
Submitted by
Dipl.-Ing. Peter Hofer

Submitted at
Institute for
System Software

Christian Doppler
Laboratory on
Monitoring and
Evolution of
Very-Large-Scale
Software Systems

Supervisor and
First Examiner
o.Univ.-Prof.
Dipl.-Ing. Dr. Dr.h.c.
Hanspeter Mössenböck

Second Examiner
Univ.-Prof. Dipl.-Ing.
Dr. Walter Binder

October 2016

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Method Profiling and Lock
ContentionProfilingon the
Java Virtual Machine Level

Doctoral Thesis
to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

Abstract I

Abstract

Large-scale software systems are frequently distributed over a network of computers in
different locations, commonly rely on virtualization, and are often used by thousands
of users at the same time. Application Performance Management (APM) software is used
to continuously monitor such software systems. It uses profiling approaches to collect
real-world performance data that can be used to identify and understand performance
problems. However, unlike profiling tools, APM software must incur only minimal
runtime overhead while still collecting sufficiently detailed performance data.

In order to address these challenges for Java, we propose a Java virtual machine imple-
mentation with sophisticated built-in profiling mechanisms. By integrating with the
virtual machine, these mechanisms can efficiently collect accurate performance data.
First, we propose new approaches for sampling-based method profiling, which attribute
execution time to method calls. Inside the virtual machine, our approaches can directly
decode and manipulate call stacks and can control how threads are paused to capture
their states. Second, we propose a novel approach for lock contention profiling, which
reveals concurrency issues that cause threads to wait for each other. Our approach inte-
grates with the low-level implementation of locking in the virtual machine to efficiently
collect accurate data while avoiding side effects. Finally, we propose a new approach to
quantify effects of virtualization, which can misrepresent the resource usage of threads.

We implemented our approaches in the HotSpot Virtual Machine, a production-quality,
high-performance Java virtual machine implementation. We evaluate our approaches us-
ing benchmarks with non-trivial, real-world workloads and demonstrate their efficiency
and the accuracy of the data which they collect.

II

Kurzfassung

Große Softwaresysteme sind oft auf ein Netzwerk von Computern an unterschiedlichen
Orten verteilt, nutzen häufig Virtualisierung und werden oft von tausenden Benut-
zern gleichzeitig verwendet. Software für Application Performance Management (APM)
wird verwendet, um solche Softwaresysteme fortlaufend im Echtbetrieb zu überwa-
chen. APM-Software verwendet Profiling-Ansätze, um Daten zu sammeln, mit welchen
Leistungsprobleme identifiziert und nachvollzogen werden können. Anders als Profiling-
Werkzeuge darf APM-Software allerdings nur minimale Auswirkungen auf die Leistung
haben und muss dennoch hinreichend detaillierte Daten sammeln.

Um diese Anforderungen für Java-Software zu bewältigen, schlagen wir die Integration
von hochentwickelten Profiling-Mechanismen in eine virtuelle Maschine für Java vor.
Durch diese Integration können solche Mechanismen effizient arbeiten und genaue Daten
sammeln. Zunächst zeigen wir neue Ansätze für stichprobenbasiertes Methoden-Profiling,
welche die Ausführungszeit den einzelnen Methoden zuordnen. Innerhalb der virtuellen
Maschine können unsere Ansätze direkt Methoden-Stacks dekodieren, ändern, und
auch beeinflussen, wie Threads zum Erfassen ihres Zustands pausiert werden. Weiters
präsentieren wir einen neuen Ansatz für Lock Contention Profiling, welcher Concurrency-
Probleme aufzeigt, durch die Threads aufeinander warten müssen. Unser Ansatz ist
in die Implementierung von Locks in der virtuellen Maschine integriert, wodurch er
effizient genaue Daten sammelt, aber Nebeneffekte vermeidet. Schließlich zeigen wir
einen neuen Ansatz, um Auswirkungen von Virtualisierung zu messen, welche die
Ressourcennutzung von Threads verfälschen können.

Wir haben unsere Ansätze in der HotSpot Virtual Machine implementiert, einer ausge-
reiften und leistungsfähigen Implementierung einer virtuellen Maschine für Java. Wir
evaluieren unsere Ansätze anhand von Benchmarks mit nicht-trivialen, realitätsnahen
Abläufen und zeigen ihre Effizienz und die Genauigkeit ihrer gesammelten Daten.

Contents III

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 State of the Art . 2
1.3 Novel Solutions . 4
1.4 Scientific Contributions . 5
1.5 Project Context . 6
1.6 Structure of this Thesis . 7

2 Background 9
2.1 Java . 9

2.1.1 Native Code . 10
2.1.2 JVM Tool Interface . 10
2.1.3 Other Languages on the Java VM . 10

2.2 The Java HotSpot Virtual Machine . 11

3 Sampling-based Method Profiling 15
3.1 Background . 16

3.1.1 Sampling and Instrumentation . 16
3.1.2 Calling Context Trees . 16
3.1.3 Running and Waiting Threads . 18
3.1.4 Sampling with JVMTI in Safepoints 19
3.1.5 Sampling with AsyncGetCallTrace 21

3.2 Stack Fragment Sampling . 23
3.2.1 Scheduling-Aware Sampling . 24
3.2.2 Retrieving Collected Samples . 26
3.2.3 Decoding the Stack Fragments . 26
3.2.4 Merging and Weighting Samples . 31

3.3 Partial Safepoints and Incremental Stack Tracing 33
3.3.1 Partial Safepoints . 33
3.3.2 Self-Sampling . 35
3.3.3 Incremental Stack Tracing . 36

IV Contents

3.3.4 Implementation Aspects . 44
3.4 Evaluation . 46

3.4.1 General Methodology . 46
3.4.2 Accuracy Analysis . 48
3.4.3 Stack Fragment Sampling . 51
3.4.4 Partial Safepoints and Incremental Stack Tracing 59

3.5 Related Work . 66
3.5.1 Sampling-based Method Profiling 66
3.5.2 Dynamic Analysis Tools . 69
3.5.3 Profile Visualization and Analysis 70

3.6 Summary and Future Work . 71

4 Lock Contention Tracing and Analysis 73
4.1 Background . 74

4.1.1 Java Intrinsic Locks (Monitors) . 75
4.1.2 The java.util.concurrent Package . 76

4.2 Lock Contention Event Tracing . 77
4.2.1 Writing and Processing Events . 79
4.2.2 Tracing Intrinsic Locks . 80
4.2.3 Tracing Park/Unpark Synchronization 83
4.2.4 Metadata . 85

4.3 Trace Analysis . 88
4.3.1 Correlation and Contention Analysis 88
4.3.2 Aggregation of Contentions . 91
4.3.3 Interactive Visualization . 92

4.4 Evaluation . 96
4.4.1 Synthetic Workloads and Correctness 96
4.4.2 Benchmarking . 96
4.4.3 Runtime Overhead . 97
4.4.4 Generated Amount of Data . 99
4.4.5 Trace Composition . 100
4.4.6 Call Chain Optimizations . 101

4.5 Related Work . 102
4.6 Summary and Future Work . 104

5 Hardware Virtualization Steal Time Accounting 105
5.1 Background . 106
5.2 Steal Time Accounting . 106
5.3 Implementation . 109

Contents V

5.4 Evaluation . 110
5.4.1 Accuracy . 111
5.4.2 Runtime Overhead . 112

5.5 Related Work . 113
5.6 Summary and Future Work . 115

6 Summary 117

List of Figures 119

Bibliography 121

Acknowledgements VII

Acknowledgements

First and foremost, I thank my advisor Hanspeter Mössenböck for encouraging me to
pursue a doctorate and for guiding me through it. Thank you for always making time for
discussing my ongoing work and for giving me thorough feedback on all publications
and on this thesis. I thank my second advisor, Walter Binder of the Università della
Svizzera italiana at Lugano, for taking the time to review my thesis and for being part of
the examination committee. I also thank the head of our laboratory, Paul Grünbacher, for
his constant encouragement.

I am grateful to the Christian Doppler Research Association and to Dynatrace Austria for
funding this work. I thank our contacts at Dynatrace, specifically Erich Hochmuth and
Christian Schwarzbauer, for often taking the time to discuss our work and the direction
of our research.

I thank David Gnedt, with whom I had the pleasure of working together for most
of my doctoral studies. Thank you for your outstanding implementation work, for
countless productive discussions, and for directly contributing to publications. Likewise,
I thank Andreas Schörgenhumer for his impressive work on tools which greatly aided
the presentation of the research in this thesis and made it more tangible to others. I wish
all the best to both of you for your own future doctoral studies.

I thank my colleague Florian Angerer for frequently taking the time to discuss ideas and
providing new insights, and also for the great teamwork in the classes which we taught
together. I thank my colleague Matthias Grimmer for all his advice on writing this thesis
and for providing valuable feedback on it. I extend my thanks to all other current and
former colleagues at the Christian Doppler Laboratory MEVSS and at the Institute for
System Software for many interesting exchanges and for an engaging environment to do
research in.

Last, but not least, I am grateful to my friends and family for their support and encour-
agement throughout my studies.

1

Chapter 1

Introduction

Troubleshooting performance bottlenecks in large-scale Java software systems is difficult
and requires sophisticated tools. We characterize the challenges which these tools face,
discuss how these challenges are currently addressed, point out open issues, and outline
our approaches and scientific contributions to overcome these issues.

1.1 Problem Statement

Software developers use profilers during the development and maintenance of applica-
tions in order to troubleshoot performance problems. A profiler observes the execution of
an application and collects performance data, such as how much time is spent executing
individual methods. The collected data is typically summarized and visualized in a form
in which a developer can use it to understand the behavior of the application and to
subsequently apply optimizations.

However, profiling large-scale software systems is challenging. These software systems
are commonly used by hundreds or thousands of users at the same time. They consist
of communicating components that are distributed in a network of computers, often
in multiple locations and running on different hardware. The use of virtualization and
cloud computing services can further add to their complexity. Under such conditions,
software can exhibit performance characteristics that are very different from those that
are revealed by profiling on a testing infrastructure, or even those on a single developer
workstation.

A straightforward approach to this problem is to collect performance data on the pro-
duction system itself. Application Performance Management (APM) software provides
this functionality and is typically used to monitor distributed web applications, which

2 Introduction

are often implemented in Java. APM software observes individual transactions in the
software system which, for example, start out in a user’s web browser and are handled
by a frontend service, which in turn calls several backend services. For that purpose,
APM software continuously monitors each component of the system as well as the com-
munication between the components. The collected performance data can be used to
detect when performance problems occur and to diagnose them. APM software collects
this data using profiling approaches and faces challenges such as:

Impact on Performance. Unlike profiling tools, APM software is used on production
systems, where it must not impose a significant impact on the performance of the software
system and should incur only minimal runtime overhead. For this purpose, APM
software depends on the availability of efficient profiling capabilities in the monitored
environment.

Accuracy of Collected Data. Despite the goal to minimize its impact on the software
system’s performance, the primary objective of APM software must be to collect suf-
ficiently detailed data which can be used to reliably detect performance problems, to
accurately determine a problem’s cause, and to effectively remedy a problem.

Detection of Concurrency Issues. Large-scale software systems rely on multi-core
hardware to process many transactions in parallel. However, concurrency issues can limit
the system’s achievable degree of parallelism and can leave the hardware underutilized.
APM software should identify and locate such problems, especially because they are
more likely to occur in production systems with more powerful hardware than that in
testing infrastructures or on developer workstations.

Accounting for Virtualization Effects. Distributed web applications are commonly
deployed using virtualization and cloud computing services, so they share their re-
sources with other software. APM software should determine how virtualization affects
application performance and also how it distorts performance measurements.

1.2 State of the Art

Given the challenges which we identified above, we examined the profiling approaches
that APM software currently uses to collect performance data. This thesis focuses on
profiling approaches which APM software can use to monitor Java software systems.

State of the Art 3

Such profiling approaches must either be provided by the Java Virtual Machine (Java VM)
or require its support. APM software can use multiple profiling approaches for different
purposes.

Instrumenting approaches insert code snippets into the application code to collect data.
This enables them to collect arbitrary data, such as method calls, object allocations, or
the values of variables. However, by modifying the application code, instrumentation
can significantly change the performance characteristics of the application. For example,
instrumenting a method to measure its execution time also contributes to its execution
time, and affects short-running methods more than long-running methods. The changes
to the code can also interfere with optimizations of the Java VM. For those reasons,
instrumentation can have a significant impact on the application’s performance and on
the accuracy of the collected data, and this impact can be hard to predict. Efficiently
collecting accurate data for the detection of concurrency issues is difficult for the same
reasons. Furthermore, frequently used concurrency features of Java are implemented
inside the Java VM and do not expose their internals to application code, so instrumen-
tation is ill-suited to observe those features. Nevertheless, instrumentation is useful to
capture all occurrences of an event in an application, such as the begin and the end of
transactions that are observed by APM software.

Profiling approaches which interact with the Java VM typically use the JVM Tool In-
terface (JVMTI) to collect performance data. JVMTI offers functions to inspect aspects
of the Java application such as its threads, its loaded classes, and the objects on the
heap. It also offers functions that provide information about the state of the Java VM
itself, which is typically not observable with instrumentation. One profiling approach
that is straightforward to implement with JVMTI is sampling-based method profiling,
which periodically takes samples of the currently executing methods to create a statistical
execution profile. For that purpose, JVMTI offers ready-to-use functionality to capture
the executing methods and their callers in all threads. JVMTI also provides functionality
for detecting concurrency issues with intrinsic locks, which are a frequently used Java
concurrency feature that is often implemented inside the Java VM. However, many of
JVMTI’s functions pause all application threads to report fully consistent states to the
profiler. This incurs significant runtime overhead because JVMTI can typically pause
threads only at specific code locations, and all threads must first reach such a location.
Moreover, because JVMTI can capture states only in those locations, it conceals the code
and method calls between them from the profiler. This strongly affects the accuracy of
the collected performance data. Moreover, using specific functions of JVMTI can disable
optimizations of the Java VM, which can also have a significant impact on overhead and
accuracy.

4 Introduction

Profiling tools have also been integrated entirely into a Java VM. The Java Flight
Recorder (JFR) is a profiling tool that is part of the production-quality Oracle Java HotSpot
Virtual Machine and records performance-related events in the application and in the
VM itself. Because of its integration into the VM, JFR can record many events more
accurately and with less overhead than an external profiler that uses JVMTI or instru-
mentation. This includes events for the detection of concurrency problems. JFR can also
collect information that is not available with instrumentation or with JVMTI, such as
VM-internal events and their details. Overall, JFR’s approach for collecting performance
data inside the Java VM is well-suited for APM purposes. However, JFR is designed
as a stand-alone, self-contained profiling tool with no officially supported interfaces.
Therefore, APM software cannot make use of JFR to collect data.

Accounting for the impact of virtualization is generally not done on the application
level or on the Java VM level. Current approaches which quantify virtualization effects
do so for the entire system under virtualization or for its individual virtual processors,
which does not show which threads or transactions of an application are affected by
virtualization effects.

1.3 Novel Solutions

In order to address the challenges of APM software and the shortcomings of current
approaches which we identified above, we propose a production-quality Java virtual ma-
chine implementation with sophisticated built-in profiling mechanisms that are designed
to be harnessed by external profiling tools such as APM software. These mechanisms
can efficiently collect accurate performance data by being part of the virtual machine:
they have exact knowledge of the virtual machine’s implementation, can influence its
execution when that is beneficial, and have direct access to exhaustive metadata about
the application and about runtime artifacts such as generated machine code.

In this thesis, we advance the state of the art with novel approaches for the following
forms of profiling:

Sampling-based method profiling is an essential technique for attributing the execution
time of an application to the executed method calls. We propose a set of novel approaches
which are built into the Java VM where they can directly decode and manipulate call
stacks, can access details about optimized code, and can control how threads are paused
for sampling. Our approaches are more efficient than current approaches and can be
equally or more accurate.

Scientific Contributions 5

Lock contention profiling reveals concurrency issues which cause threads to wait for
each other because they try to acquire locks at the same time. We propose a novel
approach which integrates with the low-level implementation of locking inside the
Java VM, where all details of a contention are readily available, including which thread
holds the lock and therefore causes the contention. Inside the Java VM, our approach
efficiently collects accurate information, refrains from collecting this information unless
contention actually occurs, and avoids causing additional contention and interference
with optimizations.

Virtualization is provided by separate virtualization software and is independent of the
Java VM. This virtualization software is generally not accessible for profiling purposes, es-
pecially with cloud computing services. Therefore, to measure virtualization effects, we
propose a novel sampling approach which only requires access to performance counters
that are commonly available in virtualized systems. Our approach efficiently accounts
for virtualization effects because accessing these counters is typically inexpensive.

We implemented our approaches in the HotSpot Virtual Machine in order to evaluate them
and to demonstrate their advantages over current approaches. HotSpot is a production-
quality, high-performance Java Virtual Machine implementation. It is part of the widely
used Oracle Java Runtime Environment (JRE) and Oracle Java Development Kit (JDK).

1.4 Scientific Contributions

The novel scientific contributions of this thesis are the following:

Stack Fragment Sampling is a novel sampling-based method profiling approach which
minimizes pause times for threads and eliminates redundant samples of unchanged
execution states. With support from the operating system, it interrupts an application
thread only briefly to copy a fragment of its stack to a buffer and then immediately
resumes the thread’s execution. A background thread asynchronously decodes the
captured stack fragments to stack traces. We published this contribution in [Hofer14a,
Hofer14b].

Partial Safepoints and Incremental Stack Tracing constitute a second novel approach
for efficient sampling-based method profiling. Unlike Stack Fragment Sampling, this
approach does not require support from the operating system. Partial safepoints reduce
pause times for sampling by targeting only those threads which are currently running.
Incremental stack tracing constructs stack traces lazily instead of walking the entire stack
for each sample, examining unchanged stack frames only once and sharing the collected
data between multiple stack traces. We published this contribution in [Hofer15b].

6 Introduction

Our Lock Contention Tracing and Analysis approach efficiently records lock contention
events in the application. Unlike common methods, our novel approach observes not
only when a thread is blocked on a lock, but also which other thread blocked it by
holding the lock, and records both their stack traces. We further present a versatile
analysis tool which enables users to identify locking bottlenecks and their characteristics
in an effective way. We published this contribution in [Hofer15a, Hofer16].

Finally, our novel approach to Virtualization Steal Time Accounting is a simple, yet
effective sampling-based technique to estimate the effect of the suspension of virtual
processors on the reported resource usage of application threads. The technique requires
no changes to the Java VM, to the operating system, or to the virtualization software. We
published this contribution in [Hofer15c].

1.5 Project Context

The research described in this thesis was done at the Christian Doppler Laboratory on
Monitoring and Evolution of Very-Large-Scale Software Systems and was partly funded
by Dynatrace Austria. The laboratory was established in 2013 at the Johannes Kepler
University Linz to conduct application-oriented research together with industry partners.

Also in cooperation with Dynatrace, Lengauer, Bitto et al. published an efficient ap-
proach for tracking object allocations and garbage collections to find memory-related
performance problems in Java applications [Lengauer15, Lengauer16]. Lengauer fur-
ther proposed an approach to automatically tune garbage collector parameters to the
allocation behavior of a Java application to increase its performance [Lengauer14].

Working with industry partner KEBA, Lettner et al. analyzed the process of modeling
features of large-scale industrial software systems and proposed to use multiple models
for different purposes and for multiple levels of granularity [Lettner15]. Angerer et al.
proposed techniques to determine the potential impact of code changes on individual
configurations of features [Angerer15].

In cooperation with Primetals Technologies, Vierhauser, Rabiser et al. devised the ReMinds
framework, a flexible high-level framework for monitoring systems of systems at runtime
to ensure that their components meet pre-defined requirements [Vierhauser16]. They
further proposed a model-based approach for describing requirements and relating them
with architectural scopes and with events that occur at runtime [Vierhauser15].

Before the laboratory was established, the author has also been part of a long-running
research cooperation between the Institute for System Software at the Johannes Ke-

Structure of this Thesis 7

pler University Linz and Oracle Labs (formerly Sun Microsystems). The focus of this
cooperation has been research on Java virtual machines, especially on HotSpot.

Numerous researchers who participated in this cooperation have worked on the Client
Compiler, which is one of the two just-in-time (JIT) compilers of the Java HotSpot Virtual
Machine. Mössenböck devised an intermediate representation in static single assigment
form [Mössenböck00]. Mössenböck, Pfeiffer and Wimmer introduced a linear scan
register allocator [Mössenböck02, Wimmer05]. Kotzmann extended the Client Compiler
with object escape analysis [Kotzmann05]. Würthinger added an algorithm for the
elimination of array bounds checks [Würthinger09].

More recently, Würthinger et al. devised the Graal Virtual Machine, a modification of the
Java HotSpot Virtual Machine [Würthinger13, Graal15]. It includes the Graal Compiler,
a JIT compiler for Java which is itself written in Java, and Truffle, a framework for
implementing programming language interpreters. Such interpreters work on abstract
syntax trees and benefit from self-optimization through partial evaluation and dynamic
compilation performed by Truffle and the Graal Compiler. Truffle interpreters have been
implemented for JavaScript, Ruby, C, and other languages. Recent research on Truffle
has focused on interoperability between language implementations [Grimmer15].

1.6 Structure of this Thesis

This thesis is organized as follows: Chapter 2 describes the Java programming language
and the HotSpot Java Virtual Machine, in which we integrated our proposed profiling
approaches. Chapter 3 gives an overview of sampling-based method profiling in general
and characterizes current implementations for Java. It then describes our approaches,
which are Stack Fragment Sampling (in Section 3.2) and Incremental Stack Tracing with
Partial Safepoints (in Section 3.3), followed by an evaluation of the two approaches and
a discussion of related work. Chapter 4 characterizes locks in Java and describes and
evaluates our approach for recording and analyzing lock contention events in HotSpot,
followed by a discussion of related research and tools. Chapter 5 describes and evaluates
our steal time accounting approach for virtualized environments and examines related
work. Finally, Chapter 6 summarizes our contributions and concludes this thesis.

9

Chapter 2

Background

This chapter characterizes the Java programming language and its implementation in the
HotSpot Java Virtual Machine, in which we integrated our profiling approaches in order to
evaluate them.

2.1 Java

This thesis focuses on profiling approaches for Java applications. Java is a general-
purpose, object-oriented, high-level programming language that was developed by Sun
Microsystems and is currently maintained by Oracle Corporation. It was designed with
simplicity, portability, safe execution, and security in mind [Gosling15]. Java has well-
defined, hardware-independent data types, enforces automatic memory management,
and does not permit potentially unsafe memory accesses, all of which prevents many
types of errors and security vulnerabilities. Support for concurrent programming is built
into the language. The Java class library provides a broad range of functionality such as
collection types, input and output facilities, multi-threading utilities, networking and
security support, database connectors, and user interface toolkits.

The source code of Java applications is organized in classes, which are compiled to Java
bytecode ahead of execution. Java bytecode is the instruction set that can be executed by a
Java Virtual Machine, which is an abstract machine that is not bound to a specific type of
hardware or operating system [Lindholm15]. An implementation of the Java VM, such as
the HotSpot VM that is introduced later in this chapter, takes care of specific aspects of
the Java application’s execution on a particular hardware architecture and on top of a
specific operating system.

10 Background

2.1.1 Native Code

Some Java applications need to call native functions of the operating system or code that
is implemented in a different programming language. Profiling approaches must be able
to handle such foreign calls. In Java, these calls are performed using the Java Native
Interface (JNI), which allows Java code to interact with native code in other languages,
typically in C and C++ [JNI15]. Moreover, JNI enables native code to call Java methods
and to create and access Java objects. Typically, parts of the Java class library itself are
implemented in native code, for example, file operations and network communication.
Native code is executed in the same process as the virtual machine, but unlike Java code,
it is generally non-transparent to the Java VM as well as to Java profiling tools.

2.1.2 JVM Tool Interface

As described in Section 1.2, Java profiling approaches commonly use the JVM Tool
Interface (JVMTI) to interact with the Java VM and to collect performance data. JVMTI
is a native programming interface that allows debuggers, profilers, and similar tools
to interact with the Java VM and with the application running on top of it [JVMTI13].
Clients of JVMTI are called agents and run in the same process as the Java VM. Agents can
invoke JVMTI functions to inspect aspects of the Java application such as its threads, its
loaded classes, and the objects on its heap. An agent can also manipulate the application,
for example by modifying the bytecode of classes or by suspending individual threads.
Moreover, an agent can register callbacks to receive notifications about events in the
application and in the VM, for example when classes are loaded or when threads are
launched or terminated. JVMTI itself uses JNI to manage references to Java objects in
native code.

The individual functions of JVMTI incur different overheads that depend on a function’s
implementation in a specific Java VM. Some functions may pause all application threads
to safely capture a consistent state. Other functionality may temporarily or permanently
disable optimizations of the Java VM, which can significantly affect the application’s
performance. When collecting performance data, this can also affect the accuracy of the
collected data.

2.1.3 Other Languages on the Java VM

The Java VM also supports other programming languages besides Java. In this thesis,
we also use software written in Scala and Jython for the evaluation of our approaches.
Scala is a programming language which aims at unifying object-oriented and functional

The Java HotSpot Virtual Machine 11

programming and has been designed to interoperate seamlessly with Java [Odersky04].
Jython is an implementation of the dynamic programming language Python for the
Java VM [Juneau10].

Language implementations for the Java VM are commonly compiled to Java bytecode,
either ahead of time or at runtime. Language constructs that have no equivalent in Java
bytecode are typically compiled by generating helper methods and classes for them. This
helper code becomes visible in Java profilers, debuggers and similar tools and can be
difficult to comprehend for developers. Moreover, helper code can be less efficient than
direct support for a language construct. However, there have been efforts to extend the
Java VM to better support languages other than Java [Rose08].

2.2 The Java HotSpot Virtual Machine

The Java HotSpot Virtual Machine, or HotSpot, is a production-quality, high-performance
implementation of the Java Virtual Machine [HotSpot15]. It is developed as part of the
OpenJDK project, an open source implementation of the Java Development Kit (JDK),
which also includes an implementation of the Java class library. OpenJDK is primarily
developed by Oracle and is also the basis for Oracle’s Java distributions. We used
HotSpot as the foundation into which we integrated our profiling approaches in order to
evaluate them.

Figure 2.1 shows a high-level overview of the architecture of HotSpot, which is described
in the following.

Class Loader, Linker and System Dictionary. The class loader parses the bytecode of
Java class files. The linker then resolves references to other classes as necessary and
verifies that the bytecode and other data are well-formed and meet all the constraints
of the specification. The system dictionary stores all loaded classes, their fields, their
methods, and their bytecode instructions. Java applications can also provide custom
class loaders which supply classes to the HotSpot class loader.

Interpreter. HotSpot initially executes methods in its efficient bytecode interpreter,
which consists of hand-written assembly code for each bytecode instruction that is
assembled to machine code at startup [Griesemer99]. The interpreter collects profiling
data for the methods it executes. When a method is executed frequently enough, it is
compiled to machine code by one of HotSpot’s just-in-time compilers.

12 Background

Java Classes
in Bytecode

Java HotSpot Virtual Machine

Class Loader
and Linker

System
Dictionary

Interpreter

Server Compiler

Client Compiler

Code Cache Heap

Garbage Collection

Machine
Code

Java Classes
as Bytecode

JVMTI Implementation

JVMTI Agent

Safepoint Mechanism

Stacks

Figure 2.1: Architecture of HotSpot

Server Compiler. The server compiler is one of the two just-in-time (JIT) compil-
ers in HotSpot which compile frequently executed methods to machine code. It is
designed to generate highly efficient machine code by applying aggressive optimiza-
tions [Paleczny01]. Many of these optimizations are speculative, such as omitting code
paths that are infrequently executed, or inlining a specific implementation of a poly-
morphic method. For these optimizations, the server compiler relies on the profiling
information collected by the interpreter. The server compiler ensures that when a spec-
ulative optimization turns out to be invalid during execution, the code can be safely
deoptimized so that its execution continues in the interpreter. The server compiler typically
has long compilation times, but is intended for long-running server applications for
which the initial compilation time is less relevant. For interactive applications, the long
compilation times cause noticeable startup delays.

Client Compiler. The client compiler is the second JIT compiler in HotSpot and is
designed for best startup performance. It applies fewer optimizations than the server
compiler and incurs much shorter compilation times while still providing adequate
performance [Kotzmann08]. The server compiler and the client compiler can be used
together in tiered compilation mode, where a method is first compiled by the client compiler,

The Java HotSpot Virtual Machine 13

and later by the server compiler. This approach achieves both a fast startup phase and
high efficiency for long-running applications.

Code Cache. The code cache stores the compiled code generated by the JIT compilers
as well as its metadata, which includes where methods have been inlined in the code and
which assumptions have been made for speculative optimizations. The code cache also
contains other machine code that is generated at runtime. This includes the assembled
interpreter templates as well as stub code such as call wrappers for calls between compiled
and interpreted code, call wrappers for native methods, compiler intrinsics, and other
helper code.

Stacks. Each thread in HotSpot has its own stack. When a method is called in a thread,
the called method creates its own stack frame on top of the thread’s stack. The stack frame
provides space for the method’s local variables and also stores the return address, where
execution continues in the caller when the method returns. The exact layout of a stack
frame depends on its type. Interpreted methods, compiled methods, native code and
stub code all use the same stack, but the layout of their frames is different. Stack walks
in HotSpot support frames of different types and can determine which methods they
belong to.

Heap and Garbage Collection. The heap is the memory area where Java objects are
allocated. Because Java provides automatic memory management, a garbage collector
scans the heap for objects that are no longer used by the application and reclaims their
memory. The garbage collector uses the system dictionary to determine the layout of
objects in order to find the pointers in them. It also uses the metadata of the code cache
to locate pointers that are used by the currently executing code. The garbage collector
further detects when a custom class loader of the Java application becomes unused.
In that case, it unloads all classes in the system dictionary that were loaded by that
class loader and also removes all compiled code for those classes from the code cache.
This feature of HotSpot garbage collection can be used by plugin-based applications to
completely unload plugin code.

HotSpot provides multiple garbage collector implementations, such as the Garbage-
First (G1) collector that is intended for multi-processor machines with large mem-
ory [Detlefs04]. In most garbage collector implementations, some phases of garbage
collection execute in parallel to the application. Other phases, such as moving objects
that are still alive to avoid fragmentation, require the application’s threads to be paused.
For pausing threads, the garbage collectors use the virtual machine’s safepoint mechanism.

14 Background

Safepoint Mechanism. A safepoint is a state in which all application threads are paused
in a well-defined state that allows the safe execution of certain operations. The safepoint
mechanism is responsible for entering and leaving such a state. To accomplish this,
the interpreter frequently checks whether a safepoint is currently pending, and the JIT
compilers also insert checks for a pending safepoint at safe locations in the compiled code.
When the safepoint mechanism indicates that a safepoint is pending, each application
thread pauses itself as soon as it runs to its next safepoint check. Threads that are in a
waiting state, such as those that are waiting to acquire a lock, are already paused in a
safe state. The safepoint mechanism knows which threads are waiting because HotSpot
tracks when threads enter a waiting state from Java code. Once all application threads
are paused, the operation in question can execute, and as soon as it has finished, the
safepoint mechanism resumes all paused threads.

JVMTI Implementation. The implementation of JVMTI in HotSpot allows agents
to interact with HotSpot and with the application that it executes. For that purpose,
numerous components of HotSpot implement specific functionality to provide agents
with information, to allow agents to manipulate the application’s state, or to report
events to an agent. Many JVMTI functions use the safepoint mechanism to pause the
application threads so that these functions can safely manipulate data structures or
capture consistent states, especially when the functions operate on multiple threads.

15

Chapter 3

Sampling-based Method Profiling

This chapter introduces sampling-based method profiling and characterizes current ap-
proaches for profiling Java applications in HotSpot. We then describe our two novel
approaches Stack Fragment Sampling and Incremental Stack Tracing with Partial Safe-
points, followed by an evaluation of these approaches and a discussion of related work.

Method profilers measure the execution time of methods and generate a profile that
shows those methods where the most time is spent. A performance engineer can use this
profile to spot performance bottlenecks and to apply optimizations where they are most
effective. For this reason, APM software and profiling tools commonly include a method
profiler. Method profilers are also used to guide compiler optimizations, to determine
test coverage, or to identify code that is never used.

In this chapter, we focus on sampling-based method profilers. We describe how current
sampling-based method profilers for Java and specifically in HotSpot operate, and point
out issues with their impact on application performance and their accuracy. Earlier in this
thesis, we identified both of these issues as major challenges of APM software. In order
to overcome these issues, we present two novel approaches to sampling-based method
profiling, Stack Fragment Sampling and Incremental Stack Tracing with Partial Safepoints. We
claim that these approaches are more efficient and more accurate than current approaches
because they are integrated into the Java VM. In an evaluation of the two approaches,
we back these claims.

16 Sampling-based Method Profiling

3.1 Background

In this section, we describe how sampling-based method profilers collect data, which
data they collect, and how this data is represented. We then describe implementations of
such profilers for Java and specifically in HotSpot and analyze open issues.

3.1.1 Sampling and Instrumentation

There are two approaches to method profiling. Instrumenting profilers insert code snippets
into methods to record calls. This yields a complete profile with all calls, but can
cause substantial overhead. Instrumentation also introduces distortion because the
additional code adds more relative overhead in short-running methods than in long-
running methods, and because it influences compiler optimizations such as method
inlining. Therefore, a profile from an instrumenting profiler can show behavior that is
significantly different to that of an uninstrumented application.

Sampling profilers, on the other hand, periodically interrupt the application threads and
record the currently executing methods, which requires no intrusive changes to the code.
The resulting profile reflects the relative time spent in each observed method as the
number of its samples out of all collected samples. The overhead from sampling can
be easily adjusted by changing the sampling interval, which is the time between two
subsequent samples. However, sampling can miss method calls between samples and
therefore results in an approximate profile with only statistically significant information.

Our research focuses on non-intrusive profiling techniques with minimal overhead that
are suitable for APM software, which is why we focused on sampling approaches in our
work.

3.1.2 Calling Context Trees

“Flat” execution profiles break down an application’s execution time to individual meth-
ods. However, a performance problem is often not confined to a single method. For
example, when a flat profile indicates that an application spends too much time in a
library method for sorting an array, it is unlikely that that library method itself is ineffi-
cient. Instead, the application likely sorts arrays more often than necessary and could
be optimized by using more efficient data structures. Such performance problems are
typically caused by very few locations in the application, but the sorting method could
be called from hundreds of locations, and trying to examine or even optimize all of them
is impractical. Therefore, prior research has demonstrated the importance of recording

Background 17

a

b

c

u

v

u

1

2

1 2

Calling Context Tree

a

b

c

u

v

a

b

a a

b

c

a

u

a

b

u

Calling Context Samples

Figure 3.1: Calling contexts and calling context tree (CCT)

not just executing methods, but entire calling contexts, which are stack traces that include
the executing method and its callers [Ammons97, Arnold05, Whaley00, Zhuang06].

Profilers typically merge the recorded calling contexts into a calling context tree
(CCT, [Ammons97]). Figure 3.1 shows a series of calling contexts that a sampling profiler
recorded and their resulting CCT. The calling contexts reflect calls from the entry method
a to method b, from b to c, from a to u, from b to u, and from u to v. The CCT represents
the called methods as tree nodes that have their callers as ancestor nodes, and merges
multiple calls to the same method from the same callers into a single node, such as the
two calls from a to u. Each edge from a caller to a callee can therefore represent multiple
calls. The edges in a CCT are commonly assigned weights which reflect the execution
time of the callee. In the depicted example, the weight of an edge is the number of
samples in which the callee was the executing (top-most) method. Relative to the total
number of captured samples (which is the sum of all edge weights), the edge weight
therefore provides the fraction of the overall observed execution time that was spent
directly in the callee. For example, u, when called from a, has an edge weight of 2, and
the total number of samples is 6, so the execution of this calling context constitutes a
third of the total observed execution time.

Figure 3.2 shows the profiler of the NetBeans IDE [NetBeans14] displaying a profile
which is similar to the profile depicted in Figure 3.1. The hierarchical table at the center
shows the CCT with the entry method Example.run() on the top level. The Total Time
column shows the total times that were spent in each calling context. When a calling
context has further callees, this total time includes the time that was spent in all its
callees. In that case, an additional tree node labeled Self time shows the time that was
spent executing only the method itself. In contrast to the CCT view, the table at the

18 Sampling-based Method Profiling

bottom shows a flat profile that displays only the self times of methods and provides no
information about their callers.

Figure 3.2: NetBeans profiler displaying a CCT

3.1.3 Running and Waiting Threads

The thread states in which samples are taken are relevant for the meaning of the profile
and for the profiler’s efficiency. At any time, an alive application thread can be in one of
three basic states:

Running, when the thread is currently executing and consuming CPU time.

Ready, when the thread is currently not executing, but is ready to continue execution.

Waiting, when the thread is currently not ready to continue execution, for example
because it was blocked while trying to acquire a lock, because it is waiting for a
notification from another thread, or because it is sleeping.

A profile that is composed of samples of threads in state running reflects most accurately
where CPU time is spent. It provides the most insight for a user who tries to understand

Background 19

why a CPU-bound task takes too much time, or to identify inefficient algorithms and
data structures.

Profiles which further include samples of threads in state waiting can be useful to detect
problems such as locking bottlenecks or slow network communication. However, such
profiles can be more difficult to analyze for a user because threads in a typical applica-
tion are expected to spend a significant amount of time waiting for incoming network
connections, for user input, or for work to perform, which is simply idle time and not an
indicator of inefficiency. Even after identifying contexts in which waiting actually causes
delays in the execution of operations, it can be difficult to judge whether the time spent
waiting in that specific context is unreasonably high. Moreover, because the time which
a typical application spends waiting vastly outweighs the time spent running, including
it can conceal performance problems in CPU-bound code.

A profiler can reduce its performance overhead by not taking samples of threads in states
ready or waiting when such samples are not needed. This also avoids taking redundant
samples of a thread when it has not been running since the last sample, which frequently
occurs with short sampling intervals. However, it is the operating system which keeps
track of the states of application threads. Most importantly, the operating system decides
when application threads in the state ready are “scheduled in” and enter the state running,
and when they are scheduled out again. Applications – including profilers – are mostly
oblivious of those scheduling decisions and state transitions. Therefore, a profiler requires
support from the operating system in order to be able to take samples only in a specific
state.

3.1.4 Sampling with JVMTI in Safepoints

Sampling-based method profilers for Java are typically implemented as agents using
the JVM Tool Interface (JVMTI), which we introduced in Section 2.1.2. JVMTI provides
ready-to-use functionality for sampling-based method profiling, such as the function
GetThreadListStackTraces, which pauses multiple threads, walks their stacks, and decodes
the stack frames to an array of method identifiers. A straightforward sampling profiler
can launch a separate thread with a sampling loop in which it calls this function to obtain
stack traces for the application threads it is interested in, merges them into a CCT, and
then sleeps for the sampling interval. However, the implementation of JVMTI in HotSpot
and in other Java VMs suffers from problems that affect the efficiency and accuracy of
sampling-based method profiling.

When an agent calls a JVMTI function to take stack traces, the function enters a task into
the work queue of the VM thread. The VM thread can be considered the main thread of

20 Sampling-based Method Profiling

entering safepoint resumingin safepoint

sampling T1, T3, T4T
VM

T
1

T
2

T
3

T
4

Figure 3.3: Sampling threads in a safepoint

HotSpot (which is different from the Java application’s main thread). If higher-priority
tasks in the queue are pending, the VM thread completes them first before it begins
taking stack traces.

In order to safely walk the stacks of application threads, the JVMTI implementation of
HotSpot uses the safepoint mechanism, which pauses all application threads. Figure 3.3
shows an example of how JVMTI uses safepoints to sample application threads: Thread
TVM is the VM thread, threads T1, T2 and T3 are running application threads, and thread
T4 is an application thread which is waiting to receive data via a socket. In this example,
the agent requests samples of the threads T1, T3 and T4. The VM thread then indicates
that a safepoint is pending. Soon after that, thread T1 reaches its next safepoint check
and enters a paused state (indicated by the square and the now dashed line), followed
by thread T3. Thread T4 does not have to enter a safepoint because it is already blocked.
At this point, thread T2 delays the process, although no sample was requested for it,
and threads T1 and T3 remain paused and unproductive. When thread T2 finally pauses
and hence, all threads have entered the safepoint, TVM can walk the stacks of the three
threads requested by the agent. In the meantime, thread T4 becomes unblocked because
its socket has received data, but instead of resuming its execution, a safepoint check
ensures that it also enters a paused state. After the VM thread has finished taking the
stack traces, it ends the safepoint and resumes all application threads.

The main problem with using safepoints for sampling is that they pause all application
threads, including threads for which no samples have been requested. JVMTI also does
not support skipping threads in states ready or waiting when performing stack walks.
Therefore, a profiler cannot focus only on the currently running threads to reduce its
overhead, and also cannot avoid taking redundant samples of threads that have not

Background 21

been running since the last sample was taken.1 Although JVMTI includes the thread
state in each sample, a profiler also cannot reliably filter samples in a state waiting after
they are taken. The reason is that applications are frequently waiting in native functions,
and because a Java VM generally cannot determine what happens outside of Java code,
JVMTI reports a special thread state of in native code for such threads. This is common
even in pure Java applications because the Java SDK uses native functions to implement
network and filesystem operations. Therefore, a profiler that is trying to filter samples in
state waiting can, at best, attempt to check them against a set of native functions that are
well-known for waiting.

Optimizations performed by a JIT compiler can further affect the performance impact of
JVMTI sampling, as well as its accuracy. By default, the compiler places safepoint checks
at the exit points of methods and at the end of loop iterations. Although the overhead
of safepoint checks is very low, it can become significant in hot loops. Safepoint checks
also prevent certain kinds of optimizations because they must correspond to a specific
location in a method’s bytecode and thus constrain the order of instructions. Therefore,
the compiler can decide to move safepoint checks out of loops to increase the code’s
performance and can even decide to eliminate safepoint checks in inlined methods. With
fewer safepoint checks, it can take longer until all threads reach a safepoint check and
pause, so the overhead of sampling increases. Moreover, when safepoint checks are
eliminated, there are fewer locations where samples can be taken, which reduces the
accuracy of the profile. Because safepoint checks are eliminated especially in hot code
and its inlined callers, that code can then be particularly misrepresented in the profile,
although hot code is of particular interest to a developer.

3.1.5 Sampling with AsyncGetCallTrace

HotSpot also contains the function AsyncGetCallTrace that enables profilers to take stack
traces without using the safepoint mechanism. Unlike JVMTI, AsyncGetCallTrace is
neither officially supported nor documented, and is not exposed through a public in-
terface. AsyncGetCallTrace was developed for Sun Microsystem’s Forté Performance
Tools, a predecessor of Oracle Solaris Studio. Java Flight Recorder also uses a variant of
AsyncGetCallTrace for sampling-based method profiling [Hirt13].

1A profiler could query the states of threads ahead of time and then decide whether to request samples of
them. It could also keep track of their consumed CPU times to assess whether there has been activity
in a thread after the last sample was taken. However, doing so would incur additional overhead and
would be unreliable because threads can still change their states until the samples are actually taken.
Moreover, excluding threads from sampling would only reduce the effort for stack walks while the
safepoint mechanism would still pause all threads during the entire sampling operation.

22 Sampling-based Method Profiling

AsyncGetCallTrace is designed to be used with signals, which are a form of inter-process
communication that is defined in the POSIX standard [POSIX13]. Each process can
register a custom function as its signal handler for a specific type of signal. When a
process sends another process a signal, the operating system interrupts the execution of
the receiving process and calls the appropriate signal handler for the type of signal. After
the signal handler completes, execution continues in the code that was interrupted. With
the POSIX threads extensions, signals can also be sent to a specific thread of a process.

A sampling profiler that uses AsyncGetCallTrace needs to be running as an agent in the
HotSpot process and must register a signal handler for a specific type of signal, such
as SIGPROF, which is intended for profiling purposes. The profiler then launches a
sampling thread, but instead of using JVMTI to obtain stack traces, the sampling thread
sends SIGPROF signals to threads of interest. Each receiving thread is interrupted and
enters the profiler’s signal handler, which calls AsyncGetCallTrace to walk the thread’s
stack and create a stack trace. The stack trace is then passed to the sampling thread and
the signal handler returns to resume execution in the interrupted thread.

Unlike the safepoint mechanism, signals can interrupt a thread in an arbitrary state
where performing certain actions is unsafe. For example, if the profiling signal interrupts
a thread while it is allocating memory and the profiler’s signal handler tries to allocate
memory for the stack trace, it could corrupt the allocator’s data structures. Therefore,
signal handlers are only allowed to call a limited set of “asynchronous-safe” functions,
which does not include functions for memory allocation or thread synchronization.
This makes it difficult for the profiler’s signal handler to allocate memory for the stack
trace from AsyncGetCallTrace and to pass that stack trace to the sampling thread. We
implemented our own sampling profiler with AsyncGetCallTrace for our evaluation later
in this chapter. In this profiler, we used a custom memory allocator and a custom linked
queue implementation, both of which rely only on atomic compare-and-set instructions
to prevent corrupt or lost data.

The implementation of AsyncGetCallTrace itself is also significantly more complex than
JVMTI’s stack walk because it must handle many possibly unsafe states in which a thread
can be interrupted. When AsyncGetCallTrace is called, it first checks whether the thread
was executing Java code (as opposed to a native function). If so, it locates the top frame
on the stack using the stack pointer and the instruction pointer from before the thread
was interrupted. AsyncGetCallTrace then performs a series of checks to ensure that
the top stack frame is in a consistent, walkable state. The top frame must have valid
metadata from the JIT compiler or interpreter that includes the frame’s size, which is
used to locate the next frame below. When execution was interrupted in a method’s
prologue where the frame is still being set up, the frame size is considered unreliable

Stack Fragment Sampling 23

and the stack walk is considered unsafe. Pointers that link frames are checked whether
they point into the thread’s stack, and return addresses are checked whether they point
into valid code regions. While AsyncGetCallTrace walks the stack, these checks are
repeated for each frame. If anything indicates that a stack walk could lead to a wrong
stack trace or even to an illegal memory access, the stack walk is terminated without
a result. Therefore, not every request for a stack trace is fulfilled, which reduces the
accuracy of profiling with AsyncGetCallTrace.

The profiling signal can also interrupt a thread while it is executing (or waiting in) a
native function that was called from Java code. As a compiler optimization, native code
often does not establish valid linkage between frames, so the native stack cannot be
walked in that case. However, when Java code calls native functions, HotSpot stores
the location of the last Java frame (which called the native function) in the thread’s
thread-local storage area. AsyncGetCallTrace tries to retrieve this information and to
start the stack walk from this frame.

AsyncGetCallTrace also cannot be used to reliably sample only running threads. How-
ever, a profiler may be able to use implementation details of the signal delivery mech-
anism to attempt to exclude threads in states waiting or ready. The POSIX standard
specifies that a signal that is directed to a process (rather than to a specific thread) should
be handled by a single, arbitrarily selected thread of that process. Some implementations,
such as the current implementation in Linux, try to select a thread which is currently
running to receive the signal [Linux15, Version 4.6, kernel/signal.c]. In that case, a profiler
can send signals to the HotSpot process rather than to its individual threads and the
signal handler will preferably be executed in a currently running thread. Nevertheless,
this behavior is not guaranteed and may change between versions.

3.2 Stack Fragment Sampling

JVMTI and AsyncGetCallTrace require the application threads to remain paused while
their stack traces are taken and cannot reliably restrict sampling to running threads in
order to avoid redundant samples. Additionally, JVMTI can capture samples only at the
locations of safepoint checks in the code, which affects its accuracy.

In order to address these shortcomings, we devised a novel approach which we named
Stack Fragment Sampling. Our approach integrates with the operating system so that
samples are captured only in running threads and at arbitrary locations in the code.
This reduces the overhead by eliminating redundant samples and improves accuracy by
avoiding the bias of sampling only in safepoint checks. Moreover, instead of pausing

24 Sampling-based Method Profiling

Hardware Timer

 Operating System

HotSpot

Agent

VM Extension

(1) interrupt

CCT

Sample Buffer

(2) copy stack fragment (3) retrieve

(4) decode

Application ThreadsApplication Thread

Figure 3.4: Stack Fragment Sampling components and their interaction

a thread until its stack trace has been taken, we only briefly copy a fragment of the
thread’s stack to a buffer and immediately resume the thread. The stack fragment is then
asynchronously decoded to a stack trace. This minimizes the pause times for threads
and further reduces the overhead. We described Stack Fragment Sampling in [Hofer14b]
after presenting early results in [Hofer14a].

Figure 3.4 shows the components of our sampling technique and how they interact to
take samples. We configure a hardware timer to periodically trigger interrupts while any
thread of the Java application is currently running. When a timer interrupt occurs, (1) it
is handled by the operating system, which (2) copies a fixed-size memory fragment from
the top of the running thread’s stack as well as the values of several processor registers
into a sample buffer. The operating system then immediately resumes the interrupted
thread. A profiling agent running within HotSpot (3) asynchronously retrieves the
collected samples from the buffer and (4) passes each sample to a VM extension that
decodes the stack fragments to a stack trace which the agent can then merge into its CCT.

3.2.1 Scheduling-Aware Sampling

A key aspect of Stack Fragment Sampling is that it is aware of scheduling and does
not take redundant samples of threads that are not currently running. This requires
support from the operating system, because it is the operating system that schedules
which threads are running at a particular time, whereas applications – including profilers
– are mostly oblivious of scheduling decisions.

In our implementation, we used perf to trigger samples and collect fixed-size stack
fragments. perf is a subsystem of the Linux operating system kernel which profilers can

Stack Fragment Sampling 25

use to collect profiling data when specific hardware or software events occur [perf15,
Weaver15, Weaver13]. It integrates with the process scheduler and can restrict sampling
of a thread to times when the thread is executing on a CPU. perf already supports
copying a memory fragment from the top of a thread’s stack as well as collecting the
values of registers when taking a sample. In principle, the perf subsystem can even walk
a thread’s stack and construct its stack trace, but this feature was designed for native
code and does not work for the more complex stacks of Java code in HotSpot, for which
a stack walk requires additional metadata.

perf provides a single system call to set up sampling for an existing thread. In the
parameters to this system call, the profiler specifies how samples should be triggered and
what information should be collected for a sample. Samples can be triggered by a variety
of hardware events such as CPU cycles or cache misses, as well as by software events
such as context switches. When using an event as a trigger, a counter is incremented
each time the event occurs. When the counter exceeds a threshold, perf takes a sample
and resets the counter. The counter threshold is referred to as the sampling period. With
hardware events, perf uses a counter of the CPU’s hardware performance monitoring
unit (PMU) that overflows when it reaches the sampling period and then triggers an
interrupt. When perf has been set up successfully, it provides a file descriptor from which
the collected samples can be read sequentially. This file can be mapped into the profiler’s
memory and then acts as a fixed-size ring buffer of the collected samples. The profiler
must read the samples from the ring buffer in a timely manner to avoid that the buffer
becomes full and new samples are dropped.

We use an agent running within HotSpot to interact with perf. Our agent is loaded at VM
startup and uses JVMTI events to be notified when the Java application’s main thread
is launched. The agent then uses the perf system call to enable sampling for the main
thread and, by enabling an inheritance option, for the entire hierarchy of application
threads that the main thread launches. We configure perf to create one sample buffer
for each CPU, and to use the CPU’s reference cycle counter to trigger taking samples.2

We set the sampling period to the number of cycles which the CPU can execute in the
desired sampling time interval. If waiting periods should be included in the profile, we
configure perf to take an additional sample each time when a thread is scheduled out.

2Unlike the regular cycle counter, the reference cycle counter is not affected when the operating system
adjusts the CPU’s frequency to reduce power usage.

26 Sampling-based Method Profiling

3.2.2 Retrieving Collected Samples

After sampling has been enabled, our agent launches a separate thread that processes the
collected samples. The thread waits until one of the perf buffers is filled to a “watermark”
and then processes each of the samples that that buffer contains, as well as the samples
in the the other buffers. When processing a sample, we first copy the sample’s stack
fragment from perf’s sample buffer to a local buffer where it can be modified. Next, we
scan the fragment for addresses that point into the live stack of the sampled thread and
adjust the pointers to point into the fragment instead. We then call our VM extension and
pass the modified stack fragment as well as the sample’s stack pointer, its frame pointer
(both adjusted to point into the fragment) and its instruction pointer. Our extension
finally returns a stack trace to the agent, which merges it into its CCT.

In some situations, metadata that is required to decode stack fragments to stack traces
can become unavailable, for example when HotSpot unloads classes or JIT-compiled
methods. Stack fragments which were captured before such an event and which contain
an unloaded method can then no longer be decoded to stack traces. Hence, our agent
registers callbacks for the corresponding JVMTI unload events and processes all samples
in all perf buffers before the metadata is discarded.

3.2.3 Decoding the Stack Fragments

Decoding stack fragments to stack traces requires knowledge of HotSpot’s different
types of stack frames and their layouts as well as specific metadata about JIT-compiled
methods and other generated code. Because this knowledge is not available to an agent,
we decided to implement decoding stack fragments directly in HotSpot and to make
the functionality available to our agent via a JVMTI extension method which we named
GetStackTraceFromFragment. Using JVMTI’s extension mechanism has the advantage that
a profiling agent can probe whether the VM supports the extension method and can fall
back to a different sampling technique when it is not available.

We based the implementation of GetStackTraceFromFragment on that of AsyncGetCall-
Trace because its code already handles some of the difficulties of walking stacks in an
arbitrary state in which stack walks are potentially unsafe. To start a stack walk, we
use the stack pointer recorded in the sample to locate the top frame. We then look
up the instruction pointer in HotSpot’s code cache to determine whether the thread
was executing compiled Java code or other generated code. If so, we use the available
metadata for that code to continue the stack walk, otherwise we try to use the frame
pointer and frame linkage to find the top Java frame on the stack.

Stack Fragment Sampling 27

While walking the stack, we validate each frame before trying to advance to the next
frame because the stack fragment can contain invalid data if the sample was taken in
an unsafe state, for example, while the stack was being unwound during exception
handling. If we would not handle such cases correctly, the resulting stack trace could
be invalid, or worse, HotSpot could crash. Therefore, we always check whether any
address which we inspect correctly points into the stack fragment or to valid code, and
we further perform additional checks that are specific to the type of the frame.

Unlike AsyncGetCallTrace, we must be able to walk stacks asynchronously and therefore
cannot access the internal state of HotSpot that existed at the time when the sample was
taken. Therefore, we had to devise heuristics and implement changes in HotSpot to
successfully decode most stacks, which we describe below.

Native Code

If a sample was taken while the thread was executing native code, locating the top Java
frame to begin the stack walk is difficult.3 In favor of efficiency, native code commonly
does not establish a proper chain of frame pointers and does not provide additional
debugging information which would allow walking its stack frames to locate the top
Java frame. However, decoding samples in native code is vital even for profiling pure
Java applications because the Java class library itself relies on native code to implement
network communication and file operations. AsyncGetCallTrace is able to decode such
samples by reading the location of the top Java frame from a thread-local data structure
where HotSpot records it at the time of the native call. However, we decode samples
asynchronously and can only use the data that was captured in the stack fragment.

Therefore, we adapted HotSpot to place an on-stack frame anchor at the base of each
Java thread’s stack. This anchor is similar to the thread-local data structure which we
mentioned above, but the anchor is captured in the stack fragments. We modified the
interpreter and the JIT compilers so that when Java code performs a native call, it records
the location of the top Java frame in the anchor, and when the native call returns, it clears
the anchor. For native calls from JIT-compiled Java code, we record the frame’s stack
pointer and instruction pointer. For native calls from the interpreter and for calls to
certain VM-internal native methods, we also record the frame pointer.

When decoding a stack fragment, we first inspect the anchor that it contains. If it holds
the location of a Java frame, we start the stack walk from that frame, otherwise we
attempt the stack walk using the stack pointer, frame pointer and instruction pointer

3Java profilers typically only capture the Java stack trace including the call to the native method, but not
the stack frames of native code.

28 Sampling-based Method Profiling

captured in the sample. However, because stack fragments are captured from the top of
the stack and the frame anchor is at an unknown location below the top, we must find
the anchor first. Therefore, we place known “magic” values before and after the anchor
on each Java stack and scan for them when decoding a stack fragment. Because these
magic values could also occur on the stack by chance, we perform additional checks to
ensure that an anchor’s contents are valid.

Native code invoked from Java can again call Java code via the Java Native Interface. In
such cases, the stack consists of alternating sequences of Java frames and native frames.
The resulting stack trace should contain all Java frames on the stack and not just the
topmost sequence of Java frames, which again requires finding the boundaries between
Java code and the typically unwalkable native code. In this case however, we do not need
multiple on-stack anchors: when native code calls a Java method, HotSpot already places
an entry frame on the stack with a pointer to the last Java frame below the native caller.
Using the pointers in the entry frames, the stack walk can reliably skip over sequences of
native frames.

Stub Code

Another problem occurs when frames from so-called stub code are on top of the stack
fragment. Stub code refers to snippets of machine code that HotSpot dynamically
generates as helper code, as call wrappers, or for compiler intrinsics. Stub frames have
no common layout and some do not even have a known frame size. If a fragment
contains a stub frame with an unknown size, we scan the words below the stack pointer
for an address that could be a return address into Java code. If we find such an address
and additional checks reassure that it is at the boundary to a Java frame, we ignore the
stub frame and start the stack walk from the Java frame.

Method Prologues

Samples can also be taken in a method’s prologue, which is the method’s entry code
that creates its stack frame. The prologue pushes the caller’s frame pointer on the stack,
makes the current stack pointer the new frame pointer and changes the stack pointer to
point to the end of the new frame. Before these instructions have completed, the frame is
incomplete and examining it is unsafe. However, HotSpot records at which instruction
the prologue of each JIT-compiled method ends. We can check whether the captured
instruction pointer is within a method prologue, and if so, we use the captured stack
pointer and frame pointer to determine if the caller’s frame pointer has been pushed on

Stack Fragment Sampling 29

the stack yet. If so, the word below the pushed frame pointer, or otherwise, the word
on top of the stack, should be a return address to Java code. If this is the case, we have
located the boundary to the frame below and we start the stack walk from that frame,
acting as if the call had not happened yet.

Incomplete Stack Fragments

A regular stack walk continues until it encounters the initial entry frame at the stack’s
base, which indicates the end of the Java stack. With large stacks, however, the fixed-size
fragments which we capture from the top of the stack can be missing the base part of the
stack, and our stack walk can arrive at the end of the fragment before reaching the initial
entry frame. Therefore, we verify that all memory accesses remain within the fragment’s
boundaries. When we reach the end of the stack fragment early, we return the frames
that we decoded until then and set a flag to indicate to the agent that the stack trace is
incomplete. Nevertheless, for samples in native code, an incomplete stack fragment can
prevent a successful stack walk when the fragment is missing the on-stack anchor that is
located at the stack’s base.

Example

Figure 3.5 shows an example of a stack walk with GetStackTraceFromFragment. The
captured Java stack fragment is on the figure’s left-hand side, with the stack base at the
bottom of the figure. The thread was executing native code when it was sampled, so
its stack has native frames at its top. The right-hand side of the figure shows the code
cache, where HotSpot stores its generated code together with metadata. The stack walk
is performed in the following steps:

(1) We locate the on-stack anchor near the stack base by scanning for its magic con-
stants. The anchor consists of a stack pointer, a frame pointer, and an instruction
pointer. The sample was taken while the thread was executing native code, so the
stack pointer and instruction pointer have been set and are non-zero.

(2) We follow the anchor’s stack pointer to locate the top Java frame. (If the anchor’s
pointers were zero, we would instead use the captured register values from the
sample to locate the top Java frame.) To determine the type of the top frame,
we look up the instruction pointer from the anchor in the code cache (2b). The
corresponding metadata entry tells us that the frame is from a call wrapper for the
method Object.wait(), which is a Java method that is implemented in native code,
so we add Object.wait() to the stack trace. Call wrappers are pieces of code that

30 Sampling-based Method Profiling

Call Wrapper Frame

Saved Frame Pointer

Return Address

Interpreter Frame

Caller Stack Pointer

Return Address

Java Method

Current Bytecode: 60

...

Parameters

Compiled Frame

Saved Frame Pointer

Return Address

Native Code Frames

Entry Frame

On-Stack Anchor

Frame Pointer

...

...

...

...

(2)

(2b)

(3)

(5)

(4b)

(4)

(5b)

Call Wrapper
Object.wait()
Frame Size: 160

Interpreter

Compiled Java Method
Worker.nextItem()
Frame Size: 40
Bytecode/Inlining Map: {...}

Call Stub

...

...

...

...

(1)

Initialization Frames

Worker.run()

...

Base

Stack Pointer

Instruction Pointer

Magic Constant

Magic Constant

Stack Fragment Code Cache

Top

(3b)

Figure 3.5: Example of decoding a stack fragment in native code

Stack Fragment Sampling 31

HotSpot generates for calls from Java code to native code and which take care of
correctly passing the parameters and the return value. Frames of call wrappers
have a fixed size, which HotSpot stores in the code cache.

(3) We use the call wrapper’s frame size to advance to the next frame. In step (3b),
we look up the return address of the call wrapper frame and find out that the
frame belongs to the JIT-compiled method Worker.nextItem(). For each JIT-compiled
method, HotSpot keeps metadata which maps instructions to locations in the Java
bytecode and also stores which methods were inlined at which locations. We look
up the return address from (3b) in that metadata and determine that it lies within
code of Queue.poll(), which was inlined into Worker.nextItem(), and also determine
the current bytecode positions in both methods. We add the two methods to the
stack trace.

(4) We use the compiled frame’s size which we know from its metadata in the code
cache to advance to the next frame. In step (4b), we look up the return address of
the compiled frame and find that it points to the bytecode interpreter. This does not
tell us the executed Java method, but interpreter frames are very descriptive and
from the frame itself, we can determine that the executed method is Worker.run()
and that the current bytecode position is 60. We therefore add this method to the
stack trace.

(5) Interpreter frames do not have a fixed size, but they store the caller’s stack pointer
in their frame, so we use this pointer to advance to the caller frame. We look up
the return address from the interpreter frame in the code cache (5b) and find out
that the caller frame was created by the so-called call stub. The call stub is a piece
of generated code that performs the initial call to Java code in new Java threads. It
also handles the case when native code calls a Java method, but in our example, it
marks the end of the Java stack and thus the end of the stack walk.

Figure 3.6 shows the decoded stack trace for this example in text form. The actual data
returned by GetStackTraceFromFragment consists of a result code that indicates if the
stack walk walk was successful or why it failed, an array with the identifier of each
Java method and its location in the bytecode, and flags that indicate whether the stack
fragment is incomplete or which heuristics have been used.

3.2.4 Merging and Weighting Samples

After a stack fragment has been decoded to a stack trace, our agent merges it into its CCT.
If the stack trace is incomplete because the stack fragment is missing frames from the

32 Sampling-based Method Profiling

Method Bytecode Position
Object.wait() (native)
called from Queue.poll() 92
called from Worker.nextItem() 12
called from Worker.run() 60

Figure 3.6: Decoded stack trace for the example in Figure 3.5

base of the stack, we insert it below a special unknown node in the CCT that represents
an unidentified sequence of frames. If the stack walk failed, we count the entire sample
toward the unknown node itself.

We assign a weight to each sample which corresponds to the time between samples.
When merging a sample’s stack trace into the CCT, this weight contributes to the edge
weight of the call to the sample’s executing method. When threads are sampled only
while they are running, the time intervals between samples – which are based on CPU
cycles – are equal, so we assign a uniform weight to each sample. Therefore, the CCT
shows a statistically accurate picture of the active methods while threads are running.

If periods of waiting in the application are sampled as well, weighting samples becomes
more complex. Using the thread identifiers and timestamps that perf includes in its
samples, we process the samples of each thread individually and in the order in which
they were taken. We determine the weight of a sample as the time span until the next
sample of the thread. For “regular” samples which are taken while the thread is running,
this results in uniform weights that correspond to the sampling period. However, when
a thread begins waiting and is scheduled out, we capture an additional sample of the
thread’s stack. When the thread takes a long time until it continues execution and
therefore, further samples are taken, this sample of the thread in a waiting state is
assigned an accordingly higher weight.

Figure 3.7 shows an example of samples of a thread which first executes on CPU1, then
spends time waiting, and finally continues execution on CPU2. When our agent processes
these samples, it first gathers all samples from the perf buffers of all CPUs and decodes
their stack fragments to stack traces. We then process the thread’s samples in the order
of their timestamps and start with the first sample s1. At this time, we cannot merge
s1 into our CCT because we do not know its weight yet, which is the time span until
the next sample. We move on to the next sample, s2. Using the timestamp of s2 and
of the previous sample s1, we now compute the weight w1, assign it to sample s1, and
merge s1 into our CCT. We move on to s3, which was triggered because the thread began
waiting and was scheduled out. We compute w2 and merge s2 into our CCT. We then

Partial Safepoints and Incremental Stack Tracing 33

(waiting)

CPU
1

CPU
2

s1 s2 s3

s4 s5 s6

w1 w2 w3

w4 w5

Figure 3.7: Example of processing samples of a thread with a period of waiting

move on to s4, which was taken after the thread finished waiting and was scheduled
in again. We compute w3, which corresponds to the time span that the thread spent
waiting. Accordingly, we assign w3 to sample s3, which contains the stack trace of the
thread during the time it spent waiting, and merge it into our CCT. We move on to s5,
compute w4 and merge s4 into the CCT, and move on to s6 and process s5 the same way.
We keep s6 in memory until we later process the next sample when it becomes available.

3.3 Partial Safepoints and Incremental Stack Tracing

Stack Fragment Sampling is a highly efficient and accurate technique for profiling Java
applications, as we will demonstrate later in its evaluation in Section 3.4.3. However, it
relies on very specific capabilities of the operating system, which might not be available
in a specific environment. Therefore, we devised Partial Safepoints, Self-Sampling and In-
cremental Stack Tracing, which form an alternative set of techniques that also significantly
reduce the overhead of sampling Java applications, but are independent of operating
systems and hardware. Partial safepoints and self-sampling reduce sampling pause
times and can be used to target those threads that are actually running. Incremental stack
tracing constructs stack traces lazily instead of walking the entire stack for each sample,
examining unchanged stack frames only once and sharing the collected data between
multiple stack traces. We presented these techniques in [Hofer15b] and describe them
in this section. Part of this work has been done by David Gnedt and is described in his
bachelor’s thesis [Gnedt14].

3.3.1 Partial Safepoints

For a profiler, it is often sufficient to sample only a subset of the application’s threads,
especially those which are currently running and consuming CPU resources. Doing
so reduces the profiler’s runtime overhead. However, as we described in Section 3.1.4,
sampling with JVMTI in HotSpot uses global safepoints which always pause all threads.

34 Sampling-based Method Profiling

Taking samples only of running threads is not supported and even filtering the samples
of non-running threads cannot be done reliably.

To target only running threads and to reduce the performance impact of sampling
profilers, we implemented a variation of safepoints which we call Partial Safepoints.
Partial safepoints require only a certain number of application threads to enter a safepoint
state, and samples are taken only of those threads. We allow the profiling agent to choose
the number of threads to sample. By using the number of CPUs in the system, the threads
currently running on them ideally enter the partial safepoint first and are sampled, and
no other threads are affected. With no scheduling data available, this is a best-effort
approach. In practice, some of the system’s CPUs might be executing threads of other
processes. Also, the operating system might interrupt a running thread, and instead
schedules another thread which then enters the partial safepoint in its place. In either
case, however, a sample is taken of a thread which was in state ready when the profiler
requested the samples, which we consider acceptable.

As soon as the intended number of threads has entered the partial safepoint, we can walk
their stacks. Because some threads can enter a waiting state and block before reaching
a safepoint check, we observe such thread state transitions to avoid a deadlock caused
by waiting for more threads than can possibly enter the safepoint. While the stacks
are walked, the safepoint must remain in effect. During that time, more threads than
anticipated can enter the partial safepoint. Our implementation must consider which
threads have entered the safepoint late and must finally resume all of them.

When a profiler is interested only in certain threads, it can restrict sampling with partial
safepoints to a specific set of threads. We then wait for enough threads from that set to
enter the partial safepoint and take samples only of those threads. The profiler can also
request samples of all threads in the set. Thus, profilers that use a specific strategy to
select threads for sampling can still benefit from partial safepoints, which do not affect
all threads and remain in effect only for as long as necessary.

Waiting Threads

We extended our partial safepoints mechanism with an option to take samples also
of waiting threads and of threads that are in native code. If this option is active, we
determine the number of non-waiting application threads (i.e., running or ready) and the
number of threads that are waiting or executing native code, and accordingly divide the
number of requested samples between these two groups of threads. We randomly select
which of those threads that are waiting or executing native code we sample. For example,
if a profiling agent requests samples of four threads of an application that has 21 threads,

Partial Safepoints and Incremental Stack Tracing 35

entering
safepoint

resumingin partial
safepoint

sampling T1, T3, T4T
VM

T
1

T
2

T
3

T
4

Figure 3.8: Sampling threads in a partial safepoint

out of which 15 threads are non-waiting and six threads are waiting, our approach will
take samples of the first three threads that enter the safepoint, and one sample of another,
randomly selected thread that is waiting. If the profiling agent restricts sampling to a
specific set of threads, we determine the ratio of non-waiting to waiting threads for those
threads and select the waiting threads to sample from the set.

Example

Figure 3.8 shows an example of how non-waiting and waiting threads are sampled with
partial safepoints, using a similar scenario as the example in Section 3.1.4. In our example,
a profiling agent has requested three samples. The VM thread TVM determines that there
are three non-waiting threads and one waiting thread. Therefore, it chooses to sample
two non-waiting threads and the waiting thread T4 and then initiates a safepoint. As
soon as two threads, T1 and T3, have paused, it takes samples of T1, T3, and T4, and then
immediately resumes T1 and T3. By the time when thread T2 reaches its next safepoint
check and when T4 becomes unblocked, the safepoint is no longer in effect, and their
execution remains entirely unaffected by sampling.

3.3.2 Self-Sampling

With a straightforward implementation of partial safepoints, the safepoint remains in
effect while the VM thread walks the stack of each thread. This is to ensure that the
stack walks can be done safely. During that time, further threads can enter the partial
safepoint. Although these threads will not be sampled, their execution is paused, and

36 Sampling-based Method Profiling

the VM must also keep track of them in order to resume them later, all of which causes
unnecessary overhead.

To minimize the time the partial safepoint must remain in effect, we combined partial
safepoints with Self-Sampling. When a thread enters a partial safepoint, it takes a ticket
which tells it whether it is among the threads which should be sampled. If it is, the
thread immediately walks its own stack. However, if the profiler restricted sampling
to a set of threads, only threads in that set get a ticket and can sample themselves, and
any other threads that enter the safepoint simply wait for it to end. When the last thread
that should be sampled enters the partial safepoint, it notifies the VM thread, which then
ends the safepoint so no further threads (which would not be sampled) can enter it. After
a thread has completed sampling itself, it places the stack trace in a designated buffer
and notifies the VM thread. The VM thread waits until all threads have provided their
samples, and then resumes all sampled threads and returns the samples to the agent.

Blocked threads do not enter a safepoint, so they cannot sample themselves. Instead,
the VM thread takes their samples, which increases the time the safepoint must remain
in effect. However, the VM thread can take the samples while other threads are still
running to their next safepoint check.

Figure 3.9 shows an example of a partial safepoint with self-sampling threads. As in
Figure 3.8, the VM thread TVM inspects the states of the application threads, decides to
sample two running threads and the waiting thread T4, and then initiates a safepoint. It
then immediately begins to take a sample of the waiting thread T4. Meanwhile, thread
T1 enters the partial safepoint and examines its ticket. Because it is the first of the two
non-waiting threads that to be sampled, it walks its own stack, places the stack trace in
the designated buffer and notifies TVM. When T3 enters the safepoint, it also examines
its ticket and recognizes that it is the second and last of the two non-waiting threads to
be sampled, so it notifies TVM, which ends the safepoint. After T3 has sampled itself and
placed the stack trace in the buffer, it notifies TVM again, which resumes T1 and T3 and
returns the collected stack traces to the agent.

3.3.3 Incremental Stack Tracing

Self-sampling and partial safepoints reduce the time that an application must pause for
sampling. To further lower the overall overhead, we looked at the cost of stack walks.
In many cases, the stack frames from the stack base up to a certain stack depth remain
unchanged for most of a thread’s execution. Nevertheless, these unchanged frames are
examined during every stack walk.

Partial Safepoints and Incremental Stack Tracing 37

sampling

sampling

entering
safepoint

in partial
safepoint

sampling T4

resuming

T
VM

T
1

T
2

T
3

T
4

Figure 3.9: Self-sampling threads in a partial safepoint

Figure 3.10 shows an example of redundantly sampled frames, starting with a call to the
method a. Method a calls b, which in turn calls c. While execution is in c, the profiler
takes a sample. The stack walk visits the frames of the three active methods as well as all
frames below a. When the profiler takes the next sample in v, c has returned, the frame
of b has changed because b continued its execution, and two new frames from the calls
to u and v are on the stack. Although the frame of a and all frames below it remained
unchanged, the stack walk needlessly walks and decodes them again. When the profiler
takes a third sample, the frames of u and v have disappeared and only the frame of b has
changed, but the stack walk again visits all other frames as well.

To avoid redundant sampling of frames, stack walks could be limited to a certain number
of frames below the frame of the executing method. However, the resulting incomplete
stack traces would not be suitable to be correctly merged into a CCT, which has the entry
method as its root. Therefore, we devised an approach that builds stack traces incremen-
tally when methods return, and does not examine an unchanged stack frame more than
once. We based our technique for incremental stack tracing on an approach that our
research group developed for implementing continuations in a Java VM [Stadler09].

Data Structures

To share frame information between stack traces of multiple samples, we store the traces
in a tree structure. Figure 3.11 shows what this tree looks like for the example from
Figure 3.10. We maintain a linked list of stack trace objects for the stack traces that were
taken, which is shown on the right-hand side of the figure. Stack trace objects are
assigned numeric identifiers, which the profiling agent can use to keep track of the stack
traces that it has requested. Each stack trace object has a pointer to a frame object that

38 Sampling-based Method Profiling

call

call
call

return

call

sample

call

return

return

sample

sample

return
return

a b... c

a b u... v

Stack Trace

a b...

a
b

c

u
v Stack Trace

Stack Trace

Figure 3.10: Samples with separate, complete stack traces

a

b c

... u v

b''

b'

Stack Traces

1

2

3

Figure 3.11: Stack traces in a tree with shared frame information

represents the stack frame which was on top of the stack when the stack trace was taken.
For the first stack trace, which has the identifier 1, this is the frame object representing the
frame for c, for stack trace 2 it is the frame object for v, and for stack trace 3 it is the frame
object for b. Each frame object has a pointer to its caller frame object. The frame objects
b, b′ and b′′ refer to the same invocation of b, but the duplication is necessary because
the frame objects store different execution positions (i.e., bytecode indices) within the
method. This information is useful to a profiler, for example, to distinguish between
different call sites in a method.

Frame objects store the details of a captured stack frame in the following attributes:

Parent: the pointer to the caller’s frame object.

Partial Safepoints and Incremental Stack Tracing 39

Method: the identifier of the Java method that the stack frame belongs to.
BCI: the index of the current instruction within the Java bytecode of the method.

The following attributes of a frame object are not intended for the profiler, but are
required for capturing frames and managing the tree of frame objects (see the next
section).

Filled: a value that indicates if the frame object has been filled with valid data, or if it is
an empty skeleton frame object.
Frame Address: the frame’s exact location on the stack.
Saved Return Address: the original return address of the callee.

Capturing Frames

We maintain a list of stack trace objects for each thread. When we take a new stack trace,
we first create a new stack trace object and insert it into the respective thread’s list. We
then create a new frame object for the top frame on the stack, which we call top frame
object (TFO). We decode the top frame and fill the TFO with the determined method
identifier and bytecode index. The frame address and the saved return address attributes are
not required for the TFO. We set the TFO’s filled attribute and link it with the stack trace
object that we created earlier.

In a second step, we deal with the caller frame. The caller frame remains unchanged until
the top frame’s method returns, so we do not capture it immediately. Instead, we create
a skeleton frame object for the caller frame that we can fill later, and make this skeleton
object the parent of the TFO. We store the caller frame’s address in the skeleton object’s
frame address attribute so we can match it to the frame later. To intercept when the top
frame’s method returns, we patch the top frame’s return address on the stack with the
address of a piece of trampoline code that we generate during HotSpot’s startup phase.
The original return address is stored in the skeleton object’s saved return address attribute.

When the top method returns, it returns to our trampoline instead of to its caller, and the
trampoline in turn calls our stack tracing code. In this code, we decode the caller’s frame
into its skeleton object, patch the caller’s return address on the stack, and create another
skeleton object for the caller’s caller frame. Finally, we do the actual return by using the
saved return address that we stored in the skeleton object before.

Figure 3.12(a) shows an example of capturing a new sample of a stack with the top
method c and callers b and a. We create a frame object as TFO, decode the top frame,
and fill the TFO with the method identifier of c and the current bytecode index, 42. We
then deal with the caller frame b. We create a skeleton object for the frame and make

40 Sampling-based Method Profiling

 Filled: true
 Method: c
 BCI: 42
 Parent

 Filled: false
 Frame Address: spb

 Saved Ret. Addr.: rac

Trampoline⋯

rac

c

rab

b

raa

a

 Method: c …
 Parent

 Filled: true
 Method: b
 BCI: 17
 Parent

Frame Objects Frame ObjectsStack

 Filled: false
 Frame Address: spa

 Saved Ret. Addr.: rab

Stack

Trampoline

TFO

Skeleton

Skeleton

(a) (b)

spa

spb

⋯

rab

b

raa

a

Figure 3.12: Capturing a frame (a) when taking a new sample, and (b) when intercepting
a method return

it the parent of the TFO. We store the frame’s address, spb, in the skeleton object so we
can match the object to the frame later. To intercept when c returns, we patch its return
address on the stack with the address of our trampoline code. We store the original
return address rac in the skeleton object. Figure 3.12(b) shows how we capture the next
frame when c returns. We intercept the return of c to b using our trampoline and decode
the frame of b into its existing skeleton object. We then patch the return address of b on
the stack, and create a new skeleton object for the frame of a, the caller of b. Finally, we
do the actual return to b using the saved return address from the frame object of b.

To know which frame object must be filled when we intercept the return of a method, we
maintain a thread-local pointer to the next skeleton object that needs to be filled, which
we call current skeleton object (CSO). We also use the CSO to implement sharing of frame
objects between multiple stack traces. We distinguish the following situations:

Taking a sample. When we take a sample, we create a new TFO and fill it with the
decoded top frame. We then examine the CSO as follows:

• If the CSO is not set yet, we create a new CSO and make it the parent of the TFO.

• If there already is a CSO, we check whether it refers to the frame of the TFO’s caller
by comparing their frame addresses. If they match, we make the CSO the parent of
the TFO. Otherwise, we create a new CSO and insert it between the TFO and the
former CSO.

Partial Safepoints and Incremental Stack Tracing 41

Intercepting a return. When we intercept a method return, the CSO always refers to the
frame object of the caller, so we decode the caller frame into the CSO. We then inspect
the CSO’s parent:

• If the CSO has no parent, we create a new CSO as the parent of the former CSO and
associate it with the frame of the caller’s caller.

• If the CSO’s parent refers to the frame of the caller’s caller, we make that parent the
new CSO.

• If the CSO’s parent refers to some other frame, we create a new CSO and insert it
between the former CSO and its parent.

Figure 3.13 demonstrates how our technique incrementally builds stack traces for the
example from Figure 3.10. Initially, the list of stack traces is empty and there is no CSO.
The stack traces are then built in the following steps (for simplicity, we use the name of
the methods to also refer to their frames).

(1) To take the first sample, we create a new TFO and decode the top frame c into it
(the object that is filled in each step is highlighted in bold). Because there is no CSO
yet, we create a skeleton object for the caller b (skeleton objects are indicated with
a dashed frame). We make the new skeleton object the CSO and also make it the
parent of the TFO. Finally, we patch the return address of c and save the original
return address in the CSO.

(2) When c returns, the trampoline is executed, and we fill the CSO with the decoded
stack frame of b. Because the CSO does not have a parent yet, we create a new
skeleton object for a as parent. We then make that skeleton object the CSO, patch
the return address of b and do the actual return from c to b.

(3) When we take the second sample, we decode the top frame v into a new TFO.
We then check whether the CSO corresponds to the caller frame u. Since the CSO
actually corresponds to a, we create a new CSO for u and insert it between a and v.
Finally, we patch the return address of v.

(4) We intercept the return from v to u and fill the CSO with the decoded frame of
u. Because the CSO’s parent, which is a, does not match u’s caller, which is b, we
create a new CSO b′ for b and insert it between a and u. We finally patch the return
address of u and do the actual return from v to u.

(5) We intercept the return from u to b and fill the CSO with the decoded frame b.
Because the CSO’s parent, which is a, now corresponds to b’s caller, we make the
parent the CSO and do not need to create a new one. We also need not patch the

42 Sampling-based Method Profiling

call

call

call

return

call
call

return

return

return

return

b c

(2) return

ca b

CSO

CSO

ca b

CSO

u v

(4) return

ca b

CSO

u vb'

(5) return

ca b

CSO
u vb'

(6) sample

CSO

ca b

CSO
u vb'

b''

(7) return

cb

CSO
u vb'

b''

... a

(8) return

CSO

CSO

CSO

CSO

CSO

TFO

TFO

TFO

a

b

c

u
v

(3) sample

(1) sample

Figure 3.13: Incremental construction of stack traces

Partial Safepoints and Incremental Stack Tracing 43

return address of b because it was already patched in step (2), and do the actual
return from u to b.

(6) When we take a third sample, we fill the top frame b into a new TFO denoted by
b′′. Because the CSO corresponds to the caller frame a, we make it the parent of the
TFO. The return address of b is still patched and does not need to be modified.

(7) We intercept the return from b to a and fill the CSO with the decoded frame a. Since
the CSO does not have a parent here, we create a new CSO for a’s caller. Because all
three stack traces join at the frame object of a, they share this object and all further
frame objects below. Thus, we examine their stack frames only once.

Interface

JVMTI offers a single operation that walks the stack of a thread and returns a complete
stack trace. Our approach does not create a complete stack trace right away, but incre-
mentally builds stack traces and requires the profiler to collect them later. Therefore, we
provide two operations for using our technique:

sample. The profiler can use the sample operation to record a stack trace, or rather, to
initiate recording it incrementally. It can specify a numeric identifier which is assigned
to the stack trace. The identifiers of stack traces need not be unique, and a profiler could
also simply assign timestamps to the stack traces it requests.

retrieve. The profiler can use the retrieve operation to collect all recorded stack traces for
a set of threads. The stack traces are returned in a tree structure that is similar to the
described internal representation. When stack traces are still incomplete, the operation
examines the remaining frames on the stack, completes the tree and reverts the patched
return addresses on the stack. The retrieve operation empties the tree of stack traces
kept in the VM. It always enters a global safepoint, but due to its infrequent use, the
introduced overhead is negligible.

We implemented these two operations as JVMTI extension methods, which has the
advantage that a profiling agent can check whether the VM supports incremental stack
tracing. Typically, an agent would periodically request samples by calling the sample
method, and infrequently use the retrieve method to collect the tree of stack traces. It can
then merge this tree into a CCT and update the CCT’s edge weights accordingly. The
agent must retrieve the samples of a thread before the thread exits, or otherwise the stack
traces would be released together with the thread’s resources. It can accomplish this by
subscribing to the ThreadEnd event that JVMTI offers.

44 Sampling-based Method Profiling

3.3.4 Implementation Aspects

When we implemented our techniques in the highly optimized HotSpot VM, we had to
handle several cases where thread synchronization or taking a correct stack trace is not
as straightforward as described in the previous sections.

Frame Types

HotSpot starts out by executing Java bytecode in an interpreter, but compiles frequently
executed methods to machine code. Therefore, the stack can contain frames of both
interpreted and compiled methods, which differ in their layout. Moreover, Java code can
call native methods of the VM, which again use different types of frames. When walking
stacks and particularly when patching return addresses, we must handle each type of
frame differently.

Inlining

The compiler aggressively tries to inline the code of called methods, and attempts to also
inline those methods that are called by the inlined callees. Therefore, a particular location
in compiled code can actually lie within multiple inlined methods that share a single
stack frame. The compiler stores information about inlined methods and their ranges
within other methods as metadata. When filling the frame object of a compiled frame,
we must read this metadata and create extra frame objects for the inlined methods.

Exceptions

When a method throws an exception which must be handled by a caller, the method
does not return in the usual way, using the return address on the stack. Instead, the
VM unwinds the stack and pops frames until it reaches a method which can handle the
exception. We modified HotSpot’s exception handling code to capture a frame before it
is popped from the stack (again considering any inlined methods).

Deoptimization

Deoptimization occurs when a method was compiled under an assumption that turned
out to be false at runtime. When deoptimization occurs, the stack frame of the compiled
method is transformed into one or more interpreted frames, and execution is continued

Partial Safepoints and Incremental Stack Tracing 45

in the interpreter. During this transformation, patched return addresses are lost, so we
altered the deoptimization code to preserve patched return addresses.

On-stack Replacement

A method can start out executing in the interpreter, but can then execute long enough so
that it would profit from JIT compilation. HotSpot can decide to compile the executing
method and then perform on-stack replacement by transforming its interpreted stack
frame into a compiled frame and continuing the execution of the method in the compiled
code. Because the resulting compiled frame can have a different location than the
interpreted frame, we have to update our data structures when on-stack replacement is
performed.

Safepoint Synchronization

The safepoint checks that HotSpot injects into application code simply read a dummy
value from a specific page in memory that is called polling page. When no safepoint is
pending, these reads are inexpensive. To enter a safepoint, the VM thread acquires the
global threads lock. Holding this lock prevents threads from starting and exiting and
blocks thread state transitions, such as when a thread resumes execution after waiting.
Therefore, acquiring the lock ensures that the VM thread has a consistent view of the
existing threads and their states. Next, HotSpot instructs the operating system to read-
protect the polling page. This causes the safepoint checks to trigger page faults in each
thread, and the fault handler then pauses the thread. HotSpot finally waits until all
threads are paused or are in a safe state guarded by the threads lock.

For partial safepoints and self-sampling, we use a modified safepoint mechanism that
waits only until enough threads have entered the safepoint, and then immediately
unprotects the polling page again. However, when the profiler restricts sampling to a set
of threads, other threads can also enter the safepoint during that time. Therefore, before
read-protecting the polling page, we set a flag for each thread which indicates whether
the thread should sample itself if it enters the safepoint. Threads which have their flag
set then sample themselves in the fault handler, while the other threads simply wait
for the safepoint to end. When including waiting threads for sampling, we acquire the
threads lock before computing the ratio of waiting to non-waiting threads, so no threads
can change their state at that point.

46 Sampling-based Method Profiling

avrora microcontroller grid simulation
fop PDF generation from XML
h2 in-memory database
jython pybench benchmark suite
luindex document indexer
lusearch search in document index
pmd Java source code analyzer
sunflow raytracing renderer
tomcat local webserver
tradebeans trading simulation
tradesoap trading simulation with SOAP messages
xalan HTML generation from XML
(batik) vector graphics generation
(eclipse) performance tests of the Eclipse IDE

Figure 3.14: The benchmarks of the DaCapo 9.12 “Bach” Benchmark Suite

3.4 Evaluation

We claim that our sampling-based method profiling approaches are more efficient and
more accurate than current approaches. In order to back this claim, we evaluated their
runtime overhead, their accuracy and other characteristics. We independently evaluated
Stack Fragment Sampling in [Hofer14b], and Partial Safepoints with Self-Sampling and
Incremental Stack Tracing in [Hofer15b]. In this section, we describe our evaluation
methodology and present our results.

3.4.1 General Methodology

We examine the overhead and other aspects of our approaches with benchmarks. We
use the publicly available benchmarks of the DaCapo 9.12 “Bach” benchmark suite and
of the Scala Benchmarking Project 0.1.0-20120216. Both suites consist of open-source,
real-world applications with pre-defined, non-trivial workloads. The DaCapo suite
provides 14 benchmarks of Java applications [Blackburn06]. However, we were unable
to use its batik and eclipse benchmarks because they do not run on OpenJDK 8, which
we used throughout this thesis. We briefly describe the individual DaCapo benchmarks
in Figure 3.14. The Scala Benchmarking Project suite consists of 12 benchmarks of Scala
applications [Sewe11], which we describe in Figure 3.15.

Evaluation 47

actors trading simulation with actors
apparat optimizer for Adobe Flash files
factorie probabilistic topic extraction
kiama language processing
scalac Scala compiler
scaladoc Scala documentation tool
scalap Scala class file decoder
scalariform Scala source code formatter
scalatest Scala testing toolkit
scalaxb XML data binding
specs behavior-driven design framework
tmt topic model learning

Figure 3.15: The benchmarks of the Scala Benchmarking Project 0.1.0-20120216

The harnesses of both benchmark suites are launched with a parameter to select which
specific benchmark to run, and with a parameter for the number of iterations. The harness
then repeatedly executes that benchmark’s constant workload for the specified number
of iterations in the same Java VM instance and reports the execution time of each iteration.
The harnesses support registering callbacks that are invoked at the start and end of an
iteration, which we use to measure and record additional metrics for each iteration.

Benchmarks executing on HotSpot are affected by a warm-up phase during which
classes are loaded, methods are compiled to machine code, and the heap and the garbage
collector adjust to the application’s memory allocation behavior. Only after this warm-up
phase, a benchmark reaches a steady performance level that is representative for a longer
use of an application. The duration of the warm-up phase depends on the benchmark
and on the hardware. We execute a fixed number of warm-up iterations that is sufficient
to reach a steady state of performance in all benchmarks on the used hardware, followed
by a fixed number of steady-state iterations. We record execution times and other metrics
for each iteration, but discard the execution times and metrics for the warm-up iterations.

The steady-state performance of an application further depends on factors that are
determined during the warm-up phase, such as optimization decisions of HotSpot as
well as the memory locations of machine code in the code cache and of long-living
objects on the heap. To avoid biases from such factors, we run multiple rounds of each
benchmark, each of which executes an entire sequence of warm-up and steady-state
iterations in a new HotSpot instance.

48 Sampling-based Method Profiling

We report the runtime overhead of our profiling approaches relative to executions with
no profiling. For that purpose, we also execute multiple rounds of the benchmarks with
an unmodified HotSpot build4 and without an agent. We report the median execution
time of all steady-state iterations of each benchmark with profiling, normalized to the
median execution time without profiling. We further summarize the runtime overhead
for multiple benchmarks by reporting geometric means over their normalized medians,
which is an indicator for their overall runtime overhead that weights each benchmark
equally [Citron06, Fleming86]. Moreover, we report typical deviations in our measure-
ments with the first and third quartiles for medians, and with a 50% confidence interval
for the geometric means.

3.4.2 Accuracy Analysis

Determining the accuracy of a profiler is challenging. Ideally, we would like to compare
the CCT generated by the profiler with a perfectly accurate CCT of an execution under
the exact same conditions. However, obtaining a perfectly accurate CCT would require
a profiler that can record each method call and measure its exact execution time while
not interfering with the execution of the profiled application at all. While instrumenting
profilers can record each method call and its execution time in a CCT, the instrumentation
slows down short-running methods more than long-running methods and interferes
with optimizations of the JIT compiler, especially with inlining. Therefore, when using
instrumentation to measure the execution times of methods, the results are distorted and
not representative for the unaltered application.

Therefore, we decided to analyze the accuracy of a profiler by determining whether it
consistently generates similar CCTs for the same benchmark, and by comparing the CCTs
produced by different profilers for the same benchmark to test whether the profilers
agree. To compare two CCTs with each other, we use the degree of overlap and hot-edge
coverage metrics, which rely on the following equivalence rules between nodes and edges
of a CCT [Zhuang06]:

1. The root nodes n1 ∈ CCT1 and n2 ∈ CCT2 are equivalent if they represent the same
method.

2. Nodes n1 ∈ CCT1 and n2 ∈ CCT2 are equivalent if they represent the same method,
and if their parent nodes are equivalent.

3. Edges e1 in CCT1 and e2 in CCT2 are equivalent if the start nodes of both edges are
equivalent and if the end nodes of both edges are equivalent.

4We use the same HotSpot versions and compile both the modified and unmodified builds with the same
toolchain.

Evaluation 49

4. When two nodes or two edges from different CCTs are equivalent, we consider
them part of both CCTs (regardless of their respective edge weights).

Degree of Overlap

The degree of overlap assesses how many edges of two CCTs are equivalent and how
close their edge weights are to each other. It has been used extensively in related
research [D’Elia11, Feller98, Moret09, Zhuang06]. Figure 3.16 shows its formal definition,
where relweight(e, CCT) is the relative edge weight of e in CCT, i.e., the percentage of
e’s edge weight relative to the sum of all edge weights in CCT. The degree of overlap
considers only edges that are part of both CCTs, and adds the smaller of the two relative
edge weights to the result. The result ranges from 0, where the two CCTs have no
equivalent edges, to 1, where CCT1 and CCT2 share all edges and have exactly matching
edge weights.

overlap(CCT1, CCT2) = ∑
e∈CCT1∩CCT2

min(relweight(e, CCT1), relweight(e, CCT2))

Figure 3.16: Formal definition of the degree of overlap between CCT1 and CCT2

Hot-Edge Coverage

While the degree of overlap reflects all edges of two CCTs and the differences in their exact
edge weights, only the hottest edges of a CCT are relevant for identifying performance
bottlenecks. The hot-edge coverage metric determines whether two CCTs identify a
similar set of edges as hot according to a relative threshold and puts less emphasis on
the exact edge weights. This metric was introduced in [Zhuang06] and also applied
in [D’Elia11].

Figure 3.17 shows a formal definition of hot-edge coverage. weight(e, CCT) is the abso-
lute edge weight of e in CCT, and hottest(CCT) is the maximum edge weight of any edge
in CCT. hotset(CCT, T) is the set of the hottest edges in CCT, where T is a threshold
relative to the hottest edge that the weight of an edge must exceed to be included in the
set. The hot-edge coverage, hotcover(CCT1, CCT2, T), is the number of equivalent edges
in the hot sets of CCT1 and CCT2 divided by the number of edges that are only in the hot
set of CCT2. Hence, the hot-edge coverage metric computes the percentage of hot edges
of CCT2 that are covered by the hot edges of CCT1.

50 Sampling-based Method Profiling

hotset(CCT, T) = {e : e ∈ CCT, weight(e, CCT) ≥ T · hottest(CCT)}

hotcover(CCT1, CCT2, T) =
|hotset(CCT1, T) ∩ hotset(CCT2, T)|

|hotset(CCT2, T)|

Figure 3.17: Formal definition of the hot-edge coverage of CCT2 by CCT1

Unlike the degree of overlap, hot-edge coverage is not commutative, i.e. CCT2 might
cover the hot edges of CCT1 better than vice versa. It is also vital to recognize that the
threshold, for example T = 0.6, is relative to the single hottest edge. This is different
from selecting the hottest 40% of edges, or the hottest edges that make up 40% or more
of the sum of edge weights.

Analysis Methodology

For each profiler and benchmark, we merged the CCTs from all (non-warmup) iterations
into a single CCT. 5 This merged CCT contains all edges that exist in any of the CCTs,
with edge weights that are the arithmetic means of the relative edge weights in all CCTs.
The merged CCT is therefore the average CCT over all CCTs from the individual iterations.
We then used the average CCTs to analyze the consistency of the CCTs generated by a
profiler for a specific benchmark, and to determine the agreement of different profilers
over a CCT.

Consistency Analysis: The behavior of our benchmarks generally does not deviate
significantly between iterations, so a profiler should also consistently produce similar
CCTs for different iterations of a benchmark. We analyzed this consistency property by
determining the degree of overlap between the CCT from each individual iteration and
the average CCT, and by determining the hot-edge coverage of each individual CCT by
the average CCT. This analysis also shows whether the average CCT is representative for
the individual CCTs.

Profiler Agreement: Consistency between the CCTs of a profiler does not prove that
these CCTs are accurate because a profiler can also consistently generate inaccurate CCTs.
Therefore, we determined the degree of overlap and the hot-edge coverage between the

5Some of our benchmarks dynamically generate classes which are assigned different names in different
iterations, such as call wrappers or web service handlers. We adapted our analysis tools to match
identical generated methods when merging CCTs.

Evaluation 51

average CCTs from the different profilers for each benchmark. When profilers agree on a
CCT, we take that as an indication that the CCT is accurate.

3.4.3 Stack Fragment Sampling

We implemented Stack Fragment Sampling in OpenJDK 8u5-b13 and evaluated our
implementation with the DaCapo 9.12 benchmark suite and with the benchmarks of the
Scala Benchmarking Project 0.1.0, as described in Section 3.4.1. We further included the
SciMark 2.0 benchmark [Pozo04], which is a Java benchmark for scientific and numerical
computing. 6

We compared the runtime overheads and the generated CCTs of the following sampling
approaches, for each of which we implemented a profiler that runs as an agent in the
Java VM and constructs a CCT:

• Conventional sampling with JVMTI

• Sending signals to threads to take stack traces with AsyncGetCallTrace (AGCT)

• Stack Fragment Sampling (SFS)

We performed all tests on a system with a quad-core Intel Core i7-4770 processor with 16
GB of memory running openSUSE Linux 13.1. We disabled hyperthreading, turbo boost
and dynamic frequency scaling to avoid their often irreproducible effects on the execution
of an application. With the exception of vital system services, no other applications were
running while the benchmarks were executed.

We executed 30 successive iterations of each benchmark with each profiler in a single
HotSpot instance. To generate metrics and a CCT for individual iterations, our profilers
track the start and the end of benchmark iterations. We discarded the data from the first
20 iterations to adequately compensate for HotSpot’s startup phase on our system. We
further executed multiple rounds of each benchmark (with 30 iterations each) with each
profiler to ensure that the results are not biased by factors that are determined during
HotSpot’s startup phase, such as early optimization decisions.

Stack Fragment Size

For our SFS profiler, we first had to choose the size of the sampled stack fragments. The
fragments should be large enough to include all frames on the Java stack as well as our

6We adapted SciMark 2.0 to use a constant workload instead of measuring operations per second over a
fixed time period.

52 Sampling-based Method Profiling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Mean

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t
scim

ark
4 KB 8 KB 16 KB 32 KB

Figure 3.18: Percentage of resolved and complete stack traces when sampling stack
fragments of different size

anchor near the Java stack’s base, which is vital to decode the stacks of samples in native
code. On the other hand, the fragments should not be too large so that copying them is
fast and samples do not have to be dropped due to overflowing sample buffers.

We experimented with stack fragment sizes of 4, 8, 16, 32 and 64 KB for our set of
benchmarks. Figure 3.18 shows the mean percentage of samples that could be decoded to
a complete stack trace, for each benchmark and for each fragment size up to 32 KB. While
fragment sizes of 4 KB or 8 KB are insufficient for most benchmarks, a stack fragment
size of 16 KB achieves good overall results. Still, the scalac, scaladoc, scalatest and specs
benchmarks benefit significantly from a larger fragment size of 32 KB. Further increasing
the fragment size to 64 KB had no effect (not shown). Even with large fragment sizes, not
all stack fragments could be decoded when the samples were taken in an unsafe state.

We did not measure a significant slowdown when using larger stack fragments instead
of smaller ones and conclude that most of the overhead in taking the samples is caused
by interrupting the application, which requires a context switch to kernel space, and
another context switch back to the application after the sample is taken. Therefore, we
decided to use a fragment size of 32 KB for our further tests.

Evaluation 53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t
scim

ark

1 MB 1 MB, with wait 8 MB, with wait 16 MB, with wait

Figure 3.19: Percentage of lost samples using Stack Fragment Sampling with different
buffer sizes, with and without sampling waiting periods

Buffer Size and Lost Samples

perf places the samples into a buffer for the respective CPU, from where our agent
retrieves them and decodes them to stack traces. When samples are generated so rapidly
that the buffer contents cannot be processed in time, the buffer can become full and new
samples are dropped. We examined how often this situation occurs, and which buffer
sizes result in the fewest lost samples.

Figure 3.19 shows the mean fraction of lost samples at a sampling interval of 0.1 ms
when using buffer sizes of 1 MB, 8 MB and 16 MB, with and without sampling waiting
periods. When not sampling waiting periods and using 1 MB buffers (which fit around
30 samples), the number of lost samples is almost negligible for most benchmarks, with
a maximum of 2.2% lost samples for the pmd benchmark. However, when also sampling
waiting periods, the number of lost samples increases due to the extra samples taken
at context switches. For the avrora, actors and scalatest benchmarks, the fraction of lost
samples even exceeds 50%. We found that the thread interactions in these benchmarks
trigger an excessive number of context switches and therefore generate many additional
samples which cannot be processed quickly enough. Increasing the buffer size does not
significantly reduce the number of lost samples for these benchmarks. However, using a
buffer size of 8 MB significantly reduces or eliminates lost samples for tradesoap. Further
increasing the buffer size to 16 MB has no substantial impact.

54 Sampling-based Method Profiling

For our further tests, we therefore used a buffer size of 1 MB per CPU when sampling
only running threads, and a buffer size of 8 MB per CPU when additionally monitoring
waiting periods.

Undecodable Samples and Effectiveness of Heuristics

Not all stack fragments can be decoded to stack traces because samples can be taken at
a time when the top Java frame cannot be located or when a stack walk is not safe, for
example when the stack is being unwound during exception handling. We measured
how often these situations occur, and how effective our heuristics are in these cases.

Figure 3.20 shows the mean fraction of samples that could be decoded, broken down
by the mechanism used to decode the stack. In the figure, Java refers to stack fragments
which could be decoded with a regular Java stack walk from the current stack pointer.
Anchor indicates samples in native code for which the on-stack anchor was used to locate
the topmost Java frame. Stub refers to samples in stub code for which the top Java frame
was successfully located by scanning for a return address to Java code. Prologue refers to
successfully decoded samples that were taken in a method’s prologue.

The chart shows that for most benchmarks, a significant fraction of the samples cannot
be decoded with only a regular Java stack walk. Using the on-stack anchor substantially
improves the fraction of decoded samples, which is also an indicator for how much
time is spent native code or in VM code. The stub heuristic also brings a considerable
improvement for most benchmarks. The prologue heuristic contributes less than we
expected, which we attribute to the JIT compiler’s eager inlining policy that reduces the
number of method calls and thus decreases the chance of taking a sample in a method
prologue. On average, 91.3% of the stack fragments can be successfully decoded to stack
traces, which is an indicator for the effectiveness of our heuristics.

Performance Impact

Figure 3.21 shows the median execution time of each benchmark without profiling and
with our Stack Fragment Sampling profiler, using 32 KB stack fragments and 1 MB
buffers at sampling intervals of 10 ms, 1 ms and 0.1 ms. We sampled only running
threads and ignored waiting periods. The times for each benchmark are normalized to its
median execution time with no sampling, which is indicated by the horizontal line (note
that the y-axis starts at 95%). The error bars indicate the first and third quartiles. On the
left-hand side, G.Mean shows the geometric means over all benchmarks. For comparison,
G.Mean with wait shows the geometric means when waiting threads are sampled as well

Evaluation 55

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Mean

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t
scim

ark
Java Anchor Stub Prologue

Figure 3.20: Percentage of decodable stack fragments by used stack walk heuristics

(using 8 MB buffers), and AGCT G.Mean and JVMTI G.Mean show the geometric means
of AsyncGetCallTrace sampling and JVMTI sampling for the same set of benchmarks.

The geometric mean overheads of Stack Fragment Sampling over all benchmarks are
1%, 2.1% and 9.7%, at sampling intervals of 10 ms, 1 ms and 0.1 ms, respectively. For
15 out of the 25 benchmarks, the overhead is below 10% even with a sampling interval
of 0.1 ms. We found that the other ten benchmarks are more CPU-intensive and thus,
our scheduling-aware sampling technique generates more samples for them, especially
at small sampling intervals. Notable outliers in our results are the avrora and actors
benchmarks, which show significant overheads even with 10 ms and 1 ms sampling
intervals. We attribute this to the excessive number of context switches that these
benchmarks trigger because perf adds a slight overhead to each context switch of a
monitored thread. In rare cases, such as with the fop and scalap benchmarks, the execution
even appears to become slightly faster with sampling. We suspect that this anomaly
results from effects of the sampling on scheduling.

Because of the low performance impact, we consider Stack Fragment Sampling to be
well-suited for APM software to continuously monitor production systems.

Accuracy

For analyzing the accuracy of our profilers, we used the CCTs that we collected with
0.1 ms sampling intervals and with sampling of waiting periods enabled for Stack

56 Sampling-based Method Profiling

95%

100%

105%

110%

115%

120%

125%

130%

135%

140%

145%

150%

G.Mean
G.Mean with wait
AGCT G.Mean JVMTI G.Mean
avrora
fop

h2

jython
luindex
lusearch pmd
sunflow
tomcat
tradebeans tradesoap xalan
actors
apparat factorie
kiama
scalac
scaladoc scalap
scalariform scalatest scalaxb
specs
tmt
scimark

N
o sam

pling
10m

s intervals
1m

s intervals
0.1m

s intervals

Figure
3.21:R

untim
e

overhead
ofStack

Fragm
entSam

pling
(SFS)w

ith
d

ifferentsam
pling

period
s,m

ean
overhead

s
also

show
n

for
conventionalsam

pling
w

ith
JV

M
T

Iand
w

ith
A

syncG
etC

allTrace
(A

G
C

T)

Evaluation 57

Fragment Sampling because waiting periods cannot be reliably excluded with Async-
GetCallTrace and JVMTI sampling. We further discarded all undecodable or incomplete
samples for comparability.

Consistency Analysis. Figure 3.22 shows the median degree of overlap of the average
CCT with the individual CCTs for each profiler and benchmark. The error bars indicate
the first and third quartiles. The plot demonstrates that the consistency between CCTs
is very similar for all three profilers. It also shows that the CCTs from all profilers for
fop, kiama, scalac, scaladoc and scalaxb vary significantly between iterations. We found
that these benchmarks spend over 40% of their execution time in many different calling
contexts that each make up less than 0.05% of the execution time, in many cases even less
than 0.01%. Hence, these calling contexts are seen in only very few samples and even
slight shifts in sampling times add up to a significant difference in the resulting overlap.

However, typically only the hottest edges of a CCT are relevant. Figure 3.23 shows the
median hot-edge coverage of the individual CCTs by the average CCT for all benchmarks
and all three profilers. This analysis also shows whether the average CCT is representa-
tive for the individual CCTs. We used a threshold of T = 0.1 for the hot-edge coverage,
which means that we consider an edge to be hot if its weight is within a tenth of that
of the hottest edge. The error bars indicate the first and third quartiles. The hot-edge
coverage demonstrates that for most benchmarks, all three profilers consistently identify
the same or a very similar set of edges as hot.

These results demonstrate that all three profilers typically generate CCTs that are con-
sistent between different iterations of benchmarks, which also implies that the average
CCT is representative for the individual CCTs. However, this does not prove that the
profiles are accurate.

Profiler Agreement. Figure 3.24 shows the degree of overlap between the average CCTs
from the three profilers. For 17 out of the 25 benchmarks, the overlap between Stack
Fragment Sampling and AsyncGetCallTrace exceeds 70%. In general, the CCTs from
Stack Fragment Sampling and AsyncGetCallTrace tend to overlap more than those from
AsyncGetCallTrace and JVMTI sampling, or than those from Stack Fragment Sampling
and JVMTI sampling. We consider this an indicator for the accuracy of Stack Fragment
Sampling because AsyncGetCallTrace is not limited to sampling at safepoints and is
thus potentially more accurate than JVMTI. A notable example of the agreement of
Stack Fragment Sampling and AsyncGetCallTrace is scimark, where we confirmed that
compiler optimizations significantly affect the accuracy of JVMTI sampling. pmd is a
counterexample, where AsyncGetCallTrace could not decode a significant number of

58 Sampling-based Method Profiling

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t
scim

ark

JVMTI
AGCT
SFS

Figure 3.22: Overlap of individual CCTs with the average CCT of profilers using JVMTI,
AGCT and SFS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t
scim

ark

JVMTI
AGCT
SFS

Figure 3.23: Hot-edge coverage of individual CCTs by the average CCT of profilers using
JVMTI, AGCT and SFS

Evaluation 59

stacks and therefore shows a low overlap with the other two profilers, which, on the
other hand, agree well with each other. For some benchmarks such as kiama, scalac,
scaladoc and tmt, all three profilers arrived at different CCTs. In the case of actors, we
found that the amount of lost samples due to excessive context switches impacts the
accuracy of the CCTs from Stack Fragment Sampling. With avrora and scalatest however,
all three profilers agree with each other despite the high number of lost samples with
Stack Fragment Sampling.

Figure 3.25 shows the hot-edge coverage (using T = 0.1) of the average CCTs from Async-
GetCallTrace and JVMTI sampling by the average CCT from Stack Fragment Sampling,
and of the average CCT of AsyncGetCallTrace by that of JVMTI sampling. The results are
similar to the results with the overlap metric. Stack Fragment Sampling generally agrees
even better with AsyncGetCallTrace over the hottest edges of pmd, xalan and scaladoc
than over the entire CCT. All three profilers agree significantly better on the hot edges of
pmd, kiama, scalac and scalariform.

3.4.4 Partial Safepoints and Incremental Stack Tracing

We implemented Partial Safepoints with Self-Sampling and Incremental Stack Tracing in
OpenJDK 8u5-b13. We evaluated our implementation with the DaCapo 9.12 benchmark
suite and with the benchmarks of the Scala Benchmarking Project 0.1.0, as described in
Section 3.4.1. For the evaluation, we implemented a profiler for each of the following
sampling approaches which runs as an agent in the Java VM and constructs a CCT:

• Conventional sampling with JVMTI

• Self-sampling with Partial Safepoints (SPS)

• Incremental Self-sampling with Partial Safepoints (ISPS)

We performed all tests on a system with a quad-core Intel Core i7-3770 processor with
16 GB of memory running Ubuntu Linux 14.04 LTS. We disabled hyperthreading, turbo
boost and dynamic frequency scaling to avoid their often irreproducible effects on the
execution. With the exception of vital system services, no other applications were running
while the benchmarks were executed.

As in our evaluation of Stack Fragment Sampling in Section 3.4.3, we executed 30
successive iterations of each benchmark with each profiler in a single HotSpot instance.
Our profilers track the start and the end of benchmark iterations to generate metrics
and a CCT for individual iterations. We discarded the data from the first 20 iterations
to adequately compensate for HotSpot’s startup phase on our system, and executed
multiple rounds of each benchmark (with 30 iterations each) with each profiler to ensure

60 Sampling-based Method Profiling

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t
scim

ark

SFS and AGCT SFS and JVMTI AGCT and JVMTI

Figure 3.24: Overlap of average CCTs of profilers using JVMTI, AGCT and SFS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t
scim

ark

HEC of AGCT by SFS HEC of JVMTI by SFS HEC of AGCT by JVMTI

Figure 3.25: Hot-edge coverage of average CCTs of profilers using JVMTI, AGCT, SFS

Evaluation 61

that the results are not biased by factors that are determined during HotSpot’s startup
phase.

Unlike in our earlier evaluation of Stack Fragment Sampling, we took the latency of
taking samples into account for the sampling interval. For example, when using a
sampling interval of 1 ms and taking a sample takes 0.2 ms, our profilers only pause
for 0.8 ms instead of 1 ms until they take the next sample. Therefore, all profilers take
samples at a similar rate and comparing their overhead and accuracy becomes fairer.

Performance Impact

Figure 3.26 shows the median overheads which we measured for all three profilers, using
sampling intervals of 10 ms, 1 ms and 0.1 ms. The error bars indicate the first and third
quartiles. The G.Mean bars show the geometric means for a sampling interval, and their
error bars indicate a 50% confidence interval. The top part of Figure 3.26 shows the
overheads for the benchmarks of the DaCapo suite. With 10 ms sampling intervals,
JVMTI sampling already has a considerable mean overhead of 10.7% while that of SPS is
2.9% and that of ISPS is even lower at 2.1%. Our techniques perform significantly better
than JVMTI sampling for the lusearch, sunflow, tradebeans, tradesoap and xalan benchmarks.
In general, ISPS achieves significantly lower overheads than SPS. This also applies with
1 ms sampling intervals, where JVMTI sampling has a mean overhead of 45.5% while
that of SPS is 7.2% and that of ISPS is 6.7%, and for 0.1 ms intervals, where the mean
overhead of JVMTI sampling is 107.6% while SPS and ISPS have lower overheads of
42.3% and 27.8%. Unexpectedly, the overhead of JVMTI sampling for lusearch, sunflow
and xalan is reproducibly lower with 0.1 ms sampling intervals than with 1 ms intervals.
As we describe in the following section, we found that the latency of JVMTI sampling for
these three benchmarks is very unstable and we consider that scheduling effects cause
the reduced overhead at shorter sampling intervals.

The bottom part of Figure 3.26 shows the overheads for the benchmarks of the Scala
Benchmarking Project. With 10 ms sampling intervals, JVMTI sampling has a mean
overhead of 4.8%, while that of SPS is 3.6% and that of ISPS is 3.4%. The improvements
from our techniques are more significant with 1 ms intervals, for which JVMTI sampling
has a mean overhead of approximately 25.4% while that of SPS is 12.5% and that of
ISPS is 9.8%. With 0.1 ms intervals, we measured mean overheads of 98.3% for JVMTI
sampling, 68.5% for SPS and 32.2% for ISPS. Overall, ISPS achieves lower overheads
than SPS, except for the tmt benchmark, which creates a large number of short-lived
threads. The ISPS profiler must retrieve all samples of a thread when it ends, which
causes significant extra overhead for tmt. We were unable to measure the overhead of

62 Sampling-based Method Profiling

actors with JVMTI sampling with 0.1 ms intervals because that benchmark has an internal
timeout which causes it to terminate early due to the high overhead.

Latency

We examined the latency of each sampling technique, which is the time it takes to pause
threads and take samples. Figure 3.27 shows box plots of the latencies for all sampling
techniques with 1 ms sampling intervals. The boxes show the first quartile, median and
third quartile, and the whiskers indicate the 2.5% and 97.5% percentiles. We grouped
benchmarks with similar characteristics in Others. For all those benchmarks, the latency
of JVMTI sampling is low, and SPS and ISPS have slightly lower latencies with less
variance.

For the remaining benchmarks, we found notable differences. actors, tradebeans and
tradesoap use a large number of threads and JVMTI sampling has a high median latency
for them because it takes longer until all threads have entered a safepoint. With SPS and
ISPS, the latencies remain very low because the two techniques require only some of
the threads to enter a safepoint. The lusearch, sunflow and xalan benchmarks use fewer
threads, and the median latency of sampling them with JVMTI is not excessively high.
However, those three benchmarks execute hot code which the compiler aggressively
optimizes and in which it eliminates safepoint checks. The time that it takes for all
threads to reach a safepoint check depends strongly on their current locations, so the
latencies with JVMTI sampling vary significantly and can even exceed 10 ms. With SPS
and ISPS, the median latency and variance are as low as for all other benchmarks because
the two techniques wait only until a certain number of threads has entered the safepoint.

The latency measurements show that SPS and particularly ISPS commonly achieve
sampling latencies of 0.1 ms or below, which makes them suitable for sampling in very
short intervals. Compared to them, sampling with JVMTI has higher latencies which
depend on the number of existing threads and on compiler optimizations and can even
exceed 1 ms.

Accuracy

To analyze the accuracy of the profilers, we used the CCTs that we collected with a
sampling interval of 1 ms. We consider this a reasonable sampling interval because even
JVMTI sampling typically has a sampling latency of less than 1 ms, and because it still
provides enough samples for short-running benchmarks.

Evaluation 63

10
0%

11
0%

12
0%

13
0%

14
0%

15
0%

16
0%

17
0%

18
0%

19
0%

20
0%

G. Meanavrorafop
h2
jythonluindexlusearchpmd
sunflowtomcattradebeans
tradesoapxalan

G. Meanavrorafop
h2
jythonluindexlusearchpmd
sunflowtomcattradebeans
tradesoapxalan

G. Meanavrorafop
h2
jythonluindexlusearchpmd
sunflowtomcattradebeans
tradesoapxalan

291%

416%

221%

393%

341%

1196%

646%

JV
M

TI
SP

S
IS

PS
N

o
sa

m
pl

in
g

0.
1

m
s i

nt
er

va
l

1
m

s i
nt

er
va

l
10

 m
s i

nt
er

va
l

10
0%

11
0%

12
0%

13
0%

14
0%

15
0%

16
0%

17
0%

18
0%

19
0%

20
0%

G. Meanactorsapparatfactoriekiamascalacscaladocscalapscalariformscalatestscalaxbspecstmt

G. Meanactorsapparatfactoriekiamascalacscaladocscalapscalariformscalatestscalaxbspecstmt

G. Meanactorsapparatfactoriekiamascalacscaladocscalapscalariformscalatestscalaxbspecstmt

225%

402%

295%

225%

213%

359%

255%

201%

JV
M

TI
SP

S
IS

PS
N

o
sa

m
pl

in
g

0.
1

m
s i

nt
er

va
l

1
m

s i
nt

er
va

l
10

 m
s i

nt
er

va
l

Fi
gu

re
3.

26
:R

un
ti

m
e

ov
er

he
ad

of
co

nv
en

ti
on

al
sa

m
pl

in
g

w
it

h
JV

M
T

I,
Se

lf
-s

am
pl

in
g

w
it

h
Pa

rt
ia

lS
af

ep
oi

nt
s

(S
PS

),
an

d
In

cr
em

en
ta

l
Se

lf-
sa

m
pl

in
g

w
ith

Pa
rt

ia
lS

af
ep

oi
nt

s
(I

SP
S)

,w
ith

th
e

be
nc

hm
ar

ks
of

th
e

D
aC

ap
o

su
ite

(t
op

)a
nd

of
th

e
Sc

al
a

Be
nc

hm
ar

ki
ng

Pr
oj

ec
t(

bo
tt

om
)

64 Sampling-based Method Profiling

0.0 ms
0.1 ms
0.2 ms
0.3 ms
0.4 ms
0.5 ms
0.6 ms
0.7 ms
0.8 ms
0.9 ms
1.0 ms
1.1 ms
1.2 ms
1.3 ms
1.4 ms
1.5 ms
1.6 ms

Others actors tradebeans tradesoap lusearch sunflow xalan

JVMTI
SPS
ISPS

Figure 3.27: Latencies of sampling with JVMTI, SPS and ISPS

Consistency Analysis. Figure 3.28 shows the median overlap of the individual CCTs
with the average CCT, while Figure 3.29 shows the median hot-edge coverage of the
individual CCTs by the average CCT, for each profiler and benchmark. We used a
threshold of T = 0.1 for the hot-edge coverage, so we consider an edge to be hot if its
weight is within a tenth of that of the hottest edge. The error bars indicate the first and
third quartiles. The two plots demonstrate that for every benchmark, the consistency
between CCTs is very similar for all three profilers. The lower overlaps of fop, kiama,
scalac, scaladoc and scalaxb suggest that their CCTs vary significantly between iterations.
These are the same benchmarks that stood out in the evaluation of profiler consistency
for Stack Fragment Sampling in Section 3.4.3, where we found that they spend over 40%
of their execution time in calling contexts that are seen in only very few samples and
even slight shifts in sampling times add up to a significant difference in the resulting
degree of overlap. The hot-edge coverage for these benchmarks is significantly better,
with the exception of fop.

Profiler Agreement. Figure 3.30 shows the degree of overlap between the average
CCTs from all three profilers. The overlaps exceed 70% for all benchmarks, with the
exception of kiama, scalac and scaladoc, which also were among the benchmarks with the
least consistency between individual CCTs, as we showed earlier in Figure 3.28.

Figure 3.31 shows the hot-edge coverage (using T = 0.1) of the average CCT from JVMTI
sampling by the average CCTs from SPS and from ISPS, and of the average CCT of SPS

Evaluation 65

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t

JVMTI
SPS
ISPS

Figure 3.28: Overlap of individual CCTs with the average CCT of profilers using JVMTI,
SPS and ISPS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t

JVMTI
SPS
ISPS

Figure 3.29: Hot-edge coverage of individual CCTs by the average CCT of profilers using
JVMTI, SPS and ISPS

66 Sampling-based Method Profiling

by that of ISPS. It demonstrates that SPS strongly agrees with the hot calling contexts
identified by JVMTI sampling, with over 90% coverage for all benchmarks. The hot-edge
coverage of JVMTI sampling and SPS by ISPS is slightly lower for some benchmarks,
which is caused by deep stacks which exceed the otherwise adequate limit of 256 frames
that our profilers use for SPS and JVMTI sampling. Such a limit is required for the
preallocation of data structures and we found that using a limit that is high enough to fit
every stack trace significantly increases the overhead even for shallow stacks. While SPS
and JVMTI sampling truncate long stack traces, ISPS allocates data structures on demand
and always provides complete stack traces. Although this is actually an advantage of
ISPS, it reduces its hot-edge coverage with the other techniques because the complete
stack traces do not match their truncated stack traces.

Validity. With partial safepoints, we sample only a subset of all threads, which could
cause lower accuracy. Moreover, we sample only those threads that enter a safepoint
first, which could lead to a bias toward code that checks for a pending safepoint more
frequently than other code. However, the results we presented above support that
the profiles obtained with our approaches do not have a lower accuracy nor do they
significantly disagree with the profiles of conventional JVMTI sampling.

3.5 Related Work

In this section, we describe related research on sampling-based method profilers, on
capturing calling contexts for other dynamic analyses, and on visualizing and analyzing
CCTs.

3.5.1 Sampling-based Method Profiling

Mytkowicz et al. demonstrate that four commonly used Java sampling profilers often
produce incorrect profiles due to safepoints and optimizations [Mytkowicz10]. They
propose a profiler that pauses threads not only at safepoint locations, but at arbitrary
locations in the code. However, their profiler samples only the executing method instead
of the current calling context. Moreover, the profiler is implemented outside of the VM,
where it suffers from limited information on inlined code and on interpreted methods.
In contrast to that, Stack Fragment Sampling records calling contexts, does so at arbitrary
locations, and leverages the metadata that is available in the VM to profile even heavily
optimized code.

Related Work 67

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t

SPS and JVMTI ISPS and JVMTI SPS and ISPS

Figure 3.30: Overlap of average CCTs of profilers using JVMTI, SPS and ISPS

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

avrora
fop
h2 jython
luindex
lusearch
pm

d
sunflow
tom

cat
tradebeans
tradesoap
xalan
actors
apparat
factorie
kiam

a
scalac
scaladoc
scalap
scalariform
scalatest
scalaxb
specs
tm

t

HEC of JVMTI by SPS HEC of JVMTI by ISPS HEC of SPS by ISPS

Figure 3.31: Hot-edge coverage of average CCTs of profilers using JVMTI, SPS, ISPS

68 Sampling-based Method Profiling

Whaley describes a VM-internal Java profiler which samples threads at arbitrary code
locations and avoids complete stack walks [Whaley00]. Unlike our incremental stack
tracing approach, it examines stacks eagerly and uses a spare bit in each stack frame’s
return address to mark whether a frame has already been examined. Whaley claims a
low overhead of 2-4% at 1000 samples per second, but the used VM performs thread
scheduling itself (“green threads”), which permits certain assumptions and direct access
to thread states. Green threads are uncommon in modern Java VMs because of their
disadvantages in systems with multiple CPUs. Our techniques have only slightly more
overhead with the high-performance HotSpot VM and work well for multi-processor
systems.

Zhuang et al. describe a Java profiler that does not sample calling contexts, but instead
instruments the code to sample a sequence (“burst”) of calls and returns, and uses
heuristics to disable and re-enable sampling to reduce redundant samples [Zhuang06].
The resulting CCTs are claimed to have more than 80% hot-edge coverage and overlap
with exhaustive CCTs, but the stated overhead of 20% for 10 ms sampling intervals is
significantly higher than that of our techniques.

Binder proposes a Java profiler that instruments methods to maintain a shadow method
stack and to periodically capture samples of this stack, and claims a higher accuracy
than that of JVMTI sampling [Binder06a]. Unlike our techniques, this profiler can be
implemented in pure Java, but its overhead is higher and comparable to that of JVMTI
sampling.

Inoue and Nakatani describe a Java profiler that uses the processor’s hardware per-
formance monitoring unit to take samples of only the executing method and its stack
depth [Inoue09]. The profiler asynchronously builds a CCT by matching the stack depths
and caller information of the samples. Samples can be triggered by hardware events,
such as memory store instructions, or by a special instruction that can be added in
arbitrary code locations. The profiler is reported to achieve an overhead of 2.2% when
capturing 8000 samples per second. Unlike our approaches, the profiler’s accuracy can
suffer from situations in which a method’s caller cannot be unambiguously determined.

Serrano and Zhuang propose a Java profiler that captures short traces of method calls
and returns and attempts to merge them optimally into approximate CCTs [Serrano09].
The profiler captures these traces by using hardware branch tracing, which records a
sequence of recently executed branches in a buffer, and by sampling this buffer. The
profiler is claimed to produce highly accurate CCTs at negligible overhead. Nevertheless,
its accuracy can suffer when traces cannot be unambiguously merged into a CCT.

Related Work 69

3.5.2 Dynamic Analysis Tools

Calling context information is not only useful for method profilers, but also for other
dynamic analysis tools.

Ansaloni et al. propose a framework for composing dynamic analysis tools from reusable
components [Ansaloni13]. The components allow maintaining a nontrivial shadow state
that corresponds to observed program states. This shadow state can capture calling
contexts and information that is specific to calling contexts. The framework builds on
the earlier research of Marek et al. on a domain-specific language for Java bytecode
instrumentation [Marek12]. Marek et al. also describe an approach for offloading a
shadow state and its analysis to a process that is separate from the observed application
to avoid interference with the application [Marek13]. Sun et al. apply this approach for
observing an application that is running on a mobile device while analyzing the collected
data on a separate system [Sun15].

Zheng et al. address the issue that many instrumenting dynamic analysis tools produce
incorrect results in the presence of optimizing compilers [Zheng15]. They propose a
novel technique that makes such tools aware of optimizations and implemented it in the
Graal JIT compiler [Graal15]. Among other capabilities, the technique allows tools that
capture method calls to avoid instrumenting inlined calls, which incur less runtime cost
than non-inlined calls and for which instrumentation tends to disturb optimizations.

Some dynamic analysis tools can capture calling contexts very frequently. In that case,
continuously tracking the current calling context and capturing that state is often faster
than walking the stack for each sample.

Bond and McKinley describe an approach which encodes the current calling context in
an integer variable [Bond07]. They instrument the application code so that it updates the
variable on each method call and return. The updates to the variable are deterministic,
so that the same calling context is always encoded as the same integer value. A profiler
can then sample the current value of the variable at points of interest in the code, such as
memory allocations. The encoding of each calling context is probabilistically unique, but
collisions can occur and can affect the accuracy of the approach. Continuously tracking
the current calling context with this approach is claimed to have an overhead of 3%.

Sumner et al. describe a similar approach for encoding calling contexts as integers, but
can do so without collisions [Sumner10]. They report an overhead of about 2%, but their
approach has limitations with object-oriented applications and dynamic class loading.

Huang and Bond claim that the accuracy of encoding calling contexts does not scale
well with program complexity [Huang13]. They propose an approach that continuously

70 Sampling-based Method Profiling

builds a CCT-like data structure through instrumentation. It creates tree nodes eagerly
and relies on a modified garbage collector to release unused nodes and to merge duplicate
nodes. Using this technique to add calling context information to a memory leak detector
or to a data race detector is claimed to introduce around 30-40% extra overhead.

We believe that our incremental stack tracing approach could enable dynamic analysis
tools to capture calling contexts very efficiently because it examines parts of the stack
that remain the same between samples only once. Moreover, unlike techniques that con-
tinuously track the current calling context, incremental stack tracing does not introduce
overhead in methods where calling contexts are never captured.

3.5.3 Profile Visualization and Analysis

The CCTs of real-world applications can be very large and complex so that it can be
difficult to identify performance bottlenecks in them.

Moret et al. propose calling context ring charts for visualizing large and complex
CCTs [Moret10]. Adamoli and Hauswirth describe a CCT visualization and analy-
sis framework that uses ring charts and further supports comparing and clustering
CCTs [Adamoli10].

Maplesden et al. describe an approach for finding patterns in a CCT in order to partition
it into areas of related functionality [Maplesden15]. They claim that these partitions and
their aggregated runtime cost better show optimization opportunities than the individual
methods of the CCT.

D’Elia et al. describe algorithms to continuously maintain a “Hot CCT” during profiling
that includes only hot calling contexts [D’Elia11]. They claim that it is orders of magni-
tudes smaller than a regular CCT at comparable accuracy. These algorithms could be
used with our sampling techniques to build a memory-efficient profiler.

Han et al. describe an approach to identify performance problems in vast amounts of
performance data through pattern mining [Han12]. The low overheads of our profiling
techniques make them suitable for continuous use in production systems, and such a
pattern mining approach could be used to examine their continuously collected data for
performance problems.

Summary and Future Work 71

3.6 Summary and Future Work

In this chapter, we presented efficient novel approaches for sampling-based method
profiling in a high-performance Java VM.

Stack Fragment Sampling relies on the operating system to sample application threads
only while they are running and to interrupt them only briefly to copy stack fragments.
The fragments are then asynchronously retrieved from a buffer and decoded to stack
traces. We described a set of effective heuristics that enable walking the stack even when
execution is in native code or in VM-internal code. The performance impact of Stack
Fragment Sampling is very low even at high sampling rates and significantly lower than
that of comparable profilers. In an analysis of the resulting calling context trees, we
found that our technique consistently generates an accurate picture of the program’s
behavior.

Further work on Stack Fragment Sampling could focus on improving its performance
when also taking samples in waiting states. Instead of taking a sample every time the
thread is scheduled out, a likely more efficient approach is to take samples when a thread
is scheduled in again, and doing so only if sufficient time has passed since the previous
sample. In our implementation, this would require modifications to perf. Another
optimization would be to dynamically adjust the fragment sizes to match the size of the
stacks of the executed code, which could reduce the costs of copying the fragments for
some applications.

Partial Safepoints, Self-Sampling and Incremental Stack Tracing form an alternative
novel approach that is independent of the operating system and hardware. This approach
also reduces the overhead of sampling Java applications and allows a profiler to target just
the running threads. The evaluation with our implementation in HotSpot demonstrates
that the approach significantly reduces the sampling overhead while providing similar
accuracy as a profiler that uses the common JVMTI interface.

Future work on our approach could focus on addressing limitations to the accuracy of
safepoint-based profiling techniques. When the JIT compiler eliminates safepoint checks
to optimize hot code regions, it prevents profilers from taking accurate samples in these
regions, which can severely distort the profile of some applications. A possible solution
could be introducing light-weight “sampling points” that are primarily intended for
profiling and make fewer guarantees about safety and therefore do not obstruct compiler
optimizations. Instead of eliminating a safepoint check, the JIT compiler could then
downgrade it to a sampling point check and still generate fast code. Alternatively, we

72 Sampling-based Method Profiling

have also experimented with using facilities of the operating system such as POSIX
signals to interrupt individual threads for sampling with incremental stack tracing.
However, patching return addresses on the stack is much more complex and error-prone
when a thread is not in a known safe state, and a correct implementation in HotSpot
would require substantial modifications to other parts of the VM. Finally, a possible
enhancement of incremental stack tracing would be to track the values of variables in
stack frames. This should be possible at less runtime and space overhead than with
exhaustive stack tracing and could be particularly valuable as input for profile-guided
optimization.

73

Chapter 4

Lock Contention Tracing and Analysis

In this chapter, we introduce locks and lock contention in Java. We then describe our novel
approach for efficiently tracing lock contention events on the virtual machine level, and
for analyzing these events to find the causes of locking bottlenecks instead of just their
symptoms. We evaluate different aspects of our approach and discuss related work.

So far, we have presented approaches for sampling-based method profiling that attribute
the execution time of an application to individual methods and their callers. This enables
a performance engineer to find problems where the application spends more time in a
method than what would be expected. Earlier in this thesis, we further identified finding
concurrency-related performance issues as a major challenge of APM software. These
performance issues are commonly caused by the inefficient synchronization of accesses to
shared resources. However, method profilers are not well-suited for finding concurrency-
related performance issues because they do not capture these synchronization operations.

Synchronizing accesses to shared resources is commonly done with locks. However,
implementing correct and scalable locking is challenging and locks become bottlenecks
when multiple threads contend to acquire them. In this chapter, we present a novel ap-
proach for analyzing lock contention in Java applications by tracing locking events using
mechanisms in the virtual machine. Our approach provides developers with exhaustive
information to understand and resolve locking bottlenecks in an application, yet incurs
very low overhead which makes it feasible for use by APM software. Most notably, our
approach not only records the call chains of threads that are blocked, but also accurately
reports the call chains of threads that block other threads by holding a requested lock.
This reveals the causes of lock contention instead of showing only symptoms. We pub-
lished this approach in [Hofer16] after presenting early results in [Hofer15a]. Part of this
work has been done by David Gnedt for his master’s thesis [Gnedt16], and by master’s
student Andreas Schörgenhumer.

74 Lock Contention Tracing and Analysis

4.1 Background

The synchronization of accesses to shared resources is the main challenge in concurrent
programming and is typically addressed with locks. Each shared resource is protected
by a lock. When a thread intends to access a shared resource, it must first acquire the
resource’s lock. With commonly used mutual exclusion locks, no other threads can then
acquire the lock and only the owner thread is permitted to access the resource until it
releases the lock again. Lock contention occurs when multiple threads try to acquire the
same lock at the same time. Typically, the unsuccessful contending threads are blocked
(suspended) and remain unproductive until they can acquire the lock.

Locking can be implemented at different granularities. An application can use a single
coarse-grained lock to protect all of its shared resources, but it can also use many fine-
grained locks to protect small units, such as parts of a data structure. Because subtle
mistakes in locking can cause anomalies that are difficult to detect and to debug, coarse-
grained locking can be favorable because it is easier to implement correctly. However,
coarse-grained locking tends to suffer from frequent lock contention, which can eliminate
any gains from parallelization. During development, it is difficult to judge in which
cases more fine-grained locking would significantly improve performance and in which
cases it would just make the application more complex and error-prone. Therefore,
analyzing lock contention at runtime is vital to measure its effect on the performance of
an application and to identify bottlenecks where more fine-grained locking is worth the
additional complexity.

Lock contention analysis is valuable both during development and in production. Server
applications in particular are deployed on machines with significantly more processor
cores and memory than a developer workstation has, and must handle workloads
that are often orders of magnitude larger than the workloads used for testing. Under
such conditions, concurrent code can behave very differently, making it difficult to
reproduce and to debug bottlenecks in locking on a smaller scale. A lock contention
analysis approach that is feasible for use in a production environment should have
minimal overhead while still providing information suitable to identify and comprehend
bottlenecks in an effective way.

The following sections give an overview over Java’s locking capabilities and their
implementation. Java has intrinsic support for locking, but it also provides the
java.util.concurrent package that contains explicit locks and advanced synchronization
mechanisms.

Background 75

4.1.1 Java Intrinsic Locks (Monitors)

Each Java object has an intrinsic mutual-exclusion lock associated with it, which is also
called the object’s monitor. Developers can insert synchronized blocks in their code and
specify an object to use for locking. That object’s lock is then acquired before entering
the block and executing its statements, and released when exiting the block. When
threads contend for a lock, that is, when one thread has acquired a lock by entering a
synchronized block, and other threads are trying to enter a synchronized block using the
same lock, those threads are blocked until the owner exits its synchronized block and
releases the lock. Developers can also declare entire methods as synchronized, which
then acquire the lock of the this object when called, and release it again when returning.
A notable property of synchronized blocks and synchronized methods is that a lock is
guaranteed to be released in the same method and scope in which it was acquired, even
when an exception is thrown.

Intrinsic locks further support conditional waiting with the wait, notifyAll and notify
methods. These methods may only be called on an object while holding its lock. The
wait method releases the lock and suspends the calling thread. When another thread
calls notifyAll on the same object, all threads that are waiting on its lock are resumed.
Each resumed thread then attempts to acquire the lock, and once successful, it continues
execution. In contrast to notifyAll, the notify method wakes up only a single waiting
thread. This mechanism is typically used in producer-consumer scenarios, such as
threads in a thread pool that wait for tasks to execute.

Figure 4.1 shows an example of using intrinsic locks to implement a thread-safe blocking
queue. The field q holds the list of queue items, and the list object’s intrinsic lock is used
to ensure mutually exclusive queue accesses. The enqueue method has a synchronized
block to acquire the lock of q before it appends an item and calls notifyAll to resume
any threads waiting on q. The dequeue method also uses a synchronized block and calls
awaitNotEmpty, which invokes wait on q as long as the queue is empty. The wait method
releases the lock of q and suspends the calling thread until another thread resumes it by
calling notifyAll from enqueue. Alternatively, when the thread is interrupted while waiting,
wait throws an InterruptedException, which we catch. In either case, wait first attempts
to reacquire the lock of q and waits until it is successful. When execution continues in
awaitNotEmpty, it checks again whether the list is not empty. When awaitNotEmpty finally
returns, the list is guaranteed to be not empty, and dequeue can remove and return an
item.

The semantics of intrinsic locks are implemented entirely in the Java VM, usually in a
very efficient way so their use incurs only significant overhead when threads actually

76 Lock Contention Tracing and Analysis

class BlockingQueue {

private final List<Object> q = new LinkedList<>();

void enqueue(Object item) {

synchronized(q) {

q.add(item);

q.notifyAll();

}

}

Object dequeue() {

synchronized(q) {

awaitNotEmpty();

return q.remove(0);

}

}

void awaitNotEmpty() {

while (q.isEmpty()) {

try {

q.wait();

} catch (InterruptedException e) { }

}

}

}

Figure 4.1: Blocking queue with Java intrinsic locks

contend for locks [Bacon98, Pool14, Russell06]. Implementations are typically non-fair
and allow threads to acquire a recently released lock even when there are queued threads
that requested that lock earlier. This increases the throughput by avoiding additional
overhead that is caused by suspending and resuming threads, and by better utilizing
the time periods between when one thread releases a lock and when a queued thread is
scheduled and can acquire the lock [Goetz06].

4.1.2 The java.util.concurrent Package

Java 5 introduced the java.util.concurrent package with classes that provide useful syn-
chronization mechanisms, such as concurrent collections and read-write locks [Lea05].
Most of these classes do not use Java’s intrinsic locks, but rather rely on the newly
introduced LockSupport facility, which provides a park method that a thread can call
to park (suspend) itself, and an unpark method that other threads can call to resume a

Lock Contention Event Tracing 77

parked thread. Using these two methods as well as atomic compare-and-set operations,
the semantics of java.util.concurrent classes can be implemented entirely in Java. The
AbstractQueuedSynchronizer class further provides a convenient basis for implementing
synchronization mechanisms with wait queues. Because these classes are public, appli-
cation developers can also implement custom synchronization mechanisms on top of
them.

ReentrantLock is an example of a mutual exclusion lock in java.util.concurrent that is
semantically similar to intrinsic locks, but is implemented entirely in Java on top of
AbstractQueuedSynchronizer. Code that uses ReentrantLock must explicitly call its
lock and unlock methods to acquire and release the lock. ReentrantLock also supports
conditional waiting by calling await, signalAll and signal on an associated Condition object.
Unlike intrinsic locks, an arbitrary number of such condition objects can be created for
each lock. Moreover, ReentrantLock has a fair mode which guarantees first-come-first-
serve ordering of lock acquisitions and conditional wake-ups. This mode reduces the
variance of lock acquisition times, typically at the expense of throughput.

Figure 4.2 shows an example of a thread-safe blocking queue that uses ReentrantLock,
with the same behavior as the example in Figure 4.1. However, instead of using the
intrinsic lock of the list object q, the code explicitly creates a ReentrantLock object lock
and a Condition object notEmpty that is associated with the lock object. The methods
enqueue and dequeue explicitly call lock and unlock on the lock to acquire and release it.
The implementation of lock attempts to acquire the lock, but if the lock is already owned
by another thread, the method adds the current thread to the lock’s internal queue of
blocked threads and then calls LockSupport.park to suspend the thread until the lock
becomes available. The implementation of unlock releases the lock, checks the lock’s
queue of blocked threads, and when necessary, calls LockSupport.unpark to resume a
blocked thread which can then acquire the lock. The methods enqueue and awaitNotEmpty
call the methods await and signalAll on the condition notEmpty. These methods must be
called while holding the condition’s associated lock and are similar to the intrinsic lock
methods wait and notifyAll, but use LockSupport.park and LockSupport.unpark to suspend
and resume threads which are waiting for a condition.

4.2 Lock Contention Event Tracing

Analyzing lock contention in an application requires observing individual locking events
and computing meaningful statistics from them. Maintaining those statistics in the
synchronizing threads interferes with the execution of the application, and requires
synchronization as well, so it can become a bottleneck itself. Therefore, we decided to

78 Lock Contention Tracing and Analysis

class BlockingQueue {

private final List<Object> q = new LinkedList<>();

private final ReentrantLock lock = new ReentrantLock();

private final Condition notEmpty = lock.newCondition();

void enqueue(Object item) {

lock.lock();

try {

q.add(item);

notEmpty.signalAll();

} finally {

lock.unlock();

}

}

Object dequeue() {

lock.lock();

try {

awaitNotEmpty();

return q.remove(0);

} finally {

lock.unlock();

}

}

void awaitNotEmpty() {

while (q.isEmpty()) {

try {

notEmpty.await();

} catch (InterruptedException e) { }

}

}

}

Figure 4.2: Blocking queue with ReentrantLock from java.util.concurrent

Lock Contention Event Tracing 79

Background
Thread

Tn

Processing QueueT1

Trace
File

Analysis Tool

Merge

Figure 4.3: Writing and processing trace events

record only those events in the application threads and to analyze them later. In this
section, we describe how we efficiently record events and metadata, which events we
record, and how we reconstruct thread interactions from the recorded events.

4.2.1 Writing and Processing Events

Figure 4.3 shows an overview of how we write and process trace data in our approach.
Naturally, we trace locking events in different application threads. Writing those events
to a single shared trace buffer would require synchronization and could become a
bottleneck. Therefore, each application thread Ti allocates a thread-local trace buffer where
it can write events without synchronization. We modified the locations in the HotSpot
code where relevant events occur so that they record these events in the current thread’s
trace buffer. When the trace buffer is full, the thread submits it to the processing queue
and allocates a new buffer. A background thread retrieves the trace buffers from the queue
and processes their events. In the depicted scenario, it merges them into a single trace file.
This trace file can be opened in an analysis tool for offline analysis and visualization.

We encode the events in an efficient binary representation to facilitate fast writing, to
reduce the amount of generated data and to keep the memory usage of the trace buffers
low. Because each buffer is written by just a single thread, we can store the identifier
of that thread once per buffer instead of recording it in each event. Submitting a full
buffer to the queue requires synchronization, but we assign a random size between 8 KB
and 24 KB to the individual buffers, which is large enough so that this is an infrequent
operation. The randomization avoids that threads which perform similar tasks try to
submit their buffers at the same time and contend for queue access.

Our design supports writing a trace file for offline analysis as well as analyzing the
recorded events online. We process the recorded events in Java code, while we write
events and manage trace buffers in native code. Therefore, the event processing code
uses a thin native code interface to dequeue the trace buffers from the processing queue

80 Lock Contention Tracing and Analysis

and to wrap them in DirectByteBuffer objects, which can be read from Java without
copying memory. To write trace files, we use the Java NIO subsystem [JavaNio15],
which can use the DirectByteBuffer objects directly. We also support fast compression
of the trace data by using a Java implementation of the high-performance LZ77-type
compression algorithm Snappy [Snappy15, Sundstrom15]. Our online analysis mode
currently generates a text file with statistics, but it could be extended to provide an
interface for the Java Management Extensions (JMX, [JMX15]) to configure analysis
parameters and to access the produced statistics.

4.2.2 Tracing Intrinsic Locks

Locking causes a major performance impact when threads contend for a lock. Threads
that fail to acquire a lock are suspended and cannot make progress, and a thread that
releases a contended lock must also do extra work to resume a blocked thread as its
successor. However, locking itself is not expensive in the HotSpot VM. An available
intrinsic lock can be acquired with a single compare-and-set instruction in many cases.
When a thread holds a lock only briefly, another thread that requests that lock can often
still acquire it through spinning without suspending itself. Therefore, we chose to record
only lock contention with our approach instead of recording all lock operations.

Conceptually, each Java object has an intrinsic lock associated with it. This lock stores its
current owner thread, the threads that are blocked trying to acquire it, and the threads
that are waiting for notifications on it. However, in a typical application, most Java
objects are never used for locking. Therefore, the HotSpot VM assigns a lock to an object
only when threads start using that object for locking. Even then, biased locking can avoid
allocating an actual lock as long as the object’s lock is never used by more than one
thread [Russell06].

The act of assigning a lock to an object is called lock inflation. Intrinsic locks in HotSpot
are data structures in native memory which are never moved by the garbage collector
and can therefore be uniquely identified by their address. Whenever lock inflation
happens, we record an inflation event with the lock’s address, the object that the lock is
being assigned to, and that object’s class. In the trace events that follow, we record only
the lock’s address. When analyzing the trace, we are thus still able to infer the lock’s
associated object and its class from the inflation event.

When a thread is blocked from entering a synchronized block or method because it cannot
acquire a lock, we record a contended enter event with the lock’s address, a timestamp,
and the call chain of the thread. Recording the call chain is expensive, but the impact
on performance is moderate because the thread is unable to make progress anyway.

Lock Contention Event Tracing 81

blocked by T2blocked by T1

blocked by T1

T1

T2

T3

(enter) c. exit

c. enter c. entered

c. enter

c. exit

c. entered (exit)

Figure 4.4: Events in three contending threads

When the thread later acquires the lock, we record a contended entered event with only a
timestamp.

With those two events, we can determine which threads were blocked when trying to
acquire a lock, how long they were blocked, and what call chains they were executing.
However, this information reveals only the symptoms of locking bottlenecks and not
their causes. To determine the causes of contention, we record events not only in those
threads that are blocked, but also in those threads which block other threads by holding
a contended lock. We modified all code paths in the VM that release a lock when exiting
a synchronized block or method so that they check whether any threads are currently
blocked on that lock. If so, we write a contended exit event with a timestamp and the call
chain. We delay recording the call chain and writing the event until after the lock has
been released to avoid causing additional contention.

Figure 4.4 shows an example of events that we trace for three threads T1, T2 and T3 that
are executing in parallel and are contending for a single intrinsic lock. First, T1 acquires
the lock without contention, so we do not record an event. Next, T2 tries to acquire the
lock, but the lock is held by T1, so T2 writes a contended enter event in its trace buffer and
suspends itself. T3 then also fails to acquire the lock and also records a contended enter
event. When T1 finally releases the lock, it sees T2 and T3 on the lock’s queue of blocked
threads, so it resumes thread T2 and writes a contended exit event. T2 acquires the lock
and writes a contended entered event. When T2 later releases the lock, it sees T3 on the
lock’s queue, resumes T3 and writes a contended exit event. T3 then acquires the lock and
writes a contended entered event. When T3 releases the lock, no threads are queued, and T3

continues without writing an event. When the trace analysis later examines the events of
all threads, it can infer from the contended exit events that T2 and T3 were being blocked
by T1 holding the lock, and that T3 was subsequently being blocked by T2. It can further
compute the duration of those periods from the timestamps in the events.

82 Lock Contention Tracing and Analysis

Event Ordering

The trace analysis needs to arrange all events for a specific lock in their correct order
to analyze them. For this purpose, we introduced a counter in HotSpot’s intrinsic lock
structure. When we write an event for a lock, we atomically increment the lock’s counter
and record its new value in the event as its per-lock sequence number. Unlike timestamps
(which we also record), these sequence numbers have no gaps between them, which
enables the analysis to determine whether it can already analyze a sequence of parsed
events, or whether there are still events in a trace buffer from another thread that it has
not parsed yet. This considerably simplifies and speeds up the analysis. However, when
a thread records an event and then does not submit its trace buffer for a long time, it
still delays the analysis of subsequent events. For this reason, we also reclaim the trace
buffers of all threads during garbage collections and add them to the processing queue.
The threads subsequently allocate new buffers to write further events.

Sequence numbers are also more reliable than timestamps for correctly ordering events.
Although we retrieve the timestamps from a monotonic system clock, this clock typically
uses a timer of the CPU or of the CPU core on which the thread is currently executing.
When the timers of different CPUs or CPU cores are not perfectly synchronized, the
recorded timestamps are not accurate enough to establish a happened-before relationship,
while our atomically incremented sequence numbers always guarantee a correct order.

Conditional Waiting

As we described in Section 4.1.1, the wait method temporarily releases a lock and sus-
pends the calling thread until another thread resumes it. When the released lock was
contended, we also need to write a contended exit event with a call chain. However, wait
may be called in a different method than the one that acquired the lock, as is the case
with awaitNotEmpty in Figure 4.1. In this case, recording the current call chain would
misrepresent the source of contention. Instead, we generate a forward reference to the call
chain of the method that acquired the lock and record this reference in the contended exit
event. We remember the reference so that when the thread later releases the lock in the
method which acquired it, we record an additional event that resolves the reference to
that method’s call chain.

When a waiting thread is woken up using notify, the thread tries to reacquire the lock.
When it has to wait for the lock, we also record a contended enter event. However,
contention after conditional waiting is not necessarily problematic. Often, multiple
threads are woken up at once and only the first of them can make progress. The other

Lock Contention Event Tracing 83

class LockSupport {

static void park(Object blocker);

static void unpark(Thread thread);

static void parkNanos(Object blocker, long timeout);

static void parkUntil(Object blocker, long deadline);

// ... variants of park without blocker argument ...

}

Figure 4.5: Methods of the LockSupport class

threads will find that the condition that they have been waiting for is again not met, and
therefore call wait again. For that reason, we use an extra flag in the event to indicate
when contention was preceded by conditional waiting. This allows us to classify this
type of contention differently in the analysis.

4.2.3 Tracing Park/Unpark Synchronization

Most synchronization mechanisms in java.util.concurrent are implemented entirely in
Java. To trace them, it would be possible to instrument each class individually and to
generate custom trace events that are specific to the semantics of the class in question.
However, what these classes have in common is that they rely on the park and unpark
methods that the VM provides through the LockSupport class.

Figure 4.5 shows an outline of the LockSupport class. The park method parks (suspends)
the calling thread. A parked thread remains suspended until another thread calls unpark
on it. The methods parkNanos and parkUntil suspend the calling thread until the thread
is unparked, or until a timeout has elapsed or a deadline is passed, whichever comes
first. The callers of the park methods pass a blocker object which represents the entity
that caused the thread to park. The blocker object is typically the synchronization object
itself (such as a lock) or an object associated with it. For example, ReentrantLock passes
an instance of its inner class NonfairSync (or FairSync). Although passing a blocker object
is optional, implementers are strongly encouraged to do so for diagnostic purposes.

When a thread cannot acquire a lock, it calls park to suspend itself and passes a blocker
object that represents the lock. When a thread releases a contended lock, it calls unpark
to resume a parked thread that has requested the lock. Therefore, we decided to trace
the individual park and unpark calls in all threads. The class of the blocker object reveals
the used type of lock (or other synchronization mechanism) and enables us to infer the
exact semantic meaning of the park and unpark calls, so we can correlate them with each
other and determine which threads blocked which other threads.

84 Lock Contention Tracing and Analysis

We also need to arrange the events for the park and unpark calls in their correct order
to analyze them. Ideally, we would also generate separate sequence numbers for each
lock so that the events from different locks can be ordered and analyzed independently.
However, the lock is represented by the blocker object, which is passed only to park, not
to unpark, and is therefore unknown when writing an unpark event. Therefore, we assign
a global sequence number to each event, which establishes a definitive happened-before
relationship between all park and unpark calls in all threads. We further use the global
sequence number of an event to refer to that event from other events. We use a single
global counter that we atomically increment to generate the global sequence numbers.

When a thread calls park, we record a park begin event with a sequence number, a times-
tamp, the identity of the blocker object, the object’s class, and the call chain. Moreover,
we include whether a timeout or deadline was specified upon which the thread would
resume even without being unparked.

When a thread calls unpark to resume a parked thread, we record an unpark event with a
sequence number, a timestamp, the identifier of the unparked thread, and the call chain.
Moreover, we store the unpark event’s sequence number to a thread-local structure of
the unparked thread.

As soon as the unparked thread resumes its execution, we write a park end event with a
sequence number and a timestamp. We retrieve the sequence number of the correspond-
ing unpark event from the thread-local structure and also include it in this event, so the
analysis can easily match the two events. Because a call to park can also end due to a
timeout, we also record in the event whether this was the case.

Figure 4.6 shows an example of events that we record in four contending threads that
use a non-fair ReentrantLock. Initially, T1 is able to acquire the lock without contention.
Next, T2 tries to acquire the lock and fails, so it enters the queue of the lock and parks,
and thus, we record a park begin event. T4 then also fails to acquire the lock, enters the
queue and parks, so we record another park begin event. When T1 releases the lock, it
unparks T2 as its successor and we write an unpark event. However, T3 is able to acquire
the lock before T2 resumes its execution. T2 writes a park end event, but finds that the lock
is still unavailable, so T2 parks again, and we write another park begin event. Finally, T3

releases the lock and unparks T2 as its successor. When T2 resumes its execution, we
record a park end event, and T2 is finally able to acquire the lock. T4 remains parked.

During the analysis of the trace, we examine the first park end event of T2, which leads us
to the unpark event of T1. Because a blocker object of class ReentrantLock.NonfairSync was
recorded, we can infer that the unpark call was the consequence of an unlock operation,
and that T1 held the lock before the unpark event. The same applies to the the second

Lock Contention Event Tracing 85

bl. by T2blocked by T3blocked by T1

blocked by T1

blocked by T3

T1

T2

T3

unpark T2

park begin

park end

(lock)

(lock) unpark T2

park end

park begin

(lock)

T4

park begin

Figure 4.6: Park/unpark events in contending threads

unpark call, where T3 held the lock. We can then account for the contentions in T2 as
being caused by T1 and T3 and their recorded call chains. Thread T4 was also blocked by
T1 and T3, although this is not obvious because unpark was called only on T2. However,
because T4 specified the same blocker object as T2 when parking, we can infer that it was
blocked by the same lock owners and also account for its contention as being caused
by T1 and T3. Because the time between an unpark event and a park end event cannot be
precisely attributed to the previous or to the next lock owner, we simply attribute such
typically very short time periods to an unknown lock owner.

4.2.4 Metadata

Our traces contain a significant amount of repetitive data, such as the identities of threads,
classes and objects, as well as call chains. Therefore, we want to collect and encode such
data as efficiently as possible. However, for the data to be valuable for a user, we need
to provide a meaningful representation, such as the name of a thread instead of just
its numeric identifier. We decided to address this issue with metadata events. When we
encounter an entity (such as a thread or a class) for the first time, we record a metadata
event with a unique identifier for the entity and include information that is meaningful
to a user. In the events that follow, we refer to that entity with only its identifier.

When the application launches a new thread, we record a thread start event with the
thread’s name and the numeric identifier that the Java runtime assigned to the thread. In
future events, we refer to the thread only with that identifier. When the name of a thread
is changed later, we record a thread name change event with the new name.

86 Lock Contention Tracing and Analysis

When we encounter a specific Java class for the first time, we write a class metadata event
with the fully-qualified name of the class. HotSpot stores the metadata of a class in a data
structure with a constant address, so we use that address as the unique identifier of the
class. We introduced an additional field in the class metadata structures that indicates
whether the class has already been defined in the trace. Because two threads might race
to write a class metadata event, we atomically update that field before writing an event,
and the thread that succeeds in updating the field then writes the event.

Finding a unique identifier for Java objects is difficult. Because objects are moved by
the garbage collector, their address is not suitable as an identifier. Instead, we refer to
an object by recording its identity hash code and its class in our events. In HotSpot, the
identity hash code of an object is a 31-bit integer that is randomly generated and stored
with the object. In rare cases, two different objects of the same class can be assigned
the same identity hash code, so that the two objects would be indistinguishable during
analysis. We consider this to be an acceptable tradeoff compared to a more complex
approach that involves tracking objects.

When recording call chains, we also refer to individual Java methods. Like for classes,
HotSpot stores the metadata of Java methods in data structures with constant addresses,
which we use as unique method identifiers. When we encounter a method for the first
time, we write a method metadata event with its identifier, the identifier of the method’s
class, the method’s name, and the method’s signature. We also use a newly introduced
field to mark methods that we have already defined in the trace.

Although the thread which first encounters an entity records a metadata event for it,
some other thread may submit its trace buffer before that thread does. The trace analysis
must be able to handle situations where events refer to an entity whose metadata event
has not been processed yet, and must be able to resolve such references later.

Call Chains

We consider call chains to be vital for understanding locking bottlenecks, but walking
the stack and storing them is expensive. Therefore, we have devised several techniques
to record call chains more efficiently.

In a typical application, the number of call chains which use locks is limited, and many
of the events that we record share identical call chains. To reduce the amount of data,
we maintain a hash set of encountered call chains. When we record a call chain for an
event, we look it up in that set. If it does not exist in the set, we assign a unique identifier
to it, insert it into the set, and write a call chain metadata event with its identifier and its
methods. If the call chain already exists in the set, we can just record its identifier in

Lock Contention Event Tracing 87

our event. We compute the hash code of a call chain from the instruction pointers of its
methods.

Because multiple threads can access the set of call chains concurrently when recording
events, those accesses require synchronization. We minimized the risk that the hash
set becomes a synchronization bottleneck by implementing its operations in a lock-free
way: when we record a call chain, we first walk the collision chain for its hash code
without using any synchronization. If the call chain is found, we simply use its identifier.
Otherwise, we generate a unique identifier for the call chain, and attempt to insert the
call chain into the collision chain using an atomic compare-and-set operation. If that
operation succeeds, the insertion was successful and we record a call chain metadata
event. If the compare-and-set fails, some other thread has inserted a call trace in the
same collision chain, so we start over and check if the collision chain now contains the
call chain in question. Therefore, we keep the overhead of insertion to a minimum, and
looking up an existing call chain incurs no synchronization overhead at all.

We also optimized the stack walk itself. A JIT-compiled Java method usually has several
of its callees inlined into its compiled code, and analyzing the stack frame of such a
method typically entails resolving which methods are inlined at the current execution
position. In HotSpot, this requires decoding compressed debugging information from
the compiler. In order to avoid that, we perform light-weight stack walks which do not
resolve the inlined methods, and also store call chains without the inlined methods in
our hash set. We resolve the inlined methods only for the call chain metadata event that
we write when we encounter a new call chain.

Finally, we devised a technique to reuse parts of a call chain that were recorded earlier in
the same thread. We derived this technique and its implementation from our work on
Incremental Stack Tracing, which we described in Section 3.3.3. When we walk the stack
of a thread to construct its call chain, we cache the resulting call chain in a thread-local
structure. We also mark the stack frame that is below the top frame by replacing its
return address with the address of a code snippet, and retain the original return address
in a thread-local structure. When the marked frame returns, the code snippet is executed
and simply jumps to the original return address, and the marking is no longer present.
However, as long as the marked frame does not return, we can be certain that the frames
below it have not changed. When we walk the stack again later and encounter a marked
frame, we can stop the stack walk and complete the call chain using the frames of the
cached call chain. This technique is intended to reduce the overhead of stack walks when
recording multiple events in the same method, such as a contended enter event and a
contended exit event, or multiple park begin events.

88 Lock Contention Tracing and Analysis

Unloading of Classes and Compiled Methods

We refer to classes and methods by using the constant addresses of their metadata
structures as identifiers. However, when HotSpot’s garbage collector detects that a class
loader has become unreachable, it unloads all classes loaded by that class loader and
reclaims the memory occupied by their metadata. When other metadata is loaded into
the same memory, the addresses that we used as identifiers in earlier events can become
ambiguous during the analysis of the trace.

Therefore, we need to record when identifiers become invalid. We extended the class
metadata event to include the class loader, which we also identify by the address of
its metadata structure. When a class loader is unloaded during garbage collection,
the application is at a safepoint, so all application threads are suspended and cannot
write trace events. At this point, we first reclaim the trace buffers of all threads, which
can still contain references to classes that are about to be unloaded, and add them to
the processing queue to ensure that they are processed first. Then we acquire a new
buffer, write a single class loader unload event with the identifier of the class loader, and
immediately submit the buffer to the processing queue. When the trace analysis processes
this event, it discards all class, method and call chain metadata that refers to the unloaded
classes. Finally, we let HotSpot unload the classes.

Compiled methods are also frequently unloaded, for example when assumptions that
were made during their compilation turned out to be wrong. Other code can then be
loaded into the same memory. Because we store addresses of compiled methods in our
call chains, these addresses can then become ambiguous, so we purge call chains that
refer to unloaded methods from our set of encountered call chains.

4.3 Trace Analysis

In order to identify synchronization bottlenecks effectively, we need to compute mean-
ingful statistics from the recorded events. We accomplish this in two phases: first,
we correlate events from different threads with each other to identify individual lock
contentions. In the second phase, we aggregate these contentions by user-defined criteria.

4.3.1 Correlation and Contention Analysis

Figure 4.7 shows the process of extracting contentions from a trace. The event parser
processes one trace buffer at a time. It parses the events in the buffer and forwards
each event to the metadata resolver. The metadata resolver extracts all metadata from

Trace Analysis 89

metadata events and keeps them in data structures. It replaces the metadata identifiers
in all types of events with references to those data structures so that later phases can
access those data structures directly. The metadata resolver then passes the events to the
event rearranger, which reorders them according to their sequence numbers. The event
rearranger maintains one queue per intrinsic lock (ILi) and passes each intrinsic lock’s
events in their correct order to the intrinsic lock dispatcher. For park/unpark events with
a global sequence number, the event rearranger uses a single queue (G) and passes the
events to the park thread dispatcher.

The intrinsic lock dispatcher creates a lock analyzer for each intrinsic lock that it encounters
in the events, and passes the events of that lock to its analyzer. The analyzer replays the
events and keeps track of which threads were blocked and which thread held the lock,
and finally generates contention objects (C). These contention objects store the duration of
the contention, the thread that was blocked, the thread’s call chain, the lock’s associated
object, and that object’s class. Most importantly, the contention objects also store the
cause of the contention, that is, the thread that held the lock and that thread’s call chain.
These contention objects are then submitted to aggregators that compute statistics, which
we describe in Section 4.3.2.

For the park/unpark mechanism, the analysis is more complex. The park thread dispatcher
creates a thread analyzer for each thread that parked or was unparked, and forwards the
events of that thread to its analyzer. The thread analyzer replays the events and creates
bundles of related park begin, unpark and park end events. It submits those bundles to the
park blocker dispatcher, which creates a blocker analyzer for each blocker object that occurs in
those bundles. We implemented different types of blocker analyzers to handle the differ-
ent synchronization semantics of java.util.concurrent classes. The park blocker dispatcher
chooses which type of blocker analyzer to create based on the blocker object’s class. The
blocker analyzer examines the event bundles that are passed to it, tracks the state of the
blocker, and creates contention objects that it submits to the aggregator hierarchy. We
have implemented blocker analyzers for ReentrantLock and for ReentrantReadWriteLock.
ReentrantLock is very similar to intrinsic locks, and its analyzer processes events as
described in the discussion of Figure 4.6. With a ReentrantReadWriteLock, multiple
readers can share the lock at the same time without calling park or unpark, so we do not
record events for those readers. Only the last reader that releases the lock calls unpark
on a blocked writer and records an event. Therefore, our analyzer for ReentrantRead-
WriteLock cannot determine all readers which blocked a writer, but it still accurately
determines which writers blocked which readers, and which writers blocked each other.
We have also implemented a generic analyzer for otherwise unsupported blocker objects
or when no blocker object is provided. This analyzer keeps track of the time that was
spent parking, but cannot determine the owner of the blocker.

90 Lock Contention Tracing and Analysis

Metadata Resolver

Event Parser

Event Rearranger
IL1
IL2

42 5
94

G 73 8 9

EEEEEE

Intrinsic Lock Dispatcher Park Thread Dispatcher

IL1 Analyzer ILn Analyzer T1 Analyzer Tn Analyzer

Park Blocker Dispatcher

B1 Analyzer Bn Analyzer

Aggregator Hierarchy

EEEEEE

EEEEIL

EMEIL
EMEIL

EMEP
EMEP

CCCC

CCCC

EEEEP

EPEPEP
EPEPEP
EPEPEP
EPEPEP

EPEPEP
EPEPEP

EPEPEP
EPEPEP

Figure 4.7: Processing events to identify contentions

Trace Analysis 91

C

∑1

 Selector: Lock Object Class

C

C

Factory

∑n ∑1 ∑m

∑ Aggregator:
java.util.Hashtable

 Owner Call ChainF

∑ Aggregator:
ReentrantLock.NonfairSync

 Owner Call Chain F

Figure 4.8: Aggregating events

4.3.2 Aggregation of Contentions

To enable users to find and examine locking bottlenecks in an effective way, we devised
a versatile method to aggregate the individual contentions by different aspects. These
aspects of contentions are the contending thread, the contending call chain (or method),
the lock owner thread, the lock owner’s call chain (or method), the lock object (an
intrinsic lock’s associated object, or a park blocker object), and that object’s class. As
another aspect for aggregation, we categorize contentions into groups for intrinsic locks
and for park/unpark synchronization. The user selects one or more of these aspects
in a specific order. We then build a hierarchy of selectors and aggregators that break
down all contentions by those aspects. An aggregator computes the total duration of all
contentions that it processes. A selector distinguishes contentions by a specific aspect and
forwards them to a specific aggregator according to their values.

Figure 4.8 shows an example in which contentions are first distinguished and aggregated
by the lock object’s class, and then by the lock owner’s call chain. When the trace analysis pro-
duces a contention object, it submits it to the hierarchy’s root selector, which distinguishes
contentions by the lock object’s class. The selector has a factory that it uses to create
an aggregator for each distinct lock object class that it encounters. Assuming that the
submitted contention has java.util.Hashtable as its lock object class, the selector forwards
the contention to the aggregator for that class. The aggregator then adds the contention’s
duration to its total duration. Because we aggregate by the lock owner’s call chain next,
each aggregator on this hierarchy level is coupled with a selector that distinguishes a con-
tention by the lock owner’s call chain after the aggregator has processed it. The selector
also has a factory (denoted by F), which it uses to create aggregators for each encountered
call chain and then forwards contentions to them. Assuming that the contention matches
the call chain of aggregator Σn, the selector forwards the contention to that aggregator,

92 Lock Contention Tracing and Analysis

which then adds the contention’s duration to its total duration. Because there are no
more aspects to aggregate by, the aggregators on that level are not coupled with selectors.
The final result of aggregating multiple contentions is the tree of aggregators and the
total contention times that they computed. In this example, a user might recognize from
that tree and its contention times that there is significant contention with Hashtable object
locks, and that there are two call chains that cause most of these contentions. The user
could then choose to optimize the code that these two call chains execute, or also select a
different data structure or implementation, such as ConcurrentHashMap.

4.3.3 Interactive Visualization

In order to enable users to perform a comprehensive offline analysis of the generated
traces, we built an interactive visualization tool. We demonstrate this tool with a simple
application that maintains an in-memory hash table of products. Multiple threads
continuously query that table for individual products, for which the threads hold a lock
to guard against potential concurrent changes to the table. The vast majority of queries
use a product’s number to retrieve its details, which requires only an inexpensive hash
lookup. However, 1% of the queries search for a product by its name, which entails
iterating over all products until a match is found, also while holding the lock.

Figure 4.9 shows a screen capture of our visualization tool displaying a trace file from
this application. The main window is divided into three parts: a drill-down selection
panel at the top, an aggregation tree in the center, and a detail view for the selected
entry in the aggregation tree at the bottom. In this example, the drill-down panel is
configured to aggregate contentions first by group, then by the lock object’s class, next by
individual lock objects, then by the contending thread’s call chain, and finally by the lock
owner’s call chain. Therefore, the root level of the tree displays the different groups that
we categorize events in. The first entry represents contentions from java.util.concurrent
synchronization, and the Total Duration column displays that it makes up 100% of all
contentions, an absolute value of 886 seconds. The second entry on the root level
represents contentions from intrinsic locks, which is negligible, so we do not describe it
in greater detail.

The entries on the next two tree levels break down the contended time by lock object
classes and further by individual objects. They show that all of the java.util.concurrent
contention comes from locking ReentrantLock$NonfairSync objects, specifically from a
single instance with identity hash code 3ae26333. The tree level below that displays the
call chains where the threads spent time waiting for the lock and reveals that 97.68%
of the contended time was spent in method queryByArticleNo, while only 2.32% of the

Trace Analysis 93

time was spent waiting in queryByName. Such information is also provided by commonly
available tools, and a developer might conclude that because contention primarily
affected queryByArticleNo, optimizing it could reduce lock contention. However, the
lock owner call chains that are displayed on the next tree level reveal that when threads
waited for the lock in queryByArticleNo, the contention was almost exclusively caused by
queryByName which was holding the lock. Therefore, optimizing queryByName is likely
to be more effective for reducing lock contention. This could be accomplished with a fast
index data structure for product names, and also by using a read-write lock that allows
multiple concurrent queries. Note that because call chains are typically too long to fit
into a single line, our tool shows [+n] to denote that n calls have been omitted. However,
a user can select a specific entry to view the entire call chain in the detail view below
the tree. In this example, this reveals implementation details of ReentrantLock using
AbstractQueuedSynchronizer, which our tool always omits in the tree for brevity.

As an example of using our visualization tool on a more sophisticated application,
Figure 4.10 shows a screen capture of our tool displaying a trace file from the DaCapo
suite’s avrora benchmark, which simulates a network of microcontrollers. In this example,
the drill-down panel is configured to aggregate contentions by group, then by the
lock object’s class, next by individual lock objects, then by the lock owner’s method,
and finally by the lock owner’s call chain. The aggregation tree shows that all of the
contentions involve intrinsic locks, with a total duration of 37 seconds. The entries on the
second and third tree level indicate that 99.78% of the contention comes from locking a
single Class instance. The two tree levels below that display the owner methods and the
owner call chains. With 99.32%, SimPrinter.printBuffer is almost always the owner of the
lock when a contention occurs. The multiple owner call chains show that this method
is called from more than one location, and that the amount of caused contention varies
significantly by call chain.

We examined the source code of avrora and found that SimPrinter.printBuffer is used to
log simulation events and that it calls certain static methods of class Terminal. To avoid
that the output from different threads is interleaved, printBuffer acquires the intrinsic
lock of the Class object of Terminal, which poses a locking bottleneck. In Figure 4.10, we
see two call chains that cause 72.75% and 11.41% of all contention, and in both of them,
printBuffer is called by fireAfterReceiveEnd. This method logs when a simulation node
receives a network packet, which is the most frequently logged event, and its output
is very large because it includes a hexadecimal representation of the packet’s data. To
mitigate this bottleneck, contention could be reduced by logging fewer details or fewer
events, or also by queueing log events and asynchronously writing them to a file in a
background thread.

94 Lock Contention Tracing and Analysis

Figure
4.9:O

ur
interactive

lock
contention

trace
visualization

tool

Trace Analysis 95

Fi
gu

re
4.

10
:V

is
ua

liz
at

io
n

of
a

bo
tt

le
ne

ck
in

th
e

av
ro

ra
be

nc
hm

ar
k

96 Lock Contention Tracing and Analysis

Figures 4.9 and 4.10 demonstrate that our tool enables users to see the methods and
call chains that caused contentions, unlike common approaches that show only which
methods and call chains were blocked. However, using the drill-down panel, users can
select other aspects and also choose any desired order of aspects for aggregation. This
allows users to extract a wealth of additional information, such as whether some threads
caused or suffered more contention than other threads, which call chains held the lock
when a specific call chain was blocked and for how long, or which contended locks were
used by a specific thread, method, or call chain.

4.4 Evaluation

We implemented our approach for OpenJDK 8u45 and evaluated it with synthetic work-
loads from a purpose-built test suite, as well as with real-world benchmarks.

4.4.1 Synthetic Workloads and Correctness

In order to verify that our approach accurately depicts the locking behavior of an appli-
cation, we devised a test suite that generates predictable synthetic locking workloads.
We built this test suite using the Java Microbenchmark Harness [JMH15]. In our tests,
we vary the number of threads and the number of call chains. Most importantly, we
vary how long the different threads or call chains hold a lock, which changes how much
contention each of them causes. We implemented those tests for intrinsic locks and
for java.util.concurrent locks and found that our generated traces match the expected
amounts of contention for each test. Moreover, we verified that the recorded call chains
are correct when the code throws exceptions, when the compiler inlines code, and when
the code uses wait and notify.

4.4.2 Benchmarking

We evaluated the runtime overhead, the amount of trace data and other aspects of our
approach with the DaCapo 9.12 benchmark suite [Blackburn06] and with the benchmarks
of the Scala Benchmarking Project 0.1.0 [Sewe11] according to the same methodology
which we first described in Section 3.4.1.

We performed all tests on a server-class system with two Intel Xeon E5-2670v2 processors
with ten cores each and with hyperthreading, and thus, 40 hardware threads. The system
has a total of 32 GB of memory and runs Oracle Linux 7. To get more reproducible results,

Evaluation 97

we disabled dynamic frequency scaling and turbo boost, and we used a fixed Java heap
size of 16 GB. With the exception of system services, no other processes were running
during our measurements.

We executed 45 successive iterations of each benchmark in a single HotSpot instance, and
discarded the data from the first 35 iterations to compensate for the duration of HotSpot’s
startup phase that we observed on this hardware. We reinitialized event tracing at the
start of each iteration. We further executed more than 10 rounds of each benchmark (with
45 iterations each) to ensure that the results are not biased by factors that are determined
during HotSpot’s startup phase.

4.4.3 Runtime Overhead

We measured the benchmark execution times with tracing when writing an uncom-
pressed output file, when writing a compressed output file, and when analyzing the
events online. The online analysis executes in parallel to the benchmark and aggregates
the contentions by lock object class, then by contending call chain, and then by the
lock owner’s call chain. We compare these execution times to those of an unmodified
OpenJDK 8u45 without tracing.

Figure 4.11 shows the median execution times of each benchmark, normalized to the
median execution times without tracing. The error bars indicate the first and third
quartiles. We categorized the benchmarks into multi-threaded and single-threaded
benchmarks. The G.Mean bars show the geometric means of each category, and their
error bars indicate a 50% confidence interval. For the multi-threaded benchmarks, the
mean overhead of generating a trace file is 7.8%, both with and without compression.
This shows that the overhead of the compression is negligible. With online analysis,
the mean overhead is 9.4%. For the single-threaded benchmarks, the mean overhead of
generating a compressed trace file is 0.8%, and without compression and with online
analysis, it is 1.2%. The overhead for single-threaded benchmarks is caused in part by
the trace buffer management, and in part because the JDK itself uses multi-threading
and synchronization, which we trace as well.

The overheads of the individual benchmarks correlate directly with the amount of
contention that they exhibit. The benchmarks with the highest overhead are actors and
xalan. actors is a concurrency benchmark with many fine-grained interactions between
threads, and tracing them results in an overhead of 22%. Online analysis increases
it to 42%, which is caused by the benchmark’s extensive use of java.util.concurrent
synchronization, for which the analysis is more complex and thus slower. The xalan
benchmark transforms XML documents. It distributes work to as many threads as there

98 Lock Contention Tracing and Analysis

95%

100%

105%

110%

115%

120%

125%

130%

135%

140%

145%

150%

155%

160%

165%

170%

175%

180%

185%

190%

G.Mean
actors
apparat
avrora
h2

jython
luindex
lusearch
pmd

scalac
scaladoc
scalatest sunflow
tmt

tomcat
tradebeans tradesoap xalan

G.Mean
factorie
fop

kiama
scalap
scalariform scalaxb
specs

U
ncom

pressed O
utput

Com
pressed O

utput
O

nline Analysis
N

o Tracing

single-threaded benchm
arks

m
ulti-threaded benchm

arks

Figure
4.11:O

verhead
oftracing

w
ith

uncom
pressed

output,w
ith

com
pressed

output,and
w

ith
online

analysis,relative
to

no
tracing

Evaluation 99

are hardware threads, but all threads access a single Hashtable instance. This causes a
substantial number of short contentions on our machine with 40 hardware threads, and
tracing them incurs an overhead of around 80%.

For some benchmarks such as scaladoc or tmt, tracing even slightly improves the bench-
mark’s performance. We attribute this to the delays that are introduced by recording
events and call chains. David et al. found that HotSpot’s locks saturate the memory
bus, and that delays in lock acquisition reduce memory bus contention, which can in-
crease performance [David14]. Also, after we write a contended enter event, HotSpot’s
implementation of intrinsic locks retries to spin-acquire the lock while it adds the thread
to the queue of blocked threads. The delay of writing the event before spinning can
increase its chances of being successful instead of suspending the thread. Additionally,
the activity of the background thread in which we write the trace file or analyze the trace
data influences the behavior of the garbage collector and of the thread scheduler, which
can also have minor effects on performance.

The runtime overhead of our tracing is well below 10% for all but three benchmarks.
We consider this to be feasible for monitoring a production system. On a quad-core
workstation, we measured even lower mean overheads below 3%.

4.4.4 Generated Amount of Data

The amount of generated trace data is also an important factor for production use.
Figure 4.12 shows the mean amount of generated trace data per second for the multi-
threaded benchmarks, with and without compression. Tracing xalan, actors and avrora
generates the most uncompressed trace data at 26.3 MB/s, 14.7 MB/s, and 8.6 MB/s,
respectively. For the other benchmarks, our approach generates less than 6 MB of
uncompressed data per second. For those benchmarks that do not exhibit significant
contention, we record less than 50 KB per second. Our on-the-fly compression typically
reduces the amount of data by between 60% and 70%, and decreases the data rate of xalan
to around 10 MB/s. Therefore, 60 minutes of trace data from a xalan-type application
require less than 40 GB of disk space and should be more than sufficient to analyze
performance problems. Nevertheless, the compression adds only negligible runtime
overhead.

We also inspected the memory footprint of the trace buffers, which have a mean capacity
of 16 KB. We found that we always use fewer than 500 buffers at any time, and hence
occupy less than 8 MB of memory with trace buffers.

100 Lock Contention Tracing and Analysis

0 B/s

5 MB/s

10 MB/s

15 MB/s

20 MB/s

25 MB/s

actors
apparat
avrora
h2 jython
luindex
lusearch
pm

d
scalac
scaladoc
scalatest
sunflow
tm

t
tom

cat
tradebeans
tradesoap
xalan

Uncompressed
Compressed

Figure 4.12: Trace data generated per second

4.4.5 Trace Composition

We further examined the composition of the generated traces. Figure 4.13 shows the
relative frequencies of individual events for the multi-threaded benchmarks. We grouped
all types of metadata events for brevity. The actors and apparat benchmarks are the only
ones that predominantly rely on java.util.concurrent synchronization, with tmt, tomcat,
tradebeans and tradesoap using it to some extent. As would be expected, there are typically
equal numbers of park begin events, park end events, and unpark events. Surprisingly,
we record only unpark events for some benchmarks, such as jython. This is because
these benchmarks call the Thread.interrupt method, which always implicitly performs an
unpark operation, regardless of whether the interrupted thread is currently parked.

With intrinsic locks, we record an equal number of contended enter and contended
entered events, but always a significantly higher number of contended exit events. The
difference is particularly large with benchmarks that acquire locks only very briefly, such
as luindex. The reason for that is non-fair locking, with which a thread can instantly
acquire an available lock even when there are queued threads, but when that thread
releases the lock, it must write a contended exit event. When one of the queued threads
has already been resumed and cannot acquire the lock, we do not write any additional
events in that thread. With park-based synchronization, we would record another park
begin event and park end event in that case, which is why the number of the three types
of park events is more balanced.

Evaluation 101

0%

25%

50%

75%

100%

actors
apparat
avrora
h2 jython
luindex
lusearch
pm

d
scalac
scaladoc
scalatest
sunflow
tm

t
tom

cat
tradebeans
tradesoap
xalan

C. Enter
C. Entered

C. Exit
Park Begin

Park End
Unpark

Metadata

0%

25%

50%

75%

100%

actors
apparat
avrora
h2 jython
luindex
lusearch
pm

d
scalac
scaladoc
scalatest
sunflow
tm

t
tom

cat
tradebeans
tradesoap
xalan

C. Enter
C. Entered

C. Exit
Park Begin

Park End
Unpark

Metadata

Figure 4.13: Frequency of trace events

For some benchmarks, metadata constitutes a relatively large portion of the trace data.
Most of these benchmarks exhibit low contention, so that the amount of metadata that
we record for that contention becomes relevant. In contrast to those benchmarks, scalatest
and tomcat exhibit significant contention, but they generate many Java classes at runtime
which use locks, so we record a large number of different call chains. avrora heavily uses
conditional waiting with intrinsic locks, and to collect correct call chains, we use forward
references to call chains and must record an additional metadata event to resolve these
forward references when a lock is finally released.

4.4.6 Call Chain Optimizations

In order to assess how much of our overhead comes from recording call chains, we also
measured the tracing overhead when not recording call chains. Figure 4.14 compares
the overheads of tracing with and without recording call chains for the multi-threaded
benchmarks when writing an uncompressed trace file. When not recording call chains,
the mean overhead decreases from 7.8% to 6.4%. Hence, our method of recording call
chains typically constitutes less than 20% of the tracing overhead. The overhead for
tracing xalan (which is cut off in the chart) is reduced from 79% to 73%.

We further examined the effectiveness of reusing call chains. In all benchmarks for which
we recorded more than 10,000 call chains per second, we were able to reuse more than
99.5% of all call chains from the set of encountered call chains (pmd is the sole exception

102 Lock Contention Tracing and Analysis

95%

100%

105%

110%

115%

120%

125%

130%

G.Mean
actors
apparat
avrora
h2 jython
luindex
lusearch
pm

d
scalac
scaladoc
scalatest
sunflow
tm

t
tom

cat
tradebeans
tradesoap
xalan

No call chains
Recording call chains

Figure 4.14: Overhead of recording call chains

at 89%). This reduces the amount of metadata in the trace and requires only light-weight
stack walks for the lookups in the set. With our technique of marking stack frames,
we further save examining between 10% and 50% of all stack frames for those same
benchmarks.

4.5 Related Work

Tallent et al. describe a sampling profiler which, like our approach, identifies which
threads and call chains block other threads and call chains by holding a contended
lock [Tallent10]. The profiler associates a counter with each lock and periodically takes
samples. When it samples a thread that is blocked on a lock, it increases that lock’s
counter. When a thread releases a lock, the thread inspects the lock’s counter, and if it is
non-zero, the thread “accepts the blame” and records its own call chain. The profiler was
implemented for C programs and is reported to have an overhead of 5%, but determines
only which threads and call chains blocked other threads. Our approach also records
which threads and call chains were blocked by a specific thread or call chain, which we
consider to have diagnostic value when reasoning about performance problems that
occur in a specific part of an application.

David et al. propose a profiler that observes critical section pressure (CSP), a per-lock
metric which correlates the time that threads spend waiting to acquire the lock to the

Related Work 103

time they spend executing and making progress [David14]. Phases when a lock exhibits
a high CSP indicate that the lock is a bottleneck. Therefore, the profiler continuously
computes the CSP of each lock over one-second periods and when a lock’s CSP exceeds
a threshold, the profiler records the identity of the lock and a call chain from one thread
that was blocked. The profiler was implemented in HotSpot and is reported to have a
worst-case overhead of 6%. We consider this approach complementary to ours because
the CSP of locks can be determined from the events that we record.

Patros et al. describe a VM-internal profiler for java.util.concurrent contention [Patros15].
The profiler assigns a data structure to each park blocker object to store various metrics,
such as how often threads were parked on that object. When the metrics of a blocker
object reach a threshold, the profiler records the object’s identity and the name and the
call chain of the next thread that parks. The profiler then begins capturing additional
metrics for that blocker object, including the average and total times that threads spend
parking on that object. The profiler was implemented in the IBM JVM and is claimed to
have negligible overhead, but captures only one thread and call chain per blocker object,
and also does not determine which threads or call chains cause contention.

Inoue and Nakatani describe a sampling profiler in a Java VM which injects special
instructions at lock acquisition sites [Inoue09]. It then uses hardware performance
counters to capture where the application acquires locks and where it blocks. The profiler
constructs call chains with a probabilistic method that uses the stack depth. It was
implemented in the IBM JVM and is claimed to have an overhead of less than 2.2%, but
it does not determine which threads and call chains block other threads and call chains.

Java Flight Recorder (JFR, [Hirt10]) is a commercial feature of the Oracle JDK that
efficiently records performance-related events in an application. It collects information
on blocked threads, their call chains, and the classes of lock objects. To keep the overhead
low, JFR records only long contentions (more than 10ms) by default. JFR also records
which thread most recently owned a lock before it could be acquired after a contention.
However, although more than one thread can own a lock over that time, it considers the
entire time that is spent blocking to be caused by that thread. Unlike our approach, JFR
does not record call chains for threads that block other threads. It also only provides
contention statistics for intrinsic locks and not for java.util.concurrent locks.

JVMTI also provides functionality to observe contention from intrinsic locks. Profilers
can register callbacks for contention events and can then examine the thread, the lock’s
associated object, and the call trace of the blocked thread. However, those events cannot
be used to determine the thread which holds the lock and therefore caused the contention,
or that thread’s call chain. JVMTI also does not provide events to observe contention
from java.util.concurrent locks.

104 Lock Contention Tracing and Analysis

Stolte et al. describe Polaris, a system for analyzing and visualizing data in multidimen-
sional databases [Stolte02]. Polaris provides a visual query language for generating a
range of graphical presentations, which enables users to rapidly explore the data. We
believe that such a system would complement our visualization tool, and we consider
implementing an export feature for our trace analyis results to a format that can be used
with such systems.

4.6 Summary and Future Work

In this chapter, we presented a novel approach for analyzing locking bottlenecks in
Java applications by efficiently tracing lock contention in the Java Virtual Machine. We
trace contention from both Java’s intrinsic locks and from java.util.concurrent locks. For
the analysis of the traces, we devised a versatile approach to aggregate and visualize
the recorded contentions. Unlike other methods, our approach shows not only where
contention occurs, but also where contention is caused. Nevertheless, our implemen-
tation in HotSpot incurs a low mean overhead of 7.8% on a server-class system with
40 hardware threads, so we consider it feasible to use our approach for monitoring
production systems.

Future work could focus on situations where our approach has higher overhead, in
particular when tracing a substantial number of short contentions. Such situations
could be addressed by supporting enabling and disabling tracing at runtime, which
would allow users to analyze lock contention on a production system on demand, while
causing little to no overhead when tracing is not active. Another possible direction
for future work is to focus further on the activities of lock owner threads while their
locks are contended, for example by taking periodic samples of their call chains. This
could provide users with more detailed information on where to apply optimizations
to hold locks for less time and reduce lock contention. Further research could also
attempt to identify connections between lock contentions, for example when a thread
holds a contended lock and is then blocked when trying to acquire another lock. Finally,
future work could focus on analyzing conditional waiting with both intrinsic locking
and java.util.concurrent mechanisms. This could reveal problems such as when threads
wait for each other to finish related tasks, but some tasks take significantly longer than
others, leaving some threads idle.

105

Chapter 5

Hardware Virtualization Steal Time
Accounting

This chapter characterizes the concept of steal time in hardware virtualization and describes
our approach for attributing such time to individual application threads without modifica-
tions to the hypervisor or operating system. We evaluate the accuracy and overhead of our
approach and compare it to related work.

The previous chapters presented approaches for revealing performance problems that
originate in the application’s implementation. However, performance problems can also
be caused by the environment in which an application is executed. Applications are
commonly deployed in virtualized environments, which enable the sharing of hardware
resources between applications. When the physical resources are insufficient for the
combined workload of all virtualized environments, some virtual processors must be
temporarily suspended in favor of others. This results in lost processing time that is
incorrectly accounted for and misrepresents the resource usage of an application.

At the outset of this thesis, we identified the correct accounting of virtualization effects as
a major challenge of APM software. In this chapter, we present an efficient and accurate
approach for how a performance analysis tool running in a virtualized environment can
estimate to what degree suspension affects individual application threads. Our approach
relies on the virtualization software to provide basic information on suspension. We
periodically sample this information as well as information on the resource usage of
threads and then account for the suspension. Our results show that we are able to
reliably separate true CPU usage and steal time at negligible performance overhead.
We published our approach in [Hofer15c]. Part of this work has been done by master’s
student Florian Hörschläger.

106 Hardware Virtualization Steal Time Accounting

5.1 Background

Hardware virtualization is commonly used to efficiently utilize and share hardware
resources. The resources of a physical machine (the host system) are shared between
several virtual machines (the guest systems). The creation and execution of guest systems
is managed by a hypervisor. Each guest system has its own operating system that runs in
an isolated execution domain, which provides reliability and security. Guest systems can
also be deployed and moved between sites with less effort than physical hardware.

Guest systems are assigned one or more virtual CPUs to execute on. The number of
virtual CPUs of all guest systems can exceed the number of physical CPUs of the host
system. In that case, the hypervisor cannot schedule all virtual CPUs on the available
physical CPUs and must temporarily suspend some of them. Time periods when a
virtual CPU is ready to execute, but is suspended, are referred to as steal time.

The amount of steal time is an important indicator for whether the physical resources of
the host system are insufficient for the virtual resources that are assigned to the guest
systems. However, the operating system in a guest system is often not aware of steal
time or does not incorporate it into resource usage accounting because the concept of
steal time does not exist with physical hardware. When a virtual CPU is suspended, the
steal time is considered active CPU time and counted toward the resource usage of the
currently executing thread. Therefore, it is difficult for a performance engineer to spot
whether a performance problem is caused by an actual bottleneck in the application or
by virtualization.

Hypervisors commonly provide an interface that allows the operating system or other
software in a guest system to detect that they are running under virtualization and to
interact with the hypervisor. Using such an interface can benefit the performance of
the guest system. A hypervisor interface typically also exposes steal time information.
However, since the hypervisor has no knowledge of the processes and threads running
within the guest system, it attributes steal time only to virtual CPUs. On this level, steal
time is only useful to performance analysis tools as an indicator for how the entire guest
system is affected by the suspension of virtual CPUs, but not how individual threads are
affected.

5.2 Steal Time Accounting

We present a sampling-based approach for how a performance analysis tool can estimate
to what degree steal time affects individual application threads in a guest system. Our

Steal Time Accounting 107

approach works from within the guest system and breaks down the steal time that the
hypervisor reports for the virtual CPUs to the monitored application threads. We base
our approach on the fact that those threads which use the most CPU time (or, to which the
most CPU time is attributed) are also the ones that are most affected by the suspension
of virtual CPUs. Hence, we divide the steal time among the threads in proportion to the
CPU time they have consumed.

When a guest system has multiple virtual CPUs, we would ideally determine which
threads were executed on each virtual CPU and divide that CPU’s steal time among
these threads. Unfortunately, common operating systems do not make such scheduling
information available. However, bare-metal hypervisors often employ a form of co-
scheduling in which all virtual CPUs of a guest system are scheduled to run on physical
CPUs at the same time, which avoids problems such as when one virtual CPU waits for
some other virtual CPU that is currently suspended by the hypervisor [VMWare13]. With
such scheduling, all virtual CPUs of a guest system are similarly affected by hypervisor
steal time. Other hypervisors simply rely on the host operating system’s scheduler,
and a fair scheduler should ensure that one ready virtual CPU of a guest system is not
suspended significantly longer than others. Therefore, we sum up the steal time from all
virtual CPUs of the guest system and divide it among all threads which consumed CPU
time.

The extent of hypervisor suspension in a guest system also depends on the load in the
other guest systems as well as on the host system itself and therefore varies over time. For
this reason, we use a sampling approach and periodically read or compute the following
values to account for the steal time since the last sample:

∆tsteal,total: The total steal time of all virtual CPUs since the previous sample.

∆tcpu,total: The total apparent CPU time (including steal time) that was consumed by all
virtual CPUs of the guest system since the previous sample.

∆tcpu(T): The apparent CPU time (including steal time) that was consumed by thread T
since the last sample.

The hypervisor and the guest operating system typically make steal times and CPU times
available as total times since the start of the guest system or since the start of the thread.
Computing the deltas between samples thus requires storing the values that were read
in the previous sample. We then use the deltas between samples to divide the total steal
time among the monitored threads using the following equation for each thread T:

∆tsteal(T) = ∆tsteal,total
∆tcpu(T)
∆tcpu,total

108 Hardware Virtualization Steal Time Accounting

VCPU
1

VCPU
2

VCPU
3 idle

t

t1 t2

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

suspendedT1

T2 T3suspended

Figure 5.1: Example of a schedule with three threads on three virtual CPUs

The steal time of a process can be computed in the same way if the operating system
provides a per-process CPU usage that includes all threads. Alternatively, the steal times
of all threads of the process can be computed individually and added up, but this can
lead to inaccuracies when threads exit between samples.

Figure 5.1 shows an example of how our approach works in a schedule with three
threads, T1, T2, and T3, that are executing on three virtual processors, VCPU1, VCPU2

and VCPU3. Initially, VCPU1 is executing thread T1, VCPU2 is executing T2, and VCPU3

is idle. At t1 = 12, we take a first sample. Because we do not have a previous sample,
we cannot compute deltas at this point and do not attribute steal time to the threads. At
t = 14, the hypervisor suspends both VCPU1 and VCPU2 until it resumes them at t = 19.
At t = 21, the operating system schedules out T2 on VCPU2 and executes T3. Finally, at
t2 = 22, we take a second sample and compute the deltas to the first sample as follows:

∆tcpu(T1) = 10 ∆tcpu(T2) = 9 ∆tcpu(T3) = 1

∆tcpu,total = 10 + 9 + 1 = 20

∆tsteal,total = 5 + 5 = 10

The time during which the virtual CPUs were suspended is attributed as CPU time to
the scheduled threads because the operating system does not consider steal time when it
does CPU time accounting. Note that VCPU3 was idle, so although it was technically
also suspended, the hypervisor did not assign any steal time to it. Our approach now
computes the following steal times for the individual threads:

∆tsteal(T1) = 10 10
20 = 5

∆tsteal(T2) = 10 9
20 = 4.5

∆tsteal(T3) = 10 1
20 = 0.5

Implementation 109

Therefore, T1 is assigned the correct amount of steal time. Although T3 was not affected
by suspension, it is assigned a small portion of the steal time because it was scheduled
briefly at the end of the sampling period. For the same reason, T2 is assigned slightly less
than the actual amount of suffered steal time. However, we expect that such deviations
become insignificant with a sufficient number of samples.

5.3 Implementation

We implemented our approach in a JVMTI agent that computes the steal time of all
threads of a Java application. The agent is designed to run in a Linux guest system
with the Kernel-based Virtual Machine (KVM, [Kivity07]) or with Xen [Barham03] as a
hypervisor. Linux has built-in support for detecting when it is running under KVM or
Xen virtualization and for using their hypervisor interfaces.

Linux exposes information about the resource usage of the system, its processes, and its
threads via the procfs pseudo-filesystem, which is typically mapped to /proc. The /proc/stat
file provides the resource usage of the entire system, which is broken down into CPU
time spent executing application code, CPU time spent in the operating system (mostly
on behalf of an application), steal time, and idle time. These times are given in clock ticks
since the start of the operating system. Unlike for threads, the system-wide CPU times
exclude the steal time. We therefore add the provided steal time to the system-wide CPU
times to get tcpu,total , and use the steal time as tsteal,total . We then use the stored values
from the last sample to compute ∆tcpu,total and ∆tsteal,total .

The CPU time of an individual process is available in its /proc/[pid]/stat file, where [pid] is
the numeric process identifier. The CPU time of a specific thread of a process is available
in /proc/[pid]/task/[tid], where [tid] is the thread identifier. The times are given in clock
ticks since the start of the thread and are split up into “regular” user-space ticks and
system ticks. System ticks denote time spent in the operating system on behalf of the
application. In our implementation, we do not distinguish between user-space ticks and
system ticks. Whenever we take a sample, we take their sum and compare it to the stored
sum from the last sample to get ∆tcpu,total(x).

Our JVMTI agent is loaded during the startup of the Java VM. During initialization, we
create data structures to store the tick counts from /proc that are required to compute the
deltas, and to store the steal time that is attributed to each thread. Our agent registers for
JVMTI events so that it is notified when application threads start and end. This enables
us to create a record for a thread when it starts and to stop monitoring a thread (but keep
its record) when it ends.

110 Hardware Virtualization Steal Time Accounting

When the application is launched, our agent starts a separate thread with a sampling
loop, in which we periodically retrieve the system-wide tick counts as well as the tick
counts for all existing application threads. We then compute the deltas using the stored
values from our records, attribute the new steal time to the threads, and update our
records. At the end of an iteration, the sampling loop pauses for the sampling interval
before it takes another sample and attributes the new steal time.

5.4 Evaluation

In order to back our claims that our approach is efficient and accurate, we evaluated our
agent’s accuracy and its overhead. We determined our agent’s accuracy by subtracting
the steal time that was attributed to a thread from the thread’s reported CPU time, and
by comparing this corrected CPU time to the thread’s true CPU time. This comparison
requires knowing the true CPU time that a thread consumes, which is ideally achieved
by using a workload in which each thread consumes a predictable amount of CPU time.
However, the benchmarks of the DaCapo and Scala suites that we used earlier in this
thesis generally do not fit this criterion well. The benchmarks commonly use thread
pools to divide work between threads, so the threads consume varying amounts of CPU
time in different iterations. Moreover, the same threads are often not consistently named
over multiple iterations and are therefore difficult to match to each other. Because of
these reasons, we devised our own benchmark with a synthetic, predictable workload.

Our benchmark consists of six threads with different execution patterns. Figure 5.2
illustrates the patterns that each thread Ti executes, with dashed lines denoting periods
of waiting, and with solid bars indicating periods of CPU usage. T1 to T4 each alternate
between periods of CPU usage and periods of waiting. T5 continuously consumes CPU
time. T6 alternates between waiting and consuming CPU time for random durations
up to 100ms. T7 to T36 are 30 additional threads that are always idle, but must still be
considered in steal time accounting. Tall shows the CPU usage of all threads if they
executed exactly in parallel, with darker segments indicating periods of higher CPU
usage. It demonstrates that while each thread’s CPU usage follows a pattern, the entire
benchmark’s CPU usage changes rather irregularly. We designed our benchmark so that
each iteration takes 10 seconds on our hardware (when it is otherwise idle), so that all
threads run in parallel during that time, and so that each thread consumes nearly the
same fixed amount of CPU time per iteration.

For our evaluation, we set up KVM virtualization under openSUSE Linux 13.2 on a
computer with a quad-core Intel Core i7-4790K processor with 16 GB of memory. To get
more stable results, we disabled the hyperthreading, turbo boost and dynamic frequency

Evaluation 111

t
100ms 1000ms

T
4

T
3

T
1

T
2

T
5

T
6

T
all

T
7..36

0ms

Figure 5.2: Patterns executed in the threads of our synthetic benchmark

scaling features. With the exception of essential system services, no other processes were
running during our measurements. On this host system, we created two identical guest
systems, each running our synthetic benchmark. Each guest system has four virtual
CPUs, 1 GB of memory and openSUSE Linux 13.1 and Oracle JDK 8u20 installed on it.

We performed the measurements that we present in the following sections according
to the methodology that we first described in Section 3.4.1. For each measurement, we
executed 10 rounds of our benchmark. Each round consists of 30 successive iterations
of our benchmark in a single Java VM instance, of which we discarded the data from
the first 20 iterations to compensate for the VM’s startup phase. For each iteration, our
agent recorded the steal time that it attributed to each thread, and the CPU time that the
operating system reported for each thread.

5.4.1 Accuracy

In order to determine our agent’s accuracy, we first needed to determine the true CPU
usage of each thread of our benchmark. We executed our benchmark in the first guest
system while the second guest system remained shut down. In this otherwise idle
environment, the first guest system was not affected by steal time. For each iteration of
our benchmark, we recorded the CPU times that were consumed by each thread.

112 Hardware Virtualization Steal Time Accounting

We then measured the impact of steal time on the CPU time reported by the operating
system, and how accurately our agent attributes this steal time to the threads. We
executed our benchmarks again in the first guest system, with our agent taking samples
and accounting for the steal time. For these measurements, we started our benchmark
also in the second guest system. Therefore, both guest systems competed for the physical
CPUs of the host system, and the hypervisor was forced to suspend virtual CPUs.
Because the CPU usage of our benchmark in both guest systems continuously changes,
their different threads are subjected to changing amounts of steal time. We performed
measurements using sampling intervals of 1 second, 100 milliseconds and 10 milliseconds
for our agent.

For each of the threads T1 to T6, Figure 5.3 shows the thread’s median CPU time as
reported by the operating system, the thread’s median corrected CPU time after subtract-
ing the steal time that our agent attributed to it, and the thread’s median expected CPU
time that we determined in an idle environment. The CPU times are normalized to each
thread’s expected CPU time. The error bars indicate the first and third quartiles. The
idle threads T7 to T36 are omitted in the diagram, and, as expected, were never attributed
any CPU time or steal time. The error bars of the expected CPU times are insignificant
and demonstrate that the CPU time of each thread is very stable and predictable across
iterations. Overall, the CPU times reported by the operating system exceed the expected
CPU times by typically more than 60% and up to 100%. In contrast to that, the corrected
steal times are always within 20% of the expected CPU time, and frequently within 10%
or even 5% of it. With T1, T2, and T6, which consume CPU time in shorter bursts, our
agent slightly underestimates the impact of steal time on them. For T3, T4, and T5, which
consume more CPU time at once, our agent tends to overestimate the amount of steal
time. Using shorter sampling intervals does not increase the accuracy of the results in
general. In fact, shorter sampling periods lead to unanticipated increases or decreases of
the CPU time that the guest operating system reports for each thread. We consider this
to be an effect of our agent’s sampling thread on the guest operating system’s scheduler,
and possibly even on the hypervisor’s virtual CPU scheduler.

5.4.2 Runtime Overhead

In order to determine the overhead of our agent, we compare our benchmark’s wall-clock
execution time when sampling at different intervals to its wall-clock execution time
without our agent. We do so both with and without a second guest system that also
executes our benchmark and therefore causes steal time by competing for physical CPU
time. In either scenario, our agent must always retrieve the CPU times of all benchmark
threads from the guest operating system and keep them in its data structures.

Related Work 113

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%
220%

T1 T2 T3 T4 T5 T6

Reported, 1s intervals
Reported, 100ms intervals
Reported, 10ms intervals

Corrected, 1s intervals
Corrected, 100ms intervals
Corrected, 10ms intervals

Expected

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%
220%

T1 T2 T3 T4 T5 T6

Reported, 1s intervals
Reported, 100ms intervals
Reported, 10ms intervals

Corrected, 1s intervals
Corrected, 100ms intervals
Corrected, 10ms intervals

Expected

Figure 5.3: CPU times of threads with and without accounting for steal time at different
sampling intervals, normalized to each thread’s expected CPU time

Figure 5.4 shows the median wall-clock execution times for both scenarios, normalized
to the median wall-clock execution time without an agent in each scenario. The error
bars indicate the first and third quartiles. When generating load in the second guest
system and with 1-second intervals, we measured an unanticipated speedup by around
4%, which we suspect to be the result of interference of our agent with scheduling. With
100 ms and 10 ms intervals, we measured execution times that were 2% and 8% longer
(respectively) than without an agent. However, in an otherwise idle environment, our
agent only has 1% overhead with 10 millisecond sampling intervals, and negligible
overheads at longer sampling intervals. Therefore, we consider the overhead of our
agent to be low in general, but to be dependent on the workload and on the sampling
interval.

5.5 Related Work

Timing issues in guest systems have been investigated before. Lampe et al. mea-
sured the impact of inaccurate timing in publicly available cloud computing ser-
vices [Lampe12]. Johnson et al. describe extensions to the Performance API (PAPI)
project which provide more accurate timers and shared resource usage statistics under
virtualization [Johnson12]. However, these extensions only provide system-wide steal

114 Hardware Virtualization Steal Time Accounting

94%

96%

98%

100%

102%

104%

106%

108%

110%

Load in other guest system Idle environment

1s intervals 100ms intervals 10ms intervals No agent

Figure 5.4: Overhead of our steal time accounting agent at different sampling intervals

time information, and Johnson et al. emphasize the need for per-process steal time
accounting.

Chen et al. describe a modification to the Xen hypervisor that delivers hypervisor
scheduling events to a modified guest operating system which then uses them to cor-
rectly attribute steal time to processes and threads [Chen10]. Similarly, Yamamoto and
Nakashima propose a host-level sampling profiler that provides steal time samples to
a guest-level profiler, which can then attribute those samples to processes, threads and
functions [Yamamoto16]. Holzheu proposed a patch for the Linux kernel that attributes
per-CPU steal time them to the scheduled processes and threads [Holzheu10]. All three
approaches require modifications to the operating system or to the hypervisor, while our
approach only requires access to system-wide steal time information.

Binder et al. point out that CPU time in seconds is difficult to compare between sys-
tems and that it is not an appropriate metric in distributed, heterogeneous environ-
ments [Binder06b]. They propose an approach for Java which uses instrumentation to
count the executed bytecode instructions as a portable CPU consumption metric. Further
work by Hulaas and Binder focused on optimizations that reduce the runtime overhead
of this approach [Hulaas08]. The approach is unaffected by hypervisor suspension, but
with 30-50% runtime overhead, it has a higher impact on performance than our approach.

Summary and Future Work 115

5.6 Summary and Future Work

In this chapter, we described a novel approach for determining to what degree application
threads in a guest system are affected when the hypervisor suspends virtual CPUs. Our
approach does not require any modifications to the hypervisor or to the operating system.
We implemented our approach for Java applications in a Linux guest system with KVM
or Xen as the hypervisor. An evaluation with a synthetic workload demonstrated that
our approach accurately attributes the system-wide steal time to the application threads
at low overhead, and that the attributed steal time can be used to correctly estimate a
thread’s true execution time on a physical CPU.

Future work could focus on attributing steal time not only to threads, but also to trans-
actions that execute within a thread, such as individual web requests. Measuring the
duration and resource usage of transactions is a central feature of APM software, and
suspension can considerably distort these measurements because of the typically short
execution time of a transaction. Further research could also investigate the use of schedul-
ing traces from the Linux perf subsystem to try to attribute steal time more accurately,
and to compare the results with those from our approach.

117

Chapter 6

Summary

This chapter summarizes and concludes this thesis.

In this thesis, we claimed that profiling mechanisms that are integrated into a Java VM
can collect performance data more efficiently and more accurately than external profiling
mechanisms. We proposed multiple approaches for profiling within a Java VM and
implemented those approaches in the production-quality, high-performance HotSpot VM
to evaluate them.

First, we proposed novel approaches for sampling-based method profiling. We de-
scribed Stack Fragment Sampling, an approach which integrates with the operating system
to sample threads only while they are running and to interrupt them only briefly to
copy stack fragments. Our approach asynchronously decodes these fragments to stack
traces and uses heuristics for stacks with native code and VM-internal code. In our
evaluation, we demonstrated that the performance impact of Stack Fragment Sampling
is significantly lower than that of comparable techniques, with a mean overhead of 2.1%
at 1 ms sampling intervals, and that it consistently generates an accurate picture of the
application’s behavior.

We then described Partial Safepoints, Self-Sampling and Incremental Stack Tracing. Partial
safepoints only pause a subset of the application threads for sampling and can be used
to target those threads which are currently executing. With self-sampling, threads take
their own stack traces in parallel. Incremental stack tracing constructs stack traces lazily
instead of walking the entire stack for each sample. These three techniques form an
alternative to Stack Fragment Sampling that is independent of the operating system and
hardware. Our evaluation demonstrated that the approach significantly reduces the
sampling overhead and pause times compared to profiling with JVMTI, while providing
similar accuracy. Incremental stack tracing with partial safepoints and self-sampling

118 Summary

incurs a mean overhead of 6.7% at 1 ms sampling intervals, and 2.1% at 10 ms sampling
intervals.

Second, we proposed a novel approach for profiling lock contention. Our approach
efficiently records events inside the Java VM and traces lock contention from both
Java’s intrinsic locks and from java.util.concurrent locks. For the analysis of the traces,
we devised a versatile technique to aggregate and visualize the recorded contentions.
Unlike other methods, our approach shows not only where contention occurs, but also
where contention is caused. In our evaluation, we measured overheads of less than 10%
for almost all benchmarks, which we consider adequate for continuously monitoring
production systems.

Our evaluations show that our approaches for sampling-based method profiling and
for profiling lock contention incur low overheads while collecting accurate data. This
supports our claims that integrating profiling mechanisms into a Java VM is an effec-
tive strategy to achieve both efficiency and accuracy. Although we implemented our
approaches in HotSpot, we consider them to be general enough to be adapted for other
virtual machines, runtime environments and languages.

Finally, we proposed a new approach for hardware virtualization steal time accounting.
Our sampling-based approach only uses commonly available performance counters.
It can be implemented outside of the Java virtual machine and does not require any
modifications to the hypervisor or to the operating system. Our evaluation demonstrated
that the approach accurately attributes steal time to threads at negligible overhead. We
believe that the general approach is also applicable to other hypervisors and guest
operating systems.

List of Figures 119

List of Figures

2.1 Architecture of HotSpot . 12

3.1 Calling contexts and calling context tree (CCT) 17

3.2 NetBeans profiler displaying a CCT . 18

3.3 Sampling threads in a safepoint . 20

3.4 Stack Fragment Sampling components and their interaction 24

3.5 Example of decoding a stack fragment in native code 30

3.6 Decoded stack trace for the example in Figure 3.5 32

3.7 Example of processing samples of a thread with a period of waiting 33

3.8 Sampling threads in a partial safepoint . 35

3.9 Self-sampling threads in a partial safepoint 37

3.10 Samples with separate, complete stack traces 38

3.11 Stack traces in a tree with shared frame information 38

3.12 Capturing a frame (a) when taking a new sample, and (b) when intercept-
ing a method return . 40

3.13 Incremental construction of stack traces . 42

3.14 The benchmarks of the DaCapo 9.12 “Bach” Benchmark Suite 46

3.15 The benchmarks of the Scala Benchmarking Project 0.1.0-20120216 47

3.16 Formal definition of the degree of overlap between CCT1 and CCT2 49

3.17 Formal definition of the hot-edge coverage of CCT2 by CCT1 50

3.18 Percentage of resolved and complete stack traces when sampling stack
fragments of different size . 52

3.19 Percentage of lost samples using Stack Fragment Sampling with different
buffer sizes, with and without sampling waiting periods 53

3.20 Percentage of decodable stack fragments by used stack walk heuristics . . 55

3.21 Runtime overhead of Stack Fragment Sampling (SFS) with different sam-
pling periods, mean overheads also shown for conventional sampling
with JVMTI and with AsyncGetCallTrace (AGCT) 56

3.22 Overlap of individual CCTs with the average CCT of profilers using
JVMTI, AGCT and SFS . 58

120 List of Figures

3.23 Hot-edge coverage of individual CCTs by the average CCT of profilers
using JVMTI, AGCT and SFS . 58

3.24 Overlap of average CCTs of profilers using JVMTI, AGCT and SFS 60
3.25 Hot-edge coverage of average CCTs of profilers using JVMTI, AGCT, SFS 60
3.26 Runtime overhead of conventional sampling with JVMTI, Self-sampling

with Partial Safepoints (SPS), and Incremental Self-sampling with Partial
Safepoints (ISPS), with the benchmarks of the DaCapo suite (top) and of
the Scala Benchmarking Project (bottom) 63

3.27 Latencies of sampling with JVMTI, SPS and ISPS 64
3.28 Overlap of individual CCTs with the average CCT of profilers using

JVMTI, SPS and ISPS . 65
3.29 Hot-edge coverage of individual CCTs by the average CCT of profilers

using JVMTI, SPS and ISPS . 65
3.30 Overlap of average CCTs of profilers using JVMTI, SPS and ISPS 67
3.31 Hot-edge coverage of average CCTs of profilers using JVMTI, SPS, ISPS . 67

4.1 Blocking queue with Java intrinsic locks . 76
4.2 Blocking queue with ReentrantLock from java.util.concurrent 78
4.3 Writing and processing trace events . 79
4.4 Events in three contending threads . 81
4.5 Methods of the LockSupport class . 83
4.6 Park/unpark events in contending threads 85
4.7 Processing events to identify contentions 90
4.8 Aggregating events . 91
4.9 Our interactive lock contention trace visualization tool 94
4.10 Visualization of a bottleneck in the avrora benchmark 95
4.11 Overhead of tracing with uncompressed output, with compressed output,

and with online analysis, relative to no tracing 98
4.12 Trace data generated per second . 100
4.13 Frequency of trace events . 101
4.14 Overhead of recording call chains . 102

5.1 Example of a schedule with three threads on three virtual CPUs 108
5.2 Patterns executed in the threads of our synthetic benchmark 111
5.3 CPU times of threads with and without accounting for steal time at differ-

ent sampling intervals, normalized to each thread’s expected CPU time . . 113
5.4 Overhead of our steal time accounting agent at different sampling intervals114

121

Bibliography

[Adamoli10] Andrea Adamoli and Matthias Hauswirth. Trevis: A Context Tree Visual-
ization & Analysis Framework and Its Use for Classifying Performance Failure
Reports. In Proceedings of the 5th International Symposium on Software
Visualization, SOFTVIS ’10, pages 73–82. ACM, 2010.

[Ammons97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting Hardware
Performance Counters with Flow and Context Sensitive Profiling. In Pro-
ceedings of the ACM SIGPLAN 1997 Conference on Programming Language
Design and Implementation, PLDI ’97, pages 85–96. ACM, 1997.

[Angerer15] Florian Angerer, Andreas Grimmer, Herbert Prähofer, and Paul Grün-
bacher. Configuration-Aware Change Impact Analysis (T). In Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’15, pages 385–395. IEEE, 2015.

[Ansaloni13] Danilo Ansaloni, Stephen Kell, Yudi Zheng, Lubomír Bulej, Walter
Binder, and Petr Tůma. Enabling Modularity and Re-use in Dynamic
Program Analysis Tools for the Java Virtual Machine. In Proceedings of the
27th European Conference on Object-Oriented Programming, ECOOP ’13,
pages 352–377. Springer, 2013.

[Arnold05] Matthew Arnold and David Grove. Collecting and Exploiting High-
Accuracy Call Graph Profiles in Virtual Machines. In Proceedings of the
International Symposium on Code Generation and Optimization, CGO ’05,
pages 51–62. IEEE, 2005.

[Bacon98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano.
Thin Locks: Featherweight Synchronization for Java. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation, PLDI ’98, pages 258–268. ACM, 1998.

[Barham03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and

122 Bibliography

the Art of Virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles, SOSP ’03, pages 164–177. ACM, 2003.

[Binder06a] Walter Binder. Portable and Accurate Sampling Profiling for Java. Software:
Practice and Experience, 36(6):615–650, 2006.

[Binder06b] Walter Binder and Jarle Hulaas. Using Bytecode Instruction Counting As
Portable CPU Consumption Metric. Electronic Notes in Theoretical Computer
Science, 153(2):57–77, 2006.

[Blackburn06] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo Benchmarks: Java Benchmarking Development and
Analysis. In Proceedings of the 21st ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA ’06,
pages 169–190. ACM, 2006.

[Bond07] Michael D. Bond and Kathryn S. McKinley. Probabilistic Calling Context.
In Proceedings of the 22nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, OOPSLA ’07, pages 97–112. ACM,
2007.

[Chen10] Huacai Chen, Hai Jin, and Kan Hu. XenHVMAcct: Accurate CPU Time
Accounting for Hardware-Assisted Virtual Machine. In Proceedings of the
2010 International Conference on Parallel and Distributed Computing, Appli-
cations and Technologies, PDCAT ’10, pages 191–198. IEEE, 2010.

[Citron06] Daniel Citron, Adham Hurani, and Alaa Gnadrey. The Harmonic or
Geometric Mean: Does It Really Matter? ACM SIGARCH Computer Archi-
tecture News, 34(4):18–25, 2006.

[David14] Florian David, Gael Thomas, Julia Lawall, and Gilles Muller. Continu-
ously Measuring Critical Section Pressure with the Free-lunch Profiler. In
Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, pages 291–
307. ACM, 2014.

[D’Elia11] Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. Mining Hot
Calling Contexts in Small Space. In Proceedings of the 32nd ACM SIGPLAN

Bibliography 123

Conference on Programming Language Design and Implementation, PLDI ’11,
pages 516–527. ACM, 2011.

[Detlefs04] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis.
Garbage-first Garbage Collection. In Proceedings of the 4th International
Symposium on Memory Management, ISMM ’04, pages 37–48. ACM, 2004.

[Feller98] Peter T Feller. Value Profiling for Instructions and Memory Locations. Mas-
ter’s thesis, University of California, San Diego, 1998.

[Fleming86] Philip J Fleming and John J Wallace. How Not to Lie with Statistics: The
Correct Way to Summarize Benchmark Results. Communications of the ACM,
29(3):218–221, 1986.

[Gnedt14] David Gnedt. Fast Profiling in the HotSpot Java VM with Incremental
Stack Tracing and Partial Safepoints. Bachelor’s thesis, Johannes Kepler
University Linz, 2014.

[Gnedt16] David Gnedt. Runtime Analysis of High-Level Java Synchronization Mech-
anisms on the Virtual Machine Level. Master’s thesis, Johannes Kepler
University Linz, 2016.

[Goetz06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,
and Doug Lea. Java Concurrency in Practice. Pearson Education, 2006.

[Gosling15] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The
Java R⃝Language Specification: Java SE 8 Edition. https://docs.oracle.

com/javase/specs/jls/se8/jls8.pdf, 2015.

[Graal15] Oracle. Graal Project. http://openjdk.java.net/projects/graal/,
2015.

[Griesemer99] Robert Griesemer. Generation of Virtual Machine Code at Startup. In
OOPSLA ’99 Workshop on Simplicity, Performance, and Portability in Virtual
Machine Design. 1999.

[Grimmer15] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger,
and Hanspeter Mössenböck. High-Performance Cross-Language Interoper-
ability in a Multi-Language Runtime. In Proceedings of the 11th Symposium
on Dynamic Languages, DLS ’15, pages 78–90. ACM, 2015.

[Han12] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. Per-
formance Debugging in the Large via Mining Millions of Stack Traces. In
Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 145–155. IEEE, 2012.

https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://openjdk.java.net/projects/graal/

124 Bibliography

[Hirt10] Marcus Hirt and Marcus Lagergren. Oracle JRockit: The Definitive Guide.
Packt Publishing Ltd, 2010.

[Hirt13] Marcus Hirt. Low Overhead Method Profiling with Java Mission Control.
http://hirt.se/blog/?p=364, 2013. In response to a comment, Hirt
states: The method profiling in Java Flight Recorder is based upon AsyncGet-
CallTrace, but improved to meet the needs for low overhead profiling in produc-
tion. This work has been of benefit for the old unsupported AsyncGetCallTrace
too, as some of the work to harden the Flight Recorder profiler has gone back
into the old AsyncGetCallTrace.

[Hofer14a] Peter Hofer and Hanspeter Mössenböck. Efficient and Accurate Stack
Trace Sampling in the Java Hotspot Virtual Machine. In Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering, ICPE ’14,
pages 277–280. ACM, 2014.

[Hofer14b] Peter Hofer and Hanspeter Mössenböck. Fast Java Profiling with
Scheduling-aware Stack Fragment Sampling and Asynchronous Analysis.
In Proceedings of the 2014 International Conference on Principles and Prac-
tices of Programming on the Java Platform: Virtual Machines, Languages, and
Tools, PPPJ ’14, pages 145–156. ACM, 2014.

[Hofer15a] Peter Hofer, David Gnedt, and Hanspeter Mössenböck. Efficient Dynamic
Analysis of the Synchronization Performance of Java Applications. In Proceed-
ings of the 13th International Workshop on Dynamic Analysis, WODA ’15,
pages 14–18. ACM, 2015.

[Hofer15b] Peter Hofer, David Gnedt, and Hanspeter Mössenböck. Lightweight
Java Profiling with Partial Safepoints and Incremental Stack Tracing. In
Proceedings of the 6th ACM/SPEC International Conference on Performance
Engineering, ICPE ’15, pages 75–86. ACM, 2015.

[Hofer15c] Peter Hofer, Florian Hörschläger, and Hanspeter Mössenböck. Sampling-
based Steal Time Accounting Under Hardware Virtualization. In Proceedings
of the 6th ACM/SPEC International Conference on Performance Engineering,
ICPE ’15, pages 87–90. ACM, 2015.

[Hofer16] Peter Hofer, David Gnedt, Andreas Schörgenhumer, and Hanspeter
Mössenböck. Efficient Tracing and Versatile Analysis of Lock Contention
in Java Applications on the Virtual Machine Level. In Proceedings of the
7th ACM/SPEC on International Conference on Performance Engineering,
ICPE ’16, pages 263–274. ACM, 2016.

http://hirt.se/blog/?p=364

Bibliography 125

[Holzheu10] Michael Holzheu. [RFC][PATCH v2 4/7] taskstats: Add per task steal time
accounting. https://lkml.org/lkml/2010/11/11/271, 2010.

[HotSpot15] Oracle. Java HotSpot Virtual Machine. http://openjdk.java.net/

groups/hotspot/, 2015.

[Huang13] Jipeng Huang and Michael D. Bond. Efficient Context Sensitivity for
Dynamic Analyses via Calling Context Uptrees and Customized Memory
Management. In Proceedings of the 2013 ACM SIGPLAN International Con-
ference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’13, pages 53–72. ACM, 2013.

[Hulaas08] Jarle Hulaas and Walter Binder. Program Transformations for Light-weight
CPU Accounting and Control in the Java Virtual Machine. Higher-Order and
Symbolic Computation, 21(1-2):119–146, June 2008.

[Inoue09] Hiroshi Inoue and Toshio Nakatani. How a Java VM Can Get More
from a Hardware Performance Monitor. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 137–154. ACM, 2009.

[JavaNio15] Oracle. java.nio package in Java SE 8. https://docs.oracle.com/javase/
8/docs/api/java/nio/package-summary.html, 2015.

[JMH15] Oracle. OpenJDK Code Tools: Java Microbench Harness. http://openjdk.
java.net/projects/code-tools/jmh/, 2015.

[JMX15] Oracle. The JavaTM Management Extensions. http://openjdk.java.net/
groups/jmx/, 2015.

[JNI15] Oracle. Java Native Interface 6.0 Specification. http://docs.oracle.com/
javase/8/docs/technotes/guides/jni/, 2015.

[Johnson12] Matthew Johnson, Heike McCraw, Shirley Moore, Phil Mucci, John
Nelson, Dan Terpstra, Vince Weaver, and Tushar Mohan. PAPI-V: Perfor-
mance Monitoring for Virtual Machines. In Proceedings of the 2012 41st In-
ternational Conference on Parallel Processing Workshops, ICPPW ’12, pages
194–199. IEEE, 2012.

[Juneau10] Josh Juneau, Jim Baker, Frank Wierzbicki, Leo Soto Muoz, Victor Ng,
Alex Ng, and Donna L Baker. The Definitive Guide to Jython: Python for
the Java Platform. Apress, 2010.

[JVMTI13] Oracle. JVMTMTool Interface Version 1.2.3. http://docs.oracle.com/

javase/8/docs/platform/jvmti/jvmti.html, 2013.

https://lkml.org/lkml/2010/11/11/271
http://openjdk.java.net/groups/hotspot/
http://openjdk.java.net/groups/hotspot/
https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/nio/package-summary.html
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/groups/jmx/
http://openjdk.java.net/groups/jmx/
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://docs.oracle.com/javase/8/docs/technotes/guides/jni/
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

126 Bibliography

[Kivity07] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
KVM: the Linux Virtual Machine Monitor. In Proceedings of the Linux
Symposium 2007, volume 1, pages 225–230. 2007.

[Kotzmann05] Thomas Kotzmann and Hanspeter Mössenböck. Escape Analysis in the
Context of Dynamic Compilation and Deoptimization. In Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution Environments,
VEE ’05, pages 111–120. ACM, 2005.

[Kotzmann08] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,
Thomas Rodriguez, Kenneth Russell, and David Cox. Design of the
Java HotSpotTM Client Compiler for Java 6. ACM Transactions on Architec-
ture and Code Optimization, 5(1):7:1–7:32, 2008.

[Lampe12] Ulrich Lampe, André Miede, Nils Richerzhagen, Dieter Schuller, and
Ralf Steinmetz. The Virtual Margin of Error: On the Limits of Virtual
Machines in Scientific Research. In Proceedings of the 2nd International
Conference on Cloud Computing and Services Science, CLOSER ’12. 2012.

[Lea05] Doug Lea. The java.util.concurrent Synchronizer Framework. Science of
Computer Programming, 58(3):293–309, 2005.

[Lengauer14] Philipp Lengauer and Hanspeter Mössenböck. The Taming of the Shrew:
Increasing Performance by Automatic Parameter Tuning for Java Garbage
Collectors. In Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ICPE ’14, pages 111–122. ACM, 2014.

[Lengauer15] Philipp Lengauer, Verena Bitto, and Hanspeter Mössenböck. Accurate
and Efficient Object Tracing for Java Applications. In Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, ICPE ’15,
pages 51–62. ACM, 2015.

[Lengauer16] Philipp Lengauer, Verena Bitto, Stefan Fitzek, Markus Weninger, and
Hanspeter Mössenböck. Efficient Memory Traces with Full Pointer Infor-
mation. In Proceedings of the 13th International Conference on Principles and
Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, PPPJ ’16. ACM, 2016.

[Lettner15] Daniela Lettner, Klaus Eder, Paul Grünbacher, and Herbert Prähofer.
Feature Modeling of Two Large-Scale Industrial Software Systems: Experiences
and Lessons Learned. In 2015 ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems, MODELS ’15, pages
386–395. IEEE, 2015.

Bibliography 127

[Lindholm15] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The
Java R⃝Virtual Machine Specification: Java SE 8 Edition. https://docs.

oracle.com/javase/specs/jvms/se8/jvms8.pdf, 2015.

[Linux15] Linus Torvalds et al. Linux. https://kernel.org/, 2015.

[Maplesden15] David Maplesden, Ewan Tempero, John Hosking, and John C. Grundy.
Subsuming Methods: Finding New Optimisation Opportunities in Object-
Oriented Software. In Proceedings of the 6th ACM/SPEC International Con-
ference on Performance Engineering, ICPE ’15, pages 175–186. ACM, 2015.

[Marek12] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter
Binder, and Zhengwei Qi. DiSL: A Domain-specific Language for Bytecode
Instrumentation. In Proceedings of the 11th Annual International Conference
on Aspect-oriented Software Development, AOSD ’12, pages 239–250. ACM,
2012.

[Marek13] Lukáš Marek, Stephen Kell, Yudi Zheng, Lubomír Bulej, Walter Binder,
Petr Tůma, Danilo Ansaloni, Aibek Sarimbekov, and Andreas Sewe.
ShadowVM: Robust and Comprehensive Dynamic Program Analysis for the
Java Platform. In Proceedings of the 12th International Conference on Gen-
erative Programming: Concepts & Experiences, GPCE ’13, pages 105–114.
ACM, 2013.

[Moret09] Philippe Moret, Walter Binder, and Alex Villazon. CCCP: Complete
Calling Context Profiling in Virtual Execution Environments. In Proceedings
of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM ’09, pages 151–160. ACM, 2009.

[Moret10] Philippe Moret, Walter Binder, Alex Villazón, Danilo Ansaloni, and
Abbas Heydarnoori. Visualizing and Exploring Profiles with Calling Context
Ring Charts. Software: Practice and Experience, 40(9):825–847, 2010.

[Mössenböck00] Hanspeter Mössenböck. Adding Static Single Assignment Form and a
Graph Coloring Register Allocator to the Java HotSpotTMClient Compiler.
Technical report, Institute for Practical Computer Science, Johannes
Kepler University Linz, 2000.

[Mössenböck02] Hanspeter Mössenböck and Michael Pfeiffer. Linear Scan Register Al-
location in the Context of SSA Form and Register Constraints. In Compiler
Construction, pages 229–246. Springer, 2002.

[Mytkowicz10] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Evaluating the Accuracy of Java Profilers. In Proceedings of

https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://kernel.org/

128 Bibliography

the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’10, pages 187–197. ACM, 2010.

[NetBeans14] Oracle. NetBeans Profiler. http://profiler.netbeans.org/, 2014.

[Odersky04] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. The Scala Language Specification, 2004.

[Paleczny01] Michael Paleczny, Christopher Vick, and Cliff Click. The Java Hotspot
Server Compiler. In Proceedings of the Java Virtual Machine Research and
Technology Symposium, JVM ’01, pages 1–12. USENIX, 2001.

[Patros15] Panagiotis Patros, Eric Aubanel, David Bremner, and Michael Dawson.
A Java Util Concurrent Park Contention Tool. In Proceedings of the 6th Inter-
national Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM ’15, pages 106–111. ACM, 2015.

[perf15] Linux Kernel Organization. perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/, 2015.

[Pool14] Tõnis Pool. Lock Optimizations on the HotSpot VM. Technical report,
University of Tartu, 2014.

[POSIX13] Andrew Josey, Donald Cragun, Nicholas Stoughton, Mark Brown, Cathy
Fox, et al. The Open Group Base Specifications Issue 7 / IEEE Std 1003.1
2013 Edition. The IEEE and The Open Group, 2013.

[Pozo04] Roldan Pozo and Bruce Miller. SciMark 2.0. http://math.nist.gov/

scimark2/, 2004.

[Rose08] John Rose, Danny Coward, Ola Bini, Remi Forax, William Cook,
Samuele Pedroni, and Jochen Theodorou. JSR 292: Supporting Dy-
namically Typed Languages on the JavaTMPlatform. https://jcp.org/en/
jsr/detail?id=292, 2008.

[Russell06] Kenneth Russell and David Detlefs. Eliminating Synchronization-related
Atomic Operations with Biased Locking and Bulk Rebiasing. In Proceedings
of the 21st ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages 263–272. ACM,
2006.

[Serrano09] Mauricio Serrano and Xiaotong Zhuang. Building Approximate Calling
Context from Partial Call Traces. In Proceedings of the 7th IEEE/ACM

http://profiler.netbeans.org/
https://perf.wiki.kernel.org/
http://math.nist.gov/scimark2/
http://math.nist.gov/scimark2/
https://jcp.org/en/jsr/detail?id=292
https://jcp.org/en/jsr/detail?id=292

Bibliography 129

International Symposium on Code Generation and Optimization, CGO ’09,
pages 221–230. IEEE, 2009.

[Sewe11] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. Da
Capo con Scala: Design and Analysis of a Scala Benchmark Suite for the
Java Virtual Machine. In Proceedings of the 2011 ACM International Confer-
ence on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’11, pages 657–676. ACM, 2011.

[Snappy15] Google. Snappy: a fast compressor/decompressor. http://google.github.
io/snappy/, 2015.

[Stadler09] Lukas Stadler, Christian Wimmer, Thomas Würthinger, Hanspeter
Mössenböck, and John Rose. Lazy Continuations for Java Virtual Ma-
chines. In Proceedings of the 7th International Conference on Principles and
Practice of Programming in Java, PPPJ ’09, pages 143–152. ACM, 2009.

[Stolte02] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A System for Query,
Analysis, and Visualization of Multidimensional Relational Databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.

[Sumner10] William N. Sumner, Yunhui Zheng, Dasarath Weeratunge, and Xiangyu
Zhang. Precise Calling Context Encoding. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ICSE ’10,
pages 525–534. ACM, 2010.

[Sun15] Haiyang Sun, Yudi Zheng, Lubomír Bulej, Alex Villazón, Zhengwei Qi,
Petr Tůma, and Walter Binder. A Programming Model and Framework
for Comprehensive Dynamic Analysis on Android. In Proceedings of the
14th International Conference on Modularity, MODULARITY ’15, pages
133–145. ACM, 2015.

[Sundstrom15] Dain Sundstrom. Snappy in Java. https://github.com/dain/snappy,
2015.

[Tallent10] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield.
Analyzing Lock Contention in Multithreaded Applications. In Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, pages 269–280. ACM, 2010.

[Vierhauser15] Michael Vierhauser, Rick Rabiser, Paul Grünbacher, and Benedikt Au-
mayr. A Requirements Monitoring Model for Systems of Systems. In 2015
IEEE 23rd International Requirements Engineering Conference, RE ’15, pages
96–105. IEEE, 2015.

http://google.github.io/snappy/
http://google.github.io/snappy/
https://github.com/dain/snappy

130 Bibliography

[Vierhauser16] Michael Vierhauser, Rick Rabiser, Paul Grünbacher, Klaus Seyerlehner,
Stefan Wallner, and Helmut Zeisel. ReMinds: A Flexible Runtime Moni-
toring Framework for Systems of Systems. Journal of Systems and Software,
112:123 – 136, 2016.

[VMWare13] The CPU Scheduler in VMware vSphere 5.1. VMware Inc., 2013.

[Weaver13] Vincent M Weaver. Linux perf_event Features and Overhead. In The 2nd
International Workshop on Performance Analysis of Workload Optimized
Systems, FastPath ’13. 2013.

[Weaver15] Vincent M Weaver. The Unofficial Linux Perf Events Web-Page. http:

//web.eece.maine.edu/~vweaver/projects/perf_events/, 2015.

[Whaley00] John Whaley. A Portable Sampling-based Profiler for Java Virtual Machines.
In Proceedings of the ACM 2000 Conference on Java Grande, JAVA ’00, pages
78–87. ACM, 2000.

[Wimmer05] Christian Wimmer and Hanspeter Mössenböck. Optimized Interval
Splitting in a Linear Scan Register Allocator. In Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution Environments,
VEE ’05, pages 132–141. ACM, 2005.

[Würthinger09] Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck.
Array Bounds Check Elimination in the Context of Deoptimization. Science of
Computer Programming, 74(5):279–295, 2009.

[Würthinger13] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One VM to Rule Them All. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! ’13, pages 187–204. ACM, 2013.

[Yamamoto16] Masao Yamamoto and Kohta Kohta Nakashima. Execution Time Compen-
sation for Cloud Applications by Subtracting Steal Time Based on Host-Level
Sampling. In Companion Publication for ACM/SPEC on International Con-
ference on Performance Engineering, ICPE ’16 Companion, pages 69–73.
ACM, 2016.

[Zheng15] Yudi Zheng, Lubomír Bulej, and Walter Binder. Accurate Profiling in
the Presence of Dynamic Compilation. In Proceedings of the 2015 ACM SIG-
PLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA ’15, pages 433–450. ACM, 2015.

http://web.eece.maine.edu/~vweaver/projects/perf_events/
http://web.eece.maine.edu/~vweaver/projects/perf_events/

Bibliography 131

[Zhuang06] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-Deok
Choi. Accurate, Efficient, and Adaptive Calling Context Profiling. In Pro-
ceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’06, pages 263–271. ACM, 2006.

Curriculum Vitae

Personal Information

Name Peter Hofer

Date of Birth December 15, 1987

Nationality Austria

E-Mail nor@nand.at

Education

2013 – 2016 PhD in Computer Science at Johannes Kepler University Linz

2011 – 2013 MSc in Computer Science at Johannes Kepler University Linz

2008 – 2011 BSc in Computer Science at Johannes Kepler University Linz

2002 – 2007 Matura at Höhere Technische Bundeslehranstalt Leonding,
Informatics and Software Engineering

1998 – 2002 Bundesrealgymnasium Hamerlingstraße Linz

1994 – 1998 Primary school

Sworn Declaration

I hereby declare under oath that the submitted doctoral dissertation has been written
solely by me without any outside assistance, information other than provided sources or
aids have not been used and those used have been fully documented. The dissertation
here present is identical to the electronically transmitted text document.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe. Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument
identisch.

Linz, am

Dipl.-Ing. Peter Hofer, BSc

	Introduction
	Problem Statement
	State of the Art
	Novel Solutions
	Scientific Contributions
	Project Context
	Structure of this Thesis

	Background
	Java
	Native Code
	JVM Tool Interface
	Other Languages on the Java VM

	The Java HotSpot Virtual Machine

	Sampling-based Method Profiling
	Background
	Sampling and Instrumentation
	Calling Context Trees
	Running and Waiting Threads
	Sampling with JVMTI in Safepoints
	Sampling with AsyncGetCallTrace

	Stack Fragment Sampling
	Scheduling-Aware Sampling
	Retrieving Collected Samples
	Decoding the Stack Fragments
	Merging and Weighting Samples

	Partial Safepoints and Incremental Stack Tracing
	Partial Safepoints
	Self-Sampling
	Incremental Stack Tracing
	Implementation Aspects

	Evaluation
	General Methodology
	Accuracy Analysis
	Stack Fragment Sampling
	Partial Safepoints and Incremental Stack Tracing

	Related Work
	Sampling-based Method Profiling
	Dynamic Analysis Tools
	Profile Visualization and Analysis

	Summary and Future Work

	Lock Contention Tracing and Analysis
	Background
	Java Intrinsic Locks (Monitors)
	The java.util.concurrent Package

	Lock Contention Event Tracing
	Writing and Processing Events
	Tracing Intrinsic Locks
	Tracing Park/Unpark Synchronization
	Metadata

	Trace Analysis
	Correlation and Contention Analysis
	Aggregation of Contentions
	Interactive Visualization

	Evaluation
	Synthetic Workloads and Correctness
	Benchmarking
	Runtime Overhead
	Generated Amount of Data
	Trace Composition
	Call Chain Optimizations

	Related Work
	Summary and Future Work

	Hardware Virtualization Steal Time Accounting
	Background
	Steal Time Accounting
	Implementation
	Evaluation
	Accuracy
	Runtime Overhead

	Related Work
	Summary and Future Work

	Summary
	List of Figures
	Bibliography

