
 1

Technisch-Naturwissenschaftliche
Fakultät

Register Allocation on the Intel® Itanium®
Architecture

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

TECHNISCHEN WISSENSCHAFTEN

Eingereicht von:
Dipl.-Math. Gerolf Fritz Hoflehner

Angefertigt am:
Institut fuer Systemsoftware

Beurteilung:
o.Univ.-Prof. Dr. Dr.h.c. Hanspeter Mössenböck (Betreuung)

a.Univ.-Prof. Dr. Andreas Krall

San Jose, März 2010

 2

Abstract

Register allocators based on graph-coloring have been implemented in commercial and

research compilers since Gregory Chaitin’s and colleagues pioneering work in the early

1980’s. A coloring allocator decides which live range (a program or compiler generated

variable) is allocated a machine register (“allocation problem”). The Itanium processor

architecture supports predicated code, control- and data speculation and a dynamic

register stack. These features make the allocation problem more challenging. This thesis

analyses and describes efficient extensions in a coloring allocator for the Itanium

processor.

• Predicated code: The thesis describes compile time efficient coloring methods in

the presence of predicated instructions, without compromising run-time

performance of a more elaborate allocator based on the predicate query system,

PQS. In particular it classifies predicated live ranges and shows that classical

register allocation techniques can be used effectively to engineer efficient

coloring allocators for predicated code. When predicated code is generated from

compiler control flow more expensive predicate analysis frameworks like PQS

don’t have to be employed.

• Speculated code: The thesis describes a new method of efficiently allocating

speculated live ranges avoiding spill code generated by a more conservative

method. In particular the NaT propagation problem is solved efficiently.

• Dynamic register stack: The thesis reviews methods to use the dynamic register

stack effectively in particular regions with function calls and/or pipelined loops.

• Scalable allocation: A generic problem of coloring allocators is that they can be

slow for large candidate sets. This thesis proposes the scalable allocator as a

generic coloring method capable of allocating effectively programs with large

register candidates sets. The methods can also be used for parallel allocation e.g.

on multi-core machines.

The experimental results on the CPU2006 benchmark suite illustrate the effectiveness of

new methods. Finally, the thesis reviews the development of coloring allocators since

Chaitin.

 3

Kurzfassung

Gregory Chaitin und seine Kollegen haben um 1980 die Pionierarbeit für

Registerallokation basierend auf Graphfärbung („Farballokator“) geleistet. Diese

Allokatoren entscheiden, welchen „Lebensspannen“ (d.h. deklarierte oder vom Compiler

erzeugte Variablen, engl. live ranges) Maschinenregister („Farben“) zugeteilt werden

(Allokationsproblem). Der Itanium-Prozessor unterstützt Instruktionen mit Prädikaten

(bedingt ausführbare Instruktionen), Kontroll- und Datenspekulation sowie einen

dynamischen Register Stack. Diese Eigenschaften erschweren die Lösung des

Allokationsproblems. Die vorliegende Dissertation untersucht und beschreibt effiziente

Erweiterungen in einem Farballokator für den Itanium-Prozessor.

• Prädikate: Es werden effiziente Methoden (zur Übersetzerzeit) für

Farballokatoren vorgestellt, die Lebenspannen in Code mit bedingt ausführbaren

Instruktionen allokieren. Insbesondere werden „prädikatierte“ Lebensspannen

klassifiziert und es wird gezeigt, das klassische M ethoden zu einem effizienten

Farballokator für diese Lebensspannen erweitert werden können. In einem

Compiler kann die Allokation mit diesen Methoden genau so effizienten Code

generieren wie aufwendigere Verfahren, insbesondere Verfahren, die das

„predicate query system“ (PQS) benutzen.

• Spekulation: Es wird eine neue Methode erläutert, die – im Vergleich zu

konservativen Verfahren – Spill Code für spekulative Lebensspannen vermeiden

kann. Inbesondere wird eine effiziente Lösung für das NaT Propagation Problem

vorgestellt.

• Dynamischer Register Stack: Es wird beschrieben, wie der dynamische Register

Stack in Code mit Funktionsaufrufen oder „pipelined“ Schleifen (engl. „software-

pipeline loops“) effizient verwendet werden kann.

• Skalierbare Allokation: Es wird der skalierbare Allokator vorgeschlagen für die

Lösung Allokationsprobleme beliebiger Grösse. Skalierbare Allokation erlaubt

insbesondere die Parallelisierung des Allokationsproblems und ist unabhängig

von der Prozessor-Architektur.

 4

Die experimentellen Resultate für die CPU2006 Benchmark Suite zeigt die Effizienz

der vorgestellen Verfahren. Schließlich enthält diese Dissertation einen ausführlichen

Überblick über die Forschungsergebnisse für Farballokatoren seit Chaitin.

 5

Acknowledgements

The tree with our fruits is watered by many. First, this work would not have been possible

without Intel and many of its excellent engineers. Roland Kenner implemented the

original version of the graph-coloring allocator and PQS. The idea to eliminate

interferences for portions of a data speculated live range (Section 7.2) had been

implemented in the compiler before 1999, the year I started at Intel. Daniel Lavery was

my exceptional engineering manager for seven years, taking a lot of interest in and

continuously challenging my thoughts on register allocation. His questions and curiosity

helped shape the section on predicate-aware register allocation. I had the good fortune to

benefit from many discussions and working with an outstanding team and colleagues:

Howard Chen, Darshan Desai, Kalyan Muthukumar, Robyn Sampson and Sebastian

Winkel. Alban Douillet and Alex Settle helped bringing to life the product version of the

multiple alloc algorithms during their summer internships. The Intel Compiler Lab

provided a great place to work and let me drive innovation amidst the challenges of tight

product schedules.

Second, I would like to thank Prof. Hanspeter Mössenböck for his patience and support.

His kind personality, openness, and advice were inspiring. I cannot imagine how he could

have been more supportive.

Finally, and most importantly, I thank the woman in my life, Elisabeth Reinhold. Her

push and loving support were always there when I needed it most.

 6

Contents

Abstract................................ 2
Kurzfassung 3
Acknowledgements 5
1 Introduction 8

1.1 Compilers and Optimizations 8
1.2 Register Allocation based on Graph-Coloring 8
1.3 Itanium Processor Family................................ 9
1.4 Overview 9

2 Background on IA-64................................ 11
2.1 IA-64 Instructions 11
2.2 Predication................................ 18
2.3 Architected Registers 21
2.4 Register Stack Frame 22
2.5 Register Spilling and Backing Store 26
2.6 Speculation 27

2.6.1 Control Speculation................................ 27
2.6.2 Data Speculation 29
2.6.3 Combined Control- and Data Speculation................................ 30

3 Review of Graph-Coloring based Register Allocation 31
3.1 Foundations31

3.1.1 Chaitin-style Register Allocation................................ 31
3.1.2 Priority-based Register Allocation................................ 35

3.2 Worst-case Time and Space Analysis................................ 37
3.3 Developments 42

3.3.1 Spill Cost Reduction 43
3.3.2 Scoping................................ 47
3.3.3 Coalescing49
3.3.4 Extensions................................50

3.4 Alternative Models................................ 50
3.5 Theory 52

3.5.1 Definitions of Interference 52
3.5.2 Coloring Inequality 53

4 The Intel Itanium Compiler 55
5 Exploring the Register Stack 65
6 Register Allocation for Predicated Code................................71

6.1 Impact of Predicated Code 72
6.2 Predicate Partition Graph (PPG) and Query System (PQS)............................. 77
6.3 A Family of Predicate-Aware Register Allocators 83

7 Register Allocation for Speculated Code................................97
7.1 Control Speculation 97

7.1.1 NaT Propagation and Spill Code 98
7.1.2 An advanced NaT Propagation Algorithm................................ 101

7.2 Data Speculation................................ 104

 7

8 Scalable Register Allocation 106
9 Related Work................................ 114
10 Results................................ 121

10.1 Dynamic and Static Results................................ 123
10.2 Compile Time Data................................ 128

10.2.1 Cost of Predication-Aware Allocation 130
10.2.2 Cost of Speculation-Aware Allocation................................ 132
10.2.3 The Case for Scalable Register Allocation................................ 133

11 Conclusions and Future Work................................ 136
12 Appendix 138

12.1 Assembly Code Example 138
12.2 Edge Classification, Irreducibility and Disjointness................................ 139
12.3 PQS Queries 141

13 List of Figures................................ 143
14 List of Examples................................ 145
15 List of Tables................................ 146
16 List of Theorems................................ 147
17 Glossary 148
18 References 154
Index................................ 159

 8

1 Introduction

1.1 Compilers and Optimizations

Optimizing compilers can be thought of a 3-stage process, which transforms a source

code program into a linkable object file for a target machine: in the first stage, the front-

end translates a source language like C or Fortran into an intermediate representation.

The second stage, the optimizer, applies a set of local and global transformations

(=optimizations) with the goal to speed-up run-time performance of the final executable.

Local transformations work on a sequence of branch-free statements. Global

transformations gather information about e.g. expressions and variables in the entire

routine using dataflow analysis. Classical optimizations like partial-redundancy

elimination, common sub-expression elimination, dead code elimination, or loop-

invariant code motion apply this information. Optimizers may apply also loop

transformations like loop unrolling, loop splitting, loop fusion or software pipelining.

More aggressive optimizers gather interprocedural optimizations and perform

optimizations like procedure inlining. Finally, the third stage, the code generator (=back-

end), translates the intermediate representation produced by the optimizer into object

code. Typically, the final stage involves several phases including instruction selection,

instruction scheduling and register allocation.

1.2 Register Allocation based on Graph-Coloring

A register is the fastest memory location in a CPU. Each CPU has a limited set of

registers. During program execution registers hold the values of program variables or

compiler temporaries. In general an optimizing compiler performs optimizations under

the assumption that an infinite number of registers is available in the target machine.

Thus optimizations are register pressure unaware, which simplifies their design. Pressure

refers to the fact that machine register resources are limited. It is the job of the register

allocator to map the symbolic registers in the intermediate representation of the compiler

to actual registers of the target machine. A graph-coloring based register allocator

abstracts the allocation problem to coloring an undirected interference graph with K

 9

colors, which represent K machine registers. The nodes in the graph are the symbolic

registers, and two nodes are connected by an edge when they cannot be assigned the same

register. As a rule the program executes faster the more symbolic registers can be

allocated to machine registers.

1.3 Itanium Processor Family

The Itanium processor family -or IA-64- is a commercially available implementation of

the EPIC (“Explicitly Parallel Instruction Computing”) computing paradigm. In EPIC the

compiler has the job of extracting instruction level parallelism (ILP) and communicating

it to the hardware. Itanium enhances concepts usually seen in VLIW processors. The long

instruction words are fixed-size bundles that contain three instructions (operations). It is a

64-bit computer architecture distinguished by a fully predicated instruction set, a dynamic

register stack, rotating registers and support for control- and data speculation. Predication

and speculation allow the compiler to remove or break two instruction dependence

barriers: branches and stores. With predicates the compiler can remove branches (“branch

barrier removal”), with control speculation it can hoist load instructions across branches

(“breaking the branch barrier”), and with data speculation it can hoist load instructions

across stores (“breaking the store barrier”). Using predication and rotating registers the

compiler can generate kernel-only pipelined loops. The dynamic register stack gives the

compiler fine-grain control over stacked register usage. In general exploiting instruction-

level parallelism using Itanium features increases register pressure and poses new

challenges for the register allocator.

1.4 Overview

This thesis describes extensions of graph-coloring based register allocation methods that

exploit the distinguishing IA-64 features. The methods have been implemented in the

Intel Itanium production C/C++/Fortran compiler and are hardware specific. Orthogonal

to the Itanium specific methods is the scalable allocator, which is applicable to other

architectures and/or compilation environments. It can address compile time problems for

programs with large candidate sets, e.g. some generated programs in server applications,

and demonstrates how allocation can be parallelized. The rest of the thesis is organized as

follows: The first three sections develop background. Chapter 2 gives an overview of the

 10

IA-64 (micro-) architecture emphasizing aspects relevant for register allocation. Chapter

 3 reviews register allocation literature since Chaitin’s seminal work. Chapter 4 takes a

look at the major code generator phases in the Intel Itanium compiler. The following

three sections cover IA-64 specific allocation techniques: Chapter 5 discusses register

stack allocation. Chapter 6 gives an in-depth discussion of predicate-aware register

allocation. Chapter 7 describes allocation for control- and data-speculated code. Chapter

 8 proposes scalable register allocation that addresses compile time issues for large

register candidate sets and is a method for parallelizing coloring allocators. This chapter

is general and not specific to Itanium. Chapter 9 discusses related work with respect to

the core contributions of this thesis. Chapter 10 has implementation and experimental

results. Chapter 11 concludes the thesis and lists future work. The Appendix has an

Itanium assembly code example, reviews the concept of irreducible control flow graphs

and code for PQS query functions.

 11

2 Background on IA-64

Fundamental for any computer architecture is the instruction set architecture (ISA). The

first section gives a high-level survey of Itanium instructions. The goal is to provide

sufficient background knowledge for reading basic Itanium assembly code. The

remainder of this section focuses on the aspects of Itanium that are relevant for register

allocation, including register files, register classes, register stack, predicated and

speculated code. In general, the sections cover material at the architecture level. The term

architecture specifies how to write or compile semantically correct Itanium programs.

Only the discussion of the register stack will involve a (high-level) description of the

micro-architecture. The micro-architecture specifies how the Itanium processor actually

implements an architectural feature. Knowledge of the micro-architecture enables the

compiler (or assembler writer) to generate faster programs. However, micro-architecture

details may change from one processor generation to the next. In this case, programs

relying on micro-architectural details must be re-compiled (or re-tuned) for the newer

generation to achieve best possible run-time performance. The basic references for the

background material are the Intel manuals [42] [43] [44]. Winkel [76] has an overview of

the IA-64 ISA and instruction dispersal rules, which we don’t discuss.

2.1 IA-64 Instructions

IA-64 instructions are grouped into bundles. A bundle is a simple 128 bit structure that

contains three 41 bit instruction fields (“slots”) and a 5 bit template that describes the

execution unit resource each instruction requires. The template bits can also specify the

location of a stop bit, which delimits instructions that can execute in parallel. In general

instructions can execute in parallel as long as there are no read after write (RAW) or

write after write (WAW) dependencies between instruction operands. A set of

instructions that could execute in parallel is an instruction group. Two instructions with a

write after read (WAR) dependence can be contained in the same instruction group. Per

cycle Itanium can execute up to 6 instructions or two bundles in parallel, although

instruction groups may contain any number of instructions. The task to extract instruction

 12

level parallelism, forming instruction groups and grouping instructions in bundles is with

the compiler. Instructions between two stop bits are in the same instruction group.

Figure 1 IA-64 Programming Building Blocks

Figure 1 illustrates the Itanium instruction format, bundles and instruction groups.

“qp” is the qualifying predicate. It is encoded as a predicate register (see 2.3). It guards

whether the instruction result is committed (“retired”) or not. An instruction is retired

only when the qualifying predicate is set (=True). Mnemonic is a unique identifier

(“opcode”) for an IA-64 instruction. Compl is a set of modifiers (“completers”) to the

basic Mnemonic functionality. Completers are optional. An instruction may have no

completer, one or more than one. Dest is a comma-separated list of output registers or a

store address. Src is a comma-separated list of input registers, constants, or a load

address. Specific examples of Itanium instructions are below.

Itanium instructions are grouped into types (Table 1). A type is a qualifier that

suggests on which functional unit an instruction can execute. There are:

• Six instruction types: M-type, I-type, A-type, F-type, B-type, and LX-type

• Four types of execution units M-Unit, I-Unit, F-Unit, and B-unit

• 12 basic bundle template types MII, MI_I, MLX, MM I, M_MI, MFI, MMF, MIB,

MBB, BBB, MMB, and MFB. A “_” in the bundle template type indicates a stop

bit and is encoded in the template bits. There are only two template types that

allow a stop in the middle of a bundle: M_MI has a stop bit after the first

 127 87 46 5 0

 slot 2 slot 1 slot 0 template

Instruction:
[(qp)] mnemonic.[compl]* dest=src

Bundle:

Instruction Group:

 …;; MFI MFI MLX ;; …

 13

instruction, and MI_I has a stop bit after the second instruction. A stop bit

separates instruction groups. Therefore in M_MI the first M -type instruction is the

last instruction of an instruction group, while the second M -type together with the

I_type instruction is in a different instruction groups. Similar, in MI_I the M -type

and the first I-type instruction are in the same instruction group, while the second

I-type instruction is the first instruction of a new instruction group.

With the information about instruction types the hypothetical instruction group MFI MFI

MLX in Figure 1 consists of eight instructions that could execute in parallel: three M -

type, two F-type and two I-type instructions as well as one LX-type instruction.

Table 1 IA-64 Instruction Types and Execution Unit Types

Instruction Type Description Execution Unit Type

A-type Integer ALU Instructions Executes on I-unit or M-unit

I-type Integer Non-ALU Instructions Executes on I-unit

M-type Memory Instructions Executes on M -unit

F-type Floating-point Instructions Executes on F-unit

B-type Branch Instructions Executes on B-unit

LX-type Extended (2 slot) Instructions Executes on I-unit

A-type instructions can execute in a memory (M) unit or integer (I) unit. There is one

LX instruction (“movl”). It consumes two bundle slots to move a 64bit constant into a

register and executes on an I-unit. The Itanium-2 processor has four M [M0, M1, M2,

M3], two F [F0, F1], two I [I0, I1], and three B [B0, B1, B2] execution units, which is

sufficient to sustain a throughput of six instructions per cycle. Each of the 12 basic

bundle templates may have a stop set after the third instruction, so Itanium supports 24

bundle template types. A future generation Itanium processor may define up to four new

bundle types. This is determined by the 5 bits in the template bit field. The execution

order of the instructions in a bundle is in-order proceeding from slot 0 to slot 2.

 14

The remainder of this section gives specific examples for Itanium instruction. This

will be sufficient to read small Itanium assembly programs like the example in Appendix

 12.1 on p. 138). In all tables the instruction semantics is in C-style pseudo-code or

informal. Subscripted letters ii pr , or if represent general, predicate and floating-point

registers respectively.

Table 2 has examples for A-type instructions. They include arithmetical operations

like integer “add”, logical operations like “and complement”, “or” and compare “cmp”

instructions, where crel denotes a comparison relation. Examples for comparison

relations are ‘eq’ (=”equal”), ‘ne’ (=”not equal”), or ‘gt’ (=”greater than”).

Table 2 A-type Instructions

 Instruction Type Examples
 Syntax Semantics
1 A-type (qp) add r1=r2,r3 r1=r2+r3
2 A-type (qp) andcm r1=r2,r3 r1=r2&~r3
3 A-type (qp) or r1=r2,r3 r1=r2|r3
4 A-type (qp) cmp.crel p1,p2=r1,r2 qp=1 and r1 crel r2:

 p1=1 p2=0
qp=1 and !(r1 crel r2):
 p1=0 p2=1

5 A-type (qp) cmp.crel.unc p1,p2=r1,r2 qp=0:
 p1=0 p2=0
qp=1 and r1 crel r2:
 p1=1 p2=0
qp=1 and !(r1 crel r2):

6 A-type (qp) cmp.crel.or p1,p2=r1,r2 qp=1 and r1 crel r2:
 p1 = 1 p2 = 1

7 A-type (qp) cmp.crel.and p1,p2=r1,r2 qp=1 and !(r1 crel r2):
 p1=0 p2=0

Instruction 5 in Table 2 is an unconditional compare instruction. This instruction has

two completers, crel for the actual comparison relation, and ‘unc’ to indicate the compare

is unconditional. This means, that the two destination predicate registers, p1 and p2, are

initialized to zero even when the qualifying predicate is clear (=False). Unconditional

compares are used to initialize predicates in if-converted code (Section 2.2). Remarkable

also are parallel compares, like instruction 6 and 7: they set or clear both destination

 15

predicates when the qualifying predicate is set, depending on the compare type and result.

Parallel compares are used to evaluate logical ‘or’ and ‘and’ expressions in parallel

(within the same bundle or instruction group).

I-type instructions (Table 3) include bit manipulations like deposit (“dep”, instruction

8), extract (“extr”, instruction 9), arithmetical shifts (“shr” , instruction 12) and zero

extension (“zxt”, instruction). Table 3 shows also the 64-bit move instruction, which has

LX-type, consumes two slots in a bundle and executes on an I-Unit.

Table 3 I-type and LX-type Instructions

 Instruction Type Examples

 Syntax Semantics

8 I-type (qp) dep r1=r2,r3,pos,len

Deposit bit field merges
bit field of length len
starting at bit 0 in r3 with
r2 at bit position pos. The
result of the merge is
placed in r1.

9 I-type (qp) extr r1=r3,pos,len

Extract bit field of length
len starting at bit pos in
r3, sign extend and store
right-justified in r1

10 I-type (qp) chk.s r1, target

Control speculation
check:
Branch to target when
NAT bit is set in Register
r1.

11 I-type (qp) mov r1=pr Read predicate registers
and store in r1

12 I-type (qp) shr r1=r2,r3
Arithmetic shift right:
 r1= r2>>r3

13 I-type (qp) zxt4 r1=r3
Zero extend value of r3
above bit 31 and store in
r1

14 LX-type (qp) mov r1=imm_64 Move 64bit immediate
value imm_64 into r1

M-type instructions (Table 4) include loads, stores and the alloc instruction, which

manages the register stack. They also contain transfer instructions between floating-point

unit and integer units. A getf instruction is used to move data from a floating-point

register to an integer register, while a setf instruction transfer the value from an integer

 16

register into the 64 bit significant of a floating-point register. These transfers are

necessary, since integer multiply and divide must be performed in a floating-point unit.

Table 4 M-type Instructions

 Instruction Type Examples
 Syntax Semantics

15 M-type (qp) ld8 r1=[r3]
Load 8 bytes into r1 from
address in r3

16 M-type (qp) ld4.s r1=[r3]
Control speculated 4
byte load

17 M-type (qp) ld2.a r1=[r3]
Data speculated 2 byte
load

18 M-type (qp) ld1.sa r1=[r3]
Control and data
speculated 1 byte load

19 M-type (qp) st8 [r3]=r1
Store 8 byte content of r1
at address in r3

20 M-type (qp) getf.sig r1=f2
Store 64bit significant of
f2 in r1

21 M-type (qp) setf.sig f1=r2
Store value of r2 in
significant of f1.

22 M-type alloc r1=ar.pfs,i,l,o,r See Figure 5.

F-type instructions (Table 5) are floating-point instructions. Itanium supports single,

double and extended (82 bit) floating point operation. A fundamental building block of

all floating-point operations is the ‘floating-point multiply and add’ instruction, fma.

Table 5 F-type Instructions

 Instruction Type Examples
NR Syntax Semantics

23 F-type (qp) fma.s f1=f3,f4,f2
f1=f3*f4+f2 rounded to
single precision (‘s’
completer).

24 F-type (qp) xma.l f1=f3,f4,f2

f1=f3*f4+f2 as 64-bit
integer operation. The
low (‘l’ completer) 64-
bit of the result are
stored in f1.

25 F-type (qp) fadd.d f1=f2,f3
f1=f2+f3 rounded to
double precision (‘d’
completer).

 17

The fma instruction computes the product of f3 and f4 and adds f2 in infinite precision,

and rounds the final result to the format specified in the completer. The xma instruction

computes f3 * f4 + f2 , where the FP registers are interpreted as 64 bit integers. The

intermediate value of the product is 128 bit. This instruction is used to perform integer

multiply.

Table 6 B-type Instructions

 Instruction Type Examples
 Syntax Semantics

26 B-type (qp) br.cond.sptk.many target

qp=1:
IP-relative conditional branch.
The condition is encoded in qp
which is set in a separate cmp
instruction.

27 B-type (qp) br.call foo qp=1:
Invoke procedure foo

28 B-type (qp) br.cloop target
qp=1 and loop count LC is not
zero: Decrement LC and
branch to target

29 B-type (qp) br.ctop target

In software pipelined loops:
branch to target if qp=1 and
(LC != 0 or EC > 1), where LC
is the loop count and EC the
epilog count. In this context
epilog count EC is the number
of iterations that must finish
before the pipelined loop can
exit.

30 B-type (qp) br.ret qp=1:
Procedure return

31 B-type clrrrb Clear register rename base
registers

B-type instructions (Table 6) include IP-relative branches, calls, return, loop branches

and clrrrb, which is used to rotating register bases for software pipeline loops. All

branches can be conditional when a qualifying predicate is specified. They may have

‘whether’ completers like sptk, which the compiler issues when it statically predicts a

branch is taken. The compiler can also specify whether the processor should fetch “few”

 18

or “many” bundles at the target address. The values for “few” and “many” are micro-

architecture dependent.

2.2 Predication

Predication is the conditional execution of an instruction guarded by a qualifying

predicate. On IA-64 the qualifying predicate is a binary (“predicate”) register that holds a

value of 1 (=True) or 0 (=False). The (qualifying) predicate register is encoded in the

instruction. When its value is 1 at run-time, the predicate is set. When the value is 0 at

run-time, the predicate is clear. When the value of the predicate register is set, the

instruction executes, potential exceptions get raised, and results are committed to the

architectural state. When the value of the predicate register is clear, the instruction still

executes, but no exception is raised and results are not committed. This means that the

instruction “flows” through the instruction pipeline and gets discarded only in the last

pipeline stage, the write-back (WRB) stage, even when the qualifying predicate of the

instruction is clear. The default qualifying predicate is the constant predicate register p0,

which is always set. An unpredicated instruction e.g. on a classical RISC architecture can

be considered a special case of a predicated instruction which has its qualifying predicate

always set. On IA-64 there are 64 predicate registers. Therefore the encoding of the

qualifying predicate consumes 6 bits, which is one of the reasons why operations

(instructions) are 41 bit wide. Another reason for the odd number of bits per instruction is

the huge register file (see Section 2.3) with 128 general and 128 floating-point registers.

The predicate registers are written by compare instructions. A compare instruction has

two target predicate registers which – in the case of conditional or unconditional

compares - represent a true and false condition value at run-time. The typical consumer

of a predicate register is a branch instruction. On IA-64 conditional branches are

predicated branches. When the qualifying predicate of a branch is set at run-time, the

branch is taken. When the qualifying predicate of the branch is clear, the branch is not

taken and the instruction following (statically) the branch gets executed. On IA-64 almost

all instructions are predicated. This means they may contain a qualifying predicate that is

either set (=true) or clear (=false) at run-time. As (almost) fully predicated architecture

IA-64 supports if-conversion. If-conversion is a compiler optimization that eliminates

 19

conditional forward branches and its associate branch miss-prediction penalty, if the

branch is hard to predict by the hardware branch predictor. Branch miss-prediction

penalty is the re-steer cost when the hardware branch predictor predicts a branch

direction incorrectly. The instructions dependent on the branch are predicated up to a

merge point in the original control flow graph. This eliminates the conditional branches

and converting control dependencies into data dependencies [2]. As a result it transforms

a control flow region to a linear (“predicated”) code region. The paths in the control flow

graph become execution traces in the predicated code. In the predicated region all paths

of the original control flow region overlap. Therefore the processor supporting if-

conversion must have sufficient resources to potentially execute any of N program paths,

although at any given point in time only one actually executes. If-conversion is illustrated

in Figure 2. It shows a simple if-then-else structure (“hammock”), the unpredicated code

with branches a compiler generates without if-conversion, and the if-converted code.

There are two paths in the original control flow graphs and correspondingly two

execution traces in the if-converted code (one trace contains cmp – (p2) V1 … , the other

trace cmp – (p3) V2=...). B4 in the original control flow serves is a merge point. All

branches have been eliminated in the if-converted code. In case the conditional branch is

mis-predicted in unpredicated code, the if-converted code is more efficient.

Figure 2 Unpredicated and If-converted Hammock

B1:
 cmp p3,p0=…

(p3)br.cond B3

B2: V1=…

 br B4

B3: V2= …

 …

B4: …

B1:
 cmp p3,p2=…

(p2)V1=…

(p3)V2=…

B4: …

V1= V2=

B1

B3 B2

B4

Unpredicated Code Predicated Code Control Flow Graph

 20

The notion that if-conversion eliminates branch mis-predictions is correct for “closed”

regions like hammocks, where all branches can be eliminated. Theoretically it is possible

that if-conversion transfers, but does not eliminate a branch mis-prediction. This scenario

could happen if a branch remains in the if-converted region. Figure 3 is making the case.

The predicated region again is a hammock with merge point B4, but it has an “exit”

branch to a block B5 outside the region. In this case a conditional branch (instruction 5 in

the predicated code) remains in the region. It could happen that in the unpredicated code

the first conditional branch was mispredicted (instruction 2), but after if-conversion the

remaining conditional branch is mis-predicted, so if-conversion is not guaranteed to be

effective in this case. In practice we have not observed this scenario, but it seems the

notion that if-conversion eliminates branch mis-predicts is valid for the case of “closed”

regions only, where if-conversion can eliminate all branches.

Figure 3 If-converted Region with Exit Branch

Like any compiler optimization, if-conversion must consider trade-offs: cost of if-

conversion includes code size increase (both static and dynamic) and execution time

increase for execution paths in the if-converted region. The potential benefits, which

include elimination of branch mis-predicts and potential code size decrease, must

 Control Flow Graph Unpredicated Code Predicated Code

B1:
 cmp p3,p0=…

(p3)br.cond B3

B2: V1=…

 br B4

B3:

 V2=…

 cmp p5,p0=…

(p5)br.cond B5

B4:

B4: …

5: V2= …

6: cmp p5,p0=exp

7:(p5)br.cond B5

 B4: …

5: V2= …

6: cmp p5,p0=exp

7:(p5)br.cond B5

 B5 B4

 B1

 B3

B1:
 cmp p3,p2=…

(p2)V1=…

(p3)V2=…

(p3)cmp p5,p0=…

(p5)br.cond B5

B4: …

V1= V2=

 B2

 21

outweigh the costs. If-conversion also competes with other optimizations like speculation

for resources, e.g. instruction slots. It is conceivable that if-conversion may enable or

disable control-or data speculation by consuming hardware resources. From these

considerations it is clear that the heuristics that govern if-conversion cannot be simple. In

general the compiler has no perfect knowledge of branch mis-predicts, execution counts

or the dynamic interaction of optimizations. The Intel compiler employs an if-conversion

Oracle that carefully evaluates the benefits of if-conversion for a given region, and

decides to if-convert only when the Oracle suggests the estimated average execution time

for the predicated code is better than for the original (unpredicated) code.

Another benefit of if-conversion is that it enables the compiler to remove control flow

in innermost loops for kernel-only software pipelining (Rau [65]). The problem of

register allocation for predicated code will be discussed in chapter 6.

2.3 Architected Registers

The Itanium processor has a large number of architected registers supporting predicated

instructions, control- and data speculation, register rotation and a dynamic register stack.

Relevant for register allocation are the 128 general (integer) registers r0-r127, 128

floating point register f0-f127, 64 predicate registers p0-p63 and 8 branch registers b0-b7

(Figure 4). The register types are partitioned into preserved and scratch registers by the

ABI [44]. The content of a preserved (=callee saved) register may not be destroyed by a

callee (=a function called). If the callee is using a preserved register, it must restore the

original value before return. The content of a scratch (=caller saved) register can be

destroyed by a callee. Itanium has four registers representing constants: integer value

zero in r0, floating-point value 0.0 in f0, floating-point value 1.0 in f1 and predicate value

1 in p0. Special integer registers are reserved for data access (r1 is the global pointer to

access global data, r12 is the stack pointer and r13 the thread pointer) and the return

address (b0). The floating point and predicate register files contain rotating registers f32-

f127 and p16-p63 respectively. Unique for a processor are the 96 stacked integer

registers, r32-r127, which are controlled by a special processor unit, the Register Stack

Engine (RSE). Rotating registers and the register stack necessitate the distinction between

architectural and physical registers. For example, architectural register r32 can be any

 22

physical register from r32 up to the number of stacked registers implemented by the

micro-architecture. Note that some but not all stacked registers may rotate. The actual

number of rotating stacked registers is specified by the alloc instruction. Sections 2.4 and

 2.5 cover the details about stacked and rotating registers.

Figure 4 Register Files and Partitions

2.4 Register Stack Frame

On Itanium, each procedure has its own variable size register stack (Figure 5) with its

own variable number of rotating registers. Any stacked register can be rotating, but the

number of rotating registers must fit within the register stack and be a multiple of 8 (0, 8,

16 and so on registers can be rotating), starting at r32. At the bottom of the register stack

(starting at r32) are up to 8 incoming argument registers. At the top of the stack are up to

f16-31: preserved

f8-15: parameter

f6-7: scratch

f2-5: preserved

f1: 1.0 (constant)

f0: 0.0 (constant)

f32-127: scratch and
rotating

Static
registers

Rotating
registers

Floating-Point Registers

Static
registers

b6-7: scratch

b1-5: preserved

b0: return address

Branch Registers

p1-5: preserved

p16-63: preserved and
rotating

p6-15: scratch

p0: 1 (constant: True)

Static
registers

Rotating
registers

Predicate Registers

r32-127: variable
(preserved or scratch),
possibly rotating,
incoming and outgoing
parameter registers

r13: thread pointer

r12: stack pointer

r8-11: return values

r4-7: preserved

r2-3: scratch

r1: global pointer

r0: 0 (constant)

r14-31: scratch

Static
registers

Stacked
registers

General Registers

 23

8 outgoing parameter registers. The outgoing parameter registers are scratch and become

the incoming arguments in the register stack of the callee. The number of incoming

argument and outgoing parameter register is dictated by the Itanium ABI [44].

 The alloc instruction (Figure 5), which is an example for an instruction that cannot be

predicated, specifies the register stack frame of a procedure: the number of incoming

parameters (in), the number of local registers (loc) and the number of outgoing

parameters (out). The total number of registers in a register stack is in+loc+out <= 96.

Usually a register stack has up to 8 incoming argument register and up to 8 outgoing

parameter registers. Parameters that do not fit into the out section of the register stack are

passed on the memory stack following the rules of the Itanium ABI [44]. The local

registers are determined by the register allocator. The number of rotating stacked

registers must be specified in the last parameter rot of the alloc instruction in routines that

contain software pipelined loops. The architectural register ar.pfs contains fields that

describe the register stack of the caller (“previous function state”) and is saved into the

destination register <dest> of the alloc instruction for register stack unwinding.

Figure 5 Alloc instruction and Register Stack Frame

Figure 6 shows assembly snippets of a function foo() calling a function bar() and

snapshots of the register stacks at 3 points in time: after the allocation of 90 stacked

registers in foo (1 :), after the additional allocation of 50 stacked registers in bar (2 :) and

r

o

t

Sol (size of locals)
= in + loc

Sor (size of
rotating
registers) must
be a multiple of
8, e.g. 8,16,24,…

Sor cannot be
larger than Sof.

 Sof (size of frame)
 = in + loc + out.

in

loc

out

alloc <dest>=ar.pfs,in,loc,out,rot

scratch

 preserved

 24

after the return from bar (3 :). Note that to simplify matters the alloc instructions in

Figure 6 don’t specify rotating registers since the fact that some stacked registers can be

rotating is irrelevant in this context. Combined, foo() and bar() use 140 stacked registers.

Since more than 96 stacked registers are used on the call stack, the processor recognizes a

stack register overflow at the call of bar() and saves 50 registers from the register file to

memory so that the register stack frame of bar() can reside in the register file. The

memory that contains the saved registers is called the “backing store” and is managed by

the operating system. Similar, since registers allocated by foo have been saved and

overwritten by operations in the callee, at the return from bar() the processor would

recognize a stacked register underflow and restore registers from the backing store to the

register file. The saves and restores of stacked registers are transparent to the program

and controlled by the RSE. More details about the backing store are in Section 2.5.

Figure 6 Snapshots of Stacked Register Usage

The values of the procedure frame parameters are maintained in the Current Frame

Marker (CFM) field of the Current Function State (CFS) application register. When a call

is executed, the content of the CFM is copied to Previous Frame Marker (PFM) field of

the Previous Function State application register. The caller’s output area becomes the

callee’s register stack frame. The size of the local area is zero, and the initial size of the

frame, which at this point consists of the input area only, is the size of the caller’s output

909090

50

0

30

60

90

120

150

1 2 3

Time

To

ta
l S

ta
ck

ed
 R

eg
is

te
rs

foo() bar()

alloc rx=0,90,0,0
1:
br.call bar;;
 alloc ry=0,50,0,0
 2:
 ...
 br.ret;;
alloc rz=0,90,0,0
3:
...

 25

area. The stacked registers are renamed such that r32 becomes the first register on the

stack. The alloc instruction creates the register stack frame for the callee. The input

section of the local area in the new frame matches the output area of the caller’s frame. In

other words, the input registers in the callee’s frame are the renamed registers of the

caller’s output area. This effectively passes the caller’s register parameters to the callee.

When the return executes, the CFM field is restored from the PFM field and the original

register stack frame of the caller is re-instantiated. Figure 7 shows an example with a

register stack frame of size 21 with 7 outgoing registers (r46-r52). After the execution of

the call the register stack frame of the callee exists of 7 incoming registers. Registers r46-

r52 have been renamed to r32-r38. The new register stack frame has been recorded in the

sol (“size of local”) and sof (“size of frame”) fields of the CFM. There sol is 0, while sof

is 7.

Figure 7 Register Stack - Growth and Shrinkage

loc

out

return in

Procedure A

out

call

r32
2

r48

r50

alloc

loc

out

in

r32

r38

r32

r46

r52

loc

out

in

r32

r46

r52

CFM

 PFM

sof

21 14

sol

21 14

7

sof

0

sol

21 14

19

sof

16

sol

21 14

21

sof

14

sol

? ?

 26

2.5 Register Spilling and Backing Store

The register stack engine (RSE) manages the 96 stacked register partition of the physical

register file as a circular buffer. The stacked partition of the register file is partitioned into

three parts: mapped registers belong to some stack frame of a procedure on the call stack,

unmapped registers do not belong to any frame and active registers (which can be viewed

as special mapped registers) are the frame of the running (“active”) procedure. Overflows

occur when a new frame is allocated and overlaps with mapped registers. In this case, the

RSE makes room for the new frame by spilling overlapped mapped register to memory,

the backing store. Each process has its own backing store. Underflows occur at procedure

returns when unmapped registers of the caller must be filled from the backing store. The

RSE manages the register file and the backing store, with a set of internal pointers. Figure

8 shows a snapshot with three frames in the register file.

Figure 8 Register File, Frames and Backing Store

In the figure above BOF (“bottom of frame”) points to the r32 of the active frame.

Should the active frame get saved, its r32 would be saved to the backing store address

r32

SOF

BSPSTORE

BSP r32 will be
written here

Backing Store

StoreReg

BOF (r32)

unmapped

mapped

mapped

r127

active

Register File

 27

which is hold in the BSP (“backing store pointer”). StoreReg points to the mapped

register that is saved to address BSPSTORE in case of an overflow. In case of an

underflow registers get restored starting from address BSPSTORE-8. The actual RSE

actions depend on whether the call stack, and thus the register stack, will grow or shrink

in future. It is clear that RSE register saves and restores (“RSE traffic”) for an application

increases proportionally to the size of register frames and the depth of the call stacks.

2.6 Speculation

Speculation means early execution of an operation. At this early point it is unknown if the

result of the operation is needed. Itanium supports two major explicit forms of

speculation: control- and data speculation. Both types of speculation are non-exclusive

and can coexist.

2.6.1 Control Speculation

Control speculation (breaking the branch barrier) is an optimization that hoists a chain of

instructions starting at a load above one or more controlling branches. Instructions can be

divided into two classes: speculative and non-speculative instructions. Speculative

instructions, which defer exceptions, may execute prematurely. In general, all

arithmetical instructions, which write result to general or floating-point register, are

speculative. Loads are non-speculative instructions that raise exceptions if they occur

and cannot be speculated. Therefore Itanium provides speculative loads (ld.s, ldf.s, ldfp.s)

in addition not non-speculative loads (ld, ldf, ldfp). A failed speculative load (e.g. due to

a page fault) causes a deferred exception token to be written into destination register of

the speculated load. For general registers, the token is an extra bit (NaT) for each register.

Thus the general registers are 65 bits wide. When the NaT (“Not a Thing”) bit is set

(value is 1), the register contains a deferred exception token. Otherwise the NaT bit is

clear (value is 0). In floating-point registers the deferred exception token is set when it

contains a special zero encoding, the NaTVal. The speculative loads are the only

producers of deferred exceptions tokes, which propagate across the chain of speculated

instructions: the destination register will inherit the deferred exception token if it is set in

any source.

 28

Since control speculation can yield invalid result, a validation mechanism must be

provided. For this Itanium provides a chk.s instruction (for both, general and floating-

point registers), which must execute at the point of the original load when the result is

needed. If the source register in the chk.s contains a deferred exception token, execution

branches to recovery code, which re-executes a non-speculative instance of the

speculative load and all instructions in the dependence chain, therefore clearing the

deferred exception token in the chain, and branches back to the bundle after the chk.s.

Example 1 shows a simple example for control speculation of a single load and a

dependent add instruction. In case of an exception, recovery code executes and computes

the result. Program execution continues at the bundle after the chk.s.

Example 1 Control Speculation with Recovery Code

Speculation can offer many benefits: it can decrease critical path length, increase ILP

and hide memory latency. This is balanced by potential cost: First, there is the

opportunity cost of wasted resources when the result is not needed. Second, an exception

results in dynamic code duplication, chk.s branch overhead and potential I-cache

pollution from executing recovery code. Third, careless speculation can increase critical

path length. Finally, like any code hoisting optimization, control speculation can increase

register pressure.

 Original Code Control Speculated Code

 1: ld8 V3=[V1];; ld8 V3=[V1]
2: cmp.eq V10,p0=V3,0 ld8.s V8=[V7];;
3: cmp.eq V10,p0=V3,0

 4: add V5=V4,V3 add V5=V4,V3
 5: add V9=V9,V8
 6: (V10) br cont;; (V10) br cont;;
 7:
 8: ld8 V8=[V7];; r1: chk.s V8,rec
 9: add V9=V9,V8
 10: cont: ... cont: ...
 11:
 11: rec: ld8 V8=[V7] //recovery
 12: add V9=V9,V8 //code
 13: br cont;;

 29

The register allocator must be aware of deferred exception tokens. For integer

registers, st8.spill/ld8.fill instructions are defined to save/restore a general register and its

NaT bit. The NaT bit of the spill/fill is stored in/restored from a preserved 64bit

application register, the ar.unat. Bits 8:3 (six bits) of the memory address of the spill/fill

determine the specific ar.unat bit that correspond to the spill source/fill destination

register. For floating-point registers, stf.spill/ldf.spill save/restore a register without

raising an exception if the source/destination register contains a NaTVal.

2.6.2 Data Speculation

Data speculation (breaking the store barrier) is an optimization that hoists a chain of

instructions starting at a load above one or more ambiguous stores. A load and store are

ambiguous, when it is unknown at compile (assembly) time whether the load and store

address overlap. Itanium provides advanced loads (ld.a, ldf.a, ldfp.a), an advanced load

check (chk.a) and load check (ld.c, ldf.c, ldfp.c) instructions for data speculation. When a

chain of instructions is speculated, the result must be checked with a chk.a, which is

similar to chk.s. When the chain is only a single load, a load check instruction can be

used. An advanced load records information about its physical destination register,

memory address and data size in the Advanced Load Address Table (ALAT) [42]. When

a subsequent store overlaps, the processor invalidates the corresponding ALAT entry to

indicate the collision. A load check only reloads the correct value when it finds no valid

ALAT entry. As with control speculation, a chk.a branches to recovery code and re-

executes the speculated instruction chain (Example 8), when an address overlap has

happened. For data speculation, the code generator has to handle two performance issues:

ALAT conflicts and ALAT collisions. On the first Itanium processor (“Merced”) the

ALAT is a 2-way set associative cache with 16 entries per set. The four least significant

bits of the physical ld.a destination register form the set index. When two ALAT live

ranges interfere, the register allocator has to assign them two (mod 16) different physical

registers to avoid ALAT conflicts. The register allocator can guarantee this only if both

registers are in the same class: static, stacked or rotating. When the two registers are in

different register classes, e.g. one static, one stacked, in general the compiler cannot

 30

derive their physical register number. On the Itanium-2 the ALAT has 32 entries and is

fully associative [42] and the register allocator does not have to worry about collisions.

Example 2 Data Speculation with Recovery Code

2.6.3 Combined Control- and Data Speculation

Control- and data speculation can co-exist and be performed simultaneously to break

both, branch and store barriers. Itanium supports control-speculative variants of advanced

loads (ld.sa, ldf.sa, ldfp.sa). When such loads generate a deferred exception token, no

ALAT entry for the (physical) destination registers will exist. Thus an advanced load

check or a load check instruction validates the control-and data speculated result like for

“pure” data-speculated code.

 Original Code Data Speculated Code

1: ld8.a V4=[V1]
2: add V5=V4,V6

 3: ...
 4: st4 [V10]=V11 st4 [V10]=V11
 5: ld8 V4=[V1] chk.a V4, rec
 6: add V5=V4,V6 cont: ...
 7:
 8: rec: ld8 V4=[V1] // recovery
 9: add V5=V4,V6 // code
 10: br cont //

 31

3 Review of Graph-Coloring based Register Allocation

This chapter gives an overview of the rich body of literature on graph-coloring based

register allocation. While it cannot be complete, it does review many key ideas of the

subject. For a perspective, a fundamental building block of Chaitin’s graph-coloring

based register allocator (“coloring allocator”), the simplification algorithm, was

described by Kempe [47] in 1879.

3.1 Foundations

Register allocation solves the decision problem which symbolic register should reside in

a machine register. A symbolic register represents a user variable or a temporary in a

compiler-internal program representation. Register assignment solves the decision

problem which specific machine registers to assign a given allocated symbolic register.

Solutions to both problems must take into account constraints between symbolic

registers. A coloring allocator abstracts the allocation problem to coloring an undirected

interference graph with K colors, which represent K machine registers. The red thread of

the relevant literature starts with Chaitin’s paper [16], which describes the first complete

implementation of a coloring allocator in an experimental IBM PL/I compiler. In a

follow-up paper Chaitin describes - in “broad brush strokes” - the fundamental building

blocks of coloring allocators [17]. Chow introduced priority-based graph coloring as part

of the optimizing UCODE compiler [20]. Chaitin’s and Chow’s papers inspired many

developments in the field. A short account of the history of graph coloring methods in

computer science before Chaitin can be found in Briggs’ thesis [12].

3.1.1 Chaitin-style Register Allocation

A Chaitin-style graph-coloring algorithm has six phases (Figure 9): “rename”, “build”,

“coalesce”, “simplify”, “spill” and “select”. At the start of the algorithm each symbolic

register corresponds to a single register candidate node (“renaming”). This phase may

split disjoint definition-use chains of a single variable into multiple disjoint live ranges. It

also ensures contiguous numbering of candidates reducing memory requirements for

dataflow-analysis and interference graph. Node interference relies on dataflow analysis to

 32

determine the live range of a node. The live range of a node consists of all program points

where the register candidate is both live and available. Dataflow analysis is necessary

only once, not at each build step. The “build” phase constructs the interference graph.

The nodes in the interference graph represent register candidates. Two nodes are

connected by an interference edge when they cannot be assigned the same register. The

number of edges incident with a node are the degree of the node. Building the

interference graph is a two pass algorithm. In the first pass, starting with the live out

information, node interference is determined by a backward sweep over the instructions

in each basic block. Interference is a symmetric relation stored in a triangular matrix.

This is usually a large, sparse bit matrix inadequate for querying the neighbors of a given

node. To remedy this for each node an adjacency vector is allocated in a second pass. The

length of the vector is the degree of the node. It contains all neighbors of the node.

Figure 9 Chaitin-style Register Allocator

The next phase, “coalescing” (aka “subsumption”, “node fusion”), is an optimization

not needed for solving the register allocation problem, but was introduced in the original

Chaitin allocator. It fuses the source and destination node of a move instruction when the

nodes do not interfere. This reduces the size of the interference graph and eliminates the

move instruction, since source and destination get assigned the same register. Chaitin’s

original implementation can coalesce any possible pair of nodes. This form of coalescing

is called “aggressive coalescing”. After possibly several iterations of “coalesce” and (re-)

“build”, the simplification phase iterates over the nodes in the interference graph using

simple graph theory to find candidates that can be allocated to machine registers: when a

rename build coalesce simplify

spill

select

 Allocation Assignment

 33

register candidate has fewer than K interference edges (low degree node that has fewer

than K neighbors), then it can always be assigned a color. Low degree nodes and their

edges are removed from the graph (“simplify”) and pushed on a stack (“coloring stack”).

Node removal may produce new low degree nodes. When only high degree

(“significant”) nodes that have K or more neighbors are left, then simplification is in a

blocking state. It transitions out of a blocking state using a heuristic-based priority

function that determines the “best node” to be removed from the graph. A node that is

removed from the graph in blocking state is “spilled” and appended to a spill list. Spilling

is an allocation decision and a spilled node will reside in memory (stack) rather than in a

register. The edges of a spilled node are removed from the graph, so new low degree

nodes can get exposed and simplification continues until all nodes have been pushed to

the coloring stack or appended to the spill list. The cost function that decides on the “best

node” estimates the execution time increase caused by spill code normalized by the

degree of the node. The higher the degree the less likely a node will be allocated a

register. The formula for the cost function is in Equation 1. The sum is over all basic

blocks that contain a reference to node n. In Equation 1 id is the number of definitions of

n, iu the number of uses and if an estimate of the execution frequency of basic block i .

The expected execution time of a load and store on specific target architecture is S and L

respectively.

Equation 1 Cost Function in Chaitin Allocator

The node with the smallest cost is picked for spilling. When the spill list is not empty

at the end of “simplify”, the “spill” phase substitutes a spilled candidate with possibly

multiple new register candidates. In the worst case a new candidate is introduced for each

definition and use of the original register candidate. Figure 10 shows the original code

and the code a spilling. The register candidate of a definition is replaced with a new

register candidate rc1, which is spilled immediately after definition to the address

)(

)(

)(

)(
)()(

nDegree

ifiuL
i idS

nDegree

nCost
nChaitinCostnChaitinselect

××+∑ ×
===

 34

contained in the spill register. Similar, a fill is inserted before a use. Note that the move

of the spill address into register sp is not shown in Figure 10. The replacement of the

original spill candidate rc with new candidates rc1 and rc2 splits the original live range

for rc into two small live ranges for rc1 and rc2. When spilling has occurred, the allocator

must restart at the build phase and iterates until all register candidates are colored.

Figure 10 Illustration of Spill Code Insertion

 After a few build-coalesce-simplify cycles, the spill list is empty. At this point the

allocation problem is solved: original candidates that are in the coloring stack have been

allocated to registers. The coloring stack is fed into the coloring or “select” phase. This

phase picks one node at a time starting from the top of the stack and assigns a color to the

node while it ensures that interfering nodes receive different colors. For this the

adjacency vectors are used: colors that have been assigned to neighbors get blocked and

cannot be assigned to the current node.

The order in which candidates are assigned registers impacts allocation. Simple

examples show that some graphs with nodes of degree K or higher can be colored with K

or less colors. Briggs et al. [13] used this insight and modified the Chaitin allocator by

pushing all nodes onto the coloring stack during simplification. The actual spill decision

is delayed until after register assignment. This delay technique is known as optimistic

coloring, since significant nodes could get assigned a register rather than being spilled

like in Chaitin’s original allocator (Briggs [12]). With optimistic coloring (Figure 11),

register assignment solves the allocation problem: when a candidate has been assigned a

register, it has been allocated to a register. When all candidates on the coloring stack get

assigned a register, the algorithm terminates. Otherwise it spills the unassigned

candidates and restarts allocation at the build phase.

Original Code After Spilling

1: add rc=… add rc1=…
2: st8[sp]=rc1
3: … …
4: ld8 rc2=[sp]
5: sub …=rc sub …=rc2

 35

Figure 11 Chaitin-style Allocator with Optimistic Coloring

3.1.2 Priority-based Register Allocation

Priority-based register allocation was introduced by Chow [20]. This coloring allocator

uses the basic building blocks of a Chaitin-style allocator except for the coalescing phase.

A priority function estimates the execution time decrease when a live range is assigned a

register rather than residing in memory. The live ranges are composed of one or more live

units. A live unit is a basic block where a given symbolic register could reside in a

register. The more expensive (relative to Chaitin) representation of a live range supports

live range splitting, which splits a given live range into a set of smaller live ranges when

no color can be assigned. Rather than spilling the entire live range, live range splitting

dissolves a given live range into new candidates that could become colorable. The phases

of a Chow allocator (Figure 12) are “rename”, “build”, “simplify”, “select I”, “split” and

“select II”. A Chow allocator works on two pools of nodes: the constrained and the

unconstrained node pool. These pools are the result of the Chow simplification phase:

unconstrained live ranges, which are the low degree nodes with less than K neighbors, are

collected in the unconstrained pool, and constrained live ranges, which are the significant

nodes with K or more neighbors, are collected in the constrained pool.

 Allocation

 Assignment

rename build coalesce simplify select

spill

 36

Figure 12 Chow-style Allocator

Unlike in a Chaitin allocator, the simplification phase sweeps over the nodes only

once. In assignment phase “select I” a priority function estimates the potential execution

time savings from a register assignment. This function is normalized to the length of the

live range. The rational is that longer live ranges get lower preference since they consume

registers longer reducing the chances of other live ranges to be assigned registers. The

live range with the highest priority is assigned a register first. Equation 2 shows the

priority function of a live range n: the sum is over all basic blocks that contain a reference

to node n. id is the number of definitions, iu the number of uses m the number of

reconciliation moves, which could be necessary to reconcile assignments to split live

ranges segments, and if an estimate of the execution frequency of the basic block i . The

expected execution time of a load, store and move is L, S and M respectively.

Equation 2 Priority Function in a Chow Allocator

)(

)(

)(

)(
)()(

nLength
i ifimMiuLidS

nLength

nBenefit
nChowprioritynChowselect

∑ ××−×+×
===

rename build simplify select I select II

spill

split

 Assignment

 Allocation

 37

The numerator in the priority function is similar to the numerator in Chaitin’s cost

function, except that it is interpreted as the execution time benefit of register assignment

and models the reconciliation cost (imM ×) for a split live range.

 When no color is available in the priority select phase, the Chow allocator is in a

blocking state. It transitions out of a blocking state by splitting a live range into two or

more live range segments, which form new live ranges. Splitting starts at the first block

where the node could be assigned a register and determines in a breadth-first search the

maximal segment (= first new live range) that can be colored. This is done recursively

until the original node is split entirely into smaller live ranges and the constrained and

unconstrained pools are updated accordingly. When all live units in a live range are

constrained, the node cannot be split. In this case the Chow allocator spills the node by

removing it from the constrained pool (“spill”). After coloring of the constrained nodes

has terminated, all unconstrained nodes are colored in “select II”. The original Chow

allocator does not support coalescing, operates at a high-level intermediate

representation, assumes all candidates reside in memory initially, and reserves machine

registers for spilling, using fewer colors than machine registers available. The complexity

of the select I phase is ()()KLKO −× , where L is the total number of live ranges (Chow

 [20], [22]).

3.2 Worst-case Time and Space Analysis

This section reviews time and space complexity of the phases of a Chaitin-style allocator.

In its simplest form “rename” is a linear pass over the control flow graph renaming

symbolic registers. It may allocate a table to record information about each candidate.

The impact of renaming on the intermediate representation is illustrated in Figure 13.

Renaming can compact the candidates since the compiler may introduce new symbolic

registers and dispose used symbolic registers before it calls the allocator. Compaction

reduces memory requirements in particular for the interference graph. Rename may also

select candidates: for example, the Intel compiler, which is discussed in more detail in

chapter 4 , separates allocation for integer and floating-point candidates. In this case the

“rename” phase will select only the candidates of the class that gets allocated. A more

elaborate implementation of “rename” could also split a live range into disjoint

 38

components. For example, the live range of D in Figure 13 has two disjoint components

from lines 1-5 and lines 10-18 respectively and could get splits into two candidates RC3

and RC4.

Figure 13 Illustration of simple “rename” phase

Live ranges formation as part of the “build” phase relies on available variable and live

variable analysis. The live range of a variable is the set of all program points where the

variable is both live and available. Time and space complexity is similar for both

standard bit vector-based dataflow analysis algorithms (Figure 14), except that available

variable analysis does not require the kill vector. The notation in Figure 14 follows Aho

et al. [1]. It assumes that a control flow graph is normalized with two distinguished

nodes: a single START and a single EXIT node. For a reducible control flow graph the

deepest loop nesting level of the function is an upper limit for the trip count of the

dataflow solver. When the control flow graph is irreducible, worst-case time for a

dataflow routine can be quadratic in the number of basic blocks.

Available variable analysis is used to identify undefined variables in acyclic code and

to stop live range extension for non-strict live ranges at basic block boundaries where the

live range is undefined. A live range is non-strict when there is a path from the function

entry to a use that may contain no definition. When a non-strict live range is contained in

a loop, its live range spans the entire loop. Figure 15 has an example for a non-strict live

 Source Intermediate Representation after Rename

 1: D=A+B add V5=V4,V3 add RC3=RC2,RC1
… … … …
 5: =D =V5 =RC3
… … … …
10: D= V5= RC4=
… … … …
18: =D =V5 =RC4

 39

Figure 14 Live Variable and Available Variable Analyses

Figure 15 Example for a non-strict Live Range

range V. In the cyclic case, the live range of V extends from the exit of pre-header B1 to

the use of V. In the acyclic case, the live range extends from the definition to the use V.

B2

B3

Cyclic Control Flow Graph

V=

=V

B1

B7

B5

B6

B4

Live Range of V is B2-B7

Acyclic Control Flow Graph

Live Range of V is B4-B7

V=

=V

B1

B2

B3

B7

B5

B6

B4

 Live Variable Analysis Available Variable Analysis

Lattice Set of Variables Set of Variables

Top Τ (= Empty Set) Τ (= Empty Set)
Meet ∪ (= Set Union) ∪ (= Set Union)

Boundary [] Τ=EXITIN [] Τ=STARTOUT

Initialization [] Τ=BIN for each basic block B [] Τ=BOUT for each basic block B

Transfer))(\()()(BKillXBGenXBF ∪= XBGenXBF ∪=)()(

Equations
))(()(BOUTFBIN B=

)()(
)(

SINBOUT
BSuccS∈

= 
))(()(BINFBOUT B=

)()(
)(Pr

POUTBIN
BedP∈

= 

Direction Backward Forward

 40

The result of live range construction is live vectors at the exit of basic blocks. To

construct the interference graph, the allocator sweeps backwards over the instructions of

the basic block updating the live vector at each instruction. In parallel it records

interferences in the triangular interference matrix. Figure 16 shows a snippet of a basic

block with five register candidates. Candidates RC2, RC4 and RC5 are live at exit. In the

last instruction RC 4 is defined. Thus it interferes with all candidates live and the

interferences with RC2 and RC5 are recorded in the interference matrix. Since RC4 is

defined, RC4 is then removed from the live vector. Also, in the last instruction RC1 is

used. Thus it is recorded as live in the live vector. There is no interference at this step

between RC1 and RC4. The interference matrix shows the interferences after all

instructions in the block have been visited. After the interference matrix has been

recorded, the degree for each variable is known. In the second pass of the “build” phase

all neighbors of a node are recorded in the adjacency vector. In the worst case the

adjacency vectors can consume even more space than the interference matrix. This can

happen for example for a complete graph with |V| nodes. A graph is complete when each

pair of nodes is connected by an edge. In a complete graph with |V| nodes each node n

has degree (n) =|V| - 1.

Figure 16 Interference Graph Construction Scheme

Figure 17 shows the interference graph for the basic block snippet in Figure 16.

Assuming K = 2, the simplification phase will push node 3, which has only one neighbor,

on the coloring stack. Since 1 < K=2, this node is “unconstrained” and guaranteed to get

assigned a register. After removing node 3, simplification is in a blocking state. Based on

Basic Block

RC1 RC2 RC3 RC4 RC5 RC1 RC2 RC3 RC4 RC5
Live-at-entry 0 1 0 0 0 RC1 X X

RC3 = op(RC2) 0 1 0 0 0 RC2 X X X
RC1 = op(RC2,RC3) 0 1 1 0 0 RC3
RC5 = op(RC1,RC2) 1 1 0 0 0 RC4 X
RC4 = op(RC1) 1 1 0 0 1 RC5

Live-at-exit 0 1 0 1 1

Live Vector Interference Matrix

 41

the cost function, it may pick node 4 as a spill node and place it “optimistically” onto the

coloring stack, as illustrated in Figure 17, or in a spill list. The remaining nodes, 1, 2 and

5 still form a clique of 3 nodes, thus simplification is still blocked. It may decide to

remove node 1. At this point node 2 and 5 have fewer than 2 neighbors and are pushed

onto the coloring stack, terminating simplification. The select phase will assign colors to

the candidates in reverse order they have been pushed onto the stack.

Figure 17 Simplification Phase and Coloring of Interference Graph

Figure 17 shows one possible assignment. Since node 1 and 4 did not get a register

assigned, they get spilled and allocation restarts. In this particular example original

Chaitin and optimistic coloring would produce identical spill code. In this example, the

influence of node order on the allocation and assignment result is visible (“NP-noise”, cf.

Briggs [13]): assuming that node 2 is the cheapest node to spill in the first blocking state

of the simplification phase it will be removed from the interference graph together with

its neighbors. Then the remaining nodes will have only one neighbor and become

unconstrained. In this scenario only node 2 may get spilled. So the allocation outcome

depends on the assignment and the order of the nodes 1, 4, and 5 in the final coloring

stack. If nodes 1 and 4 end up on the top of the stack and are assigned r1 and r2

respectively, node 5 will be spilled. But if nodes 1 and 4 are assigned r1, only node 2

 42

must be spilled. The simplification algorithm can be implemented in time complexity

))log((NNO × where N is the number of nodes. The assignment (or coloring) phase is a

single linear pass over all nodes on the coloring stack.

3.3 Developments

Since Chaitin’s work literature on register allocation progressed proposing new

extensions, heuristics, scopes and alternatives. These developments can be summarized in

six categories (Table 7).

Table 7 Research Categories and Goals

First, spill code reduction improves on Chaitin’s spilling heuristics to reduce spill and

fill instructions. Splitting methods are heuristics to split live ranges into smaller pieces.

Smaller live ranges should have less interference and could yield better allocation results.

Second, the goal of scoping is to improve register allocation compile time or extend

allocation scope, for example, allocating candidates across procedure boundaries rather

than within a procedure. One idea to save compile time is to partition the control flow

graph into a disjoint set of regions, perform register allocation per region and reconcile

allocations at region boundaries. Implicitly, the walk over the regions also prioritizes

register candidates and can impact allocation and thus run-time performance. Third, over

time researchers and practitioners have implemented and proposed extensions to the

classical coloring allocator to cope with architecture peculiarities. Fourth, coalescing

almost is a field of its own, separate from register allocation. Fifth, in addition to graph-

 Category Goals

1 Spill code reduction Performance (heuristics, remat.,
premat.)

2 Scoping Compile time, Performance

3 Extensions Functionality (e.g. load pairs),
Performance

4 Coalescing Performance, Compile time
5 Alternative Models Compile time, Performance

6 Theory Complexity analysis, Polynomial time
solutions

 43

coloring based register allocation many other approaches have been proposed. Finally,

there is rich amount of literature on the theory of register allocation. The remainder of

the section surveys the six categories.

3.3.1 Spill Cost Reduction

The goal is to issue as little spill code as possible. To this end clever heuristics including

preferencing, rematerialization, live range shrinking (a.k.a. pre-materialization) and live

range splitting methods get employed.

3.3.1.1 Spill Heuristics

Two references of a live range are close when no other live range dies (“goes dead” in

Chaitin [17]) between them. In other words, two references of a live range are close when

no other live range ends between them. In this case, no new register can become available

at the second reference. So, in the relevant case that the second reference is a use, the fill

would have to use the same register the candidate is assigned to at the first reference and

load the same value. Effectively the fill becomes a dead instruction. Chaitin’s spilling

heuristics a) exploit this fact and attempts to avoid spilling in basic block when

“closeness” for live range references can be detected, and b) replace loads with simpler

operations when possible (Rule 1 below, “rematerialization”):

• Rule 1: If a value is easy to re-compute, do it.

• Rule 2: If two uses of a live range are close, don’t reload at the second use (“load

forwarding”)

• Rule 3: Don’t spill a live range when all its uses are close

• Rule 4: If a use is close to its definition, use the stored value directly and don’t fill

(“store forwarding”)

• Rule 4’: If the use is close to its definition, and both references are within one

basic block, don’t spill the live range

It can be more effective to re-compute the value of a live range rather than spilling it.

Trivial examples are live ranges that represent constants or easy to re-compute values like

stack pointer + offset. This technique is called “rematerialization”. Chaitin [17] uses it as

a spill heuristic. Briggs [12] generalizes Chaitin’s observation and constructs a dataflow

 44

framework to model rematerializable live ranges. Figure 18 illustrates Chaitin’s rules for

two live ranges X and Y in one basic block. When no rule is applied, X is filled before

each use. With rule 1, the load is replaced by an assumingly cheaper add instruction. Rule

3 is a generalization of rule 2: When all uses are close, only the first load of X is

necessary. In case of live range Y there is a definition and use in one basic block. When

no rule is applied, Y is spilled after the definition and filled before the use. If use and

definition are close, rule 4 applies and only the spill is needed. If Y is local live range and

the basic block contains all its references, it does not get spilled at all based on rule 4’.

Figure 18 Illustrations of Chaitin's Spill Rules

Bernstein et al. [7] introduces the “best of three” simplification heuristic, which

decides which node to spill when the Chaitin allocator is in blocking state. Chaitin’s cost

function (see Equation 1) prefers spilling a node with low cost and high degree, but it

ignores register pressure. Bernstein et al. add weighted approximations to the cost

function and use the inverse of the square of the degree of a node. Using the square of the

degree rather than the degree makes it more likely that high degree nodes get spilled,

which in turn could expose more unconstrained nodes ([7]). The three Bernstein spill

heuristics are listed in Figure 19.

Spilled X Rule 1 Rule 3 Spilled Y Rule 4 Rule 4’

load X add X=sp,12 load X def Y def Y def Y
use X use X use X store Y store Y …
… … … … …
load X add X=sp,12
use X use X use X load Y
 use Y use Y use Y
load X add X=sp,12
use X use X use X

 45

Figure 19 Bernstein et al: Three heuristic Spill Functions

Bernstein et al. experiment with all three heuristic functions, where Area(n) is a

measure for the weighted register pressure of live range n (Figure 19). In their

experiments, none of the 3 heuristics is found to be superior to others, but the minimum

of all three actually does give a superior select routine in all their tests:

Equation 3 Modified Cost Function in a Chaitin Allocator

3.3.1.2 Splitting

Cooper and Simpson [24] exploit “containment” to reduce spill code: a live range L1 is

contained in a live range L2, when L1 is not live at any definition or use of L2. The idea

is that spilling a live range that is contained in another, is in-effective since it does not

reduce interferences or provide any benefit for the spill cost. “Containment” is encoded

as a directed interference graph: when L1 is contained in L2, there is a directed edge from

L1 to L2. When neither L1 is contained in L2 nor L2 is contained in L1, and both live

))(),(),(min()(321 nhnhnhnselect Bernstein =

)(

)(
)(1 2 nDegree

nCost
nh = (1)

)()(

)(
)(2 nDegreenArea

nCost
nh

×
= (2)

)()(

)(
)(3 2 nDegreenArea

nCost
nh

×
= (3)

Where:

width(I)5Area(n)
LIVE(n)I

depth(I) ×∑=
∈

LIVE(n): set of all instructions where n is live at exit
depth(I): loop nesting level of instruction I
width(I): # of simultaneous live register candidates at instruction I

 46

ranges interfere, the interference edge remains un-directed. Containment–based splitting

is a lazy technique: for a spilled live range L it estimates the cost of splitting neighbors

that contain L. If this is not effective the algorithm tries to split L across live ranges that

are contained in L. For example, assume L2 is spilled and L2 is contained in L1. The

algorithm spills L2 “around” L1 first if this results in faster code (as estimated by

heuristics in the algorithm). Otherwise, it attempts to spill L1 “around” live ranges it

contains. The containment-based algorithm would split L1 at the boundaries of live

ranges that it contains, if it (likely) benefits run-time performance.

Bergner et al. [6] introduce interference region spilling. The interference region for

two live ranges is the set of program points where both live ranges are simultaneously

live. The idea is that spilling a live range in an interference region only (“partial spilling”)

is cheaper than spilling the entire live range. It is a lazy technique: for any spilled live

range it evaluates the cost of only partially spilling the live range. For each spilled node

their algorithm groups edges into K classes, one class for each color. Each class

represents an interference region and contains interference edges to neighbors assigned

color k. A color k is chosen that minimizes overall spill costs and the edges in class k are

removed from the interference graph. When a live range L1 is contained in live range L2,

the interference region for L1 and L2 is all of L1. In this case, interference region spilling

and Chaitin spilling give the same results. The basic idea of splitting live ranges in

“zones” of register pressure is also mentioned in Section 5 in Chow [22].

Pre-materialization shrinks re-computable live ranges before register allocation, when

there is no cost to do so. Baev and al. [5] apply this technique in the HP-UX Itanium

compiler, when empty slots are found where the “rematerializable” live range can be pre-

computed without impacting execution time. This reduces register pressure but does not

increase schedule length. A more aggressive implementation could trade off the register

pressure reduction with schedule length increase.

Bernstein et al. [7] describe a splitting technique called “cleaning”. It is applied at a

basic block level in the first two iterations of a Chaitin allocator: when a live range is

spilled, only one load (store) is inserted at the first use (definition), independent of the

number of references to the live range in the block. Also, the live range is renamed and

becomes local in the block. Intuitively “cleaning” should reduce spills in regions of low

 47

register pressure. “Cleaning” is aggressively applying Chaitin’s heuristics by ignoring

“closeness”. Since this could result in more allocation iterations, the technique is limited

to the first two iterations only.

3.3.1.3 Preferencing

Preferencing methods attempt to reduce spill code by influencing the register assignment.

The direct method, which is usually applied in region-based allocators, attempts to assign

the same register in all regions. Other methods are more indirect and opportunistic. They

attempt to influence the ordering of the nodes on the coloring stack for both constrained

and unconstrained live ranges so that the eventual assignment is more likely to yield a

better allocation. For example, Lueh and Gross [54] compute the benefits for assigning a

preserved or scratch register to a live range. The data is used to sort live ranges that

contain function calls on the coloring stack prior to coloring. By examples they show that

this can result in better allocations. Koseki et al. [50] developed an elaborate preferencing

allocator. They introduce four classes of register preferences (dedicated, limited,

preferred, and dependent, build a register preference graph (RPG), which is a weighted

directed graph where each node represents a candidate, register, or register class, and

each edge represents a dependence. The coloring stack is partially ordered based on

simplification precedence. This gives a lattice for the candidates. In their selection phase

they sieve candidates starting at the top elements in an attempt to satisfy the preference

that gives the most benefit. But their method is compile time intense and performance

gains are not certain.

3.3.2 Scoping

In this category methods address compile time and performance. The contributions can

be broken down into four sub-categories:

• Extension of scope to interprocedural allocation

• Partitioning of control flow graph into allocation regions

• Partitioning of interference graph

• Partitioning of candidates

The sub-categories are not independent. For example, smaller allocation regions usually

result in a smaller interference graph.

 48

Interprocedural methods attempt to color candidates across call boundaries. Chow [21]

describes a simple method where the routines in the call graph are visited in reverse-post

order (“depth-first order”). The allocation results in the callee are used by the caller to

assign registers, which are unused by the callee, to live ranges that cross that call. This

can avoid spilling of scratch registers at call sites and spare preserved registers.

Steenkiste and Hennessy’s method [73] is similar to Chow’s. They also traverse the call

graph bottom-up. Cycles in the call graph are broken by replacing strongly connected

components with single compound nodes. They don’t necessarily follow strict calling

conventions when it is beneficial to do so. Usually the interprocedural allocator runs out

of registers in the routines on top of the call stack. If this happens, their allocator falls

back to a regular (priority based) intra-procedural allocator.

Callahan and Koblenz [15] describe a general region allocation scheme (“Hierarchical

Graph Coloring”). They partition the control flow graph into a set of tiles. Tiles are sets

of basic blocks with additional properties, so that a tile tree can be constructed: two tiles

are either disjoint or contained (tile 1 is subset of tile 2 or vice versa) and there is a single

root tile. Then graph-coloring is applied to each tile (region) in a bottom-up walk of the

tree. At tile boundaries the allocations are reconciled. Reconciliation is necessary since a

live range L1 may get assigned register r1 in tile 1 and register r2 in tile 2. At the tile

boundary of tile 1 and tile 2 a “reconciliation” move from e.g. r1 to r2 must be inserted.

Hierarchical graph coloring covers loop trees and graph-partitions based on single-entry

single-exit (“SESE”) regions. It is noteworthy that their allocator uses “pseudo” registers,

which are assigned physical registers in a reconciliation phase. Norris and Pollack [61]

pursue region based allocation in a similar fashion, but based on the program dependence

graph (“PDG”). Statements guarded by the same control statement form an allocation

region. Their region may have multiple exits. Fusion-based allocation partitions the

control flow graph into arbitrarily disjoint regions (Lueh et al. [55]). The idea of the

fusion allocator is to delay spilling until the interference graphs of two simplifiable

regions get fused. When the combined graph would be no longer simplifiable, the fusion

operator, based on feedback profiling information, attempts to split live ranges in order to

minimize spill code at the region boundaries.

 49

 Gupta et al. [33] proposed clique separators for partitioning the interference graph. A

clique separator is a clique that partitions a graph into two disjoint components. The

clique allocator computes spans (definition-use chains) and identifies a set of clique

separators. Each span can be contained in at most a fixed number of sub-graphs. Each

sub-graph is colored separately, while it includes the nodes of a separating clique. The

final graph is composed from the sub-graphs possibly with renumbering of assigned

registers and spilling (or register copies) at separator boundaries. Given n nodes and m

clique separator the clique separator consumes)/(22 mnO space and)/(2 mnO time.

Splitting the candidates is often implicit in the coloring heuristics. Well-known

examples include coloring basic block local candidates first, then the global candidates

(e.g. Briggs [12]).

3.3.3 Coalescing

Chaitin’s coalescing is aggressive and can yield un-colorable interference graphs. This

problem can be avoided by conservative coalescing (Briggs [12], [13]): the live ranges S

and T representing the source and destination of a move instruction respectively are

combined when they don’t interfere and when the fused node ST has fewer than K

neighbors of significant degree. This rule ensures that the fused node does not trigger a

new blocking state in the simplification phase. Therefore conservative coalescing cannot

transform a colorable into an un-colorable graph. Iterative coalescing is an attempt to

make the conservative method more effective. An allocator with iterative coalescing

interleaves “simplification” and “coalesce”. Simplification removes only nodes that are

non-move related. Here a node is non-move related if it is neither the source nor the

destination of a move instruction. In a blocking state “simplify” has only high degree or

move-related nodes. It calls “coalesce”, which applies conservative coalescing. When at

least two nodes can be coalesced, simplification continues. Otherwise a low-degree

move-related node is marked as non-move related (“freeze”), so simplification can find a

low-degree node and transitions out of blocking state. If no node could be freezed,

“spilling” must unblock “simplify”. Optimistic coalescing (a delay technique like

optimistic coloring) allows conservative coalescing, but undoes the coalescing decision if

 50

the simplification phase can’t leave a blocking state because the graph has become un-

colorable.

Biasing, introduced by Briggs ([12], [13]), is an opportunistic and non-intrusive

method for fusing two nodes. For a single live range L, the sources or destinations in

move instructions that reference L are collected in a partner list for L. When “select”

colors L, it checks if a color can be used that has been assigned to a partner. If successful,

biasing can coalesce nodes when conservative coalescing could not be applied, while

creating little time and implementation overhead. In other words, biasing expresses a

coalesce preference. The actual coalesce decision is delayed and made at coloring time.

3.3.4 Extensions

Nickerson [60] introduces the concepts of weighted degree and asymmetric interference

matrix to handle “cluster” register candidates. Cluster register candidates must be

assigned 2 or more register, dependent of the size of the cluster. Additional constraints

are that the assigned register “cluster” must be aligned (e.g. first element in cluster must

start at a register number divisible by cluster size) and consist of adjacent registers (e.g.

when register rx is assigned to the first cluster element, rx+1 must be assigned to the

“mate” in a pair cluster). The key observation is that modeling interferences with edges

for each element in the cluster would yield conservative results. Instead the interferences

must be “normalized” with respect to the first element in the cluster. Smith et al.

developed a more general colorability criterion that can handle clusters and overlapping

(“alias”) registers. But their allocator could give more conservative results than

Nickerson’s method.

3.4 Alternative Models

The probabilistic allocator (Proebsting and Fischer [63]) generalizes “furthest next use”

of a variable to a probability. The probability prob(v) of variable to stay in a register at a

given program point is approximately the inverse of the distance to the next use. When

the probability is low, the live range may get split at this point. The allocator has three

phases, local and global allocation, and assignment, which uses a coloring allocator. The

global allocation phase proceeds from inner loops to outer loops, where allocation is

based on probabilities. Every time a global live range is allocated a register, the

 51

probabilities get recomputed, because “probabilities and allocations interact”. Global

allocation iterates until the probability that more live ranges can be assigned registers is

zero. For a prototype implementation the authors report a 100x slowdown on a sample of

six small test kernels. This approach demonstrates the cost of register allocation by

attempting to steer allocation one node at a time.

Linear scan methods1 project live ranges onto a line. The blocks of the CFG are put in

a linear order, instructions of the blocks are numbered consecutively and live ranges are

sorted in ascending order of their first instruction. A scan line moves sequentially through

the ordered set of live ranges and assigns them registers or spill slots as soon as they are

hit by the scan line. A best-fit first-end allocator can find an optimal coloring for the

ranges in linear time in a single scan. Simplicity comes at the loss of structure, since the

projections may generate overlaps that don’t exist in the original control flow graph. This

can happen (only) when a live range L1 is contained entirely in a life time hole of a live

range L2. A linear scan allocator can model life time holes, but at the cost of its

simplicity. In general, linear scan allocators are less powerful and produce slower code

than coloring allocators: a linear scan allocator assigns (“locally”) a register immediately

when the scan line hits a live range without considering all interferences (“globally”) like

the coloring allocator. But they can provide good allocation results at lower compile time

compared to a coloring allocator.

Other methods model register allocation as a mathematical programming problem

applying (integer) LP (examples are Goodwin and Wilken [32], Fu and Wilken [29],

Appel and George [4]) and quadratic solvers (Scholz and Eckstein [68], Hirnschrott et al.

 [36]). The benefit of these methods is modeling accuracy and optimality of the solvers.

Therefore these methods target mainly, but are not limited to, “irregular” architectures.

Irregularity means constraints. Examples for constraints include partial register usage and

register alignments for groups of candidates. For example, on Itanium a pair of floating-

point register must be allocated to consecutive registers fi, fi+1. The benefit of modeling

accuracy seems to be offset by low scalability and long compile times. But common

irregularities can be modeled in graph-coloring allocators as well (e.g. Nickerson [60] or

Smith et al. [72]). To the best of our knowledge there is no study that compares the

1 This explanation of linear scan methods is from Prof. Mössenböck.

 52

methods (linear scan, graph-coloring, and mathematical models) in a detailed cost/benefit

analysis across a rich set of applications and architectures.

3.5 Theory

This section reviews the basic foundation of coloring algorithms. In general, the register

allocation problem is equivalent to finding a K-coloring of a graph and is NP-complete

when K > 2. In this case there is a polynomial algorithm that verifies a solution, but no

polynomial time algorithm exists (unless P = NP) that can decide if an arbitrary

interference graph is K-colorable for a fixed K. When K is 2, a linear algorithm that

decides 2-colorability exists. In this case the interference graph must be a bipartite graph.

For special interference graphs, linear or polynomial algorithms are known. There is a

hierarchy of structure: for interval graphs optimal linear time algorithms exist, and for

perfect graphs polynomial time algorithms are known. Hack et al. [34] show that

interference graphs derived from SSA-form are chordal. Chordal graphs are a sub-family

of perfect graphs that contain interval graphs. Like for interval graphs optimal efficient

linear algorithms for coloring chordal graphs exist. But in general the interference graph

does not exhibit enough structure for a polynomial time solution (unless P = NP). In fact,

the exploit of structure is the red thread in the register allocation literature. This can be

seen on many examples like containment graphs, preference graphs, live range splitting

etc., which can improve allocation results. It seems to be the quintessence of an NP-

complete problem that the information to determine the next step towards its solution in

any solver is equivalent to finding the solution itself. Attempts to add structure to the

interference graph to make better allocation choices (“solution step”) can consume lots of

energy (=compile time) for no clear gain. Perhaps the probabilistic allocator (Proebsting

and Fischer [63]) is an illuminating example.

3.5.1 Definitions of Interference

The key property of interference is that two interfering live ranges cannot be assigned the

same register. Register allocation literature uses two different definitions of interference,

“definition” and “simultaneous” interference. Both are conservative, because they can

result in allocating more registers than necessary. For Chaitin two live ranges interfere

when one is live at the definition of the other (or vice versa). The alternative is that two

 53

live ranges interfere when they are live simultaneously at any program point. Both

definitions can be shown to be equivalent for strict programs. In strict programs a

variable is defined on every path from function entry to a use. For non-strict programs,

two live ranges that are live simultaneously do not need to interfere in Chaitin’s sense. In

Figure 20 there are 5 basic blocks forming a cross and two live ranges, V1 and V2, which

are clearly live simultaneously. But, when the control flow graph is acyclic, V1 and V2

do not interfere based on Chaitin’s definition, since V1 is not live at the definition of V2

and vice versa. But there are also cases when definition interference is too conservative:

when two live ranges interfere in Chaitin’s sense, they can still be assigned the same

register when they hold the same value at all points of interference. “Value” interference

could be relevant to reduce register pressure for programs in SSA-form, where every

variable has a single definition.

Figure 20 Definitions of Interference

3.5.2 Coloring Inequality

Let),(EVIG = be an interference graph with a set of nodes V (variables, live ranges) and

a set of interference edges, E.

Let Maxlive be the maximal number of simultaneous live variables at any program point.

Let)(IGχ be the chromatic number of IG, and)(IGω be the clique number of IG.

Let VvvDegreeMaxM ∈=)),((.

B1

B2

B3

B4

B5

V2=… V1=…

 …=V1 …=V2

a) V1 and V2 Live Simultaneously b) V1 and V2 Live at Definition

 V1 = …

• V2 = V3 -- V1 live

… = V2

 … = V1

 54

Then the following coloring inequality holds:

Equation 4 Fundamental Coloring Inequality for Strict Programs

The coloring inequality is folklore. It defines the lower and upper bounds for the

colors needed for coloring the interference graph “IG”. Perfect graphs are defined

by)()(IGIG χω = . Chordal graphs have the additional property)(IGMaxlive ω=

(Bouchez et al. [10]). In non-strict programs the leftmost inequality is not necessarily

valid.

1)()(+≤≤≤ MIGIGMaxlive χω

 55

4 The Intel Itanium Compiler

The Intel Itanium C/C++/Fortran compiler employs state-of-the-art analysis and

optimizations. It incorporates inter-procedural data analysis and optimizations (IPO),

high-level optimizations (HLO) focusing on loop and data transformations, a global

scalar optimizer (IL0) and an optimizing code generator (ECG). All optimization

techniques can be profile-guided and tuned for the Itanium architecture. This chapter

gives a high-level overview of the code generator, develops an intuitive understanding of

modulo scheduling and predicates, and reviews the register allocators.

The first phase of ECG, translation, converts the optimizer’s intermediate program

representation (IL0) into a low level intermediated representation (EIL), which models

closely Itanium instructions. The four major optimizations in the code generator are the

software pipeliner, the predicator, the global scheduler and the register allocator (Figure

21).

Figure 21 Components and Flow of Itanium Compiler Backend

Modulo Scheduler

Predicator

Global Scheduler

Register Allocator

Bundle + Emit

PDB

(Predicate Database)

MM

(Machine Model)

Translator

 56

The four major phases interface with the machine model, which describes in detail the

microarchitecture, and a predicate database, which contains relations between qualifying

predicates. The most important relation is predicate disjointness. Two predicates are

disjoint when they cannot both be true at the any point in the program. In this respect

pipelined loops are special. Associated with each software pipelined loop is a predicate

disjointness vector. It has the predicate disjointness information for all qualifying (block)

predicates in the loop, which is used during modulo scheduling. For non-pipelined code a

single interface, the predicate query system (PQS) is used.

Figure 22 Five Iterations of Pipelined Loop with three Stages and II=4

Modulo scheduling is a loop scheduling technique modeled after a hardware pipeline

with SC (“stage count”) stages. Each stage has a height of II (“Initiation Interval”) cycles.

Time Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
0
1
2
3 Prologue Phase
4
5
6 s =
7
8
9 … =s
10 s =
11
12
13 … =s Kernel Phase
14 s =
15
16
17 … =s
18 s =
19
20
21 … =s
22 s =
23 Epilogue Phase
24
25 … =s
26
27

 57

It takes SC-1 stages to fill the pipeline. Filling happens in the Prologue phase , which

starts a new iteration starts every II cycles. Symmetrically it takes SC-1 phases to drain

the pipeline. Draining happens in the Epilogue phase, which ends a single iteration every

II cycles. In steady state (Kernel phase) the pipeline is full and SC iterations execute in

parallel. Every II cycle a new iteration SCN > starts, and iteration SCN − ends. Figure

22 illustrates the concept of software pipelining with its three phases: Prologue, Kernel

and Epilogue. It shows a loop with single iteration schedule length of 12 and five

iterations (Iter 1, …, Iter 5) of the loop. We assume the loop can be scheduled with an II

of 4. Therefore the loop has a stage count SC=3 (=schedule length/ II = 12/4). In the

Prologue phase every II (=4) cycles a new iteration starts. In steady state (Kernel phase)

the pipeline is full: there execute 3 stages in parallel. Each stage belongs to different loop

iteration. Pipelining is a throughput optimization. In the Kernel phase SC iterations

execute in parallel. Assuming we execute 5 iterations, the Epilogue phase starts at cycle

20. In the Epilogue phase one loop iteration ends every II cycle.

We briefly explain the relation between one loop iteration and the module schedule of

a loop. Figure 23 shows one loop iteration and modulo schedule of a three stage loop

with an II of 4. Each stage has its own stage predicate starting with p16, which is the first

rotating predicate register. p16 is the stage predicate for the first stage, p17 for the second

stage and p18 for the third stage. The stage predicates control the phases of the pipelined

loop. Before execution of the pipelined loop p16 is set. So when the modulo scheduled

loop runs, all instructions of the first stage of the first loop iteration execute. The loop

branch instruction then sets p17 in addition to p16. In the second run the instructions in

the second stage of the first loop iteration and the first stage of the second loop iteration

execute. The next loop branch sets p18 also and execution of the pipelined loop leaves

the Prologue phase and enters the Kernel phase2. Entering the epilogue phase, p16 is

cleared first, (=set to False) then p17 etc. The single iteration schedule length is II times

SC. The II is determined by two factors: machine resources available and data

recurrences. In the pipelined loop at time T (referred to as “Modulo” in Figure 23)

instructions of all stages with cycle time % II = T may execute in parallel (in the Kernel

phase) and may not exceed machine resources available per cycle (“resII”). For example,

2 It is possible that a pipelined does not enter the Kernel phase and still give performance benefits

 58

when T=1, instructions of cycle 1, 5 and 9 from the single iteration schedule execute in

parallel in module schedule (in the Kernel phase). In addition, the II must be large

enough to cover the maximal dependence distance of all loop data, so the following

equation must hold:

 II * (iteration) distance >= maximal dependence cycle length (“recII”)

When a value is computed in iteration k and used in iteration k+n, the recII guarantees

that there are n loop iterations to cover the dependence distance between the definition

and the use. Combining both, resource and recurrence, constraints results gives Min II =

Max (resII, recII), where MinII is the best II possible.

IA-64 supports rotating registers, predication, and special loop branches (br.ctop,

br.cexit, br.wtop, br.wexit) to enable kernel-only innermost modulo scheduled loops,

where the kernel contains the prologue, steady state and epilogue phases controlled by

stage predicate and state registers like ar.lc (loop count) and ar.ec (epilog count).

Figure 23 One Iteration and Kernel Schedule for a Loop

Cycle Modulo
0 I000 I001 I002 0 (p18)I200 (p18)I201 (p17)I100 (p16)I000 (p16)I001 (p16)I002

1 I010 I011 1 (p18)I210 (p17)I110 (p17)I111 (p16)I010 (p16)I011

2 I020 2 (p17)I120 (p17)I121 (p17)I122 (p16)I020

3 I030 3 (p18)I230 (p18)I231 (p17)I130 (p17)I131 (p16)I030

4 I100
5 I110 I111

6 I120 I121 I122 Legend:

7 I130 I131
8 I200 I201 s: stage
9 I210
10
11 I230 I231

Kernel

One Iteration Schedule Kernel Modulo Schedule

One Iteration

Pipelined loop with 3 stages and II=4
Ismi - Itanium instruction, where

m: modulo cycle (mod. II)
i: instruction nr. (0<=i<= 5)

(p16), (p17),(p18): stage predicates for stage 0, 1, and 2

 59

As for register allocation, live ranges that span multiple stages of a pipelined loop are

allocated to rotating registers. The allocation of these live ranges to rotating registers is

handled by the software pipeliner. There is one uncommon feature. Since the rotating

registers are multiples of 8 on the register stack, the pipeliner uses them carefully. It

leaves small live ranges that have a length less than II to the register allocator. As long as

the live range is contained within a pipeline stage, all references are under the same stage

predicate. But it can happen that a small live range crosses a stage. Then the definition

and use are under different stage predicates. For example, in Figure 22 symbolic register

s is defined in cycle 6 of stage 2 and used in cycle 9 of stage 3. The dependence distance

is zero, since the definition and use are within the same iteration. Since the length of the

live range of s is 3 (9-6=3), its length is less than II and it is left for allocation to the

coloring allocator. Unless the coloring allocator is pipeline aware, however, the

references to s in the ‘modulo’ schedule will look as if there is a use of s before there is a

definition. The reason is this: the use is in cycle 9. The ‘modulo’ cycle for the use is 1

(9%4=1). On the other hand, the ‘modulo’ cycle for the definition is 2 (6 %4=2), so the

use appears before the definition in the ‘modulo’ schedule. Applying live variable

analysis naively would allow the live range of s to escape to the outermost loop that

contains the pipelined loop. Since cross stage live ranges are well defined, the live

variable analysis recognizes them and ensures that they cannot escape the pipelined loop.

It will stop live propagation into the predecessor block of the pipelined loop, but ensures

the live range is live across the loop back edge.

Predication is the conditional execution of an instruction guarded by a qualifying

predicate. Using predication the compiler can merge multiple control flow paths into a

single predicated region. Predication can remove mispredicted branches, may decrease

code size, increase code motion flexibility, remove control flow in pipelined loops and

can increase ILP. Cost of if-conversion includes a possible increase in code size, an

increase in schedule length and the potential for a mere transfer of a misprediction rather

than its removal.

The predicator in the compiler performs if-conversion in a series of steps. In a

preparation step it assigns a predicate to each block using the RK algorithm [62], where R

and K are the names of mappings used to determine control flow equivalence. The

 60

characteristic of the RK algorithm is that control-dependent equivalent nodes get

assigned the same predicate. The next steps are region picking, benefit evaluation and if-

conversion: First, it picks a region. In the Intel compiler all candidate regions are single

entry and multiple exit regions. Second, it evaluates the benefits of if-converting the

region by estimating the execution times for the predicated and unpredicated (=control

flow region). The estimates take the machine resources, schedules and feedback profiling

data (static or dynamic) into account. Third, it materializes the predicates by generating

compare instructions. Each instruction in the predicated region is predicated with the

basic block predicate. The materialized block predicate becomes the qualifying predicate

of the instruction. An example is in Figure 24. It shows a snippet of the control flow

graph, which is a single entry – single exits region. Basic blocks B1 and B7 are control-

dependent equivalent and get assigned the same block predicate, P1. The edges from

block B2 to B4 and from B2 to B7 are critical, because B2 has more than one successor

and each successor (B4 and B7 respectively) have more than one predecessor. The

completion phase inserts new basic blocks Bx and By with predicates Px and Py

respectively. The predicated code in this case is a basic block. In the general case, when

the control flow graph region is a superblock with multiple exits, the predicated region is

a hyperblock. All paths in the original control flow graph overlap and correspond to

execution traces in the hyperblock. The instructions in the hyperblock are guarded by

qualifying predicates. Proper predicate initialization ensures that each path in the control

flow graphs maps 1:1 to an execution trace in the predicated code. An execution trace in

the predicated code is a set of predicated instructions, where the qualifying predicate is

set. For predicate initialization IA-64 provides unconditional compare instructions

(exemplified by CMPU in Figure 24) together with regular compare instructions. When

the qualifying predicate of an unconditional compare is clear, the predicate destinations

are initialized with zero. Otherwise an unconditional compare behavior matches

corresponding regular compares.

The global code scheduler picks acyclic regions for scheduling. Like the predicator it

can nest scheduled regions and hoist instructions across regions. The code scheduler

generates control- and data speculated code as well as predicated code. It is a major phase

in the compiler and responsible for extracting ILP. It is well described in [9] [8].

 61

Figure 24 Control Flow-and Predicated Region

The high-level architecture of the register allocator is in Figure 25. The input to the

register allocator is local and global virtual registers, as well as physical registers. A

virtual register is local if all its references are confined within a basic block. All virtual

registers have a unique number. All live ranges are coherent. They cannot be split into

disjoint components. Non-coherent live ranges are split into their disjoint parts and

renamed before allocation.3 The allocator is region based. There can be multiple region

entries and exits. Each region is allocated invoking a Chaitin-style coloring allocator.

Allocations are reconciled at region boundaries. At region transitions reconciliation must

follow store (register – memory), move (register – register) and load (memory – register)

order. For example, if a candidate resides in a register in region 1, in memory in region 2

3 With the exception of speculated live ranges

(P1) CMP P2,P3 = …

(P2) A=

(P3) CMPU P4,P5 = …

(P4) A=…

(P5) A=…

(P2) …

(P5) B=

(P4) B=

(P1) =A

(P1) =B

Control Flow Region with Block Predicates Predicated Code

 B1
P1

Bx
Px

By
Py

B3
P3

B2
P2

B7
P1

 …=A;
 …=B;

A=…;

I > 5?

B6
P6

X < Y?

B4
P4

A=…;
B=…;

B5
P5

A=…;
B=…;

 62

and transition is from region 1 to region 2, then the store must happen before any

reconciliation move or load of any other candidate. There are two allocation steps: first,

floating-point, predicate, and branch registers are allocated. Spilling such register

candidates introduces integer register candidates. Second, the integer registers are

allocated. After the allocations, memory stack layout is finalized. Register stack layout is

determined during allocation, but the alloc instruction is issued in a later phase. The

following describes the features of the register allocator in terms of the categories of

Section 3.3, although the actual implementation may differ from the descriptions.

Figure 25 Register Allocator Architecture

Region Builder

Data Flow Analysis

Data Flow Analysis

Allocate FR, PR, BR

Allocate GR

Spill Stack Layout

Per Region:

• Chaitin-Style Allocation
• Reconciliation at Boundaries

Main Flow Core Allocation

Legend:
FR, PR, BR, GR – Floating-point , Predicate, Branch and General Register candidates

 63

Spill code reduction:

• The allocator supports Chaitin’s heuristics, rematerialization, and pre-

materialization. It has benefit –driven simplification for speculated live ranges

and a set of heuristics for ordering candidates on the coloring stack, although not

all candidates are pushed onto the coloring stack. The assignment phase is also

benefit-driven and computes benefits for assigning scratch, preserved or stacked

registers.

Scoping:

• The global register allocator is region-based and allocation starts with the

innermost loops. Pipelined loops are allocated first. When there is no loop in the

control flow graph, the entire function is the only allocation region. All candidates

in the region are mapped to physical registers. The mapping is stored as a global

register preference, which subsequent allocations try to honor.

• The inter-procedural register allocator is opportunistic. Register usage is recorded.

The caller avoids spills of scratch registers at call sites that don’t use this register,

if the live range contains the call.

Extensions:

• The register allocator is predicate-aware, pipeline-aware (pipelined loops),

speculation-aware and employs efficient allocation schemes for the register stack.

Itanium has load pair instructions requiring even-odd or odd-even allocation for

the load pair destinations, which the allocator takes into account.

Coalescing:

• The allocator implements a form of biasing. It has associated with each candidate

a set of prioritized preferences.

In addition the code generator has a local register allocator that can allocate register

candidates within a basic block. It can get invoked for functions that have huge memory

requirements because of many candidates. Such functions are usually generated by

program generators in large server applications. Since memory requirement of the

interference matrix grows quadratic with the number of register candidates, a routine with

 64

e.g. 200000 register candidates would require more than 0.3 Gb of memory just to

represent the interference matrix. In huge functions, memory consumption is the reason

for long compile times of a coloring allocator.

 65

5 Exploring the Register Stack

On IA-64, each procedure has its own variable size register stack (Figure 5) with its own

variable number of rotating registers. The alloc instruction specifies the register stack

frame of a procedure: the number of incoming parameters (in), the number of local

registers (loc) and the number of outgoing parameters (out). The total number of registers

in a register stack is in+loc+out <= 96. Usually a register stack frame has up to 8

incoming argument register and 8 outgoing parameter registers. The architectural

registers ar.pfs contains fields that describe the frame of the caller (“previous function

state”) and is saved into the destination register of the alloc instruction for register stack

unwinding. In the standard code generation model the compiler issues a single alloc

instruction to create the register stack frame. The drawback of this method is that the

frame must be large enough for the entire procedure. For example, if a procedure has two

different calls with 2 and 8 outgoing parameters respectively, the alloc instruction needs

to reserve 8= max(2,8) outgoing registers. This example can be generalized: when the

alloc instruction reserves more stacked registers than the dynamic execution trace uses,

unnecessary spills to the backing store (Section 2.5, p. 26) could result. IA-64 allows

resizing the register stack by using more than one alloc instruction within a function

(“multiple alloc”, Hoflehner and Pierce [38], Settle et al. [69], Hoflehner et al. [39]).

Again, the key here is that alloc instructions in different functions on the call stack

increase the register stack, but multiple alloc instructions within a single function only

resize its register stack frame, but do not add or remove frames. The effectiveness of the

method is demonstrated in the example in Figure 26 (where the ar.pfs and alloc

destination register are omitted). The register stack is at first increased by two functions

on the call stack, foo and foo1, causing spilling to the backing store. Originally, the

compiler generates a single alloc instruction (alloc rx=1,2,1,0) in foo and foo1. In the

assembly listing we increase the number of stacked registers so that the back to back call

of foo and foo1 incurs RSE spills. In the last step we shrink the register stack before the

calls to foo1 and foo2. Inserting multiple alloc instructions that shrink the stack before

any RSE traffic can be triggered gives a 6.5X speed-up on Itanium compared to the

 66

version with a single alloc instruction. The performance of the multiple alloc versions

matches the original, unmodified version.

Figure 26 Proof of Concept to show Effectiveness of Multiple Alloc

More details about register stack resizing are in

Figure 27. The register stack is shrunk before a call site and restored to its original size

afterwards. This can reduce the total number of registers consumed by the caller and

callee and consequently the overall RSE traffic for the application. In the example

procedure foo uses 90 stacked registers. At the point of the call to bar, 60 registers on the

stack are found dead and the register stack gets resized accordingly. Procedure bar uses

50 stacked registers. The combined register stack of foo and bar uses 80 registers. It fits

into the register file and spilling to the backing store is avoided. Without resizing the

combined register stack would be 140=90+50 registers, resulting in 46 = 140 – 96 spills

to the backing store. Dead registers on top of the stack are determined by live range

analysis. If the number of dead registers on top of the register stack exceeds a given

threshold, the register stack is reduced by the amount of dead registers before the call.

Parameter registers have to be remapped so that they stay on top of the resized register

stack. This parameter mapping is not shown in the example. There is no principal

 alloc
rx=1,50,1,0

 …

 alloc
ry=1,2,1,0

 br.call
{foo1|foo2}

 alloc
ry=1,50,1,0

alloc
rx=1,50,1,0
…
alloc
ry=1,2,1,0
br.call
{foo1|foo2}
alloc
ry=1,50,1,0

Code Snippets

foo2(int i) { return; }
foo1(int i) { foo2(i+2); }
foo(int i) { foo1(i+1); }
main() { int i; for (i=1; i < 10000000; i++) foo(i);}

Original and modified register stack for foo() and foo1():

Original with Increased Frame with Multiple Alloc

alloc rx=1,2,1,0 alloc rx=1,50,1,0 alloc rx=1,50,1,0

…
alloc ry=1,2,1,0

br.call {foo1|foo2}

alloc ry=1,50,1,0

 67

difficulty. Since the register allocator does not know the size of the register stack, it

cannot pre-determine the parameter (=out) registers. Therefore it assigns symbolic

registers which are mapped to the proper physical registers in a post-pass. With multiple

alloc this routine has to determine the actual size of the register stack at the call site.

The optimization is opportunistic in the sense that the compiler cannot have a perfect

knowledge of the state of the RSE when it inserts the extra alloc instructions.

Specifically, the compiler does not know if the reduction of the register stack will

actually decrease the RSE traffic at run-time. On the other hand, the cost of the

optimizations is extra alloc instructions, which have scheduling constraints (e.g. alloc

must be the first instruction in an instruction group) and may contribute to an increase in

code size.

Figure 27 Shrinking Register Stack before Call

Multiple alloc can be effective only on paths that contain a call or a return. The

algorithm in the Intel compiler forms regions of different register pressure after register

allocation. Extra alloc instructions are inserted at region boundaries when the difference

of the register stack sizes exceeds a threshold. Candidates for regions with high register

pressure are software pipelined loops, since many loop iterations can execute in parallel.

In the Itanium compiler rotating register allocation is handled by the pipeliner. Register

lifetimes that fit within II are passed on to the graph-coloring allocator. The pipeliner

90

30 30

90

50

0

30

60

90

120

1 2 3 4

Time

To

ta
l S

ta
ck

ed
 R

eg
is

te
rs

foo() bar()

alloc rx=0,90,0,0
1:
alloc rx=0,30,0,0
2:
br.call bar;;
 alloc ry=0,50,0,0
 3:
 ...
 br.ret;;
alloc rz=0,90,0,0
4:
...

 68

controls the numbers of interferences and checks the availability of registers with a

register server. This guarantees spill free code in pipelined loops, since a) pipelined loops

get allocated first and b) the pipeliner ensures that sufficient registers are available to

allocate all candidates.

The rotating registers within a procedure cannot simply be assigned to global virtual

registers that span software-pipelined loops. Consider live range V1 in Example 3, which

is defined before (line 2) and used after the loop (line 7). Assume the first loop executes

eight times and r40 (r32-r39 are used in the first loop, which uses eight rotating registers)

is assigned to V1. Then the register allocator would have to perform context-sensitive

register renaming to ensure correctness. After the swp loop r40 has to be accessed as r48

because of register rotation. For this reason the allocator avoids such assignments to live

ranges spanning pipelined loops. It also has to assume that such a live range interferes

with all rotating registers. This is different from usual interferences since rotating

registers can be implicit. For example, in the loop only r32 may be visible. But, with 8

registers rotating, r32 represents all registers r32-r39, so registers r33-r39 are implicit and

not directly ‘visible’ for the allocator.

Example 3 Two Pipelined Loops in Single Alloc Routine

There is another unusual aspect of pipelined loops. They need multiple alloc to remain

spill free after register allocation. In single alloc procedures, the code generator has to

specify the maximal number of rotating registers any swp loop in the procedure demands.

In Example 3 the code generator specifies 32 =Max (8, 32) rotating registers in the alloc

 .proc foo
 1: V2 = alloc ar.pfs, 2, 88, 2, 32
 2: mov V1= // mov r40
 3: prolog1: ...
 4: loop1: // swp loop with 8 rotating registers
 5: br.cloop loop1
 6: epilog1: ...
 7: add V3=V4,V1 // add r41=r44, r48
 8: ...
 9: prolog2: ...
 10: loop2: // swp loop with 32 rotating registers
 11: br.ctop loop2
 12: epilog2: ...
 13: br.ret

 69

instruction, since the first loop uses 8, while the second loop requires 32 rotating

registers. Therefore the pipeliner may underestimate the register pressure for the

candidates in the first loop that in fact uses only 8 rotating registers. Since the pipeliner

works on one loop at a time, it is unaware of register requirements of subsequent loops.

For example, with 8 registers, the pipeliner assumes 88=96-8 registers available for the

allocator. But since the alloc instruction must specify 32 rotating registers, de facto the

allocator has only 64=96-32 registers. This can result in spills in pipelined loops with a

significant (run-time) performance cost.

Algorithm 1 Multiple Alloc for SWP Loops

Spilling in pipelined loops can be avoided with multiple allocs. An alloc instruction

can resize the number of rotating registers [13 Vol. 1, p. 4.2]. This can be used by the

register allocator to adapt to the needs of rotating registers in a pipelined loop. In

procedures that contain multiple swp loops with various numbers of rotating registers,

Algorithm 3 inserts alloc and clrrrb instructions in the prolog and epilog of swp loops.

The clrrrb instruction resets the rotating register base. This is usually necessary when

dynamically an alloc instruction can follow in the same procedure. Otherwise the RSE

could fault at the alloc. This also means that in general a live range spanning a clrrrb

instruction cannot reside in a rotating register. Wrapping the pipelined loop with an alloc

 1: procedure insert_alloc_instr(BLOCK P, INT r)
 2: before first definition of
 3: physical rotating register in B:
 4: insert alloc rx=ar.pfs, i,l,o,r;
 5: endproc
 6: procedure insert_clrrrb_instr(BLOCK B)
 7: after last use of a physical rotating register
 8: in B:
 9: insert clrrrb
10: endproc
11: procedure ma_for_swp_loops
12: foreach software_pipelined_prolog P
13: r = #rotating registers in pipelined loop;
14: insert_alloc_instr(P, r);
15: endfor
16: foreach software_pipelined_epilog E
17: insert_clrrrb_instr(E);
18: endfor
19: endproc

 70

instruction ensures that the register allocator can match the estimate of the pipeliner and

avoid spills in the loop.

Example 4 shows the effect of Algorithm 1. The swp loops are encapsulated by

alloc/clrrrb instructions. As only 8 registers are rotating in the first loop, the register

allocator can use 26 more registers reducing the register pressure overall in the procedure.

Register r40 can be assigned to V1 and r41 can be assigned to V2.

Example 4 SWP Loops with Multiple Alloc

There is cost to the extra alloc instructions: the alloc instruction must be the first

instruction in an instruction group. It is WAW dependent on a call and needs a result

register.

.proc foo
 1: V2 = alloc ar.pfs, 2, 62, 2, 0
 2: mov V1= // mov r40=
 3: prolog1: V<dummy> = alloc ar.pfs, 2, 62, 2, 8
 4: loop1: // swp loop with 8 rotating registers
 5: br.cloop loop1
 6: epilog1: clrrrb
 7: add V3=V4,V1 // add r43=r44, r40
 8: ...
 9: prolog2: V<dummy> = alloc ar.pfs, 2, 62, 2, 32
10: loop2: // swp loop with 32 rotating registers
11: br.wtop loop2
12: epilog2: clrrrb
13: …
14: br.ret

 71

6 Register Allocation for Predicated Code

The IA-64 architecture is a fully predicated architecture with 64 predicate registers [42].

Each instruction (with some exceptions like the alloc instruction) is guarded by a

qualifying predicate. If the qualifying predicate is clear (= set to zero or False) the

instruction is discarded in the write back stage of the processor pipeline. If the qualifying

predicate is set (= set to one), the instruction is retired. This means the results are

committed to architectural state. A fully predicated architecture supports if-conversion,

an optimization that eliminates forward branches (Allen et al. [2]). If-conversion

transforms a region of the control flow graph to linear (“predicated”) code. In this

predicated region all execution paths of the original control flow region overlap.

Instructions that were control-dependent on a branch that gets eliminated become data

dependent on the qualifying predicates introduced during if-conversion. The compiler

picks a single entry acyclic control flow region as a candidate for if-conversion. Basic

blocks where the paths originating from the single entry meet, are merge points and mark

a potential end node for the region former. The candidate region may have multiple exits,

so in general it can be considered to be a superblock. The compiler limits the size of the

candidate region by setting a threshold for the number of basic blocks that can be in

region. The decision whether or not to if-convert a candidate region is driven by a

predication oracle. It computes and compares the estimated execution times of the

predicated and control flow version of the candidate region. When the estimated

execution time for the predicated region is faster than the estimated execution time for the

original control flow regions, the candidate region is if-converted into a hyperblock

(Mahlke et al. [56]). The register allocator must handle predicated code formed from

control flow graph regions. This chapter investigates the impact of predicated code on the

register allocator, discusses the predicate query system (PQS), classifies predicated live

ranges and interference tracking, and presents a family of predicate-aware register

allocators. In particular the “use-plus-partition” allocator is equivalent to a PQS based

allocator.

 72

 Source Code IR with Predicated Code LR for V1

 1: a=5; mov V1=5
 2:
 3: if (cond) cmp P1,p0 = cond
 4: a = 1; (P1) mov V1=1
 5:
 6:
 7: c+=a; add V2=V2,V1

Legend:
IR Intermediate Representation
LR Live Range

6.1 Impact of Predicated Code

On a predicated architecture completeness and soundness of live variable and disjoint live

range information are harder problems than for unpredicated code. For example, for live

variables, completeness means at any program point where a variable is actually live,

liveness computation reports it as live. Soundness means that at any point where the

liveness computation reports a variable as live, it is actually live. The remainder of this

section discusses live range extension, interference graph construction for predicated live

ranges and global disjointness information.

In unpredicated code a definition is the start of a live range. This is not necessarily true

for predicated code. In Example 5 the predicated live range for virtual register V1, which

corresponds to variable “a” in the source code, must span lines 1 to 7. This shows that a

predicated definition of V1 (line 4) is not necessarily the start of the live range.

Otherwise, the live range for V1 would extend incorrectly from line 4 to 7 in the

predicated code.

Example 5 Source Code, Predicated Code and Predicated Live Range

On the other hand, if no predicated definition is the start of a live range, predicated

live ranges would extend to more program points than necessary increasing register

pressure and consumption. All predicated live ranges would behave like live ranges of

undefined or partially defined variables in unpredicated code. A variable is partially

defined if there is (at least) one definition-free path from function entry to a use and (at

least) another path that contains a definition. Depending on the run-time execution path

 73

the variable is defined or undefined. In cyclic code, the live range of a partially defined

variable typically spans the entire loop nest that contains the definition. This is a result of

the dataflow algorithms that determine a live range. Available variable analysis (forward)

propagates the is_available property to every point in the loop nest. Live variable

analysis (backwards) propagates the is_live property from the use to every point in the

loop nest. Thus the live range, which consists of all program points where a variable is

both available and live, spans the entire loop nest. This is correct since usually the

variable is defined in the first iteration and used in all subsequent iterations. Since the

variable is live across the entire loop nest, it interferes with all variables in the loop.

Therefore it will not be “destroyed” after being defined in the first iteration.

Example 6 Live Range Extension in Predicated Code

In acyclic code, live range extension cannot occur because a live range cannot extend

to a program point where it is not available. Example 6 illustrates live range extension in

cyclic code for the predicated live range of V1: unless a predicated definition is

recognized as the start of the live range for V1, it will extend across the entire loop nest

(the large live range from line 2-10). The correct live range is the small live range from

line 5, the first predicated definition of V1, to line 8, the use of V1. Live range extension

for predicated code could also cause non-termination of a coloring allocator: When the

allocator spills a predicated live range, it introduces one or more new predicated live

 Source Code IR with Predicated Code LR for V1
 1:
 2: loop: loop:
 3:
 4: if (cond) cmp P1,P2=cond
 5: a=2; (P1) mov V1=2
 6: else a=1; (p2) mov V1=1
 7:
 8: c+=a; add V2=V2,V1
 9:
10: goto loop; br.cond loop

Legend:
IR Intermediate Representation
LR Live Range

 74

ranges replacing the original. But the new live ranges share the same predicate. Due to

live range extension the interferences in the round of allocation may actually increase.

Since the new live ranges introduced for spilling are marked as non-spillable the allocator

may no longer find spill candidates in the simplification phase. At this point the allocator

would have to give up. So there is not only potential performance degradation from extra

register pressure, but also a stability reason why a predicate-aware allocator must

recognize the start of predicated live ranges. This impacts two building blocks of the

allocator: live range analysis (in particular, live variable analysis) and interference graph

construction.

In unpredicated code interference is a function of liveness. In predicated code

interference is a function of liveness and predicate disjointness. Disjoint live ranges do

not interfere and can be assigned the same register. The allocator queries a PDB for

disjointness information when it constructs the interference graph: if the sets of predicates

that guard two live ranges A and B are disjoint, no interference edge needs to be added

between them.

Interference graph construction for predicated code is similar to unpredicated code: it

is a backward scan of the instructions in a basic block with a single, unpredicated live

vector initialized with the live-at-exit candidates. For each candidate, the predicates under

which the candidate is live can be recorded as predicate sets associated with the live

range in a separate table. The inference routine takes the qualifying predicate of the

current instruction that defines a candidate, the candidate and the live vector as

arguments. For each live candidate in the live vector it checks if the qualifying predicate

is disjoint from all predicates in its predicate set. Interferences are recorded in the

interference graph. Each candidate defined in the current instruction is removed from the

active live set when it is the start of the live range. Each candidate used in the current

instruction is added to the live vector and the qualifying predicate is recorded in its

predicate set. The candidate is live under the predicates in its predicate set. The candidate

is dead when its predicate set is empty.

Algorithm 2 shows the code for interference graph construction for predicated live

ranges.

 75

Algorithm 2 Interference Graph Construction for Predicated Code

Finally, a predicate-aware live variable analysis must treat predicated live ranges

conservatively across back edges in any practical scenario. For example, in Figure 28

variable B is live under P2 and variable A under predicate P1. In one scenario, P1 could

be true in the first iteration and false in the second. If B were live only under P2, the

allocator would recognize A and B as disjoint and could assign them the same physical

 1: procedure interfere(PREDICATE qp, VAR v, SET s)
 2: foreach member s in S
 3: P = s.predicates; // SET of predicates
 4: // under which
 5: // s is live
 6: if (any p in P and qp are NOT disjoint)
 7: add_interference(v,s); // not shown.
 8: fi
 9: endfor
10: endproc
11: procedure add(PREDICATE qp, VAR v, SET S)
12: - add v to S and update set of predicates
13: under which v is live.
14: endproc
15: procedure delete(PREDICATE qp, VAR v, SET s)
16: - update set of predicates under which
17: v is live.
18: if (isEmpty(predicate set of v))
19: remove v from s;
20: fi
21: endproc
22: procedure build_interference_graph()
23: foreach basic block B
24: L = live_out [B];
25: foreach instruction I backwards
26: qp = qualifying predicate(I);
27: foreach definition d in I
28: delete(qp, d, L);
29: endfor
30: foreach definition d in I
31: interfere(qp, d, L);
32: endfor
33: foreach use u in I
34: add(qp, u, L);
35: endfor
36: endfor // foreach instruction
37: endfor //foreach basic block
38: endproc

 76

register. In this case the assignment to A in the first iteration would overwrite B, which is

used in the second iteration. W hen the live range of B becomes live under p0 (the True

predicate) along the back edge, then–since p0 interferes with every predicate–the live

ranges for A and B are no longer disjoint.

Figure 28 Liveness must be propagated under “p0” across Back Edge

For general graphs, global disjointness can be represented like interference in a

triangular matrix of size)|(| 2BO , where |B| is the number of basic blocks in the routine.

Global disjointness calculation is reaching-definition analysis for block predicates on the

acyclic control flow graph. This graph is derived from the original control flow graph by

removing back edges. Attention must be paid to irreducible graphs, which have retreat

edges that are not back edges. The prototype of an irreducible graph is the triangle graph

in Aho [1]. Removing retreat edges gives an acyclic graph, but disjointness is not

necessarily consistent with local disjointness, which is based on an arbitrary acyclic

region in the graph. Irreducible graphs and disjointness are discussed in more detail in

Appendix 12.2.

V=…
B=…

 CMP P1,P2=V,r0
(P1) A=...
 ...
(P1) ...=A
(P2) ...=B

V=…

- P1 and P2 are disjoint

- Assume P1 is true in first iteration

- Assume P2 is true in second

iteration

- If A and B are assigned same

register, then use of B under P2

actually uses value of A from the

previous iteration.

  Propagate liveness property under

p0 across back edges. In irreducible

graphs propagate liveness property

under p0 across retreat edges.

 77

6.2 Predicate Partition Graph (PPG) and Query System (PQS)

The predicated query system (PQS) is one possible implementation of the PDB referred

to in Figure 21. In predicated code the allocator and dataflow algorithms must reason

about predicates. The interference computation phase of the allocator and live variable

analysis must find the start of a live range. Interference computation must recognize

disjoint live ranges. The predicate query system provides predicate information to solve

both problems. It is a set of predicate query routines on the predicate partition graph

(PPG). The PPG is a directed acyclic graph whose nodes represent predicates and whose

labeled edges represent partition relations between predicates. A partition 2|1 PPP = is

represented by labeled edges 1PP r→ and 2PP r→ . The common label indicates

both edges belong to the same partition (Johnson and Schlansker [45]). The partitions

represent execution paths and are derived in one traversal of the control flow graph. The

PPG is built by the following rules:

• The start block is assigned the root predicate, e.g. P0. The construction assumes

there is always one start block for the CFG of predicate region. The root predicate

is unique.

• Successor Rule: For each block in the graph that has two or more successors the

partition PNPPP |...|2|1→ is added to the graph, where P is the block

predicate of the block and predicates Pi (i=1,…,N) are the block predicates

corresponding to the successors (“forward edges PiP → ”)

• Predecessor Rule: Similar to successor rule, except that the partition is added

when a block has two or more predecessors (“backward edges PiP → ”). For

distinction backward edges are shown as “dashed” edges in the graph.

• Completion Rule: When 2|1 PPP → is partition and P is not reachable from the

root, then the graph in incomplete. If P1 and P2 are reachable from the root, there

is a lowest common ancestor of P1 and P2, lca(P1, P2). Since P is reachable from

lca(P1,P2), a partition lca(P1, P2) = QkQP |...|1| can be created, where the

union of the Qj , j=1,…,k, is the relative complement of P with respect to

lca(P1,P2).

 78

Intuitively the PPG can always be completed. For simplicity our running example does

not require the completion rule. But an example for a PPG that does will be given later

(see Figure 38). PQS queries are based on the complete PPG and on the interpretation of

predicates as sets: each predicate represents an execution set, which is a set of execution

traces for which it is true. The execution traces in if-converted code correspond to paths

in the original control flow graph. The interpretation of a predicate as a set makes

available set relations like subset, intersection etc. for predicates. The implementation of

PQS is based on the set interpretation (see Appendix 12.3).

There are two preparation steps before the partition graph is built: first, the control

flow graph is completed. Completion is necessary for the uniqueness of the predicate

partitions and preciseness of disjointness. Completion requires one pass over the control

flow graph and inserts empty basic blocks on critical edges. A critical edge is defined as

follows: If basic block B1 has two or more successors and basic block B2 has two or

more predecessors, then the edge B1 → B2 is critical. The inserted basic block is referred

to as JS (“Join-Split”) block. Second, a block predicate is assigned to each basic block.

For this, the compiler uses the RK algorithm. The characteristic of the RK algorithm is

that it assigns the same block predicate to a set of control-equivalent basic blocks.

Informally two basic blocks B1 and B2 are control-equivalent when B1 executes

whenever B2 executes and vice versa. Using a single predicate for a class of control-

equivalent blocks results in a more compact representation of the PPG of the predicate

relations derived from the control flow graph.

We use a rolling example, which is a more elaborate version of the example in

Johnson and Schlansker [40], to illustrate the predicate partition graph and PQS. Figure

29 shows the control flow graph and source code snippets. Associated with each basic

block B is a block predicate P. Control-equivalent basic blocks are assigned the same

block predicates. For example, B2 and B7 are control-equivalent. So are B1 and B8. The

edge from B3 to B8 is critical, and the completion phase inserted JS block Bx on the

edge. A JS block splits a critical edge. The acyclic predicate partition graph

corresponding to the control flow graph is in Figure 30. Partitions (edges “1”), (edges

“5”) and (edges “3”) are forward partitions, partition (edges “4”) is a backward partition,

and partition (edges “2”) is both, a forward and a backward partition. The corresponding

 79

if-converted code is in Figure 39, which will also discuss live ranges under PQS.

Figure 29 Example with Control flow Graph and Source Code Snippets

B10
P9

B9
P8

B8
P1

B7
P2

B6
P6

Bx
Px

B5
P5

B4
P4

B3
P3

B2
P2

B1
P1 D=…;

 x<y?

A=…;
B=…;
B1=…;…=C;

a=…;
C=…;
 a==3?

A=…;
B=…;
B1=…;…=C;

…=B;…=B1;

A=…;
b=…;
 b>10?

…=D;…=A;
…=B;
 i<5?

 80

Figure 30 Predicate Partition Graph (PPG) for Example in Figure 29

Both live variable analysis and interference calculation use PQS queries that walk the

predicate partition graph (PPG) to compute accurate liveness information at each

instruction. Figure 31 shows four predicated live ranges A, B, B1 and C and their

predicated sets during a backward traversal of the instructions 1-20 in the if-converted

code fragment of the rolling example. The figure shows the predicate set at the entry of

each instruction for each variable. The predicate set is derived from the predicate set at

the exit of the instruction and the qualifying predicate of the instruction. The algorithms

PQS uses to find the predicate sets are in Figure 32. It specifies the “add” and “delete”

interfaces the general predicate-aware interference build routine uses (see Algorithm 2).

The PQS queries that traverse the PPG to find the predicate sets for candidates are listed

in Appendix 12.3.

1

3
4

1

3

5 5 4

4
2 2

P1

P2

P4 P5

P3

Px P6

 P7 P8

 “Forward” Edge

 “Backward” Edge

Root: 1P
Forward Partitions: 3|21 PPP → (“1”) , 5|42 PPP → (“2”), 6|3 PPxP → (“3”),

8|71 PPP → (“5”)
Backward Partitions: 6||21 PPxPP → (“4”)
Completed Partitions: none.

 81

Figure 31 Predicated Live Ranges under PQS

PQS is powerful, but has costs. First, it requires the construction of the predicate

partition graph, which—although it is linear in space and time in the order of the number

of basic blocks—consumes extra memory. Second, unlike classical live variable analysis,

which operates on basic blocks, PQS-based predicate live variable dataflow operates on

• Variable A is a “partition” live range. At instruction 12 A is live under P1
and defined under P5. Since P1 = P2|P4=P3|P4|P5, A is live under P3 and
P4 at the beginning of instruction 12. After (reading backwards) the
definition of A under P4 in instruction 9, A is live under P3. Finally,
instruction 6 is the start of the live range of A.

• Variable B is a “partition” live range. At the definition under P5 in
instruction 13, it is live under P1 and P2. Since P1=P3|P4|P5 and P2=P4|P5,
B is live under P3 and P4 at the beginning of instruction 13. Since there is
no definition under P3, B is live at then entry of the predicated region under
P3.

• Variable B1 is a “partition” live range similar to A or B.
• Variable C is a “dominate” live range. The definition under P2 in instruction

4 is the start of the live range since P2=P4|P5, so P2 dominates P4 and P5).

Predicated Code
A B B1 C

1: (P1) D= {} {P3} {} {}
2: (P1) cmp P2,P3=(x<y) {} {P3} {} {}
3: (P2) a=… {} {P3} {} {}
4: (P2) C=… {} {P3} {} {}
5: (P2) cmp P4,P5=(a==3) {} {P3} {} {P4, P5}
6: (P3) A=… {} {P3} {} {P4, P5}
7: (P3) b=… {P3} {P3} {} {P4, P5}
8: (P3) cmp P6,p0=(b>10) {P3} {P3} {} {P4, P5}
9: (P4) A=… {P3} {P3} {} {P4, P5}

10: (P4) B=…; (P4) B1=…; {P4, P3} {P3} {} {P4, P5}
11: (P4) …=C {P4, P3} {P4, P3} {P4} {P4, P5}
12: (P5) A=… {P4,P3} {P4, P3} {P4} {P5}
13: (P5) B=…; (P5) B1=…; {P1} {P4, P3} {P4} {P5}
14: (P5) …=C {P1} {P1, P2} {P2} {P5}
15: (P2) …=B; (P2)…=B1; {P1} {P1, P2} {P2} {}
16: (P6) … {P1} {P1} {} {}
17: (P1) …=D {P1} {P1} {} {}
18: (P1) …=A {P1} {P1} {} {}
19: (P1) …=B {} {P1} {} {}
20: (P1) cmp P7,P8=(i!=5) {} {} {} {}

Predicate Sets For Variables

 82

instructions, which requires customized dataflow routines. Finally, PQS queries get

invoked at every predicated instruction during the backward traversal of interference

graph construction (Algorithm 2). These compile time, implementation and maintenance

costs motivate the search for alternatives.

Figure 32 Add and Delete Routines in PQS-based Allocator

procedure mark_live(Set P’)
 foreach p’ ∈ P’
 if (p’ ∈ B)

 live[p’]+=x;
 else
 foreach pb ∈ B
 if (! IsDisjoint(p’,pb))
 live[pb]+=x;
 fi;
 endfor
 fi
 endfor
endproc

procedure add(Predicate qp, Var x)
 Pset P, P’;
 // Collect all predicates p in Basis B such that
 // x is live under p.
 P = { p∈B | x live under p};
 if (qp ∈ P) return; // x live under qp already.
 P’ = lub_sum(qp, P);
 mark_live(P’);
endproc
procedure delete(Var x, Predicate qp)
 Pset P, P’
 // Collect all predicates p in Basis B such that
 // x is live under p.
 P = { p∈B | x live under p};
 if (qp ∈ P) live[qp]-=x; // x dead under qp.
 P’ = lub_diff(qp, P);
 // kill x under all predicates in B
 foreach pb in B
 live[pb]-=x;
 endfor
 mark_live(P’)
endproc

 83

6.3 A Family of Predicate-Aware Register Allocators

This section assumes all predicate code is compiler generated. We propose predicate-

aware allocation schemes based solely on classical techniques. This is based on the

observation that computing partitions based on PQS at every instruction during

interference graph construction and live variable analysis is not necessary for all live

ranges. Specifically, PQS partitions are not necessary when either the qualifying

predicates for the definitions and uses of a live range match or a definition dominates all

uses. “Dominance” is derived from the control flow graph. Since each instruction has a

predicate and the predicate is a block predicated, predicate dominance is control flow

dominance. For other live ranges, partitions can be pre-computed at each use on demand.

Building and repeatedly querying the PPG is not necessary.

There are four fundamental relations between predicated definitions and uses (Figure

33). Predicated live ranges are classified based on the original control-flow region the

predicated code is derived from. It is important to keep the correspondence between

blocks and qualifying predicates in mind. A definition is clearly the start of the live range

when the qualifying predicates of the definition and use match. This is also the case when

the qualifying predicate of the definition dominates the qualifying predicates of the uses.

When multiple definitions reach a use, two cases are possible. First, when definitions

form a partition, the qualifying predicates of the definitions are mutually disjoint and the

first definition in the hyperblock is the start of the live range. In this case the allocator

gets precise disjointness by tracking liveness under all predicates that reach the use.

Therefore it can track liveness under all definition predicates reaching a use rather than

the qualifying predicate of the use (instruction). For example, in the partition case in

Figure 33, instead of tracking liveness under P3, recording liveness under P1 and P2

would give precise disjointness information. In this scenario, the definition of V under P2

(or P1) would kill liveness under P2 (or P1). Any subsequent–in the backward traversal–

variables (defined or used) under P2 (or P1) do not interfere with V. This would not be

the case if the live range were tracked using P3, unless a system like PQS partitioned P3

at the definition of V qualified under P2. Second, when definitions don’t form a partition

(“overlap”), recording liveness under the reaching predicates would find the start of the

live range, but disjointness would be conservative. For example, variables under

 84

qualifying predicate P2 could interfere with V, although V might have been killed under

P2, since V would be live under P1, too (see “overlap” in Figure 33).

The live range for a variable defined in the region and live is completed (=made strict

relative to the region) by adding pseudo definitions into region blocks based on two rules:

first, if the variable V is live at entry of two successors, follow both paths. Second, if

block B1 has two successors, B2 and B3, and variable V is live at entry in B2, but dead at

entry in B3, insert a pseudo definition at the beginning of B2. The pseudo definition does

not start the live range, but splits it into separate components. We note that the predicated

live ranges can be classified based on the original control flow graph.

Figure 33 Fundamental Relations between Predicated Definitions and Uses

Our rolling example (Figure 30) illustrates the four fundamental relations. Live ranges

D, a, and b are defined and used under a single predicate (“match”). In live range C the

definition under (P2) dominates the uses under (P4) and (P5) (“dominate”). In live range

A the qualifying predicates of the definitions (P3, P4 and P5) form a partition for the use

under (P1) (“partition”). Live range B has uses under (P1) and (P2). The qualifying

predicates (P4) and (P5) form a partition for (P2) (“partition”). For (P1) there is no

partition. Since B is live at the entry of the predicated region, there is a pseudo definition

of B in block 3 under (P3), since B is live at entry in block 3, but dead at entry in block 2.

The start of predicated live ranges can be found performing live variable analysis

before if-conversion. After a region is if-converted, first definitions can be marked in a

forward sweep over all instructions in the (linear) if-converted region, starting at the first

match dominate partition overlap

(P1)V= (P1) V= (P1)V=

(P2) V=

(P3) =V (P3) =V (P1) =V
V=

(P2) =V (P3) =V

(P1)V= (P2)V=

 85

instruction in the region entry block with the live-at-entry vector and recording

definitions: if a variable is defined under a predicate, the variable is not live-at-entry and

no other definition of the variable has been seen, this must be the first definition.

Based on the types of predicate live ranges, three strategies for predicate-aware

register allocation can be defined that model predicate live ranges with increasing

accuracy:

Strategy 1: Dominate-or-Match

The qualifying predicates of instructions that use a variable form the predicate set for the

variables. For live ranges with matching qualifying predicates for definition and uses,

interference is precise. This is true also when the definition predicate dominates all use

predicates.

Strategy 2: Partition Tracking

In addition to Strategy 1, live ranges are recorded under qualifying predicates of the

(possibly pseudo) definitions that reach a use, if this set is a partition and the qualifying

predicate of the use post-dominates each definition predicate. The qualifying predicates at

the definitions are either in the partition or -in case the predicate is from a pseudo

definition- dominate a partition predicate.

Figure 34 has the predicated code from our example and considers two live ranges A

and B to illustrate strategy 2. For live range A, {P3, P4, P5} reach the use under (P1).

Since P3, P4 and P5 are mutually disjoint and the use post-dominates the definitions, this

partition is the predicate set at the use of A. Live range B is similar to live range A,

except that B is completed by a (implicit) pseudo definition at the entry of block 3.

Completion ensures that all live ranges with uses in the region are strict and enables

partition formation at uses. A live range is strict when there is a definition on every path

to a use.

After if-conversion each read operand (“use) is augmented with a list of qualifying

predicates that represent the qualifying predicates of its reaching definitions. Strategy 2

relies on reaching definition analysis per predicated region. When more than one

definition predicate reaches a use and the predicates are disjoint, record the partition that

represents reaching qualifying predicates at each use. In this case, the original

 86

(qualifying) predicates at the definitions are either in the partition or dominate a partition

predicate.

Figure 34 Predicate-aware Allocation with Partitions

The following theorem lists the live ranges whose interferences can be modeled

precisely by strategy 2.

Theorem 6-1 (Characterization of Simple Live Range Tracking)
Strategy 2 can model interferences precisely for the following live ranges:

• Definition and use predicate match

• Definition predicate dominates use predicate

Predicated Code
A B B1 C

1: (P1) D= {} {P3} {} {}
2: (P1) cmp P2,P3=(x<y) {} {P3} {} {}
3: (P2) a=… {} {P3} {} {}
4: (P2) C=… {} {P3} {} {}
5: (P2) cmp P4,P5=(a==3) {} {P3} {} {P4, P5}
6: (P3) A=… {} {P3} {} {P4, P5}
7: (P3) b=… {P3} {P3} {} {P4, P5}
8: (P3) cmp P6,p0=(b>10) {P3} {P3} {} {P4, P5}
9: (P4) A=… {P3} {P3} {} {P4, P5}

10: (P4) B=…; (P4) B1=…; {P3,P4} {P3} {} {P4, P5}
11: (P4) …=C {P3,P4} {P3,P4} {P4} {P4, P5}
12: (P5) A=… {P3,P4} {P3,P4} {P4} {P5}
13: (P5) B=…; (P5) B1=…; {P3,P4,P5} {P3,P4} {P4} {P5}
14: (P5) …=C {P3,P4,P5} {P3,P4,P5} {P4,P5} {P5}
15: (P2) …=B; (P2)…=B1; {P3,P4,P5} {P3,P4,P5} {P4,P5} {}
16: (P6) … {P3,P4,P5} {P3,P4,P5} {} {}
17: (P1) …=D {P3,P4,P5} {P3,P4,P5} {} {}
18: (P1) …=A {P3,P4,P5} {P3,P4,P5} {} {}
19: (P1) …=B {} {P3,P4,P5} {} {}
20: (P1) cmp P7,P8=(i!=5) {} {} {} {}

Predicate Sets For Variables

• Variable A is a “partition” live range. The use of A in instruction 18 is reached by
definition of P3, P4 and P5, which form a partition of the qualifying predicate P1.
Liveness of A is tracked under P3, P4 and P5.

• Variables B and B1 are “partition” live ranges similar to A. The live range of B is
“completed” with a pseudo-definition in Block B3. P3, B is live at then entry of the
predicated region under P3.

• Variable C is a “dominate” live range. The definition under P2 in instruction 4 is the
start of the live range since P2=P4|P5 (so P2 dominates P4 and P5).

 87

• Definition predicates form a partition. Use predicate post-dominates all

partition predicates.

• Two definition predicates reaching a use are on at most one execution

trace (or execution path in the original control flow region).

Proof:

Precise interference means for each predicated live range L:

When L is recognized as live at a given program point, L is actually live.

When L is recognized as dead, it is actually dead.

When L is recognized as disjoint from another live range L’, it is actually disjoint.

When L is recognized as interfering with L’, it is actually interfering.

The theorem is clear for the simple cases, match and dominate. In this case the

predicate set of a live range consists of the qualifying predicates seen at its uses. The

matching or dominating definition stops the live range (strategy 1). For the remaining

cases we need to develop some intuition first. Tracking a live range under the qualifying

predicate of the use ensures that in the predicated region disjointness is precise with

respect to instructions that are not on a path to the use in the original control flow graph.

In case the definition predicates form a partition and the use predicate post-dominates all

partition predicates, then all paths starting at definitions end at the use. There cannot be

an off path instruction in the predicated region that would introduce an interference that is

not visible in the original control flow graph. Therefore tracking the live range under

partition predicates cannot introduce new interferences. The case of two definitions

reaching a use but the definition predicates don’t form a partition can be reduced to the

partition case. Since there is only one path that contains both definitions, there must exist

a split block dominated by the first definition. Inserting a pseudo-definition in the

successor of the split block that is not on the path to the second definition ensures the

partition property: since the qualifying predicate of the pseudo def is disjoint from the

qualifying predicate of the second definition, they form a partition at the use. In this case

one partition predicate (from the pseudo definition) will not be a definition predicate, but

dominated by it (the definition predicate of the first definition). This proves the theorem

for two definitions. The general case of N definitions is similar to this special case. □

 88

Consider the example code in Figure 35 to visualize the difference between use and

partition tracking, when the use does not post-dominate the definition. P2|P3 form a

partition for live range B, but the use under P5 does not post-dominate P2. In the

predicated code there could be an off-path instruction like the definition of E under P4

“before” the use of B under P5. If liveness of B were tracked under partition predicates

P2|P3, E and B would interfere, since P2 and P4 are not disjoint. On the other hand, if

liveness of B is tracked under P5, E and B cannot interfere, since clearly P4 and P5 are

disjoint. This scenario cannot happen when the use post-dominates all partition

predicates, since there cannot be an “off-path” instruction on the execution trace.

The remaining live ranges require a more sophisticated method to model interferences

precisely. There are two cases left: First, the use does not post-dominate the partition

predicates. Second, two or more definitions overlap on more than one execution trace (or

execution path in the original control flow graph). The first case can be handled by

tracking the live range under the use and the partition predicates. The second case is

reduced to partition, dominate or match live ranges by splitting. Splitting is described

below.

Figure 35 Extra Interference with Partition Tracking

Control-Flow Region with Block Predicates Predicated Region

(P1) CMP P2,P3 = …

(P2) CMPU P4,P5 = …

(P1) D = ...

(P2) B = ...

(P3) A = ...

(P2) A = ...

(P4) E = ...

(P5) ...= B

B1
P1

B4
P4

B2
P2

B5
P5

B6
P1

 …=B E=…

A=…
B=…

B3
P3

A=…
B=…

 89

Strategy 3: Use-and-partition Tracking

In addition to strategy 2, track live variables under use-and-partition predicates and

“split” live ranges when two definitions overlap on more than one path.

When the use does not post-dominate the definition, the use predicate (=qualifying

predicate of the instruction containing the use) gets associated with the partition

predicates. This is necessary for precise disjointness information: when the use does not

post-dominate all predicates in a partition (of two or more predicates), disjointness could

be conservative. Therefore, the live range is tracked under the qualifying predicate of the

use and the partition predicates. Since the partition predicates represent disjoint portions

of execution traces, precise disjointness is due to the following rule used during

interference calculation: at any given instruction, if the qualifying predicate of a

definition of live range L1 interferes with the use predicate of live range L2, but not with

any of its associated partition predicates, then live ranges L1 and L2 are (actually)

disjoint at this point. This gives precise disjointness: First, when the use does not post-

dominate the definitions, there can be instructions on the execution trace that are not on

any path from the definition to the use. Since the qualifying predicate of the use is

disjoint from the qualifying predicate of these instructions, no imprecise interference can

be encountered. Second, false interferences could be recorded with variables in

instructions on paths to a definition, but the rule above is preventing this, since at every

definition the qualifying predicate is removed from the partition. This argument has been

used in the proof for Theorem 6-1 also.

In case of definition overlap on more than one execution path, additional live range

splitting is necessary. This is achieved by inserting an identity move under the qualifying

predicate of the definition. This move only changes predicate tracking for the live range.

 90

Figure 36 Complex Live Range Tracking

Figure 36 illustrates a live range V in a control flow graph snippet. The definitions for

V overlap on more than one path to the use. There are two definitions of V in blocks B1

and B2. The use in block B4 post-dominates the definitions, but the definitions in blocks

B1 and B2 overlap on paths 21 → and 231 →→ . Tracking the live range of V under

the reaching predicates P2|P1 would give extra interferences, since P1 interferes with P2.

The trick is adding an identical move in block Bx, which is inserted by control flow

graph completion. The use in block B4 is recorded under P2 and Px, which form a

partition. Since P1 dominates Px, the original live range has been split into a “simple”

live range (handled by strategy 2) and a “dominate” live range. In general, splitting can

also result in a partition live range, where the use does not post-dominate the definitions.

We note that this kind of live range splitting can be achieved with SSA representation

 [59]) in the original control flow region. When translating out of SSA we would get the

moves that split a complex live range.

From the discussion it is clear that strategy 3 models interference precisely when a live

range has two definitions that overlap on one execution path. The identity move can be

inserted where the two definitions merge. The general case is

• On paths B1-B2 and B1-B3-
B2 definitions of V overlap.

• In this case the live range for
V cannot be transformed into
a partition live range.

• The pseudo move in JS block
Bx splits the live range of V
into a “partition” and a
“dominate” live range.

V=V

B2
P2

B1
P1

B3
P3

B4
P1 …=V

V=…

Bx
Px

A=…
V=…

 91

Theorem 6-2 (Characterization of Complex Live Range Tracking)
Strategy 3 can model interferences precisely for the following live ranges:

• Use predicate does not post-dominate partition predicates

• When definitions overlap on more than one path, the live range can be split and

handled by strategy 2 or the case above.

Proof:

Preciseness for the first case is clear: The qualifying predicate of the use avoids

interferences with an off-path instruction, which could be on the trace from a definition to

a use. Partition tracking asserts there is no conservative interference with an instruction

on the path from the entry code to the definition. The interference rule is modified: if, at a

given instruction in the interference graph construction, a qualifying predicate interferes

with the use predicate from a live candidate, but not with the associated partition

predicates, the live range under the qualifying predicate is disjoint from the live

candidate.

Overlapping live ranges on multiple paths can be split into simpler live ranges:

Assume the live range has n> 2 definitions. Like in Figure 36 an identical move can be

inserted at a merge point of any two definitions. The live range section with the two

definitions and the use in the identical “mov” is either a partition live range or can be

modeled by use-and-partition tracking. This splitting technique can be applied iteratively

until a split live range has only two definitions. This proves the theorem since it holds in

case n=2.

 □

 92

Figure 37 Completed Candidate Region and Live Ranges

We identified four types on predicated live ranges – match, dominate, partition and

overlap –and two methods for interference modeling– “simple” and “complex”, and three

implementation strategies. The simple method models interferences of all “match”,

“dominate” and some “partition” live ranges precisely, and remaining live ranges

conservatively. The complex method models all live range precisely. In implementation

By
Py

Bx
Px

Bv
Pv

B3
P3

V=…;E=…;
 …=B;
C
C=…

B2
P2

B1
P1

 B4
 P4

B=…;
C=…;

B6
P6

B5
P5

B7
P7

 …=A Bz
Pz

Bu
Pu

V=…;E=…;
 …=B;

 V=V

 …=D
 …=E
C
C=…

 …=V
 …=C
C
C=…

A=…
V=…
C
C=…

 V=V

V=V
E=E

 93

strategy 1, only match and dominate live ranges are modeled precisely. Strategy 2 models

all simple live ranges, which include all “match”, “dominate” and some “partition” live

ranges, precisely, and strategy 3 models interferences of all live range precisely. Strategy

3 is equivalent to a PQS based implementation when predicated code is derived form

control-flow code. The rest of the section discusses a detailed example. Figure 37 shows

the snippet of a completed control flow graph with block predicates. Bu, Bv, Bx, By and

Bz are JS blocks inserted during completion. The candidate region for if-conversion

includes all blocks but B7, which is an exit block. Block 6 is the merge point for the

region. Shown are also six live ranges A, B, C, D, E and V. A is defined in the region, but

used outside. B and C are examples for “dominate” live range, D is used in the region and

escapes at the entry B1, E is a “partition” live range and V an “overlap” live range, which

has multiple definitions on a path that can reach a use.

Figure 39 shows the core predicated code (“hyperblock”) corresponding to the

superblock region in Figure 37. For the six live ranges their predicate sets are shown as

they are recorded in a backward traversal of the hyperblock. The definition of live range

A under predicate P4 dominates the exit at which A is live (Line 16, B7). Thus A is

tracked under P4 when it enters the predicated region. For live range B, the definition

predicate P1 dominates the use predicates P2 and P3. The same holds for live range C,

where P1 dominates the use predicate P6. Live range D has no definition. At the entry of

the region D becomes live under P0, the true predicate. E is an example for a partition

live range, but the use predicate P5 does not post-dominate the definition predicate P2. In

this case, a partition can be formed because the control flow graph has been completed

before if-conversion. The partition for E is (Pv, P3), where P2 dominates Pv and P5 post-

dominates all partition predicates.

Figure 38 Predicate Partition Graph for Figure 37

Root: 1P
Forward Partitions: 3|21 PPP → , PvPuP |2 → , PyPxP |4 → , PzPP |65 →
Backward Partitions: PvPP |34 → , PxPzP |5 → , PyPzP |7 →
Completed Partitions: PuPP |41 → , PyPP |51 → , 6|71 PPP →

 94

Figure 39 Predicate Sets for Live Ranges Figure 37 with Complex Tracking

Predicated Code
A B C D E V

1: (P1) B= {} {} {} {P4} {} {}
2: (P1) C= {} {P2, P3} {P7} {P4} {} {}
3: (P1) cmpu P7,P0=... {} {P2, P3} {P7} {P4} {} {}
4: (P1) cmpu P4,P5=... {} {P2, P3} {P7} {P4} {} {}
5: (P1) cmpu P2,P3=... {} {P2, P3} {P7} {P4} {} {}
6: (P2) V= {} {P2, P3} {P7} {P4} {} {}
7: (P3) =B {} {P2, P3} {P7} {P4} {} {Pz(Pv)}
8: (P2) E= {} {P2} {P7} {P4} {} {Pz(Pv)}
9: (P3) E= {} {P2} {P7} {P4} {Pv} {Pz(Pv)}

10: (P3) V= {} {P2} {P7} {P4} {Pv,P3} {Pz(Pv)}
11: (P2) =B {} {P2} {P7} {P4} {Pv,P3} {Pz(Pv,P3)}
12: (P4) cmpu Px,Py=... {} {} {P7} {P4} {Pv,P3} {Pz(Pv,P3)}
13: (P5) V= {} {} {P7} {P4} {Pv,P3} {Pz(Pv,P3)}
14: (P5) cmpu P6,Pz=... {} {} {P7} {P4} {Pv,P3} {Py, Pz(Pv,P3)}
15: (P5) A= {} {} {P7} {P4} {Pv,P3} {Py, Pz(Pv,P3)}
16: (P4) =E {P5} {} {P7} {P4} {Pv,P3} {Py, Pz(Pv,P3)}

 17: (P4) =D {P5} {} {P7} {P4} {} {Py, Pz(Pv,P3)}
18: (P5) br .b6 {P5} {} {P7} {} {} {Py, Pz(Pv,P3)}
19: (Pz) V=V {} {} {P7} {} {} {Py, Pz(Pv,P3)}
20: (P7) =C {} {} {P7} {} {} {Py, Pz}
21: (P7) =V {} {} {} {} {} {Py, Pz}

Predicate Sets For Variables

• A is a “dominate” live range. It is used in B6 under predicate P6. P5 (or B5) dominates P6
(or B6) and the definition under P5 is the start of the live range for A.

• B is a “dominate” live range with one definition and two uses.
• C is a “dominate” live range with one definition and one use.
• D has no definition inside the hyperblock. It is tracked under the qp of its use.
• E is a “partition” live range. The use does not post-dominate its definitions. E is partitioned

into a “dominate” and a “partition” live range, where the use in block B4 post-dominates the
definition in block B3 and the definition in the pseudo move E=E in block Bv. Liveness for
the partitioned live range is tracked under partition predicate Pv and P3. Since P2 dominates
Pv, the start of the live range for E is recognized at instruction 8.

• V is a “complex” live range, since the definition in B2 or B3 can overlap with the definition
in B5 on a path to the use in B7. The live range of V is split into two “dominate”, one
“partition” and one “complex” (with two definition) live range: The two “dominate” live
ranges stretch from B2-Bv and B5-Bz respectively, the partition live range is Bz-By-B7, and
the complex live range with two definitions is Bv-B3-By. In line 21 the two definitions
(from pseudo moves V=V) in By and Bz reach the use of V under P7. Thus liveness of V is
tracker under {Py, Pz}. In instruction 19, liveness under Pz is killed. The use in the same
(pseudo move) instruction is the end of the “complex” (sub-) live range of V. Since the use
does not post-dominate its reaching definitions, liveness is tracked under the use predicate
Pz, and the reaching definitions predicates Pv, P3. Instruction 13 kills liveness under Py,
since P5 dominates Py. Instruction 6 kills liveness under Pv, since P2 dominates Pv. Since
Pv is the “last” predicate under which V is live, instruction 6 is the start of the live range.

 95

Figure 40 Predicate Sets for Live Ranges in Figure 37 with PQS

The live range for V is another example for a complex live range, but – unlike E – it is

characterized that multiple definitions on one path reach the use in B6. In this case the

live range is first split by inserting an identity move into JS block Bz into two partition

Predicated Code
A B C D E V

1: (P1) B= {} {} {P7} {P4} {} {}
2: (P1) C= {} {P2, P3} {P7} {P4} {} {}
3: (P1) cmpu P7,P0=... {} {P2, P3} {P7} {P4} {} {}
4: (P1) cmpu P4,P5=... {} {P2, P3} {P7} {P4} {} {}
5: (P1) cmpu P2,P3=... {} {P2, P3} {P7} {P4} {} {}
6: (P2) V= {} {P2, P3} {P7} {P4} {} {}
7: (P3) =B {} {P2, P3} {P7} {P4} {} {Pv}
8: (P2) E= {} {P2} {P7} {P4} {} {Pv}
9: (P3) E= {} {P2} {P7} {P4} {Pv} {Pv}

10: (P3) V= {} {P2} {P7} {P4} {P4} {Pv}
11: (P2) =B {} {P2} {P7} {P4} {P4} {Py}
12: (P4) cmpu Px,Py=... {} {} {P7} {P4} {P4} {Py}
13: (P5) V= {} {} {P7} {P4} {P4} {Py}
14: (P5) cmpu P6,P7=... {} {} {P7} {P4} {P4} {P7}
15: (P5) A= {} {} {P7} {P4} {P4} {P7}
16: (P4) =E {P6} {} {P7} {P4} {P4} {P7}

 17: (P4) =D {P6} {} {P7} {P4} {} {P7}
18: (P5) br .b6 {P6} {} {P7} {} {} {P7}
19: (P7) =C {} {} {P7} {} {} {P7}
20: (P7) =V {} {} {} {} {} {P7}

Predicate Sets For Variables

• A is a “dominate” live range. It is used in B6 under predicate P6. P5 (or B5) dominates
P6 (or B6) and the definition under P5 is the start of the live range for A.

• B is a “dominate” live range with one definition and two uses.
• C is a “dominate” live range with one definition and one use.
• D has no definition inside the hyperblock. It is tracked under the qp of its use.
• E is a “partition” live range. The use does not post-dominate its definitions. At

instruction 9 is live at exit under predicate P4 and defined under predicate P3. Since
there is a partition P4=Pv|P3in the PPG, E becomes live at entry under Pv. In
instruction 8, E is defined under P2. Since P2 dominates Pv, instruction 8 is the start of
the live range of E.

• V is a “complex” live range. At instruction 13 it is defined under P5. Since Py is the
relative complement to P5 and P7 (the lowest common ancestor of P5 and P7 is P1,
and Py is not on any path from P1 to P5), V becomes live under Py at the entry of
instruction 13. At instruction 10, V is defined under P3. Since

 96

live ranges. The first live range is spanned by the definition predicates P4 and Pz, and the

use predicate P6. Since P6 does not post-dominate P4, the partition in Line 19 is {Py,

Pz}, where P4 dominates Py and P6 post-dominates both Py and Pz. The second live

range is spanned by the definition predicates P2 and P3, and the “pseudo” use in Pz.

Since Pz post-dominates neither P2 nor P3, the partition records both the use predicate

and the definition predicates. Only after all definitions have been seen, the live range is

no longer live under Pz (Line 4).

 97

7 Register Allocation for Speculated Code

IA-64 supports control- and data speculation to enable the compiler to speculatively hoist

a load and its dependent uses across a branch (control), a store (data) or both (control and

data). Compiler heuristics decide when speculation is beneficial. The compiler has to

prepare for the case of an exception or fault at a speculated load. It provides for mis-

speculation by generating recovery code, which may re-execute (at runtime) the

speculated dependence chain non-speculatively. Re-execution starts at the original

program point where the load would have been executed non-speculatively. The

challenge for the register allocator with respect to control speculation is correctness. In

data speculated code the allocator can reduce the interferences for the “tail” of some data

speculated live ranges.

7.1 Control Speculation

Itanium provides a speculative load (ld.s) and a validating check speculation (chk.s)

instruction for control speculation (breaking the branch barrier). An ld.s causes a

deferred exception token being set in the destination register of the speculated load in

case of an exception or fault, e.g. in the case of a page fault. For integer registers, the

NaT (= Not a Thing) is encoded in an extra bit (“NaT bit”) for the register. For floating-

point register, the deferred exception token is encoded as a special value in the register.

We focus on the integer case, which—for the register allocator—is more challenging.

The Itanium processor propagates NaTs to the destination register of an instruction when

any source register has its NaT bit set. If a NaT bit is set for the source register of the

chk.s, execution branches to recovery code, which re-executes a non-speculative instance

of the speculative load and all speculated instructions of its dependence chain, and

branches back to the bundle after the chk.s. Non-speculative re-execution of the

speculated code at the place where the code would have been executed without

speculation ensures program correctness in case of a mis-speculation. Example 7 shows

an example for control speculation and two ways of generating recovery code. The two

loads in lines 7 and 8 are control speculated across the branch in line 6. The “add” in line

9, which is flow dependent on the load in line 8, is speculated also. The first method for

 98

generating recovery code duplicates the dependence chain for the speculative load and all

its speculated, dependent instructions. The speculated load becomes non-speculated in the

recovery code. The second method shows no speculative load in the recovery code. This

method saves one chk.s and code size in the recovery code sections. Note that in the

optimized recovery code sequence the ld.s destination and the chk.s use don’t match: the

chk.s will fire when the NaT bit for V9 is set. This is the case when V9 inherits the NaT

bit from V7 or V8. In other words, NaT bits may be propagated along the dependence

chain originating with a speculated load ld.s.

 a. Original Code b. Speculated Code c. Optimized Recovery Code

 1:
 2: ld8.s V7=[V6] ld8.s V7=[V6]
 3: ld8.s V8=[V7] ld8.s V8=[V7]
 4: add V5=V4,V3 add V5=V4,V3;; add V5=V4,V3;;
 5: add V9=V9,V8 add V9=V9,V8
 6: br cont br cont br cont
 7: ld8 V7=[V6] chk.s V7,rec1
 8: ld8 V8=[V7];; r1: chk.s V8,rec2 chk.s V9,rec1
 9: add V9=V9,V8
10:cont: ... cont: ... cont: ...
11: rec1: ld8 V7=[V6] rec1: ld8 V7=[V6]
12: ld8.s V8=[V7];; ld8 V8=[V7];;
13: add V9=V9,V8 add V9=V9,V8
14: br r1 br cont
15: rec2: ld8 V8=[V7];;
16: add V9=V9,V8
17: br cont

 Example 7 Control Speculation and Two M ethods of Recovery Code Generation

7.1.1 NaT Propagation and Spill Code

The Itanium processor propagates NaTs to the destination register of an instruction when

any source register has its NaT bit set. The compiler has to model NaT propagation of the

processor to avoid NaT consumption faults. A NaT consumption fault occurs, for

example, when the source register of a regular store has the NaT bit set. To avoid the

NaT consumption fault, the Itanium ISA supports a special store instruction, st8.spill,

which saves the NaT bit of the source register in the 64bit AR.UNAT application register

and does not cause a NaT consumption fault. In Example 7 b. and c., a NaT bit may be

set (at run-time) for the physical registers assigned to V7, V8 and V9: it could be set for

 99

V7 at the speculated load in line 2 and propagate to V8 and V9. Or the NaT bit of the

register assigned to V8 could be set at the speculated load in line 3 and propagate to (the

assigned register of) V9 at the “add” in line 5. A set NaT bit is cleared when the

speculated dependence chain that produces the NaT gets (re-)executed non-speculatively

in recovery code. Modeling processor NaT propagation is crucial for register spilling to

avoid possible NaT consumption faults. At a spill the register allocator must know

whether or not the NaT bit of the register to be spilled could be set. The modeling can be

done in a separate data flow analysis pass for speculated loads or in the code scheduler,

which is responsible for generating the recovery code. As a result, the code generator

marks each instruction (or even each operand per instruction) that could have a

destination register with a set NaT bit.

Figure 41 Spill Addresses and AR.UNAT Register

The rest of this section assumes that a register may have its NaT bit set. When such a

register is spilled, the code generator has to use a special spill/fill instruction

(st8.spill/ld8.fill), which save/restore the registers NaT bit to/from the AR.UNAT

application register. The bit location in the AR.UNAT is determined by 6 significant bits

(bits 8:3, see manual [13]) of the spill (=stack memory) address. To track the AR.UNAT

bit vs. memory address correspondence, the register allocator has to allocate contiguous

memory in the local stack frame to the spilled speculated live ranges (Figure 41). Spilled

Content Address Bit
0 1 63

… …
… …

ar.unat 0x208
Spill N65 0x200
Spill N64 63

… …

Spill N3 0x10 2
Spill N2 0x8 1
Spill N1 0x0 0

Stack Memory
 AR.UNAT Register

…

• N1-N65 are interfering live
ranges

• At run-time the NaT bit of
the registers they are
assigned to may be set

• If spilled, N1-N64 must be
spilled to consecutive
memory addresses, since the
memory address determines
the bit in the AR.UNAT
register that saves the NaT
bit.

• For N65, there is no bit left in
the AR.UNAT. In this case
the compiler saves the NaT
bit for N65 on the memory
stack also.

 100

live ranges that don't interfere may share the same spill address. Spilled live ranges that

interfere can neither spill to the same address nor to addresses that map to the same bit in

the AR.UNAT, which is a 64-bit register and can hold 64 (NaT) bits that are live

simultaneously. When more than 64 speculated live ranges are live simultaneously, the

AR.UNAT would overflow. Perhaps the best way to think about spilling of a speculated

live range (its assigned register may have its NaT bit set) is spilling of a pair (value,

NaT). Both components of the pair can have interferences. When more than 64

speculated live ranges interfere simultaneously and have to be spilled, 64 spill addresses

are not enough. This means, the AR.UNAT register would overflow and could not hold

all corresponding NaT bits. In this case the allocator can use the following “naïve”

spill/fill scheme for speculated live ranges (Figure 42).

Figure 42 Spill/Fill Code in case of AR.UNAT overflow

When the AR.UNAT overflows the allocator saves the AR.UNAT in a general

register, spills the (register of the) speculated live range, then spills the AR.UNAT and

finally restores the original AR.UNAT. Filling is reversing the spills: after saving the

original AR.UNAT in a general register, it loads the spilled AR.UNAT, then the spilled

live range, and finally restores the original AR.UNAT. The sequences ensure that the

Spill code sequence in case of AR.UNAT overflow

mov rs=ar.unat // save ar.unat register
st8.spill [rm]=rx, 8;; // rm = rm + 8
 // if rx has NaT bit set,

// it is stored in the ar.unat
st8[rm]=rs // save ar.unat for later fill
mov ar.unat=rs;; // restore ar.unat register

Fill code sequence in case of AR.UNAT overflow

mov rs=ar.unat // save ar.unat register
ld8 rh=[rm],-8;; // rm = rm – 8.
mov ar.unat=rh // ar.unat now contains NaT bit for

// candidate to be loaded in rx
ld8.fill rx=[rm]
mov ar.unat=rs; // restore ar.unat register.

 101

NaT bit of the spilled (filled) live range is in the spilled (filled) AR.UNAT (Figure 42). In

this naïve approach the entire AR.UNAT register is spilled to save and restore one NaT

bit. Spilling of the AR.UNAT register could be avoided, if the compiler ensured that no

more than 64 live ranges with a potentially set NaT bit interfere, but control speculation

in the compiler is register pressure unaware.

While general NaT propagation enables more efficient recovery code, it can result in

many spills of the AR.UNAT register, since the NaT bit must be potentially preserved for

any symbolic register in the dependence chain originating at an ld.s. If such a symbolic

register is spilled, its NaT must be available at a fill. If the compiler requires that the ld.s

destination and the chk.s must match, modeling NaT propagation becomes simpler. Then

only the NaT bit of a speculated load destination must be preserved. When any other

speculated live range (in the dependence chain of an ld.s destination) is spilled, a st8.spill

must still be used to avoid a NaT consumption fault at any program point where its NaT

may be set. But the NaT bit does not need to be preserved and a regular load—rather than

an ld8.fill—can be used to load the value. This means that for most speculated live ranges

the NaT bit value can be ignored and does not need to be preserved (in the case of

spilling) in the AR.UNAT application register. The next section describes the algorithm

that exploits “matching” ld.s and chk.s.

7.1.2 An advanced NaT Propagation Algorithm

Modeling general NaT propagation in the compiler is challenging. It is conceivable to

develop a predicate-aware NaT propagation algorithm based on available NaT and live

NaT data flow algorithms, similar to available variable and live variable algorithms used

for live range approximation. But two observations give a simpler method for NaT

modeling. First, under the assumption that each ld.s destination has a matching chk.s

source (in other words, they are the same virtual or symbolic register), the compiler does

not need to model the NaT propagation of the processor entirely. Instead, it can model

NaT propagation only for the destination registers of ld.s. Second, the compiler can

partition the bits of the AR.UNAT application register into two classes: preserved and

scratch. A preserved bit corresponds either to the NaT bit of a static preserved general

register (r4, r5, r6 or r7 in Figure 4, p.22) or to the NaT bit of a destination register in a

 102

speculated load. The scratch bits correspond to any other register that may have its NaT

bit set, like a symbolic registers in the dependence chain of a speculated load. Ld.s

destinations are the only NaT producers. So only for them (and the used preserved

registers r4-r7, which are spilled at function entry and filled at function exit(s)) the NaT

bit must be preserved in case of a spill and restored at a fill. To filter the symbolic

registers that need only a scratch NaT bits it is sufficient to mark instructions in the

dependence chain from the ld.s to the matching chk.s. This can be done either in the

scheduler or the chain can be recomputed in a separate phase before register allocation.

When a symbolic register in a marked instruction is spilled, a st8.spill must be used. In

case of a fill, only when the symbolic register is the destination of a NaT producer (ld.s)

and its NaT bit could be checked by a following chk.s, an ld8.fill must be used. To find

all places where an ld8.fill must be used we introduce the concept of a live NaT. This is a

sub-live range of a ld.s destination where the NaT could be set. Live NaTs start at ld.s

and end at chk.s. A live NaT analysis similar to a live variable analysis gives all program

points of the live NaT range. We note that the compiler can use a pseudo ld.s and chk.s

instructions to model general NaT propagation under the restriction that ld.s must have a

matching chk.s. The pseudo chk.s instruction marks the end of one NaT range and the

pseudo ld.s instruction the beginning of another. Although the actual ld.s and chk.s

mismatch like V7 and V9 in Example 7, the pseudo instructions partition the speculated

live ranges so that the live NaT analysis is applicable.

Figure 43 illustrates the effect of the algorithm and choices for stack memory layout

for a hypothetical 5bit AR.UNAT register. For illustration we assume one preserved

register r4, which is spilled and filled at function entry and exit respectively, 10 “scratch”

spills s1, …, s10 for candidates that may set a NaT and two interfering ld.s destinations

l1 and l2. Assume s1,…, s10 interfere with l1 and l2. In layout 1 r4 and l1 are associated

with AR.UNAT bit 4 and 3 respectively. Bit 4 cannot be overwritten, since it must be

preserved for the entire function. Thus no other st8.spill can go to a memory address that

would write the NaT of its source register to this bit. For bit 3 the situation is different: a

non-interfering candidate can be written to bit 3 and even stored at the same memory

address, but an interfering live range must ensure not to destroy bit 3. Therefore the

 103

memory address corresponding to bit 3 can be used when the allocator determines that

there is no conflict with l1.

Figure 43 5-bit AR.UNAT Register and Stack Memory Layout Options

The scratch spills interfere, but they can share the same NaT bit (bit 0 – bit 2), since

for them the NaT bit does not need to be preserved. It only needs to be saved to avoid a

Content Address Bit Content Address Bit

0 1 2 3 4 — 0xc0 4 0 1 2 3 4
— 0xb8 3
— 0xb0 2

AR.UNAT 0xa8 s1 0xa8 1
l2 0xa0 s2 0xa0 0
— 0x98 4 — 0x98 4
— 0x90 3 — 0x90 3
— 0x88 2 — 0x88 2
— 0x80 1 s3 0x80 1
s1 0x78 0 s4 0x78 0
— 0x70 4 — 0x70 4
— 0x68 3 — 0x68 3
s2 0x60 2 — 0x60 2
s3 0x58 1 s5 0x58 1
s4 0x50 0 s6 0x50 0
— 0x48 4 — 0x48 4
— 0x40 3 — 0x40 3
s5 0x38 2 — 0x38 2
s6 0x30 1 s7 0x30 1
s7 0x28 0 s8 0x28 0
r4 0x20 4 r4 0x20 4
l1 0x18 3 l1 0x18 3
s8 0x10 2 l2 0x10 2
s9 0x8 1 s9 0x8 1

s10 0x0 0 s10 0x0 0

Layout 2: No AR.UNAT spillsLayout 1: AR.UNAT spills possible

5-bit AR.UNAT

Bits 0-1: scratch
Bits 2-4: preserved

Stack Memory

Memory and AR.UNAT Register

Bits 3-4: preserved

Memory and AR.UNAT Register

Stack Memory
5-bit AR.UNAT

Bits 0-2: scratch

 104

NaT consumption fault. To save the NaT bit of l2, the entire AR.UNAT register is spilled

as in the conservative method. But, unlike for the conservative method, for s1 to s7 the

AR.UNAT register is not stored, which saves 7 spill/fills and 14 AR.UNAT moves. In the

second layout one more AR.UNAT bit is preserved. This saves the AR.UNAT spill (and

2 AR.UNAT moves) for l2 at the expense of larger stack memory.

In layout 2 three bits (3, 4 and 5) in the AR.UNAT are used as preserved bits. In this

scenario l1, l2 and r4 can preserve their NaTs. Since there are only two scratch bits,

which s1,…,s10 can use, the memory stack increases compared to layout1, but spills of

the AR.UNAT can be avoided.

The algorithm applies also to a live range that combines control-and data speculation.

Data speculated live ranges have their own unique characteristics that can be exploited

with special register allocation techniques.

7.2 Data Speculation

IA-64 provides an advanced load (ld.a) and two advanced load check (chk.a, ld.c)

instructions for data speculation. This enables the code generator to schedule a load

across a potentially overlapping store (breaking the store barrier). At execution, an

advanced load records information about its physical destination register, memory

address and data size in the Advanced Load Address Table (ALAT) [13]. If a subsequent

store overlaps, then the hardware invalidates the corresponding ALAT entry to indicate

the collision. As with control speculation, the compiler generates recovery code that will

execute only in case speculation fails (Example 8). There is something peculiar about

data speculated live range, which the register allocator can exploit to reduce its

interferences. Data speculated live ranges that end in a chk.a have a range where

interferences with non-alat live ranges can be ignored. Since the chk.a only checks the

register number, but not the value in the alat, the chk.a destination register can be shared

with a non-data speculated candidate in a special circumstance. If the non-speculated

candidate has a live range that is contained entirely in the range from the chk.a to the

penultimate use of the data speculated live range, the interferences of the two live ranges

can be ignored and both candidates be assigned the same register. We call the section of a

data speculated live range from the ending chk.a to its penultimate use the ALAT shadow.

 105

Rather than building a containment graph (Cooper and Simpson [24]), the Itanium

compiler associates an shadow ALAT live range to each data speculated live range

ending in a chk.a. It uses pseudo instructions for modeling the shadow, i.e. the live range

section from the chk.a (which is the last use and ends the live range) to its penultimate

use (if it exits). In the shadow all interferences with regular live ranges (not data

speculated) get ignored. Interference with another data speculated candidate must be

taken into account, since two overlapping data speculated live ranges cannot share the

same register. Example 8 gives an illustration. Live range V4 is data speculated. The

load in line 5 is hoisted above the store in line 4. The dependent add in line 6 is

speculated also. We assume there is no use of V4 after the chk.a, so the live range for

candidate V4 ends at the chk.a. A shadow live range V4’ modeling the ALAT shadow

for V4 is introduced ranging from the chk.a to the penultimate use at the “add” in line 2.

Example 8 Data Speculation with Recovery Code and Alat Live Range

The modeling of the ALAT shadow is accomplishing by the use of pseudo instructions.

Again, Example 8 shows the pseudo instructions “puse” and “pchk”. The live range for

candidate V4 has two components: First, it starts at the advanced load in line 1 and ends

at the chk.a in line 5. Second, the non-speculated dependence chain in the recovery code

from line 8 to line 9. The shadow live range V4’ ranges from line 2 (“puse”) to line 5

(“pchk”).

 Original Code Data Speculated Code Pseudo Code LR of V4

1: ld8.a V4=[V1]
2: add V5=V4,V6 puse V4’
3: ...
4: st4 [V10]=V11 st4 [V10]=V11
5: ld8 V4=[V1] chk.a V4, rec pchk V4’
6: add V5=V4,V6 cont: ...
7: ...
8: rec: ld8 V4=[V1]
9: add V5=V4,V6
10: br cont

 106

8 Scalable Register Allocation

A coloring allocator is usually a fast and efficient compiler phase. It can cause a compile

time problem because of memory consumption due to a large number of candidates. To

address the memory problem multiple strategies can be employed. This section discusses

the pros and cons of these methods, and proposes scalable register allocation, which can

solve the allocation problem in general for an arbitrary set of register candidates. Using a

scalable allocation scheme, coloring allocators can handle fast and efficiently any large-

size allocation problem.

The register allocator in the Intel Itanium compiler supports a variety of allocation

strategies:

1. Region based allocation

a. This is the default strategy in the compiler. A region is either a loop or

outer acyclic region.

2. Conversion of local candidates to global candidates

a. The register candidates consist of local and global candidates. For local

candidates all references are within a basic block. All locals are numbered

consecutively. For example, when the first basic block has local virtual

registers v1-v10, the first local in the next block will be v11. When the

allocator recognizes that the number of locals exceeds an internal

threshold for the entire control flow graph, it will hash locals to global

virtual registers effectively reducing the overall number of register

candidates. Hashing is interference agnostic, but locals in one basic block

cannot hash to the same (new) global. Only locals from different basic

block can hash to the same global. The method works since the number of

locals per basic block is limited to a few hundred candidates. Therefore

the thousands of locals in the entire routine can be hashed to relatively few

new global candidates at the cost of extra interference: the interferences of

a hashed global variable are the union of all interferences of the locals that

have been hashed to it.

 107

3. Basic block allocation only

a. In this approach the candidates are allocated per basic block. Global

virtual registers are always spilled at basic block boundaries. No dataflow

analysis is employed. This approach can be seen a simple variant of a

region based allocator, where the regions are simply basic blocks.

All methods can reduce memory usage and compile time, but they have disadvantages

as well. Region-based methods rely on global dataflow analysis, which itself can cause

compile time problems. These methods also have the cost of maintaining global

information necessary to reconcile allocations in different regions at the region

boundaries. In case of loop based region allocators, they may not be able to handle large

routines that have no loops. In the case of basic block allocators that spill global

candidates at block boundaries they can cause huge performance regressions. Hashing

local candidates and replacing them by global virtual registers reduces the number of

register candidates and therefore the size of the interference graph, but is useful only

when local candidates by far outnumber global candidates.

Functions generated in the framework of large server applications may contain

hundreds of thousands of global register candidates in a single, loop-free procedure and

expose the memory problem. Among the methods above, only the third method can be

used to compile the application in reasonable compile time, but at a potentially big

performance cost. This thesis proposes scalable coloring allocation that can be applied to

procedures with any number of global variables.

The scalable register allocator is based on the observations that a coloring allocator

solves small to medium sized allocation problems in almost linear time and space.

Scalability is then achieved by a two step process. First, the scalable allocation partitions

the set of register candidates directly. Second, it runs the coloring allocator on each set.

Effectively it partitions the original allocation space into many small subspaces that can

be solved quickly. Rather than solving the original allocation problem for all candidates

at once, the algorithm avoids exponential compile time increase by partitioning the

candidates into smaller subsets. Using the ideas in this chapter we show that a coloring

allocator can be parallelized and allocate independent (disjoint) sets of variables in

parallel.

 108

Figure 44 Serial and Parallel Scalable Register Allocation

Figure 44 shows the high level view of the scalable allocator. It may use techniques

like live range splitting and pre-materialization in a preparation phase. This phase may

also renumber the virtual register candidates in case of a hierarchical allocator that uses

virtual rather than physical colors. The hierarchical allocator will be discussed in more

detail later in this section. After renumbering a selection phase uses filters to partition the

candidates are partitioned. There are many possible choices for a filter. Some specific

examples for a filter are:

• Select all candidates of same type, e.g. all floating point or all integer candidates.

This specific filter has been implemented in the Intel compiler. Floating-point

Input: },....1{ nSSS = , a set of sets of candidates

procedure scalable_serial_allocation()

foreach iS in S

 Allocate(iS);

endfe
AllocSpillMemory();

endproc

procedure scalable_parallel_allocation()

- Partition physical or virtual target registers:

},...,1{ jRRR = .

- Partition candidate set into sets of j subsets, where j
is the number of register partitions:

}...,)1(,...,2...,,1,,...,1{ njSjnSjSjSjSSS −+=

while ∅≠S do

 select worklist },..,{
1 jxSxSW = ;

 PAllocate),(RW ;

 WSS \= ;

od;
AllocSpillMemory();

endproc

 109

candidates must be either allocated first or together with integer candidates, since

spilling of a floating-point candidate introduces new integer candidates.

• Select candidates referenced in certain regions, unless they have been selected

already. For example, all candidates in innermost loops can be picked. The

difference to a region-based allocator is that the scalable allocator would assign

the same register to a candidate across the entire routine. This is not necessarily so

for a region-based allocator. It may assign different registers to the same

candidate in different regions. The assignment is then reconciled (by adding

reconciliation code, i.e. mov, store or load) at region boundaries.

• Select candidates based on profile data. When basic block profile data is

available, one choice is to pick “hot” candidates first, where hotness is determined

by a heuristic threshold based of reference frequencies of the candidates. All hot

candidates are allocated first, and if a candidate is assigned a register, the

assignment -unlike in a region-based allocator- holds in the entire routine.

Selection by hotness is an idea that goes back to the Chow allocator (at least).

The outcome of the selection phase is a set S of n partitions nSS ,...,1 . Each partition is

a set of candidates. The number of candidates per partition can vary. They don’t have to

be the same in each partition. The key is to control the number of candidates in each

partition so the coloring allocator can solve the allocation problem for the partition

efficiently. In the result section we will analyze a simple partition scheme where each

partition contains N/n candidates, where N is the total number of candidates and n the

number of partitions.

In the serial version the register allocator is invoked for each set of candidates. The

full register set available (except for reserved registers and spill registers) is used for

allocation. After allocating the first partition, all candidates are mapped to physical

registers. Subsequent allocations will not change physical registers and take interferences

with physical registers into account. Internally access functions in the allocator and

dataflow routines check that a specific candidate is in the selected candidate set.

Candidates that are not in the set get ignored. Candidates in the set interfere only with

each other or physical registers. Each invocation of the register allocator uses symbolic

 110

stack memory accesses for spill code. Therefore the memory stack must be finalized after

the last set of candidates has been allocated, because only after the last allocation all stack

references can be resolved. In Figure 45 is an example for a serial scalable allocator

assuming eight physical register r1, …, r8. In the example, two sets have been selected

and the partitions are:

}}9999,...,5000{},4999,2,1{{},{ 21 VVVVVSSS ==

The first instance of the allocator assigns e.g. r1 and r2 to V1 and V2 respectively, r8 to

V9999 and spills V1000. When the allocator is invoked for the second partition, V9999

e.g. is assigned r8, since V9999 does not interfere with r8. After the second and final

partition, spill addresses can be allocated in the memory stack.

Figure 45 Example for Serial Scalable Allocator for registers {r1, …,r8}

The parallel version of the scalable allocator is configurable depending on the number

of candidates and processors/cores available. Also, parallelization can be achieved in

many ways. For example, the physical register set can be partitioned },...,{ 1 nRRR = into

n sets. Similar the set of candidates can be partitioned into n or a multiple of n sets:

},..,,,...,{ 11 knnn SSSSS += . In this case registers in iR get assigned to candidates in

nkinii SSS)1(,...,, −++ . Partitioning ensures that the candidates and the physical registers are

compatible. This means, for example, that a set iS of floating point candidates is

allocated to a partition of physical floating point registers iR . In Figure 46 a simple

register file with general registers r1,..,r4 and floating-point register f1, f2 is partitioned

into three sets. Any filter as described above may be used to partition the candidates.

Candidates Result
V1 V1 r1 r1 r1 r1
V2 V2 r2 r2 r2 r2
… … … … … …
V1000 V1000 spill spill spill spill 16
… …
V4999 V4999 r8 r8 r8 r8
V5000 V5000 ignore V5000 spill spill 24
… … … … …
V9999 V9999 ignore V9999 r8 r8

1st Allocation 2nd Allocation

 111

Global candidates V1-V10 can be assigned r1 or r2, V11-V100 can be assigned r3 or r4,

and V101-V120 and local candidates, v1- v9, can be assigned f1 or f2. The PAllocate()

routine will then span three allocations),(),,(2211 RSRS and),(33 RS in parallel.

Figure 46 Example for Partition of Register File and Candidates

Partitioning the physical register file could be too restrictive. Since relatively few

physical registers are available, either the number of partition sets or (and) the number of

registers available per partition set must be restricted. The number of partition sets is an

upper limit to the parallelism available for an allocation problem. Partitioning could also

result in avoidable spill code. Since the registers in the partition sets must be disjoint, a

single partition has relatively few registers available for assignment. But these restrictions

can be worked around by staging the allocation. A more general method is using virtual

registers for each partition in a first allocation step. This reduces the size of the allocation

problem, unless the interference graph is a complete graph. In the second and final step,

the allocation algorithm assigns physical registers to all candidates. The point of this two

step (or hierarchical) allocation scheme is that in the first step no physical register is

committed and the number of candidates is reduced by virtual allocation. The original

interference graph does not have to be built. In this scheme no limit of virtual target

registers is assumed. A suitable set of virtual colors may be chosen for each candidate set

and all virtual target registers can be assumed to be disjoint enabling parallel incarnations

of the allocator. Figure 48 illustrates the concept. The candidates are split into three

integer sets and one floating-point set (Figure 47). They are allocated in parallel to virtual

target registers. In the example, there are 768 integer and 128 floating point virtual target

registers. Therefore, after the parallel allocation, the allocation problem has been reduced

to 896 candidates. The target size of the virtual register partition can be dynamically

chosen so that spill code in the parallel step can be avoided. This is evident from the

fundamental inequality (Equation 4, p. 54): for a candidate partition the maximal number

}}2,1{},4,3{},2,1{{},,{ 321 ffrrrrRRRR ==

}}9,..,1,120,...,101{},100,...,11{},10,...,1{{},,{ 321 vvVVVVVVSSSS ==

 112

M of neighbors in the interference graph can be determined for the set before coloring.

Forming a set of M+1 virtual target register is then sufficient to color the set.

Figure 47 Example for Virtual Register and Candidate Partitions

Figure 48 3-Way Parallel Scalable Allocator with Staged Allocation

There can be more partitions in the set S of candidates than in the set R of registers, but

the number of partitions in R is the maximal number of parallel allocations. After all

candidate sets have been allocated in parallel, the virtual colors get allocated to physical

registers in a final round of allocation, but on a much smaller problem space. Like in the

serial configuration the parallel scalable allocator must take care of the memory stack

layout in a post-allocation phase. It is conceivable to allow multiple stages of allocation

with virtual target registers.

Candidates 1st Allocation: Parallel Result

V1 ivr10 ivr10 r1 r1
V2 ivr30 ivr30 spill r2
… … … … …
V750000 ivr10 ivr10 r1 spill 16

fvr12 f5
V75000 fvr12 fvr100 f6 r8
… fvr100 … … …

fvr12 spill spill24
V150000 fvr12 ivr257 r1 r8

ivr258 r8
V150001 ivr257 … … r8
… ivr258 ivr500 spill spill 32

…
V225000 ivr500

 2nd Allocation: Serial

 }}512,...,257{},256,...,1{},256,...,1{{},,{ 321 ivrivrfvrfvrivrivrRRRR ==

 }}225000,....150001{},150000,...,75001{},75000,...,1{{},,{ 321 VVVVVVSSSS ==

 113

In summary the scalable allocator partitions the set of candidates. Partitioning can as

simple as dividing the candidates (of one class, e.g. integer or floating-point) into equal

subsets. Since the candidates are partitioned before allocation, data flow analysis runs

only for the selected subset (and physical registers). In the serial allocation scheme the

allocator is invoked one subset of a time. The input to invocation N+1 is the output of

invocation N. Invocation takes into account interferences with physical registers that have

been assigned in previous invocations. In the parallel allocation scheme the physical

registers are partitioned also. Allocation can be run for subsets of candidates. There can

be as many allocations run in parallel as there are partitions of the physical registers. In

the parallel scheme interferences between subsets of candidates can be ignored since they

are guaranteed to get assigned different registers. In either scheme (serial or parallel) a

hierarchical allocator can use virtual registers to avoid spills at the first stage of allocation

and reduce the number of candidates.

 114

9 Related Work

This thesis describes extensions of a coloring allocator covering features provided by the

Itanium architecture like dynamic register stack, control- and data speculation and

predicated code. The idea of dynamically resizing the register stack is in the original IA-

64 design, and can be seen in the resize semantics of the alloc instruction (Intel manuals

 [42]). The first description of compiler algorithms exploiting the semantics of the alloc

instruction and applying it to general regions is Hoflehner and Pierce [38]. Douillet et al.

 [27] evaluated the idea in the ORC compiler on paths with high register pressure, but they

measured negative results on six CINT2000 benchmarks: although they saved RSE

traffic, they measured a slowdown of 27.34% in the geomean and suggested the cost of

the alloc instruction is responsible for it. Other papers come to different conclusions.

Settle et al. [69] apply multiple alloc to call sites and show static improves, although the

run-time of CPU2000 benchmarks did not improve for their prototype implementation in

the Intel Itanium compiler. For the production version of the algorithm Hoflehner et al.

 [39] report a 1% speed-up on Oracle TPC-C. This thesis gives a review of this algorithm

and shows results for an improved version on the CPU2006 benchmark suite. The gains

for this suite are still at about 1%, but this has to be seen in perspective. Overall the

performance cost of RSE traffic is much less than 10% (Desai et al. [26]), so a 1%

performance run-time performance gain is from reducing the dynamic RSE traffic by

more than 10%. Yang et al. [78] take an interprocedural approach, which they call the

“quota assignment problem”. The observation is that when RSE traffic kicks in for the

function on the call stack, it might be cheaper by actually spilling some register in the

compiler and reducing the stack frame size. In this form it is somewhat reminiscent of

Chow’s shrink-wrapping approach [21]. Yang et al. report improvements from their

interprocedural approach on two CINT2000 benchmarks, perlbmk (13%) and crafty

(3.7%). Their numbers are for the ORC compiler, for which they report very high RSE

traffic number compared to the Intel Itanium production compiler [26]). They don’t

compare their method with a multiple alloc implementation for call sites, which might

have given them performance gains at a smaller implementation cost. Weldon et al. [75]

 115

is studies the effectiveness of the RSE and proposes hardware mechanisms to reduce RSE

spills and fill.

Register allocation for speculated code seems to be neglected in literature. The focus

there is on headroom studies for performance gains from speculation (e.g. Wu et al. [77])

and general frameworks to handle recovery code (e.g. Lin et al. [53]). One major purpose

of these papers is to expose speculation at a higher level IR, pass it on to lower level IR

and show how classical optimizations like PRE can exploit it. On the other hand, this

thesis shows how to extend a coloring allocator to handle control- and data speculated

code effectively. Our concern about control speculation is program correctness. In

particular the compiler needs to generate code that cannot cause a NaT consumption fault

at run-time. With respect to data speculation, this thesis describes how the allocator can

reduce interferences for data speculated live ranges that end in chk.a and have a

penultimate use. 4 This idea was also mentioned in Bharadwaj et al. [9], but not described

in detail.

There is a rich body of literature covering predication and representing predicate

relations. The IMPACT compiler uses the Predicate Hierarchy Graph (PHG) (Mahlke et

al. [56]). For each definition of a predicate the PHG tracks the predicates that guard the

definition. It can also handle basic Boolean expressions and is applied to analyze

predicated code of a hyperblock. A hyperblock is a predicated superblock, which is an

acyclic single entry multiple exit region in a control flow graph. The PHG is mainly used

to derive predicate disjointness. Rather than applying the PHG for predicate-aware

dataflow analysis, the IMPACT compiler uses reverse if-conversion (Warter et al. [74])

to convert predicated code to control flow. On this graph it performs classical data flow

analysis. A more sophisticated approach than the PHG is the predicate query system

(PQS), which is based on the predicate partition graph (PPG). For PQS the key references

are Johnson and Schlansker [45] and Gillies et al. [31]. Johnson and Schlansker [45]

focus on the analysis of predicated code. They model predicate relations in terms of

relations between execution sets and introduce the predicate partition graph to answer

queries about predicate relations. PQS can determine accurately predicate relations that

4 If a live range ends is chk.a but has no penultimate use, an ld.c (load check) should have been used
instead. But IA-64 architecture does not require the use an ld.c.

 116

can be expressed as logical partitions. Two predicates P2 and P3 form a predicate

partition P1 when P1 is the union of P2 and P3, and P2 and P3 cannot both be true

simultaneously (=at the same program point). In their paper Johnson and Schlansker [45]

show how to build the PPG starting from predicated code, give pseudo-code for the PQS

queries-including lub_sum and lub_diff (see Appendix 12.3, p.141) and apply their

system for predicate-aware live variable analysis. But their paper has no experimental

evaluation of their method. Gillies et al. [31] can be seen as the follow up to Johnson and

Schlansker [40]. Their paper shows how to construct the predicate partition graph from

the control-flow graph and discusses in some detail predicate-aware live variable analysis

and predicate-aware interference construction. They show that predicate-aware allocation

reduces register pressure for predicated code statically between 20% -70% on 23

procedures picked from the SPEC92 benchmark suite. Their paper has no run-time data.

In preparation of PPG construction they add basic blocks (JS-blocks) on critical edges,

but they only claim to so to “simplify the creation of partitions” (p.118). We showed that

the blocks increase the accuracy of predicated analysis (cf. discussion of partition and

overlap live ranges in Chapter 6.3, p.83). Gillies et al. [31] also discuss the start of a live

range problem (see Figure 15) and mention a case where predicate-aware data flow must

be conservative across back edges, which is similar to our example in Figure 28. Since

PQS bases analysis can determine the start of a live range, PQS papers do not discusses

predicate-aware available variable analysis. In the classical case (= no predication) the

purpose of available variable analysis is determining the start of a live range. For acyclic,

if-converted regions predicate partitions are sufficient to derive this information. Our

approach is close to Gillies in the sense that we assume predicated code is derived from

compiler generated control flow graphs. But rather than focusing on the predicate

analysis system, we ask the basic question of what kind of live ranges exist and what

information is necessary to model their interferences in the presence of predicated code.

We identified four types on predicated live ranges – match, dominate, partition and

overlap –and two methods for interference modeling– “simple” and “complex”, and three

implementation strategies. The simple method models interferences of all “match”,

“dominate” and some “partition” live ranges precisely, and remaining live ranges

conservatively (Theorem 6-1). The complex method models all live range precisely

 117

(Theorem 6-2). In implementation strategy 1, only match and dominate live ranges are

modeled precisely. We show that this method gives run-time performance compared to

PQS at lower compile-time and-implicitly-lower implementation and maintenance cost.

Strategy 2 models all simple live ranges, which include all “match”, “dominate” and

some “partition” live ranges, precisely, and strategy 3 models interferences of all live

range precisely. Strategy 3 is equivalent to a PQS based implementation when predicated

code is derived form control-flow code. We don’t build extra structure like a PPG and use

“classical” techniques only to handle different classes of predicated live ranges. But PQS

based allocator, which includes the PPG, is used as a reference implementation to show

the effectiveness of our method. Our result depends on two parameters: First, the if-

converter is conservative and if-converted regions are relatively simple. This may give a

bias to “match” and “dominate” live ranges. Second, an increase in register due to

handling “partition” and “overlaps” live ranges conservatively (by allowing false

interferences for them) can be tolerated by the (relatively to other architecture) large

register file of IA-64. When the two assumptions are not valid, the choices are to

implement strategy 2 or strategy 3 or a scheme like PQS. The implementer has also the

option to pick and choose different allocation strategies for different function or even

region at compile-time. The core of Chapter 6 that discusses register allocation for

predicated code can be found also in Hoflehner [40].

More subtle predicate analysis methods that derive accurate predicate relations for

already predicated code have been developed also. Eichenberger [28] represents logical

predicate relations, so called P-facts, and determines predicate relations, in particular

predicate interference, using a logic solver. He applies this information for register

allocation in a hyperblock. Sias et al. [71] developed the predicate analysis system (PAS),

which is as accurate as Eichenberger’s, but can determine predicate relations globally

using a BDD solver. Eichenberger’s and Sias approach is evaluated in a research

environment. It is not clear that their methodologies are practical for a production

compiler. In contrast this thesis makes no attempt to address the general predicate relation

problem, based on the premise that the key predicate relation the coloring allocator needs

is predicate disjointness. Two predicates are disjoint if they are not true at the same

program point. Since predicates materialize as block predicates, this information can be

 118

derived directly from the control flow graph. Our allocator is built on the assumption that

predicated code is derived from acyclic control flow graph regions. If this assumption

were violated, the allocator would still produce correct results by assuming all

“unknown” predicates interfere with each other an the block predicates.

Coloring allocators cannot handle allocation problems of any size. Too resolve this

compile time problem many methods have been devised to reduce the allocation space.

The ideas revolve around partitioning a given routine into regions (e.g. Hank [35]) or

partitioning the interference graph. Callahan and Koblenz [15] describe a general region

allocation scheme (“Hierarchical Graph Coloring”). They partition the control flow graph

into a set of tiles. Tiles are sets of basic blocks with additional properties, so that a tile

tree can be constructed: two tiles are either disjoint or contained (tile 1 is subset of tile 2

or vice versa) and there is a single root tile. Then graph-coloring is applied to each tile

(region) in a bottom-up walk of the tree. At tile boundaries the allocations are reconciled.

Reconciliation is necessary since a live range L1 may get assigned register r1 in tile 1 and

register r2 in tile 2. At the tile boundary of tile 1 and tile 2 a “reconciliation” move from

e.g. r1 to r2 must be inserted. Hierarchical graph coloring covers loop trees and graph-

partitions based on single-entry single-exit (“SESE”) regions. It is noteworthy that their

allocator uses “pseudo” registers, which are assigned physical registers in a reconciliation

phase. Norris and Pollack [61] pursue region based allocation in a similar fashion, but

based on the program dependence graph (“PDG”). Statements guarded by the same

control statement form an allocation region. Their region may have multiple exits.

Fusion-based allocation partitions the control flow graph into arbitrarily disjoint regions

(Lueh et al. [55]). The idea of the fusion allocator is to delay spilling until the

interference graphs of two simplifiable regions get fused. When the combined graph

would be no longer simplifiable, the fusion operator, based on feedback profiling

information, attempts to split live ranges in order to minimize spill code at the region

boundaries. In all these methods the allocation problem is partitioned into a set of sub-

problems that can be solved more efficiently than the original problem. The cost of the

methods is extra book-keeping to glue together the local (per region) solutions at

boundaries. But there are functions generated in the framework of large server

applications that exhibit hundreds of thousands of register candidates. Region based

 119

methods are usually focused on loops, but can be tuned to handle general regions and

partition large programs. But they also rely on global dataflow computation, which itself

can consume a significant amount of memory. In addition, they rely on global data

structures to reconcile allocations at region boundaries. Also, it seems a hard problem to

parallelize region-based allocators without synchronization in form of region

reconciliations.

Gupta et al. [33] proposed clique separators for partitioning the interference graph. A

clique separator is a clique that partitions a graph into two disjoint components. The

clique allocator computes spans (definition-use chains) and identifies a set of clique

separators. Each span can be contained in (at most) a fixed number of sub-graphs. Each

sub-graph is colored separately, while it includes the nodes of a separating clique. The

final graph is composed from the sub-graphs possibly with renumbering of assigned

registers and spilling (or register copies) at separator boundaries. Given n nodes and m

clique separator the clique separator consumes)/(22 mnO space and)/(2 mnO time. Like

for region based methods, additional cost is from extra book-keeping to glue together the

allocations for the sub-graphs and rely on global dataflow computation, which itself can

consume a significant amount of memory.

In contrast this thesis proposed a family of scalable allocators, which do not rely on

region shapes and take the scalability of dataflow algorithms into account. Since the

focus is on partitioning the symbolic registers before allocation, the dataflow analysis to

determine live ranges needs to consider only the candidates contained in that partition

and physical registers. A scalable allocator can be engineered to solve the allocation

problem in parallel and does not need boundary reconciliation. It is capable of allocating

effectively programs with very large sets of register candidates. We showed how a

scalable allocator can be used also for parallel allocation e.g. on multi-core machines, so

each core can run an “allocation thread” for a subset of candidates. Parallel allocation

applies in particular to machines with large register files, since the register files can be

partitioned and each allocation is associated with one partition. This guarantees that

candidates in different partitions are independent: since they get assigned different

registers, interferences between classes of candidates can be ignored. Scalable allocation

can result in higher spill cost and performance degradation (assuming the allocation

 120

problem can be solved in a classic coloring allocator) since the register file is partitioned

a priori and in fact more registers may get used than necessary. This can hurt e.g. IA-64

in from with higher RSE traffic. Scalable allocators can be seen as extensions of

candidate splitting ideas. Splitting the candidates is often implicit in the coloring

heuristics. Well-known examples include coloring basic block local candidates first, then

the global candidates (e.g. Briggs [12]) or dividing the candidates into classes, like

floating-point and integer candidates (see e.g. Chapter 4). We demonstrated the potential

of a simple allocator that divides the candidates into constant subsets and allocates one

subset at the time. It can solve effectively allocation problems for the “f_serverapp” test

case, which has more than 500K candidates in a single function (Section 10.2.3).

 121

10 Results

We obtained the performance data on a 1.6 GHz Montecito processor using the Intel

Fortran/C++ optimizing product compiler (version 11.1, 2009). The detailed

configuration is listed in Table 8. The benchmark suite is CPU2006, a popular industry-

standardized CPU-intense suite used by OEMs for stressing a system’s processor,

memory subsystem and compiler.

Table 8 Experimental Setup

CPU2006 has two sub-suites. The integer suite (CINT2006) consists of twelve

benchmarks containing general user applications like compiler, interpreters, games,

simulators and database. A rough overview of the CINT006 benchmarks can be found in

Table 9. The floating-point suite (CFP2006) contains a set of 17 applications relevant in

high-performance computing including equation solvers, physical, chemical and

biological system simulations, speech recognition systems and a ray tracer. More details

about the CFP2006 benchmarks are in Table 10. To give a better idea about the relative

complexity of the benchmark, tables Table 9 and Table 10 show the lines of code (LOC),

compile times normalized to the compile time of 470.lbm and the number of routines

(HR = hot routines) where over 90% or more of the total benchmark execution time is

spent. As an example, the normalized compile time of 470.lbm is 1. It takes 189 times as

long to compile 403.gcc. The number of hot routines varies a lot for the benchmarks. For

example, 456.hmmer has only a single hot routine where 90% or more of total execution

time is spent. This is a characteristic that suggests 456.hmmer behaves more like a HPC

(high-performance computing) application which tend to have a few hot loops. On the

other hand, CFP2006 which represents floating-point computing intense (and thus HPC)

applications has benchmarks like 481.wrf, where 90% or more of the total execution time

is spread across 33 routines.

Processor Intel Itanium 2 (Montecito) Processor, 1.6 GHz
Compiler Intel Fortran/C++ Compiler (Version 11.1)
Memory 4 GB Main, 16 K L1D, 16KB L1I , 256K L2D, 1M L2I , 12M L3 D+I
OS Red Hat Enterprise Linux AS Release 4 (Kernel 2.6.9-36.EL #1 SMP)

 122

Table 9 SPEC CPU2006 Integer Benchmarks

Published SPEC performance numbers are a combination of two pairs of metrics,

speed vs. rate and base vs. peak. Speed measures the time it takes to finish a single

benchmark on the system, while rate is a throughput measure for how many parallel

instances of a benchmark the system can handle in a certain time. Base and peak metrics

refer to compiler options used to compile the benchmarks. Base is more restrictive and

attempts to represent build options any application can use to get good compiler

performance. For example, all benchmarks written in the same language must use the

same compiler options. No feedback profiling is allowed. Peak does not have such

restrictions. Any user visible compiler option can be used for any benchmark, and profile

data on the train input set(s) may be generated. To be SPEC compliant each benchmark

must be run 3 times on the reference input data set. Only SPEC compliant runs get

accepted by the SPEC committee for publication on the SPEC website

(http://www.spec.org). A full SPEC compliant run for a base speed publication for both

CINT2006 and CFP2006 can take about 24 hours, depending on system configuration

and compiler options.

Benchmark LOC CT HR LANG Description
400.perlbench 155432 47.2 33 C Based on perl V5.8.7
401.bzip2 8293 4.2 8 C Based on bzip2 V1.0.3
403.gcc 518781 189 61 C Based on gcc V3.2 generating Code for Opteron
429.mcf 2685 1.6 2 C Single-Depot Scheduling in Public Mass Transportation
445.gobmk 197215 40.2 39 C Go Game Execution and Position Analysis
456.hmmer 35992 10.4 1 C Sensitive Database Searching
458.sjeng 13487 5.8 14 C A highly-ranked Chess Program
462.libquantum 4805 2 3 C Qantum Computer Simulation running Shor's Algorithm
464.h264ref 51578 69.2 14 C Video Compression Standard
471.omnetpp 48159 33.6 34 C++ Discrete Event Simulation of an Ethernet Network
473.astar 5842 2.2 3 C++ 2D Path Finding Library used in Game AI
483.xalancbmk 326504 331 21 C,C++ XML Parser

http://www.spec.org

 123

Table 10 SPEC CPU2006 Floating-Point Benchmarks

Data presented in this chapter are collected for a (non-compliant) single speed run

using base compiler options. In base the compiler supports a wide variety of

optimizations such as whole program optimizations, interprocedural optimizations like

inlining, software prefetching, loop transformations, software pipelining, predication,

global code scheduling and graph-coloring based register allocation. With base options

no dynamic profile data may be used. Run-time performance data are normalized relative

to the baseline. Performance and compile time data are relative to base options. Static

data have been collected for implementations in an 11.1 compiler.

10.1 Dynamic and Static Results

The run-time benefits of multiple alloc and predicate-aware register allocation are in

Table 11 for CINT2006 and in Table 12 for CFP2006. Multiple alloc is effective on

CINT2006 with a gain of 1.9% on 400.perlbench and 1.18% on 458.sjeng. The gain

overall in the geomean is 0.41%. These gains have to be seen in perspective. For

example, on both 400.perlbench and 458.sjeng, the stall cycles due to RSE are about 5%

(Desai et al. [26]). The 1.9% gain in 400.perlbench and the > 1% gain in 458.sjeng mean

a more than 20% reduction in RSE stall cycles for these benchmarks. In case of

400.perlbench, all of them are due to the reduction of stall cycles in self-recursive

Benchmark LOC CT HR LANG Description
410.bwaves 918 4.6 2 Fortran Computation of 3D Laminar Viscous Flow
416.gamess 932818 1649.4 10 Fortran Atomic and Molecular Electronic Structure Analysis
433.milc 15042 154 5 C Generator of Gauge Field with Dynamical Quarks
434.zeusmp 37326 74 8 Fortran Astrophysical phenomena simulator
435.gromacs 87736 47.4 8 C Newtonian Equation Solver
436.cactusADM 104047 40 1 Fortran Einstein Equation Solver
437.leslie3d 3807 10.4 6 Fortran Large-Eddy Simulations in 3D
444.namd 5315 9.2 9 C++ Simulation of Large Biomolecular Systems
447.dealII 199654 305 17 C++ Adaptive Finite Elements and Error Estimation
450.soplex 41417 25.4 14 C++ Linear Program Solver using the Simplex Algorithm
453.povray 157825 52 18 C++ Ray Tracer
454.calculix 49927 192.4 18 Fortran Finite Element Solver
459.gemsFDTD 11580 40 4 Fortran90 3D Maxwell Equations Solver
465.tonto 143152 901.2 31 Fortran90 Quantum Chemistry Package
470.lbm 1176 1 1 C Simulate Iincompressible Fluids in 3D
481.wrf2 217896 1101.2 33 Fortran90 Weather Research and Forcasting System
482.sphinx 207732 10.4 5 C C Speech Recognition System

 124

function S_regmatch(), in which the benchmark spends more than 38% of its execution

time.

Table 11 CINT2006 Performance Gains for MA and Predicate-aware (PA) Allocation

Table 12 CFP2006 Performance Gains for Predicate-aware (PA) Allocation

Floating-point benchmarks did not show gains from multiple alloc and are not shown

in Table 12. The gains from predicate-aware register allocation are for two different

Benchmark Multiple Alloc PA w/ Strategy 1 PA w/ PQS PA Delta
400.perlbench 1.90% 37.67% 37.67% 0.00%
401.bzip2 0.11% 5.01% 5.01% 0.00%
403.gcc 0.26% 1.71% 1.45% -0.26%
429.mcf 0.00% 0.93% 0.93% 0.00%
445.gobmk 0.98% 2.91% 2.91% 0.00%
456.hmmer 0.00% 1.20% 1.20% 0.00%
458.sjeng 1.18% 8.01% 8.01% 0.00%
462.libquantum 0.55% 0.00% 0.37% 0.37%
464.h264ref 0.00% 0.00% 1.03% 1.03%
471.omnetpp 0.00% 0.40% 0.40% 0.00%
473.astar 0.00% 0.97% 0.00% -0.96%
483.xalancbmk 0.00% 0.00% 0.00% 0.00%
Geomean 0.41% 4.48% 4.50% 0.01%

Benchmark PA w/ Strategy 1 PA w/ PQS PA Delta
410.bwaves 0.00% 0.00% 0.00%
416.gamess 8.74% 8.74% 0.00%
433.milc 0.00% 0.00% 0.00%
434.zeusmp 0.00% 0.00% 0.00%
435.gromacs 2.90% 2.90% 0.00%
436.cactusADM 1.03% 1.03% 0.00%
437.leslie3d 0.58% 0.58% 0.00%
444.namd 0.84% 0.84% 0.00%
447.dealII 0.00% 0.00% -0.69%
450.soplex 0.23% 0.23% 0.23%
453.povray 1.07% 1.07% 0.11%
454.calculix 4.86% 4.86% 0.00%
459.GemsFDTD 0.84% 0.84% 0.83%
465.tonto 2.42% 2.42% 0.00%
470.lbm 0.65% 0.65% 0.32%
481.wrf 0.68% 0.68% 0.00%
482.sphinx3 1.36% 1.36% 0.00%
Geomean: 1.52% 1.52% 0.05%

 125

implementations, the PQS based implementation and the allocator that only models

match and dominate live ranges precisely.

In Section 6.3 we classified four types of predicate live ranges: match, dominate,

partition, and overlap and showed that simple live range tracking gives precise

interference for match, dominate, as well as some partition and overlap live ranges. When

a use predicate does not post-dominate all partition predicates or definitions overlap on

many (=two or more) paths, complex live range tracking techniques must be employed

for precise modeling of predicated live ranges. The implementation that tracks liveness

under the qualifying use predicates and marks first predicate definitions gives practically

identical run-time performance as the PQS based implementation. This suggests that

relative simple predicate-awareness in the coloring allocator can reap the performance

potential. The simple predicate-aware allocator models predicated live ranges precisely

only for match and dominate live ranges. It is conservative for all partition and overlap

live ranges. For the experiment, live ranges first were completed in the original control

flow graph of the candidate region. Then a region-based reaching definition analysis was

performed. Together with dominator information, this is sufficient to classify predicated

live ranges in the region. When a live range falls into multiple classes, only the “most

complex” class (overlap > partition > dominate > match) is accounted for. The data for

predicated live ranges distribution are in Table 13 and Table 14. In CINT2006 there are

only two benchmarks (402.bzip2 and 471.omnetpp) that have more than 10% (11.44%

and 12.01%) partition and overlap live ranges. For all other benchmarks this number is

below 10%. In CFP2006 five benchmarks (410.bwaves, 416.gamess, 433.milc, 447.dealII

and 465.tonto) have more than 10% partition and overlap live ranges. For all benchmarks,

the overlap live ranges usually account for less than 1%. The notable exceptions are

410.bwaves (4.99%), 401.bzip2 (2.61%) and 483.xalancbmk (2.39%). The data in the

tables were collected for all predicated live ranges in all predicated regions of a

benchmark. Since only relatively few overlap live ranges exist, a system like PQS or

complex live range tracking is not necessary for precise predicated live range modeling.

The data and code analysis suggests that the complex tracking cases are very rare. If

conservative disjointness for partition and overlap live ranges is a concern, strategy 2 can

model more than 95% of the predicated live ranges precisely for all benchmarks.

 126

The run-time result for the predicate aware allocator is interesting for another reason

also. In particular, the gains from the predicate-aware allocator can be higher than the

gains from predication itself. The particular example is 400.perlbmk, where the gain from

if-conversion overall is 1.95% (Table 15), but the gain from the predicate-aware allocator

is greater than 37%. This can be explained as follows: when there is no predicate-aware

allocator for predicated code, live ranges extend to outer loop boundaries. This increase

in register pressure can only be avoided with a predicate-aware allocator. For example,

the 37.67% gain in 400.perlbench is due to reducing RSE traffic in S_regmatch, the

hottest (and self-recursive) function of the benchmark. Without the predicate-aware

allocator all 96 register on the register stack get allocated. With the predicate-aware

allocator only about half the number of registers are used. The increase in register

pressure without the predicate-aware allocator can be explained with live range

extensions in loops (Section 6.1). Another way to look at this is that the predicate-aware

allocator must be present to secure gains from if-conversion. But, at least for the SPEC

benchmarks, a simple predicate-aware allocator is sufficient to secure performance gains

from if-conversion.

Table 13 Distribution of Predicated Live Ranges for CINT2006

Benchmark match dominate partition overlap
400.perlbench 73.92% 16.16% 9.46% 0.46%
401.bzip2 63.27% 22.68% 11.44% 2.61%
403.gcc 71.59% 20.78% 6.80% 0.83%
429.mcf 72.64% 20.46% 6.42% 0.48%
445.gobmk 77.94% 18.84% 2.91% 0.31%
456.hmmer 69.86% 22.67% 6.68% 0.79%
458.sjeng 73.68% 18.26% 7.37% 0.69%
462.libquantum 74.51% 16.67% 8.39% 0.44%
464.h264ref 74.70% 16.32% 8.87% 0.11%
471.omnetpp 66.77% 21.04% 12.01% 0.17%
473.astar 75.73% 18.63% 4.70% 0.94%
483.xalancbmk 69.81% 20.98% 6.82% 2.39%

 127

Table 14 Distribution of Predicated Live Ranges for CFP2006

Table 15 Performance Gains from Predication for SPEC CPU2006

The advanced UNAT algorithm is effective and statically delivers the expected result

by removing all spills of the ar.unat register. The data in Table 16 show that the new

algorithm removes all ar.unat spills which the simple and conservative algorithm inserts.

CINT2006 Predication Gains CFP2006 Predication Gains
400.perlbench 1.95% 410.bwaves 2.94%
401.bzip2 1.40% 416.gamess 6.23%
403.gcc 1.18% 433.milc 0.78%
429.mcf 2.83% 434.zeusmp 0.00%
445.gobmk 9.62% 435.gromacs 2.90%
456.hmmer 0.40% 436.cactusADM 0.69%
458.sjeng 6.04% 437.leslie3d 0.00%
462.libquantum 0.18% 444.namd 0.00%
464.h264ref 4.30% 447.dealII 2.86%
471.omnetpp 0.20% 450.soplex 0.92%
473.astar 26.67% 453.povray 8.36%
483.xalancbmk 1.70% 454.calculix 7.86%
Geomean 4.49% 459.GemsFDTD 1.69%

465.tonto 1.60%
470.lbm 5.84%
481.wrf 0.00%
482.sphinx3 3.72%
Geomean: 3.02%

Benchmark match dominate partition overlap
410.bwaves 35.12% 48.24% 11.65% 4.99%
416.gamess 51.37% 36.90% 10.72% 1.01%
433.milc 48.36% 39.08% 11.99% 0.57%
434.zeusmp 63.94% 28.86% 6.15% 1.06%
435.gromacs 66.32% 24.39% 8.56% 0.72%
436.cactusADM 59.76% 30.35% 9.04% 0.84%
437.leslie3d 63.92% 26.51% 9.57% 0.00%
444.namd 64.15% 28.29% 7.56% 0.00%
447.dealII 68.70% 19.73% 11.42% 0.15%
450.soplex 75.06% 17.44% 6.74% 0.77%
453.povray 71.34% 21.76% 6.26% 0.64%
454.calculix 64.14% 28.44% 6.89% 0.52%
459.GemsFDTD 70.30% 20.06% 9.46% 0.18%
465.tonto 59.06% 30.11% 10.31% 0.52%
470.lbm 88.97% 10.29% 0.74% 0.00%
481.wrf 60.15% 31.10% 8.50% 0.25%
482.sphinx3 58.93% 33.30% 7.66% 0.11%

 128

On SPEC run-time gains from this optimization did not materialize, because the

redundant ar.unat spills were only in cold code. Most of the ar.unat references were in

loop intensive functions, where the conservative NaT propagation algorithm propagated

the NaT property outside the loops or into cold outer loops. In cold code the extra ar.unat

spills don’t hurt. The data in Table 16 show that the static number of removed ar.unat

references for CINT2006 is significant in 403. gcc, 458.sjeng, and 483.xalancbmk. For

CFP2006, 416.gamess, 435.gromacs, 453.povray and 481.wrf benefit from the advanced

UNAT algorithm.

Table 16 Effectiveness of advanced UNAT Algorithm

10.2 Compile Time Data

The code generator in the Itanium compiler has major optimization phases like

software pipelining, if-conversion, (global) code scheduling and register allocation. Since

it also supports many classical optimizations it is an optimizing compiler back-end. The

coloring allocator is usually not the top compile time consumer, although the coloring

allocator has to manage aggressively optimized, predicated, pipelined and speculated

CINT2006 #spills/fills saved CFP2006 #spills/fills saved
400.perlbench 0 410.bwaves 0
401.bzip2 0 416.gamess 11698
403.gcc 35503 433.milc 0
429.mcf 0 434.zeusmp 0
445.gobmk 889 435.gromacs 141
456.hmmer 0 436.cactusADM 0
458.sjeng 90 437.leslie3d 0
462.libquantum 0 444.namd 0
464.h264ref 1642 447.dealII 0
471.omnetpp 0 450.soplex 0
473.astar 0 453.povray 0
483.xalancbmk 2664 454.calculix 0

465.tonto 0
470.lbm 0
481.wrf 21926
482.sphinx3 0

 129

code. For comparison, Table 17 and Table 18 show the relative compile time spent in the

code generator overall, software pipeline, code scheduler, and register allocator.

Table 17 Compile Time Distribution of Code Generator Phases in CINT2006

Table 18 Compile Time Distribution of Code Generator Phases in CFP2006

The compile times are measured in triple runs using the compile time measurement

capability in the compiler, which can be activated with the –i_tapi option. For example,

42% of the total compile time for 403.gcc is spent in the code generator, 5% in the

Benchmark Code Generation Software Pipelining Scheduling Register Allocation
400.perlbench 38% 0% 17% 9%
401.bzip2 38% 7% 15% 8%
403.gcc 42% 5% 18% 7%
429.mcf 43% 9% 19% 6%
445.gobmk 41% 6% 17% 6%
456.hmmer 44% 10% 16% 7%
458.sjeng 36% 2% 15% 8%
462.libquantum 43% 9% 16% 6%
464.h264ref 39% 16% 11% 5%
471.omnetpp 31% 0% 11% 6%
473.astar 45% 15% 18% 4%
483.xalancbmk 33% 1% 15% 6%

Benchmark Code Generation Software Pipelining Scheduling Register Allocation
410.bwaves 37% 11% 11% 7%
416.gamess 31% 10% 5% 12%
433.milc 14% 7% 5% 1%
434.zeusmp 35% 12% 12% 5%
435.gromacs 37% 8% 15% 6%
436.cactusADM 36% 7% 14% 6%
437.leslie3d 30% 2% 10% 9%
444.namd 29% 7% 9% 6%
447.dealII 29% 5% 11% 3%
450.soplex 34% 5% 15% 4%
453.povray 34% 9% 14% 3%
454.calculix 24% 4% 8% 5%
459.GemsFDTD 25% 2% 7% 6%
465.tonto 25% 2% 10% 5%
470.lbm 41% 26% 9% 1%
481.wrf 35% 4% 18% 7%
482.sphinx3 42% 11% 15% 6%

 130

pipeliner, 18% in the scheduler and 7% in the allocator. 12% of the code generator

compile time spent is spent in other phases including the if-converter.

The tables show that in practice the register allocator in the Itanium compiler is not a

compile time bottleneck. In general the time spent in the allocator is well below 10%,

with the exception of 416.gamess, where the allocator spends 12%.

10.2.1 Cost of Predication-Aware Allocation

Table 19 and Table 20 show the compile time cost for predicate-aware register

allocation. The base is the predicate-unaware allocator: it does not model predicate live

ranges for global variables. In particular it conservatively assumes any two predicated

live ranges interfere and no predicated definition of a global live range is the start of the

live range, unless the definition is in acyclic code. In cyclic code or loops, the start of live

range is recognized implicitly at the pre-header of the outmost loop of the loop nest that

contains the definitions. This is driven by the approximation of a live range as the

intersection of a forward available variable analysis and backward live variable analysis

(see Chapter 3.2, p. 37). On average the cost of predicate-aware allocation is about 46%

for CINT2006 and 25% for CFP2006 for the match-or-dominate strategy. A PQS based

predicate-aware allocator is-compared to the match-or-dominate allocator-5% on average

slower on CINT2006 and 12% on average slower on CFP2006. The match-or-dominate

allocator models match and dominate live ranges precisely, but is conservative for

partition and overlap live ranges. Conservative means that the match-or-dominate

allocator may infer false interferences between two live ranges. In other words, it may

assume that two live ranges interfere although they do not. The extra interferences can

sometimes hurt overall compile-time. For example, register assignment time can increase

and there can be extra reconciliation become necessary at region boundaries. Very few

benchmarks show behavior, and the only relevant example is the 4.2% slowdown for

464.h264ref. Ignoring compile time differences of less than 1% than for all other

benchmarks PQS based is more compile-time expensive than match-or-dominate

without-at least for the given if-converter-giving performance benefits (cf. Table 11 and

Table 12 for performance). It is curious that the predicate-aware allocator can actually

speed-up allocation time. The two major examples for this phenomenon are 416.gamess

 131

and 440.namd in CFP2006 (Table 20), where predicate-aware allocation improves

allocation time by at least 6% and up to 18.89%. The reason is that the predicate-unaware

allocator “sees” more interference and needs more allocation iterations (Chapter 3).

Table 19 CINT2006 - Compile Time Cost of Predicate-Aware Register Allocation

Table 20 CFP2006 - Compile Time Increase of Predicate-Aware Register Allocation

Benchmark PA w/ PQS PA w/ Strategy 1 (S-1) PQS vs. S-1
 400.perlbench 64.26% 63.99% 0.28%
 401.bzip2 55.94% 50.90% 5.04%
 403.gcc 107.02% 98.22% 8.80%
 429.mcf -2.56% -2.71% 0.14%
 445.gobmk 1.74% 2.30% -0.56%
 456.hmmer 42.67% 40.83% 1.84%
 458.sjeng 31.80% 17.88% 13.92%
 462.libquantum 55.20% 45.60% 9.60%
 464.h264ref 2.35% 6.55% -4.20%
 471.omnetpp 135.03% 129.73% 5.31%
 473.astar 52.41% 45.94% 6.47%
 483.xalancbmk 66.40% 52.27% 14.12%

Base: Predicate-Unaware Register Allocator

Benchmark PA w/ PQS PA w/ Strategy 1 (S-1) PQS vs. S-1
 410.bwaves 14.48% 0.27% 14.20%
 416.gamess -6.24% -10.88% 4.65%
 433.milc 27.46% 16.16% 11.30%
 434.zeusmp 7.63% 3.95% 3.68%
 435.gromacs 38.66% 17.67% 20.99%
436.cactusADM 99.70% 88.91% 10.79%
 437.leslie3d 16.14% 10.24% 5.90%
 444.namd -17.46% -18.89% 1.43%
 447.dealII 62.51% 41.32% 21.19%
 450.soplex 45.01% 28.61% 16.40%
 453.povray 125.18% 104.59% 20.59%
 454.calculix 12.74% 10.90% 1.85%
 459.GemsFDTD 9.77% -3.54% 13.31%
 465.tonto 7.27% 5.35% 1.92%
 470.lbm 34.75% 27.12% 7.63%
 481.wrf 16.40% 5.29% 11.11%
 482.sphinx3 37.84% 29.00% 8.84%

Base: Predicate-Unaware Register Allocator

 132

10.2.2 Cost of Speculation-Aware Allocation

In Chapter 7 we discussed speculation-aware allocation. For control-speculation, we

showed that under the assumption that the destination of a speculative load (ld.s) and the

source of its chk.s match (=are the same symbolic or virtual register), an effective

algorithm exists that avoids all spills of the ar.unat register. The allocator must be

speculation-aware to guarantee program correctness. Table 21 shows the cost of control-

speculation awareness. For the advanced NaT propagation algorithm (Section 7.1.2), the

average allocation cost is 10.26% for CINT2006 and 7.3% for CFP2006. Data for

control-speculation were measured by turning speculation support off in the allocator.

Since allocation time in general is less than 10% of the overall compile time (see Table

17 and Table 18), speculation support itself consumes less than 1%.

Table 21 Compile Time (CT) Cost of Control Speculation

CINT2006 CT cost of speculation CFP2006 CT cost of speculation
400.perlbench 7.60% 410.bwaves 3.38%
401.bzip2 6.50% 416.gamess 3.29%
403.gcc 8.42% 433.milc 10.32%
429.mcf 24.76% 434.zeusmp 6.49%
445.gobmk 9.75% 435.gromacs 7.59%
456.hmmer 9.93% 436.cactusADM 6.94%
458.sjeng 7.35% 437.leslie3d 3.46%
462.libquantum 10.74% 444.namd 8.18%
464.h264ref 5.95% 447.dealII 9.57%
471.omnetpp 7.90% 450.soplex 10.55%
473.astar 13.60% 453.povray 10.75%
483.xalancbmk 10.57% 454.calculix 6.54%
Average 10.26% 459.GemsFDTD 5.50%

465.tonto 7.50%
470.lbm 8.00%
481.wrf 5.02%
482.sphinx3 10.94%
Average 7.30%

 133

10.2.3 The Case for Scalable Register Allocation

Since region-based allocation methods require global structure, for example, for region

reconciliation and in data flow analysis, this thesis proposed a scalable approach that

partitions symbolic registers and possibly the register file(s). Figure 49 shows the

normalize compile times for a serial scalable allocator. The (non-standard) test care for

evaluation is “f_serverapp”, which is a generated function in major industry server

application with > 500 K register candidates. The x-axis in Figure 49 shows the number

of partitions. The y-axis shows normalized compile times, where the time for eight

partitions is one. For the measurements, the global symbolic registers (candidates) were

divided into equal 2, 4, 8, 16 and 32 partitions of equal subsets. For each subset the

allocator is run. The output of allocation N is the input to allocation N+1. For example,

the input to the second run is the symbolic registers of the second partition and the

physical registers the candidates of the first partition got assigned. The number of

partitions determines the number of allocations.

Figure 49 Compile Time for Serial Scalable Allocator

The graph of Figure 49 is close to a line up to 8 partitions. Let CT(k2) be the compile

time for a partition. Then CT(k2) =(2)-1 CT(12 −k) for k=1,2,3 gives the approximate

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 4 8 16 32

#Partitions

Ti
m

e

 134

relation between the partitions. For more than 8 partitions (for 16 and 32) partitions

compile time increases. In these cases allocation cost outweighs the savings from

partitioning.

The parallel scalable allocator also partitions the register file accordingly. For

example, when there are 8 partitions of the register candidates, the available (physical)

registers are also partitioned by a factor of 8. In the case of a parallel scalable allocator,

the compile time must decrease with the number of partitions. The x-axis in Figure 50

shows the number of partitions. The y-axis shows normalized compile times, where the

time for 32 partitions is one. The number (>150) for one partition is not shown in the

graph. The numbers for the parallel allocator are experimental and optimistic. For each

partition scheme the compile-time was measured for one specific partition (both

candidates and machine registers) and then extrapolated. Also, the synchronization

overhead in the case of spill code is not taken into account. Since candidates in different

partitions may interfere (although they are assumed they do not) they cannot share the

same spill location. That they cannot share the same register is guaranteed by partitioning

the register file(s). The small number of registers available per partition does not have a

material compile time impact in our experiment.

Figure 50 Compile Time for Parallel Scalable Allocator

0

5

10

15

20

25

30

35

2 4 8 16 32

#Partitions

Ti
m

e

 135

While the compile data for scalable allocators are preliminary, they show the potential

of the technique. The “best” configuration of a scalable allocator depends on the

allocation problem. There is no one-size-fits-all solution. For example, for our “golden”

test case, 8 partitions are the compile time sweet spot (Figure 49), but for allocation

problems with half the number of candidates, 4 partitions are likely to be the better

choice.

 136

11 Conclusions and Future Work

This thesis described extensions of a coloring allocator covering features provided by the

Itanium architecture like predicated code, control- and data speculation and dynamic

register stack.

Predicated code: It classified predicated live ranges and showed that classical techniques

can be used effectively to engineer efficient coloring allocators for predicated code.

Specifically, when predicated code is generated from compiler control flow expensive

predicate analysis frameworks, like PQS, don’t have to be employed.

Speculated code: It described a new method of efficiently allocating speculated live

ranges avoiding spill code compared to a conservative method. The new method solves

the NaT propagation problem efficiently.

Dynamic register stack: It presented methods to dynamically control the register stack

effectively in particular for regions with function calls and/or pipelined loops.

Scalable allocation: It proposed the scalable allocator as a generic coloring method

capable of allocating effectively programs with a large set of register candidates. It

demonstrated that this method can be used also for parallel allocation e.g. on multi-core

machines.

Despite the rich body of work in the field of register allocation future work is plenty, in

the context of this thesis and beyond. We conclude this thesis with a small selection:

1. The IA-64 register stack can be dynamically partitioned. In particular the (scratch)

out registers on top of the stack are not limited to 8. In addition to partitioning

schemes, more general allocation regions can be investigated.

2. The interface between pipeline-aware register allocation and a coloring allocator

seems to be mostly neglected in literature. Instead, pipeline allocators and

coloring allocators are treated separately. On IA-64 rotating registers are a scarce

resource and the pipeline allocator leaves candidates for the coloring allocator.

The impact of pipeline-awareness and the potential benefits in a coloring allocator

have not been investigated or published.

 137

3. The classification of predicate live ranges in Chapter 6 is intuitive and the proofs

of the theorems in Section 6.3 are informal. A formal theory that derives the

classification and proofs of the theorems would put the results on a stronger

mathematical foundation.

4. The scalable allocator is at a conceptual state. More experiments need to be

conducted to explore the concept and configurations, especially with respect to

the cost and benefits of parallel allocations.

5. There is no compiler framework that includes and evaluates the merits of the

various ideas for coloring allocators. Results are reported in different

experimental environments. This makes results difficult to compare and judge

relative merits of methods proposed.

6. There seems to be no study that compares optimal methods with best of class

coloring allocators and linear scan allocators on a wide class of benchmarks.

 138

12 Appendix

12.1 Assembly Code Example

Figure 51 Itanium Assembly for Faculty Function

 Instruction Cycle Code and Comments
 { .mmi
 alloc r14=ar.pfs,1,8,0,8 //0:
 add r8=1,r0 //0: [1]
 mov r11=ar.lc //0:
 } { .mib
 cmp4.eq.unc p7,p0=r32,r0 //1: [2]
 mov r40=pr //1:
(p7) br.cond.dpnt .b1_3 ;; //1: [2]
// Block 1: Pred: 0 Succ:
 }{.mii
 nop.m 0
 mov ar.ec=1 //0: [3]
 zxt4 r3=r32 //0:
 }{.mii
 mov r33=1 //0:
 mov pr.rot=0x10000 //0: [4]
 add r2=-1,r3 ;; //0:
 }{.mib
 nop.m 0
 mov ar.lc=r2 //1: [5]
 nop.b 0 ;;
 }
.b1_4: // Block 4:pipelined Pred:1 4 Succ:4 3
 { .mmi
 (p16) setf.sig f32=r8 //0:
 (p16) setf.sig f33=r33 //0:
 nop.i 0 ;;
 }{.mfi
 nop.m 0
 (p16) xma.l f34=f32,f33,f0 //6:
 nop.i 0 ;;
 }{.m_mi
 (p16) getf.sig r8=f34 ;; //10: [6]
 (p16) add r32=1,r33 //14:
 nop.i 0
 }{.mib
 nop.m 0
 nop.i 0
 br.ctop.sptk .b1_4 ;; //14:
 }
// Block 3: exit epilog modified Pred: 1 4
.b1_3:
 { .mi_i
 nop.m 0
 mov ar.lc=r11 ;; //0:
 mov pr=r40,0x1003e //1:
 }{.mib
 nop.m 0
 nop.i 0
 br.ret.sptk.many b0 ;; //1: [2]
}

Pipelined loop:

for (i=1; i<=n; i++) {
 res = res * i;
}

[6] r8 is result and
 return register.

[2] return res; // in r8

[1] res = 1;

[2] if (n==0)return res;

Initializations:

[3] epilog count(ec):
 ec=1

[4] Set first rotating
 stage predicate
 p16=1
[5] Setloop count(lc)

 139

12.2 Edge Classification, Irreducibility and Disjointness

This section lists a few basic facts about graphs that are not commonly found in the

literature.

Let G(V,E) be a directed graph. The edges E can be partitioned as follows:

Let PRE(n) be the preorder number and RPO(n) the reverse post-order number. Let

th → be an edge from node h to t. Then the following edge partition is the result of a

depth-first traversal (dft):

• If (PRE(h) < PRE(t)) then th → is either a tree or forward (“advancing”) edge.

• If (PRE(h) > PRE(t)) then th → is a cross edge .

• If (RPO(h) > RPO(t)) then th → is a retreat edge.

An edge th → is a back edge if h dominates t.

A special case of a back edge is when h identical with t (and trivially

PRE(h)==PRE(t), RPO(h)==RPO(t)).

Edge partition is not absolute, but relative to the depth-first search (dfs). For example, a

tree edge in one traversal could be a cross edge in another traversal. Or a retreat edge in

one traversal could become a forward edge in another dfs. The reason is that the edge

selection during dfs is non-deterministic, and different selections of edges change node

numbering and edge classification (=partitioning).

A graph is reducible if all retreat edges are back edges. Back edges are invariant

retreat edges: any depth-first search recognizes them as retreat edges. If there is a retreat

edge that is not a back edge the graph is irreducible.

Irreducibility can be recognized indirectly, but simply: If the classical dataflow

algorithm for dominator calculation does not terminate in two iterations (the first iteration

to compute the dominator tree and the second iteration to check the termination), the

graph is irreducible.

In case of irreducible graphs global disjointness, which is computed on the acyclic

graph that has retreat edges removed, may not match run-time disjointness. Figure 52

demonstrates this based on two depth-first traversals:

In depth-first traversal B1 → B2 → B3 → B4 → B5 → B6 the reverse post-order

numbers for the blocks are: (B1|1), (B2|2), (B3|3), (B4|4), (B5|5) and (B6|6). The edge

from B5 to B3 is recognized as a retreat edge. Removing the retreat edge and computing

 140

disjointness will yield that B2 and B6 are not disjoint. Since B5 does not dominate B3,

the retreat edge is not a back edge.

In depth-first traversal B1 → B4 → B5 → B3 → B6 → B2 the reverse post-order

numbers for the block are: (B1|1), (B2|2), (B3|6), (B4|4), (B5|5) and (B6|6). The edge

from B3 to B4 is recognized as a retreat edge. Removing the retreat edge and computing

disjointness will yields that B2 and B6 are disjoint. Since B3 does not dominate B4, the

retreat edge is not a back edge.

Gillies et al. [31] suggests there can be “inaccuracies” for global predicate relations,

but in fact there can be a fundamental stability problem. The problem is that global

disjointness computed by compiler may not match run-time disjointness. This mis-match

could result in register overwrites. For example, if B4, B5 and B6 are if-converted, and

the retreat edge is 35 BB → , a local live range in B5 could overwrite a global live range

with a use in B3. On the other hand, removing only back edges, but not retreat edges,

gives conservative global disjointness information since cycles remained in the graph.

Figure 52 Example for an Irreducible Graph

 B5

B1

B3

 B6

B4

B2

 141

12.3 PQS Queries

In PQS a block predicate P also represents its execution set. The execution set is the set

of traces for which P is set (=true). In this interpretation we can speak of subsets of

predicates and partitions of predicates. It is the basis of the predicate partition graph

(PPG), which is used by PQS queries to derive predicate relations. The key queries are

lub_sum(P,E) and lub_diff(P,E), which are used in predicate-aware dataflow analysis

routines and interference graph construction. The least upper bound sum (lub_sum(P,E)

in Figure 53) gives the smallest superset for the execution sets represented by the union

of predicate P and the set of predicates, E. The resultant set is reduced to parent nodes in

the PPG for each complete partition that contains P. One application of the least upper

bound sum is to determine the set of predicates under which a candidate is live, if it is

live under Q and P. The approximation is necessary since the predicates available may

not be sufficient to express the union of predicate sets accurately in all cases.

Figure 53 PQS Query Least Upper Bound Sum

The least upper bound difference (lub_diff(P,E) in Figure 53) computes the smallest

superset for the execution set represented by the set difference of predicate set E and

predicate P. One application of the least upper bound difference is to determine the set of

predicates under which a candidate is live, if it is live under Q and killed under P. The

Set reduce(Predicate P, Set E)
// if (R = P|Qi and all Qi ∈E, replace P|Qi by R)

Set lub_sum(Predicate P, Set E)
 Set E’= {}; // empty set
 foreach Q in E
 if (Q ⊂ P)

continue;
 elif (P ⊆ Q)
 return E;
 else
 E’ = E’ + Q;
 fi
 endfor
 return (reduce(P, E’));

 142

approximation is necessary since the predicates available may not be sufficient to express

the difference of predicate sets accurately in all cases. Intuitively the least upper bound

difference computes representatives of all paths where a candidate could still be live after

it is killed under predicate P.

Figure 54 PQS Query Least Upper Bound Difference

Set rel_cmpl(Predicate P, Predicate Q)
 if (!is_subset(P,Q)) return {}; // empty set.
 E’ = {}; // empty set
 foreach path from Q to P
 foreach edge R→ S
 foreach partition R→ S |T
 E’=E’+T
 endfor
 endfor
 endfor
 return E’;

Set approx_diff(Predicate P, Predicate Q)
 // find_lca(P,Q): “least common ancestor of P and Q”
 return rel_cmpl(P, find_lca(P,Q));

Set lub_diff (Predicate P, Set E)

Set E’= {}; // empty set
 foreach Q in E
 if (Q ⊂ P)

continue;
 elif (P ⊆ Q)
 E’=E’+rel_cmpl(P,Q);
 elif (is_disjoint(P,Q))
 E’=E’+Q;
 else
 E’ = E’+approx_diff(P,Q);
 fi
 endfor
 return (reduce(P, E’));

 143

13 List of Figures

Figure 1 IA-64 Programming Building Blocks 12
Figure 2 Unpredicated and If-converted Hammock................................ 19
Figure 3 If-converted Region with Exit Branch 20
Figure 4 Register Files and Partitions 22
Figure 5 Alloc instruction and Register Stack Frame 23
Figure 6 Snapshots of Stacked Register Usage................................ 24
Figure 7 Register Stack - Growth and Shrinkage 25
Figure 8 Register File, Frames and Backing Store 26
Figure 9 Chaitin-style Register Allocator................................ 32
Figure 10 Illustration of Spill Code Insertion................................34
Figure 11 Chaitin-style Allocator with Optimistic Coloring................................ 35
Figure 12 Chow-style Allocator................................ 36
Figure 13 Illustration of simple “rename” phase 38
Figure 14 Live Variable and Available Variable Analyses 39
Figure 15 Example for a non-strict Live Range................................ 39
Figure 16 Interference Graph Construction Scheme................................ 40
Figure 17 Simplification Phase and Coloring of Interference Graph............................... 41
Figure 18 Illustrations of Chaitin's Spill Rules 44
Figure 19 Bernstein et al: Three heuristic Spill Functions 45
Figure 20 Definitions of Interference................................ 53
Figure 21 Components and Flow of Itanium Compiler Backend 55
Figure 22 Five Iterations of Pipelined Loop with three Stages and II=4 56
Figure 23 One Iteration and Kernel Schedule for a Loop 58
Figure 24 Control Flow-and Predicated Region 61
Figure 25 Register Allocator Architecture 62
Figure 26 Proof of Concept to show Effectiveness of Multiple Alloc............................. 66
Figure 27 Shrinking Register Stack before Call 67
Figure 28 Liveness must be propagated under “p0” across Back Edge........................... 76
Figure 29 Example with Control flow Graph and Source Code Snippets........................ 79
Figure 30 Predicate Partition Graph (PPG) for Example in Figure 29 80
Figure 31 Predicated Live Ranges under PQS................................ 81
Figure 32 Add and Delete Routines in PQS-based Allocator................................ 82
Figure 33 Fundamental Relations between Predicated Definitions and Uses 84
Figure 34 Predicate-aware Allocation with Partitions 86
Figure 35 Extra Interference with Partition Tracking 88
Figure 36 Complex Live Range Tracking 90
Figure 37 Completed Candidate Region and Live Ranges................................ 92
Figure 38 Predicate Partition Graph for Figure 37................................ 93
Figure 39 Predicate Sets for Live Ranges Figure 37 with Complex Tracking 94
Figure 40 Predicate Sets for Live Ranges in Figure 37 with PQS................................ ...95
Figure 41 Spill Addresses and AR.UNAT Register................................ 99
Figure 42 Spill/Fill Code in case of AR.UNAT overflow................................ 100
Figure 43 5-bit AR.UNAT Register and Stack Memory Layout Options...................... 103

 144

Figure 44 Serial and Parallel Scalable Register Allocation................................ 108
Figure 45 Example for Serial Scalable Allocator for registers {r1, …,r8} 110
Figure 46 Example for Partition of Register File and Candidates111
Figure 47 Example for Virtual Register and Candidate Partitions 112
Figure 48 3-Way Parallel Scalable Allocator with Staged Allocation........................... 112
Figure 49 Compile Time for Serial Scalable Allocator................................ 133
Figure 50 Compile Time for Parallel Scalable Allocator 134
Figure 51 Itanium Assembly for Faculty Function 138
Figure 52 Example for an Irreducible Graph................................ 140
Figure 53 PQS Query Least Upper Bound Sum 141
Figure 54 PQS Query Least Upper Bound Difference................................ 142

 145

14 List of Examples

Example 1 Control Speculation with Recovery Code................................ 28
Example 2 Data Speculation with Recovery Code 30
Example 3 Two Pipelined Loops in Single Alloc Routine................................ 68
Example 4 SWP Loops with Multiple Alloc70
Example 5 Source Code, Predicated Code and Predicated Live Range.......................... 72
Example 6 Live Range Extension in Predicated Code................................ 73
Example 7 Control Speculation and Two Methods of Recovery Code Generation 98
Example 8 Data Speculation with Recovery Code and Alat Live Range 105

 146

15 List of Tables

Table 1 IA-64 Instruction Types and Execution Unit Types................................ 13
Table 2 A-type Instructions 14
Table 3 I-type and LX-type Instructions 15
Table 4 M-type Instructions................................ 16
Table 5 F-type Instructions 16
Table 6 B-type Instructions................................ 17
Table 7 Research Categories and Goals 42
Table 8 Experimental Setup................................ 121
Table 9 SPEC CPU2006 Integer Benchmarks................................ 122
Table 10 SPEC CPU2006 Floating-Point Benchmarks 123
Table 11 CINT2006 Performance Gains for MA and Predicate-aware (PA) Allocation124
Table 12 CFP2006 Performance Gains for Predicate-aware (PA) Allocation 124
Table 13 Distribution of Predicated Live Ranges for CINT2006................................ .. 126
Table 14 Distribution of Predicated Live Ranges for CFP2006 127
Table 15 Performance Gains from Predication for SPEC CPU2006 127
Table 16 Effectiveness of advanced UNAT Algorithm 128
Table 17 Compile Time Distribution of Code Generator Phases in CINT2006............. 129
Table 18 Compile Time Distribution of Code Generator Phases in CFP2006............... 129
Table 19 CINT2006 - Compile Time Cost of Predicate-Aware Register Allocation 131
Table 20 CFP2006 - Compile Time Increase of Predicate-Aware Register Allocation .131
Table 21 Compile Time (CT) Cost of Control Speculation 132

 147

16 List of Theorems

Theorem 6-1 (Characterization of Simple Live Range Tracking)86
Theorem 6-2 (Characterization of Complex Live Range Tracking) 91

 148

17 Glossary

Symbols

K number of colors (=number of machine registers)
V1,V2, …. global register candidates
v1, v2, … local register candiates
A, B, C, … global variables

Definitions

Application

 A program. For example, a SPEC benchmark is an application

Available variable

A variable is available at a point when there is at least one path from program

entry to the point

Backedge, back edge

 Edge ht → in directed graph, where h dominates t

Chordal Graph, chordal

In every cycle of length >= 4 there is a chord. A chord is an edge to a cycle node

that is not an immediate neighbor. Efficient graph-coloring algorithm is known

when interference graph is chordal. Chordal graphs are subsets of perfect graphs.

Chromatic Number

Exact number of colors needed to color a graph. Determining the chromatic

number for an arbitrary graph is NP complete.

Control flow graph

 A directed graph.

Clique

 A complete subgraph. All nodes in the subgraph are pairwise adjacent (“mutally

connected”).

 149

Clique Number

 Order of largest clique in a graph

Completion

 The insertion of a (empty) basic block on a critical edge.

Constrained Node

 Node n with degree(n) >= K

Control speculation (“breaking the branch barrier”)

Compiler optimization that hoists a chain of instructions starting at a load above

one or more controlling branches

Critical Edge

A edge from basic block A to B is critical is A has two or more successors and B

has two or more predecessors

Data speculation (“breaking the store barrier”)

Compiler optimization that hoists a chain of instructions starting at a load above

one or more (possibly dependent) stores

Degree of a node n (=degree(n))

 Number of edges of a node in an undirected graph

Disjoint predicates

Set of predicates. No two predicates in the set can be ‘true’ at any given program

point

Dominance

 Node A dominates node B if all paths from the single entry block to B contain A.

 In this case A is said to dominate B.

END block

Last node in a control flow graph. Every control flow graph can be transformed to

have a unique END node.

End of live range

Last use of a symbolic register on any path from START to END. Note that some

authors consider the last use as the start of the live range e.g. Gillies et al. [31].

EPIC

 Explicitly parallel instruction computing

 150

Execution Set

 Set of execution traces.

Execution Trace

 Set of predicated instructions in a predicated region.

Hyperblock

 Predicated superblock.

ILP

 Instruction level parallelism

Interference graph

Undirected graph G(V, E). The set V of nodes represents register candidates.

There is an edge from node A to node B if the nodes cannot be assigned the same

register (“node A and B interfere”)

Irreducible graph

 Control flow graph that is not reducible.

JS block

Join-Split block. Basic block inserted on critical edge. Purpose: improves

accuracy of predicate analysis (associated with JS block is a block predicate)

LP

 Linear Programming

Live range

 Set of program points where a variable is live and available

Live variable

A variable is live at a point when there is at least one path from the point to a

program exit that contains a use of the variable

NaT bit

“Not a Thing”: Extra bit in general register that signed a speculation fault or

exception

NaT consumption fault

 Exception or fault that occurs because the NaT bit is set unexpectedly

NaT producer

 A speculative load instruction (ld.s)

 151

NP-noise

 Observation that local assignment can change global allocation outcome (“chaotic

 behavior”)

Partition (of predicates)

 Set of disjoint predicates

Path

 Sequence of instructions or basic blocks in a control flow graph

Perfect Graph

 Graphs where cyclic number equals chromatic number

Predicate Set

 Set of predicates under which a live range is live. This is non-standard

 terminology.

Predicate Partition Graph (PPG)

Directed acyclic graph whose nodes are predicates and whose labeled edges

represent partition relations between predicates. PPG queries interpret predicates

are interpreted as execution sets. A PPG is complete if in contains a unique root

node from which all nodes are reachable.

Predication

Conditional execution of an instruction guarded by a qualifying predicate

Pre-materialization

Shrinks re-computable live ranges before register allocation

Program

 Synonym for function or procedure

Reconciliation code

A live range may be assigned different memory location (e.g. two different

registers or a register and memory). Instructions that map between different

assignements (e.g. a move to reconcile different register assignments) constitute

reconciliation code

Reducible graph

 Control flow graph that has no retreat edge (“acyclic graph”) or all retreat edges

 are back edges.

 152

RSE

Register Stack Engine. A unit on the Itanium processor managing dynamic

register stacks.

Significant node

Interference graph node with more than K edges

Simplification phase

Phase in graph coloring register allocator that maps the nodes in the interference

graph onto the coloring stack. It uses the simlification criterion to remove

unconstrained nodes from the interference graph. When no unconstrained nodes

can be found, it uses spilling heuristics.

Simplification criterion (classical version):

remove unconstrained nodes from interference graph and push it on the coloring

stack.

Spilling

1. Allocating memory to a symbolic register

2. Removal of node from interference graph

Speculation

 Early execution of an instruction

START block

First node in a control flow graph. Every control flow graph can be transformed to

have a unique START node.

Start of live range

First definition of a symbolic register on any path from START to END. The

definition can implicit and determined by data flow analysis as the first point of

any path from START to END where the symbolic register is both live and

available. Note that some authors consider the first definition to be end of a live

range, for example Gillies et al. [31].

Strict program

Let V be any variable. For each path from program entry to a use of V there is a

definition of V.

 153

Superblock

Control flow graph structure which has single entry and multiple exits. This is

one generalization of a basic block.

Unconstrained node

 Node n with degree(n) < K

 154

18 References

[1] A. V. Aho, M.S. Lam, R. Sethi, and J. D. Ullman, “Compilers: Principles, Techniques, &
Tools”, Addison Wesley, Second Edition 2007

[2] J. R. Allen, K. Kennedy, C. Porterfield, and J. D. Warren, "Conversion of Control
Dependence To Data Dependence", in Proceedings of the 10th ACM Symposium on Principle
of Programming Languages, POPL’83, January 1983, pp. 177-189

[3] A.W. Appel, “Modern Compiler Implementation in Java”, Cambridge University Press, First
Edition 1997

[4] A.W. Appel, and L. George, “Optimal Spilling for CISC Machines with Few Registers”,
Programming Language Design and Implementation (PLDI), June 2001, pp. 243-253

[5] I.D. Baev, R.E. Hank, and D.H. Gross, “Prematerialization: reducing register pressure for
free”, 15th International Conference on Parallel Architecture and Compilation Techniques
(PACT 2006), pp. 285-294

[6] P. Bergner, P. Dahl, D. Engebretsen, and M. O’Keefe, “Spill code minimization via
interference region spilling“, Programming Language Design and Implementation (PLDI),
June 1997, pp. 287-295

[7] D. Bernstein, D. Q. Goldin, M.C. Golumbic, H. Krawczyk, Y. Mansour, I. Nashon, and R.Y
Pinter “Spill code minimization techniques for optimizing compilers”, Proceedings of the
ACM SIGPLAN ’89 Programming Language Design and Implementation (PLDI), July 1989,
pp. 258-263

[8] J. Bharadwaj, W. Y. Chen, W. Chuang, G. Hoflehner, K. Menezes, K. Muthukumar, and J.
Pierce, "The Intel IA-64 Compiler Code Generator", IEEE Micro, Sep./Oct. 2000, pp.44-52

[9] J. Bharadwaj, K. Menezes, and C. McKinsey, “Wavefront Scheduling: Path Based Data
Representation and Scheduling of Subgraphs”, Proceedings of the 33rd International
Symposium on Microarchitecture, MICRO-33, December 2000 , pp. 262-271

[10] F.Bouchez, A. Darte, and F. Rastello, “On the Complexity of Register Allocation”, IEEE
International Symposium on Code Generation and Optimization (CGO’07), March 2007, pp.
102-114

[11] P.Briggs, K.D.Cooper, L. Torczon,”Rematerialization”, Proceedings of the ACM SIGPLAN
’92 Language Design and Implementation (PLDI), June 1992, pp. 311-321

[12] P. Briggs, “Register Allocation via Graph Coloring”, PhD thesis, Rice University, April 1992

[13] P. Briggs, K.D.Cooper, and L.Torczon. “Improvements to Graph Coloring Register
Allocation”, ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3,
May 1994, pp. 428-455

[14] P. P. Briggs, K.D.Cooper, K. W. Kennedy, and L.Torczon. “Digital computer register
allocation and code spilling using interference graph coloring”, US Patent 5,249,295 (1993)

[15] D.Callahan, and B. Koblenz, ”Register Allocation via Hierarchical Graph Coloring”,
Proceedings of the ACM SIGPLAN ’91 Conference on Programming Language Design and
Implementation, June 1991, pp. 192-203

[16] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W. Markstein.
“Register allocation via coloring”, Comp. Lang. 6 (1) , 1981, pp.47-57

[17] G. J. Chaitin. “Register Allocation and Spilling via Graph Coloring”, Proceedings of the ACM
SIGPLAN '82 Symposium on Compiler Construction, 1982, pp. 98-105

 155

[18] G.J. Chaitin, “Register Allocation and Spilling via Graph Coloring”, US Patent 4,571,678
(1986)

[19] Y. Choi, A.D. Knies, L. Gerke, T-F. Ngai, “The impact of if-conversion and branch
prediction on program execution on the Intel Itanium processor”, Proceedings of the 34th
International Symposium on Microarchitecture, MICRO-34, December 2001, pp. 182-191

[20] F.C. Chow, “A Portable Machine-Independent Global Optimizer – Design and
Measurements”, PhD Thesis, Stanford University, 1983, pp. 70-87

[21] F.C. Chow, "Minimizing Register Usage Penalty at Procedure Calls", Proceedings of the
ACM SIGPLAN ’88 Conference on Programming Language Design and Implementation
(PLDI), June 1988, pp. 85-95

[22] F.C. Chow and J.L. Hennessy. “The priority-based coloring approach to register allocation”,
ACM Trans. On Programming Languages and Systems 12, No. 4 , 1990, pp. 501-536

[23] K.D. Cooper, A. Dasgupta, and J. Eckhardt, “Revisiting Graph Coloring Register Allocation:
A Study of the Chaitin-Briggs and Callahan-Koblenz Algorithms”, LCPC 2005, LNCS 4339
2007, pp. 1-16

[24] K. D. Cooper and L. Taylor Simpson, “Live Range Splitting in a Graph Coloring Register
Allocator”, Proceedings of the 7th International Conference on Compiler Construction
CC’1998, LNCS 1383, 1998, pp. 174-187

[25] K.D. Cooper, A. Dasgupta, and J. Eckhardt, “Revisiting Graph Coloring Register Allocation:
A Study of the Chaitin-Briggs and Callahan-Koblenz Algorithms”, LCPC 2005, LNCS 4339,
2007, pp. 1-16

[26] D. Desai, G. Hoflehner, A. Kejariwal, D. M. Lavery, A. Nicolau, A. V. Veidenbaum, and C.
McNairy, “Performance Characterization of Itanium 2 –Based Montecito Processor”, SPEC
Benchmark Workshop 2009, pp. 36-56.

[27] A. Douillet, J. N. Amaral, G.R.Gao, “Fine-Grain Stacked Register Allocation for the Itanium
Architecture “, 15th Workshop on Languages and Compilers for Parallel Computing (LCPC),
2002

[28] A. E. Eichenberger and E. S. Davidson, “Register allocation for predicated code,” in
Proceedings of the 28th Annual International Symposium on Microarchitecture, MICRO-28,
December 1995, pp. 180–191

[29] C. Fu and K.D. Wilken, “Optimal and near-optimal global register allocation using 0-1 integer
programming”, Softw.Pract.Exper. 26(8), 1996, pp. 929-965

[30] L. George and A.W.Appel. “Iterated Register Coalescing”, 23rdACM Symposium on Principle
of Programming Languages, POPL’96, 1996, pp. 208-218

[31] D. M. Gillies, R.D-C. Ju, R. Johnson, and M. S. Schlansker. “Global Predicate Analysis and
its Application to Register Allocation”, Proceedings of the 29th International Symposium on
Microarchitecture, MICRO-29, December 1996, pp. 114-125

[32] D. W. Goodwin and K.D. Wilken, ”A faster optimal register allocator”, Proceedings of the
35th International Symposium on Microarchitecture MICRO-35, November 2002, pp. 245-
256

[33] R.Gupta, M.L.Soffa, and T. Steele. “Register Allocation Via Clique Separators”,
Programming Language Design and Implementation (PLDI), June 1989, pp. 264-274

[34] S. Hack, D. Grund, and G. Goos, “Register Allocation for Programs in SSA-Form”, 15th
International Conference on Compiler Construction CC’2006, LNCS 3923, 2006, pp. 247-
262

 156

[35] R. E. Hank, W -m. W. Hwu, B. R. Rau, “Region-based compilation: an introduction and
motivation.”, Proceeding of the 25th Annual International Symposium on Microarchitecture
MICRO-25, December 1992, pp. 158-168

[36] U. Hirnschrott, A. Krall, and B. Scholz, “Graph Coloring vs. Optimal Register Allocation for
Optimizing Compilers”, Joint Modular Languages Conference, JMLC 2003, Proceedings.
LNCS 2789, pp. 202-213

[37] G.Hoflehner and M. Davis, “Method and Apparatus for dynamic register scratching”, US
Patent 7,647,482 (2010)

[38] G.Hoflehner and J. Pierce, “Method and Apparatus for inserting more than one alloc
instruction within a routine”, US Patent 6,907,601 (2005)

[39] G. Hoflehner, K. Kirkegaard, R. Skinner, D. M. Lavery, Y-F. Lee, and W. Li, “Compiler
Optimizations for Transaction Processing Workloads on Itanium® Linux Systems”,
Proceedings of the 37th Annual International Symposium on Microarchitecture (MICRO-37),
December 2004, pp. 294-303

[40] G. Hoflehner, “Strategies for Predicate-Aware Register Allocation”, CC 2010, LNCS 6011,
pp. 185-204

[41] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and R. Zahir, "Introducing The IA-64
Architecture", IEEE M icro, Sep/Oct 2000, pp. 12-22

[42] Intel Corporation, “Intel® Itanium® Architecture Software Developer’s Manual”, Vol. 1-3,
Revision 2.2, January 2006,
http://developer.intel.com/design/itanium/manuals/iiasdmanual.htm

[43] Intel Corporation, "Intel® Itanium® 2 Processor Reference Manual”, May 2004,
http://download.intel.com/design/Itanium2/manuals/25111003.pdf

[44] Intel Corporation, “ItaniumTM Software Conventions and Runtime Architecture Guide”, May
2001, http://download.intel.com/design/itanium/downloads/245358.pdf

[45] R. Johnson and M. Schlansker, "Analysis techniques for predicated code", in Proceedings of
the 29th International Symposium on Microarchitecture, MICRO-29, December 1996, pp.
100-113

[46] V. Kathail, M.S. Schlansker, and B.R. Rau, "HPL PlayDoh architecture specification: Version
1.0", Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories, Palo Alto, CA, 1994 (Feb.)

[47] A.B. Kempe, “On the geographical problem of the four colors”, American Journal of
Mathematics 2, 1879, pp. 193-200

[48] B.D. Koblenz and C.D. Callahan, “Register allocation methods having upward pass for
determining and propagating variable usage information and downward pass for binding; both
passes utilizing interference graphs via coloring”, US Patent 5,530,866 (1996)

[49] T. Kong and K.D. Wilken, “Precise register allocation for irregular architectures”, Proceeding
of the 31st Annual International Symposium on Microarchitecture MICRO-31, December
1998, pp. 297-307

[50] A.Koseki, H.Komatsu, and T.Nakatani, “Preference-directed graph coloring”, Proceedings of
the ACM SIGPLAN 1002 Conference on Programming Language Design and
Implementation, June 2002, pp. 33-44

[51] R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, C. Lim, J. Ng, and D. Sehr, “An Advanced
Optimizer for the IA-64 Architecture”, IEEE Micro 20(6), Nov/Dec. 2000, pp. 60-68

[52] M. S. Lam, "Software Pipelining: An Effective Scheduling Technique for VLIW Machines",
Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation", June 1988, pp. 318-328.

http://developer.intel.com/design/itanium/manuals/iiasdmanual.
http://download.intel.com/design/Itanium2/manuals/25111003.pdf
http://download.intel.com/design/itanium/downloads/245358.pdf

 157

[53] J. Lin, W -C. Hsu, P-C. Yew, R. D-C. Ju, and T-F. Ngai, "A Compiler Framework for
Recovery Code Generation in General Speculative Optimizations," 13th International
Conference on Parallel Architecture and Compilation Techniques (PACT'04), 2004, pp.17-28

[54] G-Y Lueh and T. Gross, “Call-Cost Directed Register Allocation”, Proceedings of the ACM
SIGPLAN 1997 Conference on Programming Language Design and Implementation (PLDI),
June 1997, pp. 296-306

[55] G-Y Lueh, T. Gross, and A-R Adl-Tabatabai, “Fusion-Based Register Allocation”, ACM
Transactions on Programming Languages and Systems, Vol. 22, No. 3, May 2000, pp. 431-
470

[56] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann, “Effective compiler
support for predicated execution using the hyperblock”, Proceeding of the 25th Annual
International Symposium on Microarchitecture MICRO-25, December 1992, pp. 45-54

[57] S. A. Mahlke, R. E. Hank, R. A. Bringmann and J. C. Gyllenhaal and D. M. Gallagher and W.
W. Hwu, "Characterizing the Impact of Predicated Execution on Branch Prediction",
Proceedings of the 27th International Symposium on Microarchitecture, MICRO-27,
December 1994, pp 217-227

[58] C. McNairy, and D. Soltis, “Itanium 2 Processor Microarchitecture”, IEEE Micro,
March/April 2003, pp.44-55

[59] S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufman, 1997

[60] B. R. Nickerson, “Graph Coloring Register Allocation for Processors with Multi-Register
Operands”, Proceedings of the ACM SIGPLAN’90 Conference on Programming Language
Design and Implementation (PLDI’90), June 1990, pp. 40-51

[61] C. Norris, and L.L. Pollock, “Register Allocation over the Program Dependence Graph” ,
Proceedings of the ACM SIGPLAN'94 Conference on Programming Language Design and
Implementation (PLDI’94) , June 1994, pp. 266-277

[62] J.C.H Park, and M.S. Schlansker, “On predicated execution”, Tech. Rep. HPL-91-58, HP
Laboratories, Palo Alto, CA, 1991 (May)

[63] T.A.Proebsting and C. N. Fischer, “Probabilistic Register Allocation”, Proceedings of the
ACM SIGPLAN'92 Conference on Programming Language Design and Implementation
(PLDI’92) , June 1992, pp 300-310

[64] M. Poletto, and V. Sarkar, “Linear Scan Register Allocation”, ACM Transactions on
Programming Languages and Systems (TOPLAS), Vol. 21, No. 5, 1999, pp. 895-913

[65] B. R. Rau, “Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops”,
Proceedings of the 27th International Symposium on Microarchitecture MICRO-27, Dec.
1994, pp. 63-74

[66] B.R.Rau, M. Lee, P.P.Tirumalai, and M.S. Schlansker, “Register Allocation for Software
Pipelined loops”, Proceedings of the ACM SIGPLAN'92 Conference on Programming
Language Design and Implementation (PLDI’92) , June 1992, pp 283-299.

[67] M.S. Schlansker, and B. R. Rau, "EPIC Explicitly Parallel Instruction Computing", Computer,
February 2000, pp.37-45

[68] B. Scholz, and E. Eckstein, “Register allocation for irregular architectures“, Compilers, and
Tools for Embedded Systems & Software and Compilers for Embedded Systems, June 2002,
pp. 139-148

[69] A. Settle, D. Connors, G. Hoflehner, and D. Lavery, “Optimization for the Intel Itanium
Architecture Register Stack”, Proc. of the international symposium on Code generation and
optimization, CGO 2003, pp. 115-124

 158

[70] A. Settle, D. Connors, G. Hoflehner, and D. Lavery, “Compiler Controlled Register Stack
Management for the Intel Itanium Architecture”, EPIC 3 W orkshop, 2004

[71] J.W. Sias, W -m. W. Hwu, and D. I. August, "Accurate and Efficient Predicate Analysis with
Binary Decision Diagrams", Proceedings of the 33rd International Symposium on
Microarchitecture MICRO-33, December 2000, pp. 112-123

[72] M.D.Smith, N. Ramsey, and G. Holloway, “A Generalized Algorithm for Graph-Coloring
Register Allocation”, Proceedings of the 2004 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’04), June 2004, pp. 277-288

[73] P.A. Steenkiste, and J. L. Hennessy, “A Simple Interprocedural Register Allocation Algorithm
and Its Effectiveness for LISP”, ACM Transactions on Programming Languages and Systems
(TOPLAS), Vol. 11, No. 1, January 1989, pp. 1-32

[74] N.J. Warter, S.A.Mahlke, W.W. Hwu, and B.R. Rau, “Reverse if-conversion”, Proceedings of
the 1993 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’93), June 1993, pp. 290-299

[75] R. D. Weldon, S. S. Chang, H. Wang, G. Hoflehner, P. H. Wang, D. M. Lavery, and J. P.
Shen “Quantitative Evaluation of the Register Stack Engine and Optimizations for Future
Itanium Processors”, Interaction between Compilers and Computer Architectures (Interact),
2002, pp. 57-67

[76] S. Winkel, “Optimal Global Instruction Scheduling for the Itanium® Processor Architecture”,
Dissertation, Univ. des Saarlandes, 2004

[77] Y. Wu, L-L. Chen, R. Ju, and J. Fang, “Performance potentials of compiler-directed data
speculation.”, 2003 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2003, pp. 22-31

[78] L. Yang, S. Chan, G.R. Gao, R. Ju, G-Y. Lueh, Z. Zhang, ”Inter-Procedural Stacked Register
Allocation for Itanium® Like Architecture”,

[79] R. Zahir, J. Ross, D. Morris, and D. Hess, "OS and Compiler Considerations in the Design of
the IA-64 Architecture", Proceedings of the 9th International Conference on Architectural
Support of Programming Languages and Operating Systems, ASPLOS 2000, pp. 212-221

 159

Index
adjacency vector 40
ALAT see data speculation
allocation strategies

dominate-or-match................................85
partition tracking 85
use-and-partition tracking 89

AR.UNAT application register........................ 98
backing store See Register Stack Engine
biasing

register biasing 50
bundles................................ 9, 11, 12, 18
cleaning................................ 46
clique 148
clique number................................ 149
clique separators 49, 119
coalescing 49

conservative 49
iterative 49

coloring allocator. 2, 5, 31, 35, 42, 50, 51, 61, 64,
67, 73, 106, 107, 109, 114, 115, 125, 128, 136
Chaitin allocator 31
Chow allocator 35, 37, 109
clique allocator 49, 119
cluster allocator 50
hierarchical................................ 48, 118
optimistic coloring allocator........................ 35
probabilistic allocator................................ ..50

coloring inequality................................ 54
coloring stack 34
complete graph 40
complex live range tracking 91
constrained node 149
containment graph 45
control flow graph

irreducible 38
reducible................................ 38
single entry single exit 48, 118

control speculation...................... See speculation
cost function................................ 33

Bernstein et al................................. 44
of Chaitin Allocator33

critical edge................................ 149
data flow analysis

available variable analysis........................... 38
live variable analysis................................ ...38

data speculation.......................... See speculation
deferred exception token................ 27, 28, 30, 97
degree 40
degree of a node 149
dependencies 11

RAW 11
WAR................................ 11

WAW 11, 70
dominance 149
dominate-or-match................................ 85
EPIC................................ 9, 149
execution trace................................ 150
graph

bipartite graph................................ 52
chordal................................ 148
interference graph 150
irreducible graph See Control Flow Graph
perfect graph................................ 151
reducible graph See Control Flow Graph

hammock................................ 19, 20
hyperblock................................ 150
IA-64....9, 11, 12, 13, 18, 58, 60, 65, 71, 97, 104,

154
if-conversion................................ 18, 21, 71
ILP 150
instruction group................ 11, 12, 13, 15, 67, 70
interference................................ 52

definition 52
simultaneous 52
value................................ 53

interference matrix................................ 40
interference region spilling............................. 46
Itanium instruction

add r1=r2,r3 14
alloc r1=ar.pfs,i,l,o,r................................ ... 16
andcm r1=r2,r3 14
br.call foo 17
br.cloop target 17
br.cond.sptk.many target 17
br.ctop target................................ 17
br.ret 17
chk.s r1, target 15
clrrrb................................ 17, 69, 70
cmp.crel.unc p1,p2=r1,r2............................ 14
dep r1=r2,r3,pos,len 15
extr r1=r3,pos,len................................ 15
fma.s f1=f3,f4,f2 16
getf.sig r1=f2 16
ld4.s r1=[r3]................................ 16
ld8 r1=[r3] 16
setf.sig f1=r2................................ 16
xma.l f1=f3,f4,f2................................ 16

Itanium processor family................................ .. 9
live range................................ 38, 150

complex live range 90
complex live range tracking........................ 91
containment of 45
dominate................................ 83
match................................ 83

 160

overlap 83
partition................................ 83
simple live range................................ 93
simple live range tracking 86

live range shrinking See pre-materialization
live range splitting 35
live variable................................ 150
modulo scheduling................................ 56

epilogue phase 57
initiation interval (II)56
kernel phase................................ 57
prologue phase................................ 57
stage count 56

multiple alloc algorithms5
NaT................................ 27
NaT consumption faults................................ ..98
NaT producer 102
NaT propagation................................ 98

advanced NaT propagation algorithm........ 101
NP-complete 52
NP-noise 151
optimistic coloring................................ 34
optimizing compilers8
partition of predicates151
partition tracking 85
path................................ 151
PPG....................... See predicate partition graph
PQS.......................... See predicate query system
predicate partition graph77

backward edges 77
complete................................ 77
forward edges 77

predicate query system................................71
lub_diff 116
lub_sum................................ 116

predicates
disjoint predicates149

predication9, 18, 59, 151
pre-materialization................................ .. 46, 151
priority function....................... See cost function

of Chow Allocator36
program dependence graph 48, 118
reconciliation code................................ 151
register

architectural register21
branch registers................................ 21, 62

floating point register 21
general registers 21
physical register 22
predicate registers 14, 15, 18, 21, 71
preserved register 21
rotating registers 21
scratch register 21
stacked integer registers 21

register allocation.............................. 31, 52, 115
interprocedural 48
Priority-based register allocation 35

register allocator
linear scan allocator................................ 51
LP allocator 51
quadratic solvers 51

register assignment 31
register preference graph 47
register referencing 47
Register Stack Engine 21

overflow 24
underflow 24

rematerialization 43
RK algorithm................................ 78
RSE.................... 152, See Register Stack Engine
scalable allocation

hierarchical allocation 111
parallel allocation................................ 110
serial allocation................................ 109

scalable allocator 107
significant node................................ 152
simple live range tracking 86
simplification phase 32, 152
software pipelining .8, 21, 123, 128, See modulo

scheduling
speculation................................ 27, 28, 152

control speculation 27
data speculation 29

spill heuristics
Bernstein 44
Chaitin................................ 43

spilling 33, 62, 69, 152
strict program 53, 152
superblock 153
symbolic registers 8, 31, 37, 67
unconstrained node40, 153
use-and-partition tracking............................... 89

 161

Curriculum Vitae

Gerolf Fritz Hoflehner
434 Galleria Dr. Unit 04
95134 San Jose, CA

(Home) +1-408-435-5066
(Cell) +1-408-506-4240
(Business) +1-408-765-8380
(Email) gerolf.f.hoflehner@intel.com

Employment

2009 (Oct.) – , Research Scientist, Intel Corp. (Research Lab)

• Binary translation technology and microarchitecture research

2008 (Dec.) -2009 (Sep.), Software Engineer, Intel Corp. (Binary Translation Team)

• Implemented simple x862x86 translator for enabling BT system
• Defined initial binary translation system validation and testability methodology

2005-2008 (Nov.), Team and Project Lead, Intel Corp. (Compiler Team)

• Led team of 3 engineers on code generation, optimizations and performance
measurement/analysis. Projects included register allocation, if-conversion,
classical optimizations, EH and feedback-based optimizations

• Managed customer relations and training for Fujitsu/Japan and Oracle/US
• Drove CPU2006 performance analysis (>30% compiler gain on CPU2006),

optimizations, publication support
• Designed and implemented predicate-aware and pipeline-aware dataflow analysis,

full hazard checking and speculated code analysis algorithm

1999 (Apr.) -2004, Software Engineer, Intel Corp. (Compiler Team)

• Drove Oracle code analysis and compiler performance tuning. Key contributor to
>40% compiler gain on TPC-C resulting in world-record setting 4P TPC-C
publications on Itanium Linux systems

• Developed optimizations for Itanium register stack, opportunistic interprocedural
register allocation, predication oracle, classical optimizations and enabled PQS-
based predicate-aware register allocation

• Drove bug dispatching, SPEC and customer code analysis, compile-time task
force, local register allocation project, and 4 intern projects

 162

1998-1999, Software Engineer, Siemens Pyramid @Sun Microsystems, Menlo Park

• Ported non-optimizing compiler backend to Itanium on Sun/Solaris
• Planned and oversaw tool deliverables in joint Siemens Pyramid/Sun project
• Developed prototype instruction scheduler for Itanium

1996-1998, Software Engineer, Siemens Pyramid, San Jose, CA

• SPEC95 performance work on pyrC6.0 C/C++ compiler (> 3% gain on integer
suite from new and tuned compiler optimizations)

• Oracle performance tuning for cached TPCC setup (Oracle 7.3.2) for R10K.
Collected feedback profiling and tuned compiler optimization for 2-3% gain

• Ported MIPS tool chain (UCODE code generator, optimizer, assembler, linker) to
64bit model

1990 (Nov.) -1995, Software Engineer, Siemens Nixdorf Corp., Munich/Germany

• IBM 370 compiler development: Re-engineered big parts of proprietary IBM 370
compiler backend to improve maintainability, added compiler optimizations (sign
extensions, set of classical optimizations), enhanced register allocation and
instruction selection

• Developed MIPS installation compiler for MIPS RxK
• Supervised students on mathematical library ports (to MIPS) and compiler

projects

1988-1990 (Apr.), Intern, Siemens, Munich

• Fast mathematical library development (ULP accurate in double precision for set
of elementary mathematical functions) in IBM 370 assembly. Shipped in
mathematical library with C/C++/Fortran/Pascal product compilers.

• Database application development for CAD product

1987-1988, Student Program, Siemens, Munich

• Four 2-3 month internships with 2-4 week training classes (mostly in proprietary
tools and software packages)

1987-1988, Tutor and teaching assistant at Technical University Munich

• Linear Algebra homework classes for math and computer science students
• Analysis II, III student homework for math students

 163

Paper:

[12] Gerolf Hoflehner: Strategies for Predicate-Aware Register Allocation, Compiler

Construction CC 2010, LNCS 6111, pp. 185-204
[11] Darshan Desai, Gerolf Hoflehner, Arun Kejariwal, Daniel M. Lavery, Alexandru

Nicolau, Alexander V. Veidenbaum, Cameron McNairy: Performance
Characterization of Itanium® 2-Based Montecito Processor. SPEC Benchmark
Workshop 2009: 36-56

[10] Arun Kejariwal , Gerolf Hoflehner, Darshan Desai, Daniel M. Lavery, Alexandru
Nicolau, Alexander V. Veidenbaum: Comparative characterization of SPEC
CPU2000 and CPU2006 on Itanium architecture. SIGMETRICS 2007: 361-362

[9] Peng-fei Chuang, Howard Chen, Gerolf F. Hoflehner, Daniel M. Lavery, and Wei-
Chung Hsu: Dynamic Profile Driven Code Version Selection, Interaction between
Compilers and Computer Architectures 2007 (Interact 11)

[8] Matthew Bridges, Howard Chen, Gerolf Hoflehner, Daniel Lavery “Fusing
Instructions to Reduce Resource Usage in If-Converted Regions”, Fifth Workshop on
Explicitly Parallel Instruction Computing Architectures and Compiler Technology
(EPIC-5), 2006

[7] Gerolf Hoflehner, Knud Kirkegaard, Rod Skinner, Daniel M. Lavery, Yong-Fong
Lee, Wei Li: Compiler Optimizations for Transaction Processing Workloads on
Itanium® Linux Systems. MICRO 2004: 294-303

[6] Alex Settle, Daniel A. Connors, Gerolf Hoflehner, Daniel M. Lavery: Compiler
Controlled Register Stack Management for the Intel Itanium Architecture, Third
Workshop on Explicitly Parallel Instruction Computing Architectures and Compiler
Technology (EPIC-3), 2004

[5] Alex Settle, Daniel A. Connors, Gerolf Hoflehner, Daniel M. Lavery: Optimization
for the Intel® Itanium ®Architecture Register Stack. CGO 2003: 115-124

[4] Gerolf Hoflehner, Daniel M. Lavery, David C. Sehr: The compiler as a validation and
evaluation tool. Electr. Notes Theor. Comput. Sci. 82(2): (2003)

[3] R. David Weldon, Steven S. Chang, Hong Wang, Gerolf Hoflehner, Perry H. Wang,
Daniel M. Lavery, John Paul Shen: Quantitative Evaluation of the Register Stack
Engine and Optimizations for Future Itanium Processors. Interaction between
Compilers and Computer Architectures 2002: 57-67

[2] Shih-Wei Liao, Perry H. Wang, Hong Wang, John Paul Shen, Gerolf Hoflehner,
Daniel M. Lavery: Post-Pass Binary Adaptation for Software-Based Speculative
Precomputation. PLDI 2002: 117-128

[1] Jay Bharadwaj, William Y. Chen, Weihaw Chuang, Gerolf Hoflehner, Kishore N.
Menezes, Kalyan Muthukumar, Jim Pierce: The Intel IA-64 Compiler Code
Generator. IEEE Micro 20(5): 44-53 (2000)

Conferences:

• Compiler Round Table (Organizer and Host, @Gelato, San Jose, 2005)
• Co-chair Epic Workshop Epic-4 (San Jose, 2005)
• Co-chair Epic Workshop Epic-3 (San Jose, 2004)
• Reviewer for CGO, Micro, Journal of Computing

 164

US Patents:

7,647,482 Method and apparatus for dynamic register scratching, 2010
7,617,495 Resource-aware scheduling for compilers, 2009
7,603,546 System, method and apparatuses for dependency chain processing, 2009
7,398,521 Methods and apparatuses for thread management of multi-threading, 2008
7,328,433 Methods and apparatuses for reducing memory latency in a software
application, 2008
7,260,705 Apparatus to implement mesocode, 2007
7,228,528 Building inter-block streams from a dynamic execution trace for a program,
2007
6,907,601 Method and apparatus for inserting more than one allocation instruction within
a routine, 2005

Education:

1991 Diplom in Mathematik (Nebenfach Informatik), Dipl. Math. Univ. , Technische

Universität München (Master in mathematics with minor in computer science at
Technical University Munich/Germany)

 Thesis: “Eine Klasse allgemeiner Zetafunktionen und Ihre Funktionalgleichung”
(in German)

1986 Vordiplom Mathematik, Dipl. Math. Cand., Technische Universität München
1984 Abitur, Viscardi Gymnasium, Fürstenfeldbruck/Germany

Memberships:

ACM/IEEE/AMS/MAA

Personal Information:

Citizenship: Austria
US Visa: Permanent Resident
City of Birth: Linz/Austria
Date of Birth: 29.08.1965
Interests: Marathon, Skiing, Hiking, Travel

