with large register files, since the register files can be 

partitioned and each allocation is associated with one partition. This guarantees that 

candidates in different partitions are independent: since they get assigned different 

registers, interferences between classes of candidates can be ignored. Scalable allocation 

can result in higher spill cost and performance degradation (assuming the allocation 
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problem can be solved in a classic coloring allocator) since the register file is partitioned 

a priori and in fact more registers may get used than necessary. This can hurt e.g. IA-64 

in from with higher RSE traffic. Scalable allocators can be seen as extensions of 

candidate splitting ideas. Splitting the candidates is often implicit in the coloring 

heuristics. Well-known examples include coloring basic block local candidates first, then 

the global candidates (e.g. Briggs  [12] ) or dividing the candidates into classes, like 

floating-point and integer candidates (see e.g. Chapter  4). We demonstrated the potential 

of a simple allocator that divides the candidates into constant subsets and allocates one 

subset at the time. It can solve effectively allocation problems for the “f_serverapp” test 

case, which has more than 500K candidates in a single function (Section  10.2.3). 
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10  Results 

We obtained the performance data on a 1.6 GHz Montecito processor using the Intel 

Fortran/C++ optimizing product compiler (version 11.1, 2009). The detailed 

configuration is listed in Table 8.  The benchmark suite is CPU2006, a popular industry-

standardized CPU-intense suite used by OEMs for stressing a system’s processor, 

memory subsystem and compiler.  

Table 8 Experimental Setup 

 
CPU2006 has two sub-suites. The integer suite (CINT2006) consists of twelve 

benchmarks containing general user applications like compiler, interpreters, games, 

simulators and database. A rough overview of the CINT006 benchmarks can be found in 

Table 9. The floating-point suite (CFP2006) contains a set of 17 applications relevant in 

high-performance computing including equation solvers, physical, chemical and 

biological system simulations, speech recognition systems and a ray tracer. More details 

about the CFP2006 benchmarks are in Table 10. To give a better idea about the relative 

complexity  of the benchmark, tables Table 9 and Table 10 show the lines of code (LOC), 

compile times normalized to the compile time of 470.lbm and the number of routines 

(HR = hot routines) where over 90% or more of the total benchmark execution time is 

spent. As an example, the normalized compile time of 470.lbm is 1. It takes 189 times as 

long to compile 403.gcc. The number of hot routines varies a lot for the benchmarks. For 

example, 456.hmmer has only a single hot routine where 90% or more of total execution 

time is spent. This is a characteristic that suggests 456.hmmer behaves more like a HPC 

(high-performance computing) application which tend to have a few hot loops. On the 

other hand, CFP2006 which represents floating-point computing intense (and thus HPC) 

applications has benchmarks like 481.wrf, where 90% or more of the total execution time 

is spread across 33 routines. 

Processor Intel Itanium 2 (Montecito) Processor, 1.6 GHz
Compiler Intel Fortran/C++ Compiler (Version 11.1)
Memory 4 GB Main, 16 K L1D, 16KB L1I , 256K L2D, 1M L2I , 12M L3 D+I 
OS Red Hat Enterprise Linux AS Release 4 (Kernel 2.6.9-36.EL #1 SMP)  
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Table 9 SPEC CPU2006 Integer Benchmarks 

 
Published SPEC performance numbers are a combination of two pairs of metrics, 

speed vs. rate and base vs. peak. Speed measures the time it takes to finish a single 

benchmark on the system, while rate is a throughput measure for how many parallel 

instances of a benchmark the system can handle in a certain time. Base and peak metrics 

refer to compiler options used to compile the benchmarks. Base is more restrictive and 

attempts to represent build options any application can use to get good compiler 

performance. For example, all benchmarks written in the same language must use the 

same compiler options. No feedback profiling is allowed. Peak does not have such 

restrictions. Any user visible compiler option can be used for any benchmark, and profile 

data on the train input set(s) may be generated. To be SPEC compliant each benchmark 

must be run 3 times on the reference input data set. Only SPEC compliant runs get 

accepted by the SPEC committee for publication on the SPEC website 

(http://www.spec.org). A full SPEC compliant run for a base speed publication for both 

CINT2006 and CFP2006 can take about 24 hours, depending on system configuration 

and compiler options. 

Benchmark LOC CT HR LANG Description
400.perlbench 155432 47.2 33 C Based on perl V5.8.7
401.bzip2 8293 4.2 8 C Based on  bzip2 V1.0.3
403.gcc 518781 189 61 C Based on gcc V3.2 generating  Code for Opteron
429.mcf 2685 1.6 2 C Single-Depot Scheduling in Public Mass Transportation
445.gobmk 197215 40.2 39 C Go Game Execution and Position Analysis
456.hmmer 35992 10.4 1 C Sensitive Database Searching
458.sjeng 13487 5.8 14 C A highly-ranked Chess Program 
462.libquantum 4805 2 3 C Qantum Computer Simulation running Shor's Algorithm
464.h264ref 51578 69.2 14 C Video Compression Standard
471.omnetpp 48159 33.6 34 C++ Discrete Event Simulation of an Ethernet Network
473.astar 5842 2.2 3 C++ 2D Path Finding Library used in Game AI
483.xalancbmk 326504 331 21 C,C++  XML Parser
 

http://www.spec.org
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Table 10 SPEC CPU2006 Floating-Point Benchmarks 

 
Data presented in this chapter are collected for a (non-compliant) single speed run 

using base compiler options.  In base the compiler supports a wide variety of 

optimizations such as whole program optimizations, interprocedural optimizations like 

inlining, software prefetching, loop transformations, software pipelining, predication, 

global code scheduling and graph-coloring based register allocation. With base options 

no dynamic profile data may be used. Run-time performance data are normalized relative 

to the baseline. Performance and compile time data are relative to base options. Static 

data have been collected for implementations in an 11.1 compiler. 

10.1 Dynamic and Static Results 
 

The run-time benefits of multiple alloc and predicate-aware register allocation are in 

Table 11 for CINT2006 and in Table 12 for CFP2006. Multiple alloc is effective on 

CINT2006 with a gain of 1.9% on 400.perlbench and 1.18% on 458.sjeng. The gain 

overall in the geomean is 0.41%. These gains have to be seen in perspective. For 

example, on both 400.perlbench and 458.sjeng, the stall cycles due to RSE are about 5% 

(Desai et al.  [26]). The 1.9% gain in 400.perlbench and the > 1% gain in 458.sjeng mean 

a more than 20% reduction in RSE stall cycles for these benchmarks. In case of 

400.perlbench, all of them are due to the reduction of stall cycles in self-recursive 

Benchmark LOC CT HR LANG Description
410.bwaves 918 4.6 2 Fortran Computation of 3D Laminar Viscous Flow
416.gamess 932818 1649.4 10 Fortran Atomic and Molecular Electronic Structure Analysis
433.milc 15042 154 5 C Generator of Gauge Field with Dynamical Quarks
434.zeusmp 37326 74 8 Fortran Astrophysical phenomena simulator
435.gromacs 87736 47.4 8 C Newtonian Equation Solver 
436.cactusADM 104047 40 1 Fortran Einstein Equation Solver
437.leslie3d 3807 10.4 6 Fortran Large-Eddy Simulations in 3D
444.namd 5315 9.2 9 C++ Simulation of Large Biomolecular Systems
447.dealII 199654 305 17 C++ Adaptive Finite Elements and Error Estimation
450.soplex 41417 25.4 14 C++ Linear Program  Solver using the Simplex Algorithm
453.povray 157825 52 18 C++ Ray Tracer
454.calculix 49927 192.4 18 Fortran Finite Element Solver
459.gemsFDTD 11580 40 4 Fortran90 3D Maxwell Equations Solver 
465.tonto 143152 901.2 31 Fortran90 Quantum Chemistry Package
470.lbm 1176 1 1 C Simulate Iincompressible Fluids in 3D
481.wrf2 217896 1101.2 33 Fortran90 Weather Research and Forcasting System
482.sphinx 207732 10.4 5 C C Speech Recognition System  
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function S_regmatch(), in which the benchmark spends more than 38%  of its execution 

time.  

Table 11 CINT2006 Performance Gains for MA and Predicate-aware (PA) Allocation  
 

 
 
 

Table 12 CFP2006 Performance Gains for Predicate-aware (PA) Allocation 

 
Floating-point benchmarks did not show gains from multiple alloc and are not shown 

in Table 12. The gains from predicate-aware register allocation are for two different 

Benchmark  Multiple Alloc  PA w/ Strategy 1  PA w/ PQS  PA Delta
400.perlbench 1.90% 37.67% 37.67% 0.00%
401.bzip2 0.11% 5.01% 5.01% 0.00%
403.gcc 0.26% 1.71% 1.45% -0.26%
429.mcf 0.00% 0.93% 0.93% 0.00%
445.gobmk 0.98% 2.91% 2.91% 0.00%
456.hmmer 0.00% 1.20% 1.20% 0.00%
458.sjeng 1.18% 8.01% 8.01% 0.00%
462.libquantum 0.55% 0.00% 0.37% 0.37%
464.h264ref 0.00% 0.00% 1.03% 1.03%
471.omnetpp 0.00% 0.40% 0.40% 0.00%
473.astar 0.00% 0.97% 0.00% -0.96%
483.xalancbmk 0.00% 0.00% 0.00% 0.00%
Geomean 0.41% 4.48% 4.50% 0.01%  

Benchmark  PA w/ Strategy 1  PA w/ PQS PA Delta
410.bwaves 0.00% 0.00% 0.00%
416.gamess 8.74% 8.74% 0.00%
433.milc 0.00% 0.00% 0.00%
434.zeusmp 0.00% 0.00% 0.00%
435.gromacs 2.90% 2.90% 0.00%
436.cactusADM 1.03% 1.03% 0.00%
437.leslie3d 0.58% 0.58% 0.00%
444.namd 0.84% 0.84% 0.00%
447.dealII 0.00% 0.00% -0.69%
450.soplex 0.23% 0.23% 0.23%
453.povray 1.07% 1.07% 0.11%
454.calculix 4.86% 4.86% 0.00%
459.GemsFDTD 0.84% 0.84% 0.83%
465.tonto 2.42% 2.42% 0.00%
470.lbm 0.65% 0.65% 0.32%
481.wrf 0.68% 0.68% 0.00%
482.sphinx3 1.36% 1.36% 0.00%
Geomean: 1.52% 1.52% 0.05%  
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implementations, the PQS based implementation and the allocator that only models 

match and dominate live ranges precisely. 

In Section  6.3 we classified four types of predicate live ranges: match, dominate, 

partition, and overlap and showed that simple live range tracking gives precise 

interference for match, dominate, as well as some partition and overlap live ranges. When 

a use predicate does not post-dominate all partition predicates or definitions overlap on 

many (=two or more) paths, complex live range tracking techniques must be employed 

for precise modeling of predicated live ranges. The implementation that tracks liveness 

under the qualifying use predicates and marks first predicate definitions gives practically 

identical run-time performance as the PQS based implementation. This suggests that 

relative simple predicate-awareness in the coloring allocator can reap the performance 

potential. The simple predicate-aware allocator models predicated live ranges precisely 

only for match and dominate live ranges. It is conservative for all partition and overlap 

live ranges. For the experiment, live ranges first were completed in the original control 

flow graph of the candidate region. Then a region-based reaching definition analysis was 

performed. Together with dominator information, this is sufficient to classify predicated 

live ranges in the region. When a live range falls into multiple classes, only the “most 

complex” class (overlap > partition > dominate > match) is accounted for. The data for 

predicated live ranges distribution are in Table 13 and Table 14. In CINT2006 there are 

only two benchmarks (402.bzip2 and 471.omnetpp) that have more than 10% (11.44% 

and 12.01%) partition and overlap live ranges.  For all other benchmarks this number is 

below 10%. In CFP2006 five benchmarks (410.bwaves, 416.gamess, 433.milc, 447.dealII 

and 465.tonto) have more than 10% partition and overlap live ranges. For all benchmarks, 

the overlap live ranges usually account for less than 1%. The notable exceptions are 

410.bwaves (4.99%), 401.bzip2 (2.61%) and 483.xalancbmk (2.39%). The data in the 

tables were collected for all predicated live ranges in all predicated regions of a 

benchmark. Since only relatively few overlap live ranges exist, a system like PQS or 

complex live range tracking is not necessary for precise predicated live range modeling. 

The data and code analysis suggests that the complex tracking cases are very rare. If 

conservative disjointness for partition and overlap live ranges is a concern, strategy 2 can 

model more than 95% of the predicated live ranges precisely for all benchmarks. 
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The run-time result for the predicate aware allocator is interesting for another reason 

also. In particular, the gains from the predicate-aware allocator can be higher than the 

gains from predication itself. The particular example is 400.perlbmk, where the gain from 

if-conversion overall is 1.95%  (Table 15), but the gain from the predicate-aware allocator 

is greater than 37%. This can be explained as follows: when there is no predicate-aware 

allocator for predicated code, live ranges extend to outer loop boundaries. This increase 

in register pressure can only be avoided with a predicate-aware allocator. For example, 

the 37.67% gain in 400.perlbench is due to reducing RSE traffic in S_regmatch, the 

hottest (and self-recursive) function of the benchmark. Without the predicate-aware 

allocator all 96 register on the register stack get allocated. With the predicate-aware 

allocator only about half the number of registers are used. The increase in register 

pressure without the predicate-aware allocator can be explained with live range 

extensions in loops (Section  6.1). Another way to look at this is that the predicate-aware 

allocator must be present to secure gains from if-conversion. But, at least for the SPEC 

benchmarks, a simple predicate-aware allocator is sufficient to secure performance gains 

from if-conversion. 

 

Table 13 Distribution of Predicated Live Ranges for CINT2006 

 

Benchmark  match  dominate  partition  overlap
400.perlbench 73.92% 16.16% 9.46% 0.46%
401.bzip2 63.27% 22.68% 11.44% 2.61%
403.gcc 71.59% 20.78% 6.80% 0.83%
429.mcf 72.64% 20.46% 6.42% 0.48%
445.gobmk 77.94% 18.84% 2.91% 0.31%
456.hmmer 69.86% 22.67% 6.68% 0.79%
458.sjeng 73.68% 18.26% 7.37% 0.69%
462.libquantum 74.51% 16.67% 8.39% 0.44%
464.h264ref 74.70% 16.32% 8.87% 0.11%
471.omnetpp 66.77% 21.04% 12.01% 0.17%
473.astar 75.73% 18.63% 4.70% 0.94%
483.xalancbmk 69.81% 20.98% 6.82% 2.39%  
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Table 14 Distribution of Predicated Live Ranges for CFP2006 

 
Table 15 Performance Gains from Predication for SPEC CPU2006  

 
 
 

The advanced UNAT algorithm is effective and statically delivers the expected result 

by removing all spills of the ar.unat register. The data in Table 16 show that the new 

algorithm removes all ar.unat spills which the simple and conservative algorithm inserts. 

CINT2006 Predication Gains CFP2006 Predication Gains
400.perlbench 1.95% 410.bwaves 2.94%
401.bzip2 1.40% 416.gamess 6.23%
403.gcc 1.18% 433.milc 0.78%
429.mcf 2.83% 434.zeusmp 0.00%
445.gobmk 9.62% 435.gromacs 2.90%
456.hmmer 0.40% 436.cactusADM 0.69%
458.sjeng 6.04% 437.leslie3d 0.00%
462.libquantum 0.18% 444.namd 0.00%
464.h264ref 4.30% 447.dealII 2.86%
471.omnetpp 0.20% 450.soplex 0.92%
473.astar 26.67% 453.povray 8.36%
483.xalancbmk 1.70% 454.calculix 7.86%
Geomean 4.49% 459.GemsFDTD 1.69%

465.tonto 1.60%
470.lbm 5.84%
481.wrf 0.00%
482.sphinx3 3.72%
Geomean: 3.02%  

Benchmark  match  dominate  partition  overlap
410.bwaves 35.12% 48.24% 11.65% 4.99%
416.gamess 51.37% 36.90% 10.72% 1.01%
433.milc 48.36% 39.08% 11.99% 0.57%
434.zeusmp 63.94% 28.86% 6.15% 1.06%
435.gromacs 66.32% 24.39% 8.56% 0.72%
436.cactusADM 59.76% 30.35% 9.04% 0.84%
437.leslie3d 63.92% 26.51% 9.57% 0.00%
444.namd 64.15% 28.29% 7.56% 0.00%
447.dealII 68.70% 19.73% 11.42% 0.15%
450.soplex 75.06% 17.44% 6.74% 0.77%
453.povray 71.34% 21.76% 6.26% 0.64%
454.calculix 64.14% 28.44% 6.89% 0.52%
459.GemsFDTD 70.30% 20.06% 9.46% 0.18%
465.tonto 59.06% 30.11% 10.31% 0.52%
470.lbm 88.97% 10.29% 0.74% 0.00%
481.wrf 60.15% 31.10% 8.50% 0.25%
482.sphinx3 58.93% 33.30% 7.66% 0.11%  
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On SPEC run-time gains from this optimization did not materialize, because the 

redundant ar.unat spills were only in cold code. Most of the ar.unat references were in 

loop intensive functions, where the conservative NaT propagation algorithm propagated 

the NaT property outside the loops or into cold outer loops. In cold code the extra ar.unat 

spills don’t hurt. The data in Table 16 show that the static number of removed ar.unat 

references for CINT2006 is significant in 403. gcc, 458.sjeng, and 483.xalancbmk.  For 

CFP2006, 416.gamess, 435.gromacs, 453.povray and 481.wrf benefit from the advanced 

UNAT algorithm. 

 

Table 16 Effectiveness of advanced UNAT Algorithm 

 
 

10.2 Compile Time Data 
 

The code generator in the Itanium compiler has major optimization phases like 

software pipelining, if-conversion, (global) code scheduling and register allocation. Since 

it also supports many classical optimizations it is an optimizing compiler back-end. The 

coloring allocator is usually not the top compile time consumer, although the coloring 

allocator has to manage aggressively optimized, predicated, pipelined and speculated 

CINT2006   #spills/fills saved CFP2006   #spills/fills saved
400.perlbench 0 410.bwaves 0
401.bzip2 0 416.gamess 11698
403.gcc 35503 433.milc 0
429.mcf 0 434.zeusmp 0
445.gobmk 889 435.gromacs 141
456.hmmer 0 436.cactusADM 0
458.sjeng 90 437.leslie3d 0
462.libquantum 0 444.namd 0
464.h264ref 1642 447.dealII 0
471.omnetpp 0 450.soplex 0
473.astar 0 453.povray 0
483.xalancbmk 2664 454.calculix 0

465.tonto 0
470.lbm 0
481.wrf 21926
482.sphinx3 0
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code. For comparison, Table 17 and Table 18 show the relative compile time spent in the 

code generator overall, software pipeline, code scheduler, and register allocator.  

Table 17 Compile Time Distribution of Code Generator Phases in CINT2006 

 
 

Table 18 Compile Time Distribution of Code Generator Phases in CFP2006 

 
The compile times are measured in triple runs using the compile time measurement 

capability in the compiler, which can be activated with the –i_tapi option.  For example, 

42% of the total compile time for 403.gcc is spent in the code generator, 5% in the 

Benchmark    Code Generation   Software Pipelining   Scheduling   Register Allocation
400.perlbench 38% 0% 17% 9%
401.bzip2 38% 7% 15% 8%
403.gcc 42% 5% 18% 7%
429.mcf 43% 9% 19% 6%
445.gobmk 41% 6% 17% 6%
456.hmmer 44% 10% 16% 7%
458.sjeng 36% 2% 15% 8%
462.libquantum 43% 9% 16% 6%
464.h264ref 39% 16% 11% 5%
471.omnetpp 31% 0% 11% 6%
473.astar 45% 15% 18% 4%
483.xalancbmk 33% 1% 15% 6%
 

Benchmark    Code Generation   Software Pipelining   Scheduling   Register Allocation
410.bwaves 37% 11% 11% 7%
416.gamess 31% 10% 5% 12%
433.milc 14% 7% 5% 1%
434.zeusmp 35% 12% 12% 5%
435.gromacs 37% 8% 15% 6%
436.cactusADM 36% 7% 14% 6%
437.leslie3d 30% 2% 10% 9%
444.namd 29% 7% 9% 6%
447.dealII 29% 5% 11% 3%
450.soplex 34% 5% 15% 4%
453.povray 34% 9% 14% 3%
454.calculix 24% 4% 8% 5%
459.GemsFDTD 25% 2% 7% 6%
465.tonto 25% 2% 10% 5%
470.lbm 41% 26% 9% 1%
481.wrf 35% 4% 18% 7%
482.sphinx3 42% 11% 15% 6%  
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pipeliner, 18% in the scheduler and 7% in the allocator. 12%  of the code generator 

compile time spent is spent in other phases including the if-converter. 

The tables show that in practice the register allocator in the Itanium compiler is not a 

compile time bottleneck. In general the time spent in the allocator is well below 10%, 

with the exception of 416.gamess, where the allocator spends 12%. 
 

10.2.1 Cost of Predication-Aware Allocation 
 

Table 19 and Table 20 show the compile time cost for predicate-aware register 

allocation. The base is the predicate-unaware allocator: it does not model predicate live 

ranges for global variables. In particular it conservatively assumes any two predicated 

live ranges interfere and no predicated definition of a global live range is the start of the 

live range, unless the definition is in acyclic code. In cyclic code or loops, the start of live 

range is recognized implicitly at the pre-header of the outmost loop of the loop nest that 

contains the definitions. This is driven by the approximation of a live range as the 

intersection of a forward available variable analysis and backward live variable analysis 

(see Chapter  3.2, p. 37). On average the cost of predicate-aware allocation is about 46% 

for CINT2006 and 25% for CFP2006 for the match-or-dominate strategy. A PQS based 

predicate-aware allocator is-compared to the match-or-dominate allocator-5% on average 

slower on CINT2006 and 12% on average slower on CFP2006. The match-or-dominate 

allocator models match and dominate live ranges precisely, but is conservative for 

partition and overlap live ranges. Conservative means that the match-or-dominate 

allocator may infer false interferences between two live ranges. In other words, it may 

assume that two live ranges interfere although they do not. The extra interferences can 

sometimes hurt overall compile-time. For example, register assignment time can increase 

and there can be extra reconciliation become necessary at region boundaries. Very few 

benchmarks show behavior, and the only relevant example is the 4.2% slowdown for 

464.h264ref. Ignoring compile time differences of less than 1% than for all other 

benchmarks PQS based is more compile-time expensive than match-or-dominate 

without-at least for the given if-converter-giving performance benefits (cf. Table 11 and 

Table 12 for performance). It is curious that the predicate-aware allocator can actually 

speed-up allocation time. The two major examples for this phenomenon are 416.gamess 
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and 440.namd in CFP2006 (Table 20), where predicate-aware allocation improves 

allocation time by at least 6% and up to 18.89%. The reason is that the predicate-unaware 

allocator “sees” more interference and needs more allocation iterations (Chapter  3). 

Table 19 CINT2006 - Compile Time Cost of Predicate-Aware Register Allocation 

 
Table 20 CFP2006 - Compile Time Increase of Predicate-Aware Register Allocation 
 

 
 

Benchmark PA w/ PQS PA w/ Strategy 1 (S-1) PQS vs. S-1
 400.perlbench 64.26% 63.99% 0.28%
 401.bzip2 55.94% 50.90% 5.04%
 403.gcc 107.02% 98.22% 8.80%
 429.mcf -2.56% -2.71% 0.14%
 445.gobmk 1.74% 2.30% -0.56%
 456.hmmer 42.67% 40.83% 1.84%
 458.sjeng 31.80% 17.88% 13.92%
 462.libquantum 55.20% 45.60% 9.60%
 464.h264ref 2.35% 6.55% -4.20%
 471.omnetpp 135.03% 129.73% 5.31%
 473.astar 52.41% 45.94% 6.47%
 483.xalancbmk 66.40% 52.27% 14.12%

Base: Predicate-Unaware Register Allocator
 

Benchmark PA w/ PQS PA w/ Strategy 1 (S-1) PQS vs. S-1
 410.bwaves 14.48% 0.27% 14.20%
 416.gamess -6.24% -10.88% 4.65%
 433.milc 27.46% 16.16% 11.30%
 434.zeusmp 7.63% 3.95% 3.68%
 435.gromacs 38.66% 17.67% 20.99%
436.cactusADM 99.70% 88.91% 10.79%
 437.leslie3d 16.14% 10.24% 5.90%
 444.namd -17.46% -18.89% 1.43%
 447.dealII 62.51% 41.32% 21.19%
 450.soplex 45.01% 28.61% 16.40%
 453.povray 125.18% 104.59% 20.59%
 454.calculix 12.74% 10.90% 1.85%
 459.GemsFDTD 9.77% -3.54% 13.31%
 465.tonto 7.27% 5.35% 1.92%
 470.lbm 34.75% 27.12% 7.63%
 481.wrf 16.40% 5.29% 11.11%
 482.sphinx3 37.84% 29.00% 8.84%

Base: Predicate-Unaware Register Allocator  
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10.2.2 Cost of Speculation-Aware Allocation 
 
In Chapter  7 we discussed speculation-aware allocation. For control-speculation, we 

showed that under the assumption that the destination of a speculative load (ld.s) and the 

source of its chk.s match (=are the same symbolic or virtual register), an effective 

algorithm exists that avoids all spills of the ar.unat register. The allocator must be 

speculation-aware to guarantee program correctness.  Table 21 shows the cost of control-

speculation awareness. For the advanced NaT propagation algorithm (Section  7.1.2), the 

average allocation cost is 10.26% for CINT2006 and 7.3%  for CFP2006. Data for 

control-speculation were measured by turning speculation support off in the allocator. 

Since allocation time in general is less than 10% of the overall compile time (see Table 

17 and Table 18), speculation support itself consumes less than 1%. 

 

Table 21 Compile Time (CT) Cost of Control Speculation 
 

 

CINT2006 CT cost of speculation CFP2006 CT cost of speculation
400.perlbench 7.60% 410.bwaves 3.38%
401.bzip2 6.50% 416.gamess 3.29%
403.gcc 8.42% 433.milc 10.32%
429.mcf 24.76% 434.zeusmp 6.49%
445.gobmk 9.75% 435.gromacs 7.59%
456.hmmer 9.93% 436.cactusADM 6.94%
458.sjeng 7.35% 437.leslie3d 3.46%
462.libquantum 10.74% 444.namd 8.18%
464.h264ref 5.95% 447.dealII 9.57%
471.omnetpp 7.90% 450.soplex 10.55%
473.astar 13.60% 453.povray 10.75%
483.xalancbmk 10.57% 454.calculix 6.54%
Average 10.26% 459.GemsFDTD 5.50%

465.tonto 7.50%
470.lbm 8.00%
481.wrf 5.02%
482.sphinx3 10.94%
Average 7.30%
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10.2.3 The Case for Scalable Register Allocation 
 

Since region-based allocation methods require global structure, for example, for region 

reconciliation and in data flow analysis, this thesis proposed a scalable approach that 

partitions symbolic registers and possibly the register file(s). Figure 49 shows the 

normalize compile times for a serial scalable allocator. The (non-standard) test care for 

evaluation is “f_serverapp”, which is a generated function in major industry server 

application with > 500 K register candidates. The x-axis in Figure 49 shows the number 

of partitions. The y-axis shows normalized compile times, where the time for eight 

partitions is one. For the measurements, the global symbolic registers (candidates) were 

divided into equal 2, 4, 8, 16 and 32 partitions of equal subsets. For each subset the 

allocator is run. The output of allocation N is the input to allocation N+1. For example, 

the input to the second run is the symbolic registers of the second partition and the 

physical registers the candidates of the first partition got assigned. The number of 

partitions determines the number of allocations.  

 

Figure 49 Compile Time for Serial Scalable Allocator 
 

The graph of Figure 49 is close to a line up to 8 partitions. Let CT( k2 ) be the compile 

time for a partition. Then CT( k2 ) =( 2 )-1 CT( 12 −k ) for k=1,2,3 gives the approximate 
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relation between the partitions. For more than 8 partitions (for 16 and 32) partitions 

compile time increases. In these cases allocation cost outweighs the savings from 

partitioning. 

The parallel scalable allocator also partitions the register file accordingly. For 

example, when there are 8 partitions of the register candidates, the available (physical) 

registers are also partitioned by a factor of 8.  In the case of a parallel scalable allocator, 

the compile time must decrease with the number of partitions. The x-axis in Figure 50 

shows the number of partitions. The y-axis shows normalized compile times, where the 

time for 32 partitions is one. The number (>150) for one partition is not shown in the 

graph. The numbers for the parallel allocator are experimental and optimistic. For each 

partition scheme the compile-time was measured for one specific partition (both 

candidates and machine registers) and then extrapolated. Also, the synchronization 

overhead in the case of spill code is not taken into account. Since candidates in different 

partitions may interfere (although they are assumed they do not) they cannot share the 

same spill location. That they cannot share the same register is guaranteed by partitioning 

the register file(s). The small number of registers available per partition does not have a 

material compile time impact in our experiment. 

 
Figure 50 Compile Time for Parallel Scalable Allocator 
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While the compile data for scalable allocators are preliminary, they show the potential 

of the technique. The “best” configuration of a scalable allocator depends on the 

allocation problem. There is no one-size-fits-all solution. For example, for our “golden” 

test case, 8 partitions are the compile time sweet spot (Figure 49), but for allocation 

problems with half the number of candidates, 4 partitions are likely to be the better 

choice. 
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11 Conclusions and Future Work 

 

This thesis described extensions of a coloring allocator covering features provided by the 

Itanium architecture like predicated code, control- and data speculation and dynamic 

register stack. 

Predicated code: It classified predicated live ranges and showed that classical techniques 

can be used effectively to engineer efficient coloring allocators for predicated code. 

Specifically, when predicated code is generated from compiler control flow expensive 

predicate analysis frameworks, like PQS, don’t have to be employed. 

Speculated code: It described a new method of efficiently allocating speculated live 

ranges avoiding spill code compared to a conservative method. The new method solves 

the NaT propagation problem efficiently. 

Dynamic register stack: It presented methods to dynamically control the register stack 

effectively in particular for regions with function calls and/or pipelined loops. 

Scalable allocation: It proposed the scalable allocator as a generic coloring method 

capable of allocating effectively programs with a large set of register candidates. It 

demonstrated that this method can be used also for parallel allocation e.g. on multi-core 

machines. 

Despite the rich body of work in the field of register allocation future work is plenty, in 

the context of this thesis and beyond. We conclude this thesis with a small selection: 

1. The IA-64 register stack can be dynamically partitioned. In particular the (scratch) 

out registers on top of the stack are not limited to 8. In addition to partitioning 

schemes, more general allocation regions can be investigated. 

2. The interface between pipeline-aware register allocation and a coloring allocator 

seems to be mostly neglected in literature. Instead, pipeline allocators and 

coloring allocators are treated separately. On IA-64 rotating registers are a scarce 

resource and the pipeline allocator leaves candidates for the coloring allocator.  

The impact of pipeline-awareness and the potential benefits in a coloring allocator 

have not been investigated or published. 
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3. The classification of predicate live ranges in Chapter  6 is intuitive and the proofs 

of the theorems in Section  6.3 are informal. A formal theory that derives the 

classification and proofs of the theorems would put the results on a stronger 

mathematical foundation. 

4. The scalable allocator is at a conceptual state. More experiments need to be 

conducted to explore the concept and configurations, especially with respect to 

the cost and benefits of parallel allocations. 

5. There is no compiler framework that includes and evaluates the merits of the 

various ideas for coloring allocators. Results are reported in different 

experimental environments. This makes results difficult to compare and judge 

relative merits of methods proposed. 

6. There seems to be no study that compares optimal methods with best of class 

coloring allocators and linear scan allocators on a wide class of benchmarks. 
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12 Appendix 

12.1 Assembly Code Example 

 
Figure 51 Itanium Assembly for Faculty Function 

       Instruction                    Cycle    Code and Comments 
 { .mmi 
        alloc   r14=ar.pfs,1,8,0,8    //0:  
        add     r8=1,r0               //0:  [1] 
        mov     r11=ar.lc             //0:  
 } {   .mib 
        cmp4.eq.unc     p7,p0=r32,r0  //1:  [2] 
        mov     r40=pr                //1:  
(p7)   br.cond.dpnt    .b1_3 ;;       //1:  [2] 
// Block 1:  Pred: 0     Succ:  
 }{.mii 
        nop.m   0 
        mov     ar.ec=1               //0:  [3] 
        zxt4    r3=r32                //0: 
 }{.mii 
        mov     r33=1                 //0:  
        mov     pr.rot=0x10000        //0:  [4] 
        add     r2=-1,r3 ;;           //0:  
 }{.mib 
        nop.m   0 
        mov     ar.lc=r2              //1:  [5] 
        nop.b   0 ;; 
 }  
.b1_4: // Block 4:pipelined  Pred:1 4  Succ:4 3 
 { .mmi 
 (p16)  setf.sig f32=r8           //0:  
 (p16)  setf.sig  f33=r33          //0:  
        nop.i   0 ;; 
 }{.mfi 
        nop.m   0 
 (p16)  xma.l   f34=f32,f33,f0        //6:  
        nop.i   0 ;; 
 }{.m_mi 
 (p16)  getf.sig r8=f34 ;;         //10: [6] 
 (p16)  add     r32=1,r33             //14:  
        nop.i   0 
 }{.mib 
        nop.m   0 
        nop.i   0 
        br.ctop.sptk    .b1_4 ;;      //14:  
 } 
// Block 3: exit epilog modified  Pred: 1 4     
.b1_3:  
 { .mi_i 
        nop.m   0 
        mov     ar.lc=r11 ;;          //0:  
        mov     pr=r40,0x1003e        //1:  
 }{.mib 
        nop.m   0 
        nop.i   0 
        br.ret.sptk.many        b0 ;; //1:  [2] 
} 

 

Pipelined loop: 
 
for (i=1; i<=n; i++) { 
    res = res * i; 
} 
 
[6] r8 is result and 
    return register. 

 
 
 
 
[2] return res; // in r8 

[1] res = 1; 
 
 
[2] if (n==0)return res; 
 
 
Initializations: 
 
[3] epilog count(ec): 
    ec=1   
 
 
[4] Set first rotating    
    stage predicate 
    p16=1 
[5] Setloop count(lc)  
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12.2 Edge Classification, Irreducibility and Disjointness 

This section lists a few basic facts about graphs that are not commonly found in the 

literature. 

Let G(V,E) be a directed graph. The edges E can be partitioned as follows: 

Let PRE(n) be the preorder number and RPO(n) the reverse post-order number. Let 

th →  be an edge from node h to t. Then the following edge partition is the result of a 

depth-first traversal (dft): 

• If (PRE(h) < PRE(t)) then  th → is either a tree or  forward (“advancing”) edge. 

• If (PRE(h) > PRE(t)) then th → is a cross edge .  

• If (RPO(h) > RPO(t)) then th →  is a retreat edge.  

An edge th → is a back edge if h dominates t. 

A special case of a back edge is when h identical with t (and trivially 

PRE(h)==PRE(t), RPO(h)==RPO(t)). 

Edge partition is not absolute, but relative to the depth-first search (dfs). For example, a 

tree edge in one traversal could be a cross edge in another traversal. Or a retreat edge in 

one traversal could become a forward edge in another dfs. The reason is that the edge 

selection during dfs is non-deterministic, and different selections of edges change node 

numbering and edge classification (=partitioning). 

A graph is reducible if all retreat edges are back edges. Back edges are invariant 

retreat edges: any depth-first search recognizes them as retreat edges. If there is a retreat 

edge that is not a back edge the graph is irreducible. 

Irreducibility can be recognized indirectly, but simply: If the classical dataflow 

algorithm for dominator calculation does not terminate in two iterations (the first iteration 

to compute the dominator tree and the second iteration to check the termination), the 

graph is irreducible. 

In case of irreducible graphs global disjointness, which is computed on the acyclic 

graph that has retreat edges removed, may not match run-time disjointness. Figure 52 

demonstrates this based on two depth-first traversals: 

In depth-first traversal B1 → B2 → B3 → B4 → B5 → B6 the reverse post-order 

numbers for the blocks are: (B1|1), (B2|2), (B3|3), (B4|4), (B5|5) and (B6|6). The edge 

from B5 to B3 is recognized as a retreat edge. Removing the retreat edge and computing 
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disjointness will yield that B2 and B6 are not disjoint. Since B5 does not dominate B3, 

the retreat edge is not a back edge. 

In depth-first traversal B1 → B4 → B5 → B3 → B6 → B2 the reverse post-order 

numbers for the block are:  (B1|1), (B2|2), (B3|6), (B4|4), (B5|5) and (B6|6). The edge 

from B3 to B4 is recognized as a retreat edge. Removing the retreat edge and computing 

disjointness will yields that B2 and B6 are disjoint. Since B3 does not dominate B4, the 

retreat edge is not a back edge. 

Gillies et al.  [31] suggests there can be “inaccuracies” for global predicate relations, 

but in fact there can be a fundamental stability problem. The problem is that global 

disjointness computed by compiler may not match run-time disjointness. This mis-match 

could result in register overwrites. For example, if B4, B5 and B6 are if-converted, and 

the retreat edge is 35 BB → , a local live range in B5 could overwrite a global live range 

with a use in B3. On the other hand, removing only back edges, but not retreat edges, 

gives conservative global disjointness information since cycles remained in the graph. 

 
Figure 52 Example for an Irreducible Graph 

 B5 
  

B1 
 

B3 
 

 B6 
  

B4 
 

B2 
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12.3 PQS Queries 

In PQS a block predicate P also represents its execution set. The execution set is the set 

of traces for which P is set (=true). In this interpretation we can speak of subsets of 

predicates and partitions of predicates. It is the basis of the predicate partition graph 

(PPG), which is used by PQS queries to derive predicate relations. The key queries are 

lub_sum(P,E) and lub_diff(P,E), which are used in predicate-aware dataflow analysis 

routines and interference graph construction. The least upper bound sum (lub_sum(P,E) 

in Figure 53) gives the smallest superset for the execution sets represented by the union 

of predicate P and the set of predicates, E. The resultant set is reduced to parent nodes in 

the PPG for each complete partition that contains P. One application of the least upper 

bound sum is to determine the set of predicates under which a candidate is live, if it is 

live under Q and P. The approximation is necessary since the predicates available may 

not be sufficient to express the union of predicate sets accurately in all cases. 

 

Figure 53 PQS Query Least Upper Bound Sum  
 

The least upper bound difference (lub_diff(P,E) in Figure 53) computes the smallest 

superset for the execution set represented by the set difference of predicate set E and 

predicate P. One application of the least upper bound difference is to determine the set of 

predicates under which a candidate is live, if it is live under Q and killed under P. The 

Set reduce(Predicate P, Set E)  
// if (R = P|Qi and all Qi ∈E, replace P|Qi by R) 
 
Set lub_sum(Predicate P, Set E) 
 Set E’= {}; // empty set 
 foreach Q in E 
  if (Q ⊂  P)  

continue; 
  elif (P ⊆  Q) 
   return E; 
  else 
   E’ = E’ + Q; 
  fi 
 endfor 
 return (reduce(P, E’)); 
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approximation is necessary since the predicates available may not be sufficient to express 

the difference of predicate sets accurately in all cases. Intuitively the least upper bound 

difference computes representatives of all paths where a candidate could still be live after 

it is killed under predicate P.  

 
Figure 54 PQS Query Least Upper Bound Difference 

Set rel_cmpl(Predicate P, Predicate Q) 
 if (!is_subset(P,Q)) return {}; // empty set. 
 E’ = {}; // empty set 
 foreach path from Q to P 
  foreach edge R→ S   
   foreach partition R→ S |T 
    E’=E’+T 
   endfor 
  endfor 
 endfor 
 return E’; 
 
Set approx_diff(Predicate P, Predicate Q) 
 // find_lca(P,Q): “least common ancestor of P and Q” 
 return rel_cmpl(P, find_lca(P,Q)); 
 
Set lub_diff (Predicate P, Set E) 

Set E’= {}; // empty set 
 foreach Q in E 
  if (Q ⊂  P)  

continue; 
  elif (P ⊆  Q) 
   E’=E’+rel_cmpl(P,Q); 
  elif (is_disjoint(P,Q))  
   E’=E’+Q; 
  else 
   E’ = E’+approx_diff(P,Q); 
  fi 
 endfor 
 return (reduce(P, E’)); 
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17 Glossary 

 
Symbols  
 
 
K  number of colors (=number of machine registers) 
V1,V2, …. global register candidates 
v1, v2, …  local register candiates 
A, B, C, …  global variables 
 
 
 
Definitions  
 
Application 

 A program. For example, a SPEC benchmark is an application 

Available variable 

A variable is available at a point when there is at least one path from program 

entry to the point 

Backedge, back edge 

 Edge ht →   in directed graph,  where h dominates t 

Chordal Graph, chordal 

In every cycle of length >= 4 there is a chord. A chord is an edge to a cycle node 

that is not an immediate neighbor.  Efficient graph-coloring algorithm is known 

when interference graph is chordal. Chordal graphs are subsets of perfect graphs.  

Chromatic Number  

Exact number of colors needed to color a graph. Determining the chromatic 

number for an arbitrary graph is NP complete. 

Control flow graph 

 A directed graph. 

Clique 

 A complete  subgraph. All nodes in the subgraph are pairwise adjacent (“mutally  

connected”). 
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Clique Number  

 Order of largest clique in a graph 

Completion 

 The insertion of a (empty) basic block on a critical edge. 

Constrained Node 

 Node n with degree(n) >= K 

Control speculation (“breaking the branch barrier”)  

Compiler optimization that hoists a chain of instructions starting at a load above 

one or more controlling branches 

Critical Edge 

A edge from basic block A to B is critical is A has two or more successors and B 

has two or more predecessors 

Data speculation (“breaking the store barrier”)  

Compiler optimization that hoists a chain of instructions starting at a load above 

one or more (possibly dependent) stores 

Degree of a node n (=degree(n)) 

 Number of edges of a node in an undirected graph 

Disjoint predicates 

Set of predicates. No two predicates in the set can be ‘true’ at any given program 

point 

Dominance 

 Node A dominates node B if all paths from the single entry block to B contain A.  

            In this case A is said to dominate B. 

END block 

Last node in a control flow graph. Every control flow graph can be transformed to 

have a unique END node. 

End of live range 

Last use of a symbolic register on any path from START to END. Note that some 

authors consider the last use as the start of the live range e.g. Gillies et al.  [31]. 

EPIC 

 Explicitly parallel instruction computing 
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Execution Set 

 Set of execution traces. 

Execution Trace 

 Set of predicated instructions in a predicated region.   

Hyperblock 

 Predicated superblock. 

ILP 

 Instruction level parallelism 

Interference graph 

Undirected graph  G(V, E). The set V of nodes represents register candidates. 

There is an edge from node A to node B if the nodes cannot be assigned the same 

register (“node A and B interfere”) 

Irreducible graph 

 Control flow graph that is not reducible.  

JS block 

Join-Split block. Basic block inserted on critical edge. Purpose: improves 

accuracy of predicate analysis (associated with JS block is a block predicate) 

LP 

 Linear Programming 

Live range 

 Set of program points where a variable is live and available 

Live variable 

A variable is live at a point when there is at least one path from the point to a 

program exit that contains a use of the variable 

NaT bit 

“Not a Thing”: Extra bit in general register that signed a speculation fault or 

exception 

NaT consumption fault 

 Exception or fault that occurs because the NaT bit is set unexpectedly 

NaT producer 

 A speculative load instruction (ld.s) 
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NP-noise 

 Observation that local assignment can change global allocation outcome (“chaotic  

            behavior”) 

Partition (of predicates) 

 Set of disjoint predicates 

Path 

 Sequence of instructions or basic blocks in a control flow graph 

Perfect Graph 

 Graphs where cyclic number equals chromatic number 

Predicate Set 

 Set of predicates under which a live range is live. This is non-standard      

            terminology. 

Predicate Partition Graph (PPG) 

Directed acyclic graph whose nodes are predicates and whose labeled edges 

represent partition relations between predicates. PPG queries interpret predicates 

are interpreted as execution sets. A PPG is complete if in contains a unique root 

node from which all nodes are reachable. 

Predication  

Conditional execution of an instruction guarded by a qualifying predicate 

Pre-materialization  

Shrinks re-computable live ranges before register allocation 

Program 

 Synonym for function or procedure 

Reconciliation code 

A live range may be assigned different memory location (e.g. two different 

registers or a register and memory). Instructions that map between different 

assignements (e.g. a move to reconcile different register assignments) constitute 

reconciliation code  

Reducible graph 

 Control flow graph that has no retreat edge (“acyclic graph”) or all retreat edges  

            are back edges. 
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RSE 

Register Stack Engine. A unit on the Itanium processor managing dynamic 

register stacks. 

Significant node  

Interference graph node with more than K edges 

Simplification phase 

Phase in graph coloring register allocator that maps the nodes in the interference 

graph onto the coloring stack. It uses the simlification criterion to remove 

unconstrained nodes from the interference graph. When no unconstrained nodes 

can be found, it uses spilling heuristics. 

Simplification criterion (classical version):  

remove unconstrained nodes from interference graph and push it on the coloring  

stack.  

Spilling  

1. Allocating memory to a symbolic register 

2. Removal of node from interference graph 

Speculation 

 Early execution of an instruction 

START block 

First node in a control flow graph. Every control flow graph can be transformed to 

have a unique START node. 

Start of live range 

First definition of a symbolic register on any path from START to END. The 

definition can implicit and determined by data flow analysis as the first point of 

any path from START to END where the symbolic register is both live and 

available. Note that some authors consider the first definition to be end of a live 

range, for example Gillies et al.  [31]. 

Strict program 

Let V be any variable. For each path from program entry to a use of V there is a 

definition of V.   
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Superblock 

Control flow graph structure which has single entry and multiple exits.  This is 

one generalization of a basic block. 

Unconstrained node 

 Node n with degree(n) < K 
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