
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Faculty of Engineering
and Natural Sciences

Cross-Language Interoperability in a
Multi-Language Runtime

DISSERTATION

submitted in partial fulfillment of the requirements
for the academic degree

Doktor der technischen Wissenschaften

in the Doctoral Program in

Engineering Sciences

Submitted by

Dipl.-Ing. Matthias Grimmer, BSc.

At the

Institut für Systemsoftware

Accepted on the recommendation of

o.Univ.-Prof. Dipl.-Ing. Dr.Dr.h.c. Hanspeter Mössenböck (Supervisor)
Univ.-Prof. Dipl.-Ing. Dr. Walter Binder

Linz, October 2015

ii

Oracle, Java, HotSpot, and all Java-based trademarks are trademarks or registered
trademarks of Oracle in the United States and other countries. All other product names
mentioned herein are trademarks or registered trademarks of their respective owners.

I

Abstract

In large-scale software applications, programmers combine different programming lan-
guages because it allows them to use the most suitable language for a given problem, to
gradually migrate existing projects from one language to another, or to reuse existing
source code. However, different programming languages have fundamentally different
language implementations, which are hard to combine. The composition of these lan-
guage implementations often results in complex interfaces between languages, insuffi-
cient flexibility, or poor performance.

We propose the Truffle-Multi-Language Runtime (TMLR), which can execute diffe-
rent programming languages and is able to compose them in a seamless way. The TMLR
supports dynamic languages (e.g. JavaScript and Ruby) as well as statically typed low-
level languages (e.g. C). It consists of Truffle language implementations, which trans-
late source code to an intermediate representation that is executed by a shared virtual
machine. The TMLR composes these different language implementations via generic
access. Generic access is a language-agnostic mechanism that language implementati-
ons use to access foreign data or call foreign functions. It features language-agnostic
messages that the TMLR resolves to efficient foreign-language-specific operations at run
time. Generic access supports multiple languages, enables an efficient multi-language
development, and ensures high-performance.

We evaluate generic access with three case studies. The first case study explains
the transparent composition of JavaScript, Ruby, and C. The second case study shows
an implementation of the C extensions API for Ruby. Finally, we show a case study
that uses generic access to guarantee memory safety in C. We substitute native C
allocations with managed data allocations, which demonstrates that the applications of
generic access are manifold and not limited to cross-language interoperability. We can
show that generic access guarantees good run-time performance. It avoids conversion
or marshalling of foreign objects at the language boundary and allows the dynamic
compiler to perform its optimizations across language boundaries.

II

Kurzfassung

Große Softwareprojekte werden oftmals in verschiedenen Programmiersprachen entwi-
ckelt, weil Teilprobleme in einer geeigneten Programmiersprache gelöst werden müssen,
bestehende Projekte schrittweise in eine moderne Programmiersprache portiert werden
müssen oder ein bestehender Programmcode wiederverwendet werden muss. Die Im-
plementierungen verschiedener Programmiersprachen unterscheiden sich jedoch meist
fundamental. Daher haben bestehende Verbindungsmechanismen in der Regel kompli-
zierte Schnittstellen, sind nicht flexibel oder haben eine schlechte Laufzeitperformanz.

Wir stellen die Truffle-Multi-Language Runtime (TMLR) vor. Die TMLR ist eine
Laufzeitumgebung, welche unterschiedliche Programmiersprachen ausführen und de-
ren Implementierungen verbinden kann. Die Laufzeitumgebung unterstützt sowohl dy-
namisch typisierte Sprachen (z.B. JavaScript und Ruby) als auch statisch typisierte
Sprachen (z.B. C) und besteht aus einzelnen Truffle-Implementierungen. Eine Truffle-
Implementierung übersetzt ein Programm in eine Zwischenrepräsentation und führt die-
se auf einer gemeinsamen virtuellen Maschine aus. Die TMLR verwendet den Generic
Access-Mechanismus um diese Implementierungen zu verbinden. Dieser Mechanismus
ermöglicht einen sprach- und typunabhängigen Zugriff auf Objekte und Funktionen per
Nachrichten. Die TMLR löst diese Nachrichten zur Laufzeit auf und ersetzt sie durch
effiziente Zugriffsoperationen.

Wir evaluieren den Generic Access im Rahmen dreier Fallstudien. Die erste Fallstudie
erklärt die transparente Verbindung von JavaScript, Ruby und C. Die zweite Fallstudie
beschreibt die Implementierung des C Extensions API für Ruby. Als dritte Fallstudie
zeigen wir, wie automatisch verwaltete Datenstrukturen für C verwendet werden kön-
nen. Die Anwendungsgebiete des Generic Access sind vielfältig und nicht auf Interope-
rabilität zwischen Programmiersprachen beschränkt. Außerdem müssen Objekte an der
Grenze zwischen Programmiersprachen nicht kopiert werden und der Generic Access
ermöglicht dem dynamischen Übersetzer ein Programm unabhängig der verwendeten
Sprachen zu optimieren. Das wiederum garantiert gute Laufzeitperformanz.

Contents III

Contents

1 Introduction 1
1.1 Problem Setting . 1

1.1.1 Problem Statement . 2
1.1.2 Problem Analysis . 3
1.1.3 Novel Solution . 5

1.2 A Novel Multi-Language Runtime Implementation 8
1.3 Scientific Contributions . 10
1.4 Project Context . 11
1.5 Structure of this Thesis . 14

2 The Graal Virtual Machine 15
2.1 Graal Compiler . 16
2.2 Truffle Language Implementation Framework 17

2.2.1 Optimizations on AST Level . 17
2.2.2 Dynamic Compilation of Truffle ASTs 19
2.2.3 Truffle Frame . 19
2.2.4 Truffle Object Storage Model . 20

3 Uniform Language Implementations with Truffle 21
3.1 TruffleC . 21

3.1.1 Example . 22
3.1.2 Compiling C Code to ASTs . 23
3.1.3 Linking . 23
3.1.4 Optimizations on AST Level . 24
3.1.5 Data Allocations . 29
3.1.6 Limitations . 30

3.2 TruffleJS . 32
3.3 TruffleRuby . 33

4 Truffle Language Implementation Composition 34
4.1 Generic Access Mechanism . 36

4.1.1 Object Access via Messages . 36
4.1.2 Message Resolution . 38

4.2 Seamless Foreign Object Access . 40

Contents IV

4.3 Explicit Foreign Object Access . 41
4.4 Discussion . 41

5 Implementation of a Multi-Language Runtime 43
5.1 Interoperability between JavaScript, Ruby, and C 43

5.1.1 Implementation of Generic Access 44
5.1.2 Different Language Paradigms and Features 48
5.1.3 Discussion . 52

5.2 C Extensions Support for TruffleRuby 53
5.2.1 Local Functions . 53
5.2.2 Global Functions . 55
5.2.3 Pointers to Ruby Objects . 56
5.2.4 Discussion . 56

6 Managed Data Allocations for C 58
6.1 Managed Addresses and Managed Objects 59
6.2 Allocation and Deallocation . 65
6.3 Implementation with Generic Access . 65
6.4 Compliance with the C99 Standard . 67
6.5 Discussion . 69

7 Performance Evaluation 73
7.1 Evaluation Methodology . 75
7.2 Uniform Language Implementations with Truffle 76
7.3 Truffle Language Implementation Composition 79

7.3.1 Interoperability between JavaScript, Ruby, and C 79
7.3.2 C Extensions Support for Ruby 83

7.4 Managed Data Allocations for C . 86
7.5 Discussion . 88

8 Related Work 90
8.1 C Language Implementations . 90
8.2 Cross-Language Interoperability . 92

8.2.1 Foreign Function Interfaces . 92
8.2.2 Inter-Process Communication . 93
8.2.3 Multi-Language Runtimes . 94
8.2.4 Multi-Language Semantics . 96

8.3 Spatial and Temporal Memory Safety 96
8.3.1 Boehm-Demers-Weiser Garbage Collector 96
8.3.2 Pointer-Based Approaches . 97
8.3.3 Object-Based Approaches . 98

Contents V

9 Summary 99
9.1 Future Work . 99

9.1.1 Cross-Language Interoperability 99
9.1.2 TruffleC and TruffleCM . 100

9.2 Conclusion . 101

Bibliography 107

Introduction 1

Chapter 1

Introduction

A multi-language application requires a system that can compose different
language implementations. However, fundamentally different language im-
plementations make this composition hard. We discuss the current state
of cross-language interoperability, point out the open challenges, and finally
describe the requirements for a novel solution. This section also gives a con-
ceptual overview over the Truffle-Multi-Language Runtime and summarizes
the scientific contributions of this thesis.

1.1 Problem Setting

In large-scale software development it is common that programmers write applica-
tions in multiple languages rather than in a single language [17]. Combining multi-
ple languages allows them to use the most suitable language for a given problem, to
gradually migrate existing projects from one language to another, or to reuse existing
source code. There exists no programming language that is best for all kinds of prob-
lems [6, 17]. High-level languages allow representing a subset of algorithms efficiently
but sacrifice low-level features such as pointer arithmetic and raw memory accesses. A
typical example is business logic written in a high-level language such as JavaScript
that uses a database driver written in a low-level language such as C. Programmers
use cross-language interfaces to pick the most suitable language for a given part of a
problem. Programmers also combine different languages because it reduces the risks
when migrating software from one language to another. For example, programmers can
gradually port legacy C code to Ruby, rather than having to rewrite the whole project
at once. Finally, cross-language interoperability enables programmers to reuse existing
source code. Due to the large body of existing code it is often not feasible to rewrite
existing libraries in a different language. A more realistic approach is to interface to
the existing code, which allows reusing it.

Introduction 2

1.1.1 Problem Statement

Given our scenario of a large-scale software development where programmers mix dif-
ferent languages, it is necessary to compose different language implementations. We
distinguish between two different approaches to programming language implementa-
tion: An interpreter takes a program as its input and executes the instructions on
some machine, e.g. a virtual machine (VM) or some computer hardware. A compiler
also takes a program as its input but translates it into some other language. The output
of a compiler can be machine code, which is natively executed by hardware, or code
that serves as input to another interpreter or compiler.

Early low-level languages are often implemented by a compiler that produces native
code. For example, C code is normally compiled to machine code directly. On the
other hand, many modern programming language implementations include elements of
both, interpreter and compiler. For example, Java source code is first compiled to Java
bytecode, which is then interpreted and dynamically compiled by the Java Virtual
Machine (JVM)1,2. The JVM starts interpreting this bytecode and can eventually
compile it (dynamic compilation) to machine code.

The composition of different languages poses challenges for language implementers
as well as application developers:

Language implementation composition: Different implementations of programming
languages execute programs differently (e.g. interpretation on a VM and native
compilation) and also use, for example, different object model implementations
(dynamic objects of JavaScript and byte sequences of C), use different memory
models (automatic memory management of the JVM and manual memory man-
agement in C), or use different security mechanisms (run-time errors in Java and
segmentation faults in C). Cross-language interoperability needs to bridge code
that is running on different implementations. For example, a VM needs a mecha-
nism for calling native code and vice versa. Also, this mechanism needs to provide
an interface for accessing foreign data and hereby bridge different strategies for
memory management and different implementations of object models.

Multi-language development: Application programmers need an interface that allows
them to switch execution from one language to another and to access foreign
data and functions. This API needs to bridge the different languages on a source
code level but also needs to bridge different language paradigms and features.

1Java SE HotSpot at a Glance, Oracle, 2015: http://www.oracle.com/technetwork/articles/javase/
index-jsp-136373.html

2IBM Developer Kits: Java Platform Standard Edition (Java SE), IBM, 2015: http://www.ibm.com/
developerworks/java/jdk

http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
http://www.ibm.com/developerworks/java/jdk
http://www.ibm.com/developerworks/java/jdk

Introduction 3

Examples are object-oriented and non-object-oriented programming, dynamic and
static typing, explicit and automatic memory management, or safe and unsafe
memory access.

1.1.2 Problem Analysis

In the following, we analyze three existing approaches for cross-language interoperabil-
ity between different language implementations: (1) foreign function interfaces (FFIs),
(2) inter-process communication, and (3) multi-language runtimes. We identified these
approaches as the most relevant techniques and we point out their major limitations,
which are restricted flexibility, complex APIs, and performance limitations.

Foreign Function Interfaces

The different approaches for programming language implementation make the compo-
sition of languages complicated. It requires a mechanism that can integrate foreign
code into a host application and therefore bridge the different implementations. Many
modern VMs have an FFI that can integrate native code. An FFI links the native
binaries into a VM and also offers an API, which allows the programmer to exchange
data between the runtime and the native parts of an application.

The result is a mechanism that caters primarily to composing two specific languages
rather than arbitrary languages. Also, the implementation of these interfaces requires
runtime support, which means that the APIs often depend on the original implemen-
tation of the languages. For example, interpreted languages such as Perl, Python and
Ruby provide support for running extension modules written in the lower-level lan-
guage C, known as C extensions or native extensions. C extensions are written in C
or a language, which can meet the same application binary interface (ABI) such as
C++, and are dynamically loaded and linked into the VM of the high-level language
as a program runs. The APIs that these extensions are written against often simply
provide direct access to the internal data structures of the primary implementation of
the language. For example, Ruby C extensions3 are written against the API of the
original Ruby implementation MRI4. This API contains functions that allow C code to
manipulate Ruby objects at a high level.

This model for C extensions worked well for the original implementations of these
languages. The API allows programmers to directly access the internal data structures

3Ruby Language, Yukihiro Matsumoto, 2015: https://www.ruby-lang.org
4MRI stands for Matz’ Ruby Interpreter, after the creator of Ruby, Yukihiro Matsumoto.

https://www.ruby-lang.org

Introduction 4

of the runtime. Hence, the API is powerful and has low overhead. Also, the imple-
mentation of this API is simple; it makes header files public and supports dynamic
loading of native modules. However, as popularity of dynamic languages has grown,
alternative projects have increasingly attempted to re-implement these languages using
modern VM technology such as dynamic or just-in-time (JIT) compilation and ad-
vanced garbage collection. Such projects typically use significantly different internal
data structures to achieve better performance, which makes an implementation of a C
extensions API hard. Modern implementations of these languages need to implement a
bridging layer between the internal data structures and the C extensions API. However,
this layer introduces costs for transforming the optimized data structures of the more
modern implementation to low-level C data and vice versa. As performance is usu-
ally the primary goal of using C extensions, this bridging layer is not ideal. For these
reasons, modern implementations of dynamic languages often have limited support for
C extensions. For example, the JRuby5 implementation of Ruby on top of the JVM
had limited experimental support for C extensions. It used a bridging layer to lower
Java objects to low-level C data and vice versa. However, this layer was complicated
to maintain and the performance was poor. Eventually, the JRuby team removed the
C extensions support completely6,7.

The Ruby C extensions API, like many other FFIs, is inflexible because application
programmers can only use it to integrate C code (or code that meets the same ABI).
Furthermore, this interface is language implementation specific, which binds the pro-
grammer to MRI. Similar to other FFIs, the C extensions API requires the programmer
to use a complex API, which distracts the programmer from the actual task at hand.
However, the support for these interfaces is important. For example, lack of support
for C extensions is often mentioned as one of the major reasons for the slow adoption
of modern implementations of programming languages like Ruby or Python8. Finally,
linking native code into the VM hinders the compiler to optimize an application across
language boundaries, which limits performance [100].

Inter-Process Communication

Rather than composing language implementations on their implementation level, a
message-based inter-process communication treats them as black boxes. Examples are
the Common Object Request Broker Architecture [42, 104] or Apache’s Thrift [80, 94].

5JRuby, Charles Nutter and Thomas Enebo and Ola Bini and Nick Sieger and others, 2015: http:
//jruby.org

6Ruby Summer of Code Wrap-Up, Tim Felgentreff, 2015: http://blog.bithug.org/2010/11/rsoc
7JRuby C Extensions: CRuby extension support for JRuby, GitHub repository, 2015: https://github.

com/jruby/jruby-cext
8Why shouldn’t I use PyPy over CPython if PyPy is 6.3 times
faster?, Stackoverflow, 2015: http://stackoverflow.com/questions/18946662/
why-shouldnt-i-use-pypy-over-cpython-if-pypy-is-6-3-times-faster

http://jruby.org
http://jruby.org
http://blog.bithug.org/2010/11/rsoc
https://github.com/jruby/jruby-cext
https://github.com/jruby/jruby-cext
http://stackoverflow.com/questions/18946662/why-shouldnt-i-use-pypy-over-cpython-if-pypy-is-6-3-times-faster
http://stackoverflow.com/questions/18946662/why-shouldnt-i-use-pypy-over-cpython-if-pypy-is-6-3-times-faster

Introduction 5

Application programmers use a language-agnostic interface description language (IDL)
to generate an interface between languages. This interface marshals data to and from
a common wire representation.

However, programmers that use these approaches need to learn and apply an IDL,
which adds a usability burden. Also, inter-process communication imposes a perfor-
mance overhead. The marshalling of data introduces a copying overhead whenever
language implementations exchange data. Finally, language implementations need to
treat each other as black boxes, hence, the compiler cannot optimize a program across
language boundaries.

Multi-Language Runtime

Another approach for cross-language interoperability is to compose language implemen-
tations that are running on a shared VM. For example, Microsoft’s Common Language
Runtime (CLR) [16, 56, 70] as well as RPython [15] are runtimes that can host imple-
mentations for different languages.

The CLR composes the individual languages by compiling them to a shared inter-
mediate representation (IR). It uses a shared set of IR operations and a shared repre-
sentation of data for all language implementations, which enables interoperability. A
language implementation on top of the CLR needs to use the Common Type System
(CTS) of the CLR. We are convinced that a multi-language runtime could be more
flexible. First, the CLR does not support integrating low-level, statically compiled lan-
guages like C directly. Native code is integrated via an FFI-like interface. Second, the
generic data representation cannot be optimized for an individual language. As efficient
data representation and data access is critical for the performance of an application,
we consider this a limiting factor.

The approach of RPython is different, they compose the language implementations on
a very fine granularity (e.g. Python and Prolog [6] or Python and PHP [8]). However,
we consider this approach as too inflexible because both projects only compose a pair
of languages. Also, RPython has no support for running low-level, statically compiled
languages.

1.1.3 Novel Solution

We identified different approaches of language implementation (e.g. native code compil-
ers and interpretation on a VM) as a major issue when implementing a cross-language
interoperability mechanism and we are convinced that a multi-language runtime is a
promising approach for executing multi-language applications efficiently. We propose

Introduction 6

Language
Implementation A

Dynamic
Compiler

Automatic Memory
Management …

Shared VM

Language
Implementation B

Language
Implementation C

IRBIRA IRC

+

Figure 1.1: A shared VM hosts distinct language implementations and composes them
on an IR level.

a novel multi-language runtime that can execute different languages and has support
for cross-language interoperability. Our runtime fulfills the following characteristics:

Composition of arbitrary languages: We identified interoperability mechanisms that
target a fixed set of languages as too inflexible. Hence, our runtime features
a language-agnostic mechanism for cross-language interoperability, i.e., it can
compose arbitrary languages rather than only a fixed set of languages.

Efficient multi-language development: Complicated APIs for language composition
impose a usability burden to the programmers and distract from the actual task
at hand. Our multi-language runtime supports an interface that makes language
boundaries mostly invisible to the programmer. However, the support of legacy
interfaces between languages is critical. Hence, our runtime can also provide
implementations for existing FFIs.

High-performance interoperability: Cross-language interoperability often adds a per-
formance overhead because the cross-language interface marshals data at the
language boundaries, because language implementations need to use language-
agnostic (and therefore less optimized) data representations, or because compilers
cannot optimize an application across language boundaries. We propose a multi-
language runtime that does not have these limitations: First, it does not marshal
data at the language boundaries. Second, every language implementation can
define highly efficient data representations and share it with other language im-
plementations. Finally, it enables the compiler to optimize and inline across any
language boundaries. In our multi-language runtime, a language implementation
can directly access foreign objects. We expect using heavyweight foreign data
to have a negative impact on performance. On the other hand, we expect using
efficient foreign data to have a positive effect on performance.

Introduction 7

The architecture of our multi-language runtime is simple (see Figure 1.1). A language
implementation translates the source code into an IR and interprets it on top of a
shared VM. In contrast to other runtimes, we run high-level managed languages as well
as low-level unmanaged languages on the same VM. We compose the different language
implementations on an IR level. The language implementations support a language-
agnostic mechanism for operations on foreign data or code, which we call generic access.
Generic access enables language implementations to efficiently exchange data across
any language and to bridge possibly different type systems and their semantics. It
is an extension to the IR of the individual language implementations and generates
object-specific IR snippets for accessing foreign objects that the runtime inserts into
the IR of the host application. A language implementation can therefore directly access
foreign objects. Also, generic access allows the dynamic compiler of the host VM to
inline and optimize across language borders.

We could identify the following requirements for a multi-language runtime and its
language implementations with respect to supporting generic access:

Compatible and adaptive IR: Generic access defines a set of language-agnostic mes-
sages that a language implementation can use to access a foreign object (we refer
to this object as the receiver). Upon first execution of a message, we resolve it
by adapting the IR of the host application in such a way that it can deal with
the foreign object or function directly (message resolution). Message resolution
embeds IR snippets from a foreign language implementation into the IR of a host
language implementation at run time, which requires that the IRs are compatible
and inter-mixable. Also, the IR needs a rewriting capability, which can replace
IR snippets with different IR snippets at run time.

Foreign data access: Language implementations can define different data structures
to represent the data of an application. A foreign data access needs to be able to
access the data, allocated by any other foreign language implementation.

Dynamic compilation: The dynamic compiler of the host VM compiles the IR of a
program to highly efficient machine code at run time. The shared VM needs
support for deoptimization of machine code because generic access might change
the IR of an application at any time.

We present the Truffle-Multi-Language Runtime (TMLR), which is our implementa-
tion of the proposed multi-language runtime that can execute and combine multiple pro-
gramming languages. The TMLR can execute and combine three different languages:
JavaScript, Ruby, and C. These languages are implemented as Truffle Language Im-
plementations (TLIs). Truffle [120] is a framework for implementing high-performance
language implementations in Java. We execute these languages on a shared JVM, which
is in our case the GraalVM. Figure 1.2 depicts the architecture of the TMLR.

Introduction 8

Truffle Framework

TLI

GraalVM

TLITLI …
Generic Access

Truffle-Multi-Language
Runtime
(TMLR)

JS Ruby C

Figure 1.2: The TMLR executes different TLIs on top of the GraalVM, which itself is
a modification of the HotSpot™ VM.

1.2 A Novel Multi-Language Runtime Implementation

We present and evaluate the TMLR in five steps: (1) we describe the GraalVM in-
cluding Truffle, (2) we introduce uniform Truffle language implementations, (3) we
explain the language implementation composition, (4) we present two case studies of
multi-language development, and (5) we present a case study that uses generic access
to substitute native C allocations with managed data allocations.

The GraalVM

The GraalVM, as part of the Graal OpenJDK project9, is a modification of the Java
HotSpot™ VM. The TMLR comes with TLIs for individual languages that we execute
on top of the GraalVM.

Uniform Truffle Language Implementations

We base our work on existing TLIs for the modern high-level languages JavaScript
and Ruby. We present a TLI for the low-level language C, which is a statically typed
language that is usually compiled ahead of time instead of being executed on top of a
VM. TruffleC does not create machine code upfront but it is a self-optimizing interpreter
that dynamically compiles C code. To the best of our knowledge, TruffleC is the first
system that can dynamically compile C code and hereby apply optimistic assumptions
based on profile information.

Language Implementation Composition

TLIs implement generic access, which we use to combine high-level languages as well
as low-level languages. Generic access is independent of languages. It allows us to

9OpenJDK: Graal Project, Oracle, 2015: http://openjdk.java.net/projects/graal

http://openjdk.java.net/projects/graal

Introduction 9

1 s t ruc t S {
2 i n t v a l u e ;
3 } ;
4 s t ruc t S ∗ ob j = // . . .

Listing 1.1: C source code.

1 // J a v a S c r i p t can s e a m l e s s l y a c c e s s a C s t r u c t
2 var a = ob j . v a l u e ;

Listing 1.2: JavaScript source code.

treat languages as modules and we can combine them in a language-agnostic fashion.
Generic access is independent of data representations or of calling conventions. Each
TLI can use data structures that meet the requirements of the individual language best.
For example, a C implementation can allocate raw memory on the native heap while a
JavaScript implementation can use dynamic objects on a managed heap. We use generic
access to share these different objects across languages, which avoids lowering them to
a common representation. Finally, generic access ensures high-performance. Each TLI
can access foreign objects or invoke foreign functions directly. Message resolution allows
the compiler to optimize a foreign object access like any regular object access. Also,
the compiler can widen the compilation scope across language boundaries and thus
perform cross-language optimizations. For example, it can inline a JavaScript function
into a caller that is written in C.

Multi-Language Application Development

We evaluate generic access with two case studies that compose language implementa-
tions. The first case study implements a seamless approach for multi-language devel-
opment and the second one presents an implementation of the C extensions API for
Ruby.

In the first case study we describe how TLIs define a mapping from host access
operations to language-agnostic messages of generic access and vice versa. For example,
the JavaScript implementation can use generic access to read a C struct member (see
Listing 1.1 and 1.2). Generic access maps a JavaScript property access to a message
and then again maps this message to a C struct-specific operation. The mapping of
access operations to the messages and vice versa implicitly bridges language boundaries
and makes them mostly invisible to the programmer. When writing multi-language
applications, programmers can access foreign objects and can call foreign functions by
simply using the operators of the host language. The JavaScript statement in Listing 1.2
can access the C struct obj (Listing 1.1) as if it were a regular JavaScript object. Only

Introduction 10

if semantics of languages fundamentally differ, programmers should need to revert to
an API and therefore an explicit foreign object access.

In the second case study we describe how the TMLR can support C extensions for
Ruby. We show an implementation of this API using generic access. Every invocation
of a C extensions function is substituted by messages of generic access. Our solution is
source-compatible with the existing Ruby API and our system is able to run existing,
almost unmodified C extensions for Ruby written by companies and used today in
production. We can demonstrate that the TMLR runs real-world C extensions faster
than natively compiled C extensions that interface to conventional implementations of
Ruby.

Managed Data Allocations for C

We present a third case study, which demonstrates that the applications of generic
access are manifold and not limited to cross-language interoperability. We extend Truf-
fleC so that it ensures memory safety, i.e., TruffleCM can ensure spatial and temporal
safety. We use generic access to substitute native allocations with managed allocations
in TruffleCM. TruffleCM allocates all data on the managed heap rather than on the
native heap. For example, TruffleCM allocates an unsafe C int array as a safe Java
int array. The runtime then automatically checks whether all accesses to the array el-
ements fall within the valid array bounds. We retain all characteristics that are typical
for unsafe languages (such as pointer arithmetic, pointers that point into objects, or
arbitrary casts) by mapping C pointer values to members of a managed object. This
case study presents an orthogonal contribution to cross-language interoperability.

1.3 Scientific Contributions

The main contribution of this thesis is a novel approach for the seamless composition
of programming languages by means of generic access to foreign data and code. We
demonstrate this idea by describing the TMLR. This runtime requires a uniform way of
language implementation. As part of this work, we present TruffleC, a self-optimizing
interpreter for C that can also ensure memory safety. The scientific contributions of
this thesis can be grouped into three categories:

Language implementation composition - published in [35,39,40]

We present a novel approach for accessing foreign data and functions in a language-
agnostic way, which we call generic access. Generic access is independent of lan-

Introduction 11

guages, data representations, and calling conventions. It can compose arbitrary
languages rather than a fixed set of languages. Also, generic access guarantees
high-performance of multi-language applications. It can directly access any data
representation and does not marshal data at the language boundaries. Also, it
enables the compiler to optimize and inline across any language boundaries.

Extensive evaluation by case studies - published in [39,40]

We evaluate generic access using a case study where we compose JavaScript,
Ruby, and C. We list the different language paradigms and semantics and explain
how we bridge these differences. We evaluate the performance of multi-language
applications using non-trivial multi-language benchmarks.

We evaluate generic access with a second case study, which is an implementation
of the C extensions API for Ruby. We can run real-world C extensions and the
evaluation shows that they run faster than natively compiled C extensions that
interface to conventional implementations of Ruby.

A self-optimizing C interpreter with memory safe execution - published in [36,38]

We present a self-optimizing interpreter that can execute and dynamically compile
C code, which we call TruffleC. TruffleC aggressively optimizes the C code based
on profile information at run time. We extend TruffleC to TruffleCM, which
allocates C data as managed objects. Managed objects guarantee a memory-safe
execution but still retain the characteristics of C.

We evaluate TruffleC and compare it to an industry standard C compiler in terms
of peak performance. Also, we compare the performance of TruffleC (unsafe) to
the performance of TruffleCM (safe). The evaluation shows that TruffleCM has
no performance overhead compared to TruffleC.

1.4 Project Context

The work of this thesis was done as part of a long-running research cooperation between
the Institute of System Software at the Johannes Kepler University and Oracle Labs.
Prof. Hanspeter Mössenböck, the head of the Institute for System Software, started
this collaboration in 2000 with developing an intermediate representation in static single
assignment (SSA) form for the HotSpot™client compiler [71]. The work of collaborators
at the Institute for System Software resulted in various research papers and theses:

• Mössenböck, Pfeiffer and Wimmer [72,107] introduced a linear scan register allo-
cation algorithm.

Introduction 12

• Kotzmann et al. [63–65] extended the HotSpot™client compiler with an escape
analysis algorithm.

• Wimmer et al. [108–111] presented automatic object and array inlining.

• Würthinger et al. [117, 119] added an array bounds check elimination algorithm
to the HotSpot™client compiler.

• Würthinger et al. [118] worked on visualizing program dependency graphs.

• Würthinger et al. [114–116] extended the HotSpot™ VM with support for dy-
namic code evolution, which allows applying changes to running applications.

• Häubl et al. [46,47] improved the String representation within the HotSpot™ VM.

• Schwaighofer [89] added support for tail call optimizations to the HotSpot™ VM.

• Stadler et al. [97, 99] added support for continuations and coroutines to the
HotSpot™ VM.

• Schatzl et al. [88] improved various aspects of the garbage collection systems of
the HotSpot™ VM.

• Häubl et al. [45, 48–51] worked on generalized trace compilation for Java.

The most recent work in this collaboration is the GraalVM project. The GraalVM is a
minor modification of the HotSpot™ VM that adds a third compiler, entirely written
in Java. The GraalVM also comes with Truffle, a framework for writing highly efficient
language implementations in Java. The following research papers and theses refer to
the GraalVM:

• Dubosq et al. [23] introduced an extensible declarative intermediate representa-
tion for the compiler.

• Stadler et al. worked on methods for queuing compilation tasks and caching
of intermediate results within compilers [95] and did experimental studies on
dynamic compiler optimizations [96].

• Würthinger et al. presented Truffle, a framework for building self-optimizing
interpreters [121]. This work was extended by a mechanism to generate highly-
efficient machine code from the interpreter definition [120].

• Stadler et al. [98] presented a partial escape analysis algorithm with scalar re-
placement for the compiler.

Introduction 13

• Humer et al. [55] introduced a domain-specific language to simplify the building
of self-optimizing interpreters.

• Wöss et al. [112] worked on an object storage model for Truffle.

• Dubosq et al. [24, 25] worked on optimizing speculative optimizations within the
compiler.

The author’s work in this collaboration started in 2012. Together with Manuel
Rigger, they implemented a first version of TruffleC, which was the starting point of
this thesis and was published in two Master’s theses:

Rigger - TruffleC Interpreter [85]: Rigger explains how TruffleC parses C code and
how C operations can be implemented in Java (including unsigned operations
and goto statements).

Grimmer - A Runtime Environment for the TruffleC VM [34]: Grimmer presents a
native function interface for the GraalVM [37] and explains how TruffleC uses it
to access precompiled native functions efficiently. Also, he describes the memory
model of TruffleC that can share data between TruffleC and precompiled native
code.

The author’s work on this PhD thesis started in 2013. Several papers have been pub-
lished and significant parts of these papers are integrated into various chapters of this
thesis:

• A full research paper describes TruffleC, a self-optimizing interpreter that can
execute and dynamically compile C [36]. This work extends the previous work of
TruffleC [34,85] by adding profile based optimizations to the interpreter.

• A position paper about composing JavaScript and C code [41] describes an early
version of generic access that we use to access C data from JavaScript.

• A doctoral symposium paper [35] generalizes generic access. Generic access can
access arbitrary foreign objects and generates efficient access operations at run
time.

• A full research paper [39] presents the TMLR, which composes different TLIs in
a seamless way. It describes how TLIs access foreign objects using generic access.

• A full research paper [40] shows how we use generic access to implement the C
extensions API for Ruby. This work was done in collaboration with Chris Seaton
(Oracle Labs UK). Chris Seaton leads the TruffleRuby project.

Introduction 14

• A full research paper [38] describes how we can safely execute C code on top of
the TMLR by allocating all data on the managed heap.

1.5 Structure of this Thesis

This thesis is structured as follows: Chapter 2 introduces the context of the TMLR.
The TMLR is based on the GraalVM, which is a modified version of the HotSpot™ VM
that adds the Graal compiler to it. There are four main chapters:

Chapter 3 presents language implementations for JavaScript, Ruby, and C. This chap-
ter first discusses the implementation of TruffleC in detail. We explain how TruffleC
optimizes C code at run time based on profiling information. Afterwards, this chapter
introduces the existing JavaScript and Ruby implementations on top of Truffle.

Chapter 4 describes how we can compose different language implementations on top
of the TMLR. We describe generic access, a language-agnostic object access mechanism,
which allows sharing data between different TLIs efficiently. In this chapter we show
how we map object accesses to language-agnostic messages and vice versa.

Chapter 5 describes an implementation of generic access for JavaScript, Ruby, and
C. We present two case studies. First, we discuss how different language paradigms
and features can be mapped across different languages for seamless interoperability.
Second, we describe a C extensions API implementation for TruffleRuby.

Chapter 6 presents TruffleCM. TruffleCM is a third case study and shows another
application of generic access. We use generic access to substitute native C allocations
with managed objects, which guarantees memory safety.

After the technical part we present a performance evaluation in Chapter 7. We first
evaluate TruffleC and compare it to an industry-standard C compiler. Afterwards, we
show the performance of multi-language applications as well as the performance of Ruby
applications using C extensions. Finally, we compare the performance of TruffleCM to
TruffleC.

This thesis concludes with a discussion of related work in Chapter 8 and a summary
including future work in Chapter 9.

The Graal Virtual Machine 15

Chapter 2

The Graal Virtual Machine

This chapter explains the context of the TMLR and gives an overview over
its architecture. It introduces Truffle, the framework that we use to build
the individual language implementations (e.g. JavaScript, Ruby, or C) of
the TMLR. Also, it describes Graal, the dynamic compiler that Truffle uses
to transform applications to machine code.

VMs are mostly monolithic pieces of software, written in one language (mostly
C/C++) and executing another language. They offer many services for applications
running on top of them, such as dynamic compilation, automatic memory manage-
ment, threads, as well as synchronization primitives. Implementing all these services
for a VM is a non-trivial task and requires a considerable amount of engineering effort.
To ease the effort of building new VMs, Truffle language implementations have a lay-
ered architecture [120]. Language implementations (e.g. a JavaScript implementation)
are running on top of a Host VM (e.g., the GraalVM) and hereby reuse the services of
the Host VM. Truffle proposes the following three layers (see Figure 2.1):

GraalVM layer (Figure 2.1, bottom): The GraalVM adds the Graal compiler [24, 25,
95, 96, 98] — a Java dynamic compiler written in Java (see Section 2.1) — to
the Java HotSpot™ VM. The Graal compiler can substitute the client [65] and
server [81] compilers, however, it reuses all other VM components, such as the
garbage collector, the interpreter, the class loader and so on, from HotSpot™.

Truffle framework layer (Figure 2.1, middle): Truffle [120] (see Section 2.2) is a frame-
work for building high-performance language implementations in Java. In Truffle,
a language is implemented as an abstract syntax tree (AST) interpreter. These
interpreters can be executed by any JVM, which allows reusing Java’s runtime
services such as automatic memory management, threads, synchronization primi-
tives and a well-defined memory management. However, they perform best when
running on top of the GraalVM. If Truffle ASTs are executed by the GraalVM,
then Truffle uses Graal to dynamically compile ASTs to machine code.

The Graal Virtual Machine 16

Truffle Framework

TruffleC

In
te

rp
re

te
r

G
ar

ba
ge

 C
ol

le
ct

or

HotSpot Runtime…

Graal - HotSpot Runtime Interface

Graal Compiler

TruffleRbTruffleJS …

Figure 2.1: The architecture of the TMLR: Three Truffle language implementations
(JavaScript, Ruby, and C) are hosted by the GraalVM.

Language implementations (Figure 2.1, top): The TMLR can execute and combine
three different languages: JavaScript, Ruby, and C. We describe their implemen-
tation in Section 3.

2.1 Graal Compiler

The Truffle framework uses the Graal compiler to dynamically compile ASTs to highly-
efficient machine code. However, the Graal compiler is also a regular dynamic compiler
for Java bytecode.

The GraalVM starts executing Java programs in the interpreter (part of the Hot-
Spot™ VM). If a method becomes hot, i.e., its execution count exceeds a certain
threshold, then the VM compiles it using the Graal compiler. Hereby, the Graal com-
piler translates Java bytecode to the Graal IR [23], which is a graph-based high-level
IR. This IR is in SSA [20] form and captures the control flow and the data flow of
instructions. While there is an explicit control flow in this graph, many operations do
not have a fixed location but their position is determined by data flow dependencies.
These floating operations can often be fit in at many places and are brought into a
well-defined order in a separate scheduling step. Using this flexible IR, the Graal com-
piler performs aggressive optimizations, often based on optimistic assumptions about
a program, such as branches that are assumed to be never executed or objects that are
assumed to have a specific type. The Graal compiler inserts guards that check these as-
sumptions and whenever one of these guards fails, the control flow is transferred from
machine code back to the interpreter (deoptimization [54]). Once Graal compiled a
method to machine code, it sends the machine code to the VM, which installs it into its

The Graal Virtual Machine 17

internal data structures. The VM then ensures that subsequent calls to the compiled
method immediately jump to the machine code, instead of interpreting the bytecode
in the interpreter. Also, the GraalVM offers a native function interface (the Graal Na-
tive Function Interface, GNFI) [37], which allows us to efficiently call native functions
from within Java. The GNFI is an alternative to other foreign function interfaces of
Java (e.g. the Java Native Interface [66]) and allows invoking native code from a Java
application efficiently.

2.2 Truffle Language Implementation Framework

TLIs are AST interpreters, written in Java. An AST interpreter models constructs of
the guest language as nodes. These nodes build a tree (i.e., an AST) that represents
the program to be interpreted. Each node extends a common base class Node and has
an execute method, which implements the semantics of the corresponding language
construct. By calling these methods recursively, the whole AST is evaluated. The
language implementer designs the AST nodes and provides facilities to build the AST
from the guest language code. Language developers only write language specific parts
when implementing a language.

In the following we describe the two different types of Truffle’s optimizations. The
language developer can implement optimizations on AST level and the Truffle frame-
work itself provides a dynamic compilation of Truffle ASTs. Afterwards, we explain the
Truffle Frame, a data structure to efficiently handle local variables, and also introduce
Truffle’s object storage model.

2.2.1 Optimizations on AST Level

Truffle AST nodes can speculatively rewrite themselves with specialized variants [121]
at run time, e.g., based on profile information obtained during execution such as type
information. We specialize nodes on a subset of the semantics of an operation, which
makes the node implementation simpler. TLIs use self-optimization via tree rewriting as
a general mechanism for dynamically optimizing code at run time. If these speculative
assumptions turn out to be wrong, the specialized tree can be transformed to a more
generic version that provides functionality for all possible cases. Concrete examples of
specializations are:

Type Specialization: Operators in dynamic languages often have complex semantics.
The behavior of an operation can, for example, depend on the types of the
operands. Hence, such an operator needs to check the types of its operands

The Graal Virtual Machine 18

and choose the appropriate version of the operator. However, for each instance of
a particular operator in a guest language program, it is likely that the types of its
operands do not change at run time. Truffle’s self-optimization capability allows
us to replace the full implementation of an operation with a specialized version
that speculates on the types of the operands being constant. This specialized
version then only includes the code for this single case. For example, consider an
add operation of a dynamic language (e.g. JavaScript) that has different seman-
tics depending on the types of its operands. Truffle trees can adapt themselves
according to type feedback, e.g., a general add operation can replace itself with
a faster integer-add operation if its operands have been observed to be integers.
If this optimistic specialization of an operator fails at run time, the specialized
node changes back to a more generic version.

Polymorphic Inline Caches: Truffle’s self-optimization capability allows building up
polymorphic inline caches [53] at run time. An inline cache is an optimization
that improves the performance of run-time method binding by caching the target
method of a previous lookup at the call site. In Truffle, an inline cache is built by
chaining nodes. Each node in this chain then checks whether the cached target
matches and eventually executes the specialized subtree for this target. If the
target does not match, the chain delegates the handling of the operation to the
next node. When the chain reaches a predefined length, the whole chain replaces
itself with a single node that can handle the fully megamorphic case.

Resolving Operations: Operations of a TLI might include a resolving step that hap-
pens at run time. For example, a TLI can resolve and cache the target of a
function call lazily at run time. This lazy resolving step is implemented with
self-optimization, which in this case replaces the node of an unresolved call oper-
ation at run time by its resolved version. The resolved node avoids a subsequent
resolving operation.

Optimizations on AST level via node rewriting must fulfill three requirements [120].
First, a specialized node that handles only a subset of the semantics of a guest language
operation needs to trigger a subsequent node replacement for all uncovered cases. For
example, an add operation of a dynamic language that is specialized on integer operands
needs to trigger a replacement if the operands suddenly have a type other than integer.
Second, all possible specializations of an operation form a transition DAG with a single
final state that can handle the full semantics of this operation, i.e., a series of node
replacements eventually ends up with a generic node implementation that handles all
possible inputs. This generic node does not trigger subsequent node replacements. For
example, the generic node implementation of an add operation of a dynamic language
can add operands of any type. Finally, a node rewrite affects only a single node while

The Graal Virtual Machine 19

it is executing. However, such a rewrite might trigger other rewrites and hence change
the structure of its complete subtree.

Besides specialization of operations, TLIs inline methods of a guest language program
on an AST level. This is done by cloning the AST and replacing it for the calling node.
Inlining ASTs allows mitigating the effect of run-time profiling pollution due to different
callers using a method in different ways, i.e., inlining can prevent the rewriting of AST
nodes to less specialized versions.

2.2.2 Dynamic Compilation of Truffle ASTs

After an AST has become stable (i.e., when no more rewritings occur) and when the
execution frequency has exceeded a predefined threshold, Truffle dynamically compiles
the AST to machine code. Truffle uses the Graal compiler for dynamic compilation.
The compiler hereby assumes that the tree has reached its final state. This allows the
compiler to remove all the virtual dispatches between the execute methods of the AST
nodes and inline them. Inlining produces a combined compilation unit for the whole
tree. The Graal compiler can then apply its aggressive optimizations over the whole
tree, which results in highly efficient machine code. This special form of interpreter
compilation is an application of partial evaluation to generate compiled machine code
from a specialized interpreter [31].

The compiler inserts deoptimization points [54] in the machine code where the spec-
ulative assumptions about the tree are checked. Every control flow path that would
cause a node rewrite transfers back from compiled machine code to the interpreted
AST, where specialized nodes can be reverted to a more generic version.

2.2.3 Truffle Frame

The Truffle framework provides a Frame class. TLIs use Frame objects to store the
local variables of a function. The Frame is essentially an array holding the values of
the local variables. As efficient access to local variables is critical, the Graal compiler
ensures that this access is fast after dynamic compilation. It forces an escape analysis
with scalar replacement [98] on the Frame object, which causes the elements of a Frame

object to be stored as simple local variables. When all reads of such variables are
connected to their most recent writes, the Frame object itself becomes virtual, i.e., it
need not even be allocated in the compiled machine code. The result is a program
in SSA form, which allows the compiler to perform standard optimizations such as
constant folding or global value numbering without needing a data flow analysis for the
Frame object.

The Graal Virtual Machine 20

2.2.4 Truffle Object Storage Model

In a dynamically typed language like JavaScript or Ruby, objects are dynamic data
structures and it is possible to add or remove members at run time. The Truffle
framework eases the effort of implementing efficient dynamic data structures for a
dynamic language implementation and provides an object storage model [112]. The
implementation of this object storage model is called DynamicObject. The Dynamic-

Object supports dynamic resizing and allows adding and removing members (a member
can be a field or a method and is stored in a slot) at run time and hereby guarantees
high-performance. This DynamicObject was originally designed for dynamic guest-
language implementations on top of Truffle (e.g. TruffleJS and TruffleRuby [112]) to
represent their dynamic data structures, however, in Chapter 6 we explain how we can
use the DynamicObject to efficiently represent C data structures.

Uniform Language Implementations with Truffle 21

Chapter 3

Uniform Language Implementations
with Truffle

Truffle language implementations are AST interpreters. In this section we
describe the implementations for JavaScript, Ruby, and C. The TMLR com-
poses these TLIs.

The TMLR has a TLI for all different languages. We introduce TruffleC, an imple-
mentation for the low-level language C. This implementation allows integrating C code
into our multi-language ecosystem and is part of the contributions of this thesis. We
describe this implementation in detail.

For the experiments in this thesis, we also use TLIs for the high-level languages
JavaScript and Ruby. The TLIs for JavaScript and Ruby were written by others, but
we extended them by adding support for generic access. Hence, we only describe them
briefly and summarize their performance compared to other implementations.

3.1 TruffleC

The following chapter describes the C implementation on top of Truffle in more detail.
It recaps the work of Rigger [85] (translating C source code to Truffle ASTs and imple-
menting C operations in Java) and the former work of the author of this thesis [34] (the
memory model of TruffleC). However, the main focus is on dynamic compilation of C
code, i.e., this chapter extends the previous work and presents C-specific optimizations
on an AST level based on run-time feedback.

Uniform Language Implementations with Truffle 22

1 typedef i n t (∗ func) (int , i n t) ;
2

3 i n t d i v (i n t a , i n t b) {
4 i f (b == 0)
5 goto e r r o r ;
6 return a / b ;
7 e r r o r :
8 // e r r o r h a n d l i n g
9 }

10

11 i n t abs (func f , i n t a , i n t b) {
12 i n t v a l u e = f (a , b) ;
13 i f (v a l u e < 0)
14 return −v a l u e ;
15 e l s e
16 return v a l u e ;
17 }

Listing 3.1: C source code of the MyLib library.

1 // P r o f i l i n g i n f o r m a t i o n :
2 // f = d i v
3 // a > 0
4 // b = 2
5

6 i n t r e s u l t = abs (f , a , b) ;

Listing 3.2: C source code of the Main application.

3.1.1 Example

Listings 3.1 and 3.2 introduce an example that allows us to explain how TruffleC works.
We also use this example to discuss advantages of dynamic compilation over static
compilation, i.e., we illustrate how TruffleC applies high-level optimizations to the AST
by specializing nodes. This example uses a shared user library (MyLib, Listing 3.1)
containing two functions div and abs. The function div takes two arguments, a and b,
and computes a / b. To avoid division by zero, it checks whether b is zero and jumps
to an error handler in this case. The function abs takes three arguments, f, a, and
b. The first argument f is a function pointer and a and b are the arguments for the
call of this function pointer. The function abs uses the function pointer to invoke the
target function and then computes and returns the absolute value of the result. The
main application of our example (Listing 3.2) uses MyLib.

In Section 3.1.4 we describe how TruffleC optimizes the AST of a C function depend-
ing on the profile of a program execution. To illustrate these optimizations, we assume
the following program profile: f will always point to the function div, a is always a
positive value, and b is always 2.

Uniform Language Implementations with Truffle 23

TruffleC
converter

.c File.c file

TruffleC

*.c FilePrecompiled native
library

*.c FileTruffleC binary AST file GNFI

Figure 3.1: Compiling C files to TruffleC binary AST files, which are executed on top
of TruffleC.

3.1.2 Compiling C Code to ASTs

Figure 3.1 depicts an architectural overview of TruffleC. The TruffleC converter com-
piles C source code to a binary representation from which we can create a Truffle AST
later efficiently. The TruffleC converter performs the preprocessing and syntax check-
ing and produces TruffleC binary AST files that contain a serialized form of our ASTs.
These files are platform independent so that TruffleC instances running on different
platforms can load and execute them.

We translate the source code of our example (Listing 3.1 and 3.2) to two TruffleC
binary AST files: The first one contains the library MyLib and the second file contains
the main application and its entry point. In contrast to that, an industry-standard
compiler such as GCC would require us to first compile the shared library to executable
machine code before we could compile the main application and link it to the library.

3.1.3 Linking

C applications typically consist of several source files, which we translate to individual
TruffleC binary AST files. These files can contain references to symbols declared in
other files, which need to be resolved. We combine multiple files by patching symbol
references at run time using Truffle’s node specialization mechanism. This resolving
step happens only once upon the first execution of an unresolved node, which replaces
itself by a resolved version. Afterwards, the application runs at full speed. An example
of an unresolved symbol reference is a function call whose target is implemented in a
different file. TruffleC resolves the target of a function call using its name upon the first
execution. It searches for the target function in all TruffleC binary AST files, creates
the AST of the function, and replaces the unresolved call node by a specialized and
resolved version of it. The resolved node ensures that subsequent executions directly
call the target function without any prior resolution. Creating the AST of a function
is done only once; different call sites to the same target all use the same AST. In our

Uniform Language Implementations with Truffle 24

example, TruffleC looks for call targets in the TruffleC files of the main application and
MyLib.

However, if the target function is located in a precompiled native library (e.g. in the
standard C library), then TruffleC uses GNFI to efficiently access it. The resolved call
node caches a NativeFunctionHandle, which is the interface provided by GNFI to allow
TruffleC to directly call native functions. GNFI provides NativeFunctionHandles to
call native target functions directly from Java.

When using a traditional C compiler to run the example of this thesis, one would
create an executable file by linking the main application’s object file with the precom-
piled library. Linking combines the given files by patching symbol references (e.g., by
patching call target addresses). In contrast to TruffleC, there is no symbol resolution
at run time.

3.1.4 Optimizations on AST Level

After having created the ASTs for the C functions, TruffleC starts interpreting them.
During interpretation, the nodes of a tree can replace themselves with specialized ver-
sions. If the execution count of a stable tree (i.e., when nodes no longer rewrite them-
selves because the tree is already fully specialized) exceeds a predefined threshold, then
the Graal compiler transforms the AST into machine code. The following sections
explain how we implement dynamic optimization for C using the self-optimization ca-
pability of Truffle.

Inlining

When traditional compilers (e.g. GCC) compile source files to individual object files,
inlining of external functions is not possible by default because the callee’s code is
usually unknown when the caller is compiled.

Our approach, however, interprets ASTs and only later turns them into machine code,
so TruffleC can inline functions as ASTs from other files or from shared libraries at run
time. TruffleC inlines functions by copying the AST of the callee and replacing the call
node with this copy. TruffleC provides information to the underlying Truffle framework
that allows Truffle to take inlining decisions. Truffle’s inline heuristic decides for each
call site whether to call or to inline the target function. This decision is based on the
call count of the caller and the size of the caller and the callee, respectively. For our
example, we assume that the call sites of abs and div (see Listing 3.1) are frequently
executed and therefore Truffle decides to inline these functions. Once execution of the
main application exceeds a predefined threshold, the Graal compiler transforms the

Uniform Language Implementations with Truffle 25

1 i f (f != d i v)
2 // DEOPT
3 i f (b != 2)
4 // DEOPT
5 i n t r e s u l t = a >> 1 ;
6 i f (r e s u l t < 0)
7 // DEOPT

Listing 3.3: Result after dynamic compilation (pseudo code).

1 mov rax , #f
2 cmpq rax , #d i v ; i s f != d i v
3 j n z DEOPT
4 mov eax , #b
5 cmpl eax , 0x2 ; i s b != 2?
6 j n z DEOPT
7 mov eax , #a ; s i g n e d s h i f t i n s t e a d o f s i g n e d d i v i s i o n
8 mov e s i , eax
9 s h r l e s i , 0x1F

10 add e s i , eax
11 s a r l e s i , 0 x1
12 t e s t e s i , e s i ; i s r e s u l t < 0?
13 j l DEOPT
14 ; e s i c o n t a i n s r e s u l t

Listing 3.4: Result after dynamic compilation (machine code).

AST (with the functions abs and div inlined) to machine code. Listings 3.3 and 3.4
show the code (pseudo code and machine code) that the Graal compiler produces for
the call to abs if all functions are inlined and the profile assumptions are exploited. In
the following we describe how we use AST specialization at run time for C code and
explain the machine code in Listing 3.4 in more detail.

If our example were compiled with GCC (without any link time optimizations, which
are disabled by default) we would get code that calls abs directly and div via a function
pointer. Static compilers cannot inline this external function because they compile the
files independently and abs’ code is not available when the main application is compiled.

Inline Caches for Function Pointer Calls

A regular function call specializes upon its first execution. It replaces itself with a direct
call to the AST of the target function and never reverts to a generic version because
the target never changes. However, a function pointer call can have different targets,
which prevents this specialization. As the target can change, a function pointer call
would have to resolve and link the target for each call before executing it. To avoid the
overhead of a lookup in TruffleC’s function table, we cache the resolved target functions.
A subsequent execution of this function pointer call then checks whether the function

Uniform Language Implementations with Truffle 26

pointer value matches the cached function. If so, it directly executes the target. By
caching multiple targets, we can efficiently handle polymorphic function pointer calls.
In case of a new and unseen function pointer value we resolve its target and add it
to this cache, i.e., we add an entry to the chain of nodes. An entry in this cache can
be seen as constant and therefore Truffle considers these functions for inlining, which
creates an inline cache for polymorphic function pointer calls. To prevent excessive
growth of this inline cache queue, we replace it with a generic function pointer call
once it would exceed a predefined length. The generic case resolves and executes the
target for every call without caching.

The function abs (Listing 3.1, line 12) contains a function pointer call. In our
example, this call always executes the function div. The call site of this function
pointer call resolves the target div and caches it. When Graal compiles this call site,
it produces machine code that checks whether the function pointer value matches the
cached div function (Listing 3.4, line 1-3). If so, the inlined function div is executed.
Otherwise, the function pointer node has to resolve the unseen target and add it to
its inline cache. Graal does not compile this resolution to machine code. Instead, it
inserts a deoptimization point (Listing 3.4, line 3), which transfers the execution from
compiled machine code back to the AST interpreter.

Branch Probability Profiling

Besides caching the target of a function pointer call, TruffleC also records the branch
probabilities for conditional statements. It makes the branch probability information
available to the Graal compiler by attaching it to the condition. If the profiling in-
formation shows that a certain branch is never executed, the compiler excludes the
supposedly dead branch from compilation. If the removed code needs to be executed,
then the machine code triggers a deoptimization. This technique reduces the size of
the machine code produced by the compiler.

If the profile information of abs (Listing 3.1) shows that value has never been
negative, the compiler excludes the then-branch from compilation. If this assumption
is violated later on (i.e., value is negative), the machine code deoptimizes. If the
branch profile does not allow the removal of a dead branch, the Graal compiler can still
use this information for other optimizations, e.g., to swap branches.

Value Profiling

While interpreting the AST, TruffleC collects profile information for all variables that
cannot be statically replaced with constants. If the profile information shows that the
value of a variable does not change, TruffleC speculates on the value being constant

Uniform Language Implementations with Truffle 27

using specialization. Every access to this variable checks if the assumption is still
valid and uses a constant in this case. When the Graal compiler translates the AST
to machine code, this specialization enables further optimizations such as constant
propagation or constant folding. If the assumption no longer holds, the AST reverts
the assumptions about the variable being constant. In machine code, a no longer valid
assumption causes a deoptimization.

In our example, we assume that b (Listing 3.2) always has the value 2. After observing
the constant value multiple times, TruffleC specializes the variable’s node and assumes
that this value is constant. If this assumption no longer holds, the node rewrites itself
to the generic case where no assumptions about b are made. When Graal compiles our
example, it produces machine code that checks if b is still 2 (Listing 3.4, line 4-6) and
replaces all usages of b with the constant value 2. In our example, this assumption
allows the Graal compiler to use a shift operation instead of the division (Listing 3.4, line
11) and to remove the check b == 0 completely. As this division is a signed operation,
the compiler inserts the lines 8-10, which ensure a correct behavior in case of a negative
numerator. If the value profile turns out to be invalid, we again deoptimize. We then
rewrite the variable’s node to the generic case where the above optimizations no longer
apply.

Comparison to Static Compilers

The dynamic optimizations of TruffleC are to some extent also possible with a static
compiler like GCC. For example, GCC offers link time optimizations1 and profile guided
optimizations2:

Link time optimizations: This optimization (enabled by the compiler flag -flto) al-
lows GCC to dump its internal representation of a compilation unit to the object
files. When combining units to a single executable, the compiler can optimize it
as a single module and can therefore expand the compilation scope across differ-
ent units. However, the optimizations, including inlining, still happen statically
before executing the program. Hence, no profile information about the program
execution is available.

TruffleC inlines functions at run time and can use profile information to guide the
sophisticated inline heuristics of Truffle. As inlining is one of the most beneficial
optimizations [3, 95], good inlining decisions are important for the performance
of a program.

1Link Time Optimization, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/wiki/
LinkTimeOptimization

2Profile Guided Optimizations, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/
onlinedocs/gcc-4.7.2/gcc/Optimize-Options.html

https://gcc.gnu.org/wiki/LinkTimeOptimization
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Optimize-Options.html

Uniform Language Implementations with Truffle 28

Source Compile with
-fprofile-generate

Instrumented
Executable

Profile Data

Sample runs

Compile with
-fprofile-use

Optimized
Executable

Figure 3.2: Profile guided optimization with the GCC.

Profile-guided optimizations: GCC has support for optimizing C code for a given pro-
gram profile. This is done by first compiling the source code to an instrumented
executable (enabled by the compiler flag -fprofile-generate). This executable
dumps the profile data of sample runs to a file, which can then be used by a
second compilation step. In this second step the C source code is compiled again
and the compiler uses the profile data as an additional input (enabled by the
compiler flag -fprofile-use). The result is an executable that is optimized for
the profile of the sample runs. Figure 3.2 summarizes the steps of a profile-guided
optimization with GCC.

In contrast, TruffleC collects profile information during AST interpretation and
uses it to rewrite AST nodes to a specialized version or provides it to the Graal
compiler. The result is machine code, which is optimized for a given program
profile. In addition to that, if the behavior of a program changes at run time,
TruffleC deoptimizes the machine code and can again collect profile information
to specialize the AST on the new behavior. This is not possible with a static
compiler such as GCC.

Our technique has two advantages over profile-guided optimizations of GCC.
First, there is no explicit sampling step involved. TruffleC starts interpreting a
program and collects the profiling information; eventually it dynamically compiles
the AST. Profiling and dynamic compilation are transparent to the application
programmer, hence, it is not necessary to recompile source code. Second, in case
the behavior of a program changes, TruffleC can respecialize on the new behav-
ior. When using GCC, this would require resampling the program and manually
recompiling an optimized executable.

Uniform Language Implementations with Truffle 29

3.1.5 Data Allocations

A C program running on top of TruffleC can switch execution from TruffleC to a na-
tive function (e.g., one that is part of the standard C library) using GNFI [37]. When
switching from the TruffleC interpreter (that is written in Java) to native code, GNFI
allows passing parameters from Java to a native function. Besides passing parameters,
TruffleC can also exchange data of the running C program via pointers. Hence, Truf-
fleC needs a memory model that allows sharing allocations (e.g., structs, unions and
arrays) between TruffleC and native code.

Usually, TLIs use Frame objects (see Section 2.2.3) for storing data. However, point-
ers cannot reference variables that are stored in the virtual Frame because it is not
possible to provide a valid memory address of Java objects. The JVM manages Java
objects automatically and does not allow a direct access via a raw pointer. Hence,
TruffleC cannot use the Frame object for those variables of a C application that are
referenced via pointers. To fulfill the requirements of C, TruffleC distinguishes two
locations of data. Data can be either stored on the native heap or in the Frame object:

The native heap: Java applications can access the native heap using the Java Unsafe
API (available under restricted access in the OpenJDK). The Unsafe API provides
functionality to manually allocate memory on the native heap and to load data
from it and store data into it.

TruffleC stores all global or static variables of a C application in a memory block
on the native heap. This guarantees that static or global objects are not garbage
collected and pointers can be used to reference this data. TruffleC manages a
native C stack by allocating a second memory block on the native heap, which is
used like a stack. This memory block contains all function-local arrays, structs,
unions, and primitive values that are referenced by a pointer. Pointers to these
objects can be shared with native library code because TruffleC and the native
code use the same data alignment.

TruffleC represents all pointers as CAddress Java objects that wrap a 64-bit
integer value. This value is a pointer to the native heap and therefore features any
kind of pointer arithmetic. Address values can also be shared with precompiled
native code because an address is always represented as a 64-bit value.

The Frame object: In contrast to elements stored on the native heap, the Graal com-
piler can apply more aggressive optimizations on values stored in the Frame object.
To leverage these optimizations, TruffleC keeps all local variables of primitive
types that are never referenced by pointers in the Frame object.

Uniform Language Implementations with Truffle 30

1 void f oo () {
2 s t a t i c i n t coun t e r ; //The n a t i v e heap
3 i n t [3] a r r a y ; //The n a t i v e heap
4 i n t v a l u e ; //The n a t i v e heap
5 i n t ∗ p o i n t e r = &v a l u e ; //Frame o b j e c t
6 // . . .
7 }

Listing 3.5: Different locations for local data.

Listing 3.5 summarizes where TruffleC allocates the local variables of a function. The
static variable counter, the non-primitive variable array, and the integer variable
value (which is referenced by a pointer) are stored on the native heap. The pointer
variable pointer is never referenced by its address and is therefore stored in the Frame

object.

The TruffleC memory model as well as the native function calls via GNFI provide
efficient interoperability between TruffleC and precompiled native code. However, this
forces the implementation of TruffleC to be platform-specific. TruffleC’s nodes for
address computation ensure that non-primitive data on the native heap uses the align-
ment of the target platform. This allows exchanging data with precompiled native
code. Also, TruffleC needs to follow the GNFI Java calling convention [37] for all na-
tive calls. As this calling convention differs between platforms, the usage of GNFI is
also platform-dependent. The parts of TruffleC that do the address computation and
use GNFI need to be customized for each target platform.

3.1.6 Limitations

TruffleC aims to support the C99 standard [29], however, it is not yet fully complete.
TruffleC does not yet have support for flexible array members, variable-length auto-
matic arrays, designated initializers, and compound literals. However, adding them
would only require additional engineering effort. TruffleC has no conceptual restric-
tions in this respect. Adding support for these missing features is planned as future
work. Flexible array members3 allow defining a C struct that has an array member
without a given dimension, for example (see Listing 3.6):

3Arrays of length zero, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/onlinedocs/gcc/
Zero-Length.html

https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html

Uniform Language Implementations with Truffle 31

1 s t ruc t v e c t o r {
2 i n t l e n g t h ;
3 i n t a r r a y [] ;
4 }

Listing 3.6: A C struct using a flexible array member.

Variable-length automatic arrays4 are array data structures whose length is deter-
mined at run time. Designated initializers5 allow assigning values to arrays or structs
in any order. For example, designated initializers initialize array elements with certain
values (see Listing 3.7):

1 i n t a r r [5] = { [4] = 42 , [1] = 12} ;

Listing 3.7: An initialization using a designated initializer.

Compound literals6 look like casts that contain an initialization. The initialization
value is specified as a list of all values to be assigned. For example, a struct can be
initialized as follows (see Listing 3.8):

1 s t ruc t myComplex {
2 double r ;
3 double i ;
4 } c ;
5 c = ((s t ruc t myComplex) {13 .0 , 4 . 5 }) ;

Listing 3.8: Using compound literals for initialization.

TruffleC aims to support the widely used C99 standard, but support for multi-
threading is out of scope of this thesis. The latest C standard C11 [30] adds multi-
threading support to the C language. At the time of writing this thesis, Truffle has
only experimental support for multi-threading but future work on TruffleC will also
add multi-threading for C.

4Arrays of variable length, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/onlinedocs/
gcc/Variable-Length.html

5Designated initializers, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/onlinedocs/
gcc/Designated-Inits.html

6Compound literals, GCC the GNU Compiler Collection, 2015: https://gcc.gnu.org/onlinedocs/gcc-3.
2/gcc/Compound-Literals.html

https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html
https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
https://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Compound-Literals.html
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Compound-Literals.html

Uniform Language Implementations with Truffle 32

Tr
uffl
eJS V8

Sp
ide
rm
on
key

Na
sho

rn
0

1

2

3

Figure 3.3: Relative speedup of different JavaScript implementations compared to Truf-
fleJS; results taken from [112].

3.2 TruffleJS

TruffleJS is an implementation of JavaScript on top of Truffle and was originally Truf-
fle’s proof of concept. JavaScript is a dynamically typed, prototype-based scripting
language with first-class functions. It allows an object-oriented, an imperative, as well
as a functional programming style, which makes it a good candidate for the evalu-
ation and case study in this thesis. TruffleJS is a state-of-the-art JavaScript engine
that is fully compatible with the JavaScript standard. It uses optimizations on the
AST level (see Section 2.2.1), e.g., for dynamic type specialization of operations, vari-
ables and object properties. Figure 3.3 summarizes the performance evaluation of [112]
for JavaScript. The y-axis shows the performance of Google’s V87, Mozilla’s Spider-
monkey8, and Nashorn as included in JDK 8u59 relative to TruffleJS where the outer
most lines show the minimum and maximum performance and the inner dot shows
the average performance. The x-axis shows the different language implementations.
This evaluation uses a selected set of benchmarks from the Octane benchmark suite.
Google’s V8 is between 210% faster and 67% slower (52% faster on average) than Truf-
fleJS; Mozilla’s Spidermonkey is between 160% faster and 22% slower (54% faster on
average) than TruffleJS; Nashorn as included in JDK 8u5 is between 12% faster and
96% slower (74% slower on average) than TruffleJS.

7V8 JavaScript Engine, Google, 2015: http://code.google.com/p/v8
8SpiderMonkey JavaScript Engine, Mozilla Foundation, 2015: http://developer.mozilla.org/en/

SpiderMonkey
9Nashorn JavaScript Engine, Oracle, 2015: http://openjdk.java.net/projects/nashorn

http://code.google.com/p/v8
http://developer.mozilla.org/en/SpiderMonkey
http://developer.mozilla.org/en/SpiderMonkey
http://openjdk.java.net/projects/nashorn

Uniform Language Implementations with Truffle 33

Tr
uffl
eR
ub
y

MR
I

Ru
bin
ius

JR
ub
y

To
pa
z0

0.2

0.4

0.6

0.8

1

Figure 3.4: Relative speedup of different Ruby implementations compared to Truf-
fleRuby; results taken from [112].

3.3 TruffleRuby

TruffleRuby is an implementation of Ruby on top of Truffle. Ruby is a dynamically
typed and object-oriented language that is inspired by Smalltalk and Perl. TruffleRuby
reuses the parser from JRuby, however, little of the two systems are currently shared
and TruffleRuby (also called JRuby+Truffle in [40, 90]) should be considered entirely
separate from JRuby for this discussion. TruffleRuby performs well compared to exist-
ing Ruby implementations. Figure 3.4 summarizes the performance evaluation of [112]
for Ruby. The y-axis shows the performance of MRI, Rubinius10,11, JRuby, and Topaz12

relative to TruffleRuby where the outer most lines show the minimum and maximum
performance and the inner dot shows the average performance. The x-axis shows the
different language implementations. This evaluation uses the Richards and DeltaBlue
benchmarks from the Octane suite, a neural-net, and an n-body simulation. MRI is
between 63% and 97% slower (92% slower on average) than TruffleRuby; Rubinius is
between 24% and 97% slower (83% slower on average) than TruffleRuby; JRuby is be-
tween 61% and 94% slower (84% slower on average) than TruffleRuby; Topaz is between
1% and 87% slower (71% slower on average) than TruffleRuby.

10An implementation of Ruby, Rubinius, 2015: http://rubini.us
11Rubinius, GitHub repository, 2015: https://github.com/rubinius/rubinius
12Topaz Project, GitHub repository, 2015: https://github.com/topazproject/topaz

http://rubini.us
https://github.com/rubinius/rubinius
https://github.com/topazproject/topaz

Truffle Language Implementation Composition 34

Chapter 4

Truffle Language Implementation
Composition

This chapter describes the main contribution of this thesis. We intro-
duce generic access, a novel mechanism that allows accessing objects in a
language-agnostic fashion. We use generic access to compose different TLIs,
which allows writing programs in different languages. To support generic
access, each TLI defines a mapping from language-specific object accesses
to language-agnostic messages and vice versa.

The TMLR can execute programs that are composed from parts written in multiple
languages. Programmers use different files for different programming languages. For
example, if parts of a program are written in JavaScript and C (see Listing 4.1 and 4.2),
these parts are in different files. Distinct files for each programming language allow us to
reuse the existing parsers of each TLI without modification. It is therefore not necessary
to combine these languages in a common grammar. Programmers can export data and
functions to a shared multi-language scope and can also import data and functions from
this scope. Figure 4.1 illustrates that all TLIs access and share a multi-language scope,
which allows programmers to explicitly share data among other languages. JavaScript,
Ruby, and C provide Truffle-built-ins to export and import data to and from the multi-
language scope. For example the C code of Listing 4.1 exports the C struct obj to
the multi-language scope and the JavaScript code of Listing 4.2 imports it.

TruffleCTruffleRbTruffleJS

Multi-language Scope

import
export

Figure 4.1: TLIs can import and export objects from and to a multi-language scope.

Truffle Language Implementation Composition 35

1 #include<t r u f f l e . h>
2

3 typedef s t ruc t {
4 i n t v a l u e ;
5 } S ;
6

7 S ∗ ob j = // . . .
8 Export (" ob j " , ob j) ;

Listing 4.1: This C snipped exports the variable obj which points to a struct
of type S.

1 var ob j = T r u f f l e . import (" ob j ") ;
2 var a = ob j . v a l u e ;

Listing 4.2: This JavaScript snipped imports a variable obj and accesses its
value member.

The TMLR distinguishes between two types of values that can be exchanged among
languages:

Primitive types: The TMLR defines a set of shared primitive types to exchange prim-
itive values across different languages. We refer to values with such a primitive
type as shared primitives. This set of types includes all Java built-in types, such as
all number classes that extend java.lang.Number and also the java.lang.String

type. Shared primitives do not need to implement the TruffleObject interface (see
Section 4.1) but can be exchanged directly. A TLI maps its language-specific
primitive values to shared primitive values and exchanges them as language-
agnostic values. Vice versa, a TLI maps shared primitive values to language-
specific values. Using this set of types works well for TLIs because TLIs are itself
written in Java, hence, the TLIs already map the primitive types of the guest
language to Java types.

Object types: Every non-primitive type needs to be shareable in the sense that it sup-
ports generic access (see Section 4.1).

In the following we describe generic access in detail. Generic access allows accessing
foreign objects seamlessly, i.e., it makes language boundaries mostly invisible to the
programmer. In addition, programmers can use an explicit form of generic access to
access foreign objects in cases where this access is not defined by the semantics of the
host language (see Section 4.3).

Truffle Language Implementation Composition 36

4.1 Generic Access Mechanism

TLIs use different layouts for objects and each TLI uses language-specific AST nodes
to access regular objects. In the context of this thesis, we use the term object for a
non-primitive entity of a user program, which we want to share across different TLIs.
Examples include data (such as JavaScript objects, Ruby objects, or C pointers), as
well as functions, classes or code blocks. If the JavaScript implementation accesses a
JavaScript object, the object is considered a regular object. If JavaScript (host language,
LHost) accesses a C struct (see Listing 4.2), the C struct is considered a foreign object
(we call C the foreign language, LForeign). A foreign object has an unknown type, hence,
the host language accesses it with generic access. Object accesses are operations that an
LHost can perform on objects, e.g., method calls, property accesses, or field reads. The
property access obj.value (see Listing 4.2) is an example of a foreign object access.

4.1.1 Object Access via Messages

Every object that can be shared across different languages needs to support generic
access. A sharable object implements a common interface, i.e., the TruffleObject

interface. We implement this interface as a set of messages. For example, a LHost

can access the members of sharable objects by Read and Write messages. The LHost

inserts language-agnostic message nodes into the AST of a program to access these
foreign objects. In the following we formally describe this transformation, which inserts
message nodes into the AST of a host application.

TLIs transform source code to a tree of nodes, i.e., an AST. NA and NB define finite
sets of nodes of TLIs A and B. Each node has r : NA → N children, where N denotes
the set of natural numbers. If n ∈ NA is a node, then r(n) is the number of its children.
We call nodes with r = 0 leaf nodes. For example, nodes that represent constants and
labels are leaf nodes. An AST t ∈ TNA is a tree of nodes n ∈ NA. By n(t1, ..., tk) we
denote a tree with root node n ∈ NA and k sub-trees t1, . . . , tk ∈ TNA , where k = r(n).

Generic access defines a set of messages, which are modeled as Truffle nodes NMsg:

NMsg = {Read,Write,Execute,Unbox, IsNull} (4.1)

If TLI A encounters a foreign object at run time and a regular object access operation
cannot be used, then TLI A maps the AST with the language-specific object access t ∈
TNA to an AST with a language-agnostic, message-based object access t′ ∈ TNA∪NMsg

using the function fA:
TNA

fA−→ TNA∪NMsg (4.2)

Truffle Language Implementation Composition 37

=

a .

obj

obj is a
 C struct

=

a

obj

!!" !

Regular object access
Language-agnostic

object access

value value

Read

Figure 4.2: Accessing a C struct from JavaScript: We replace the property access with
a Read message.

The function fA replaces the language-specific access with a message-based access. The
tree t′ ∈ TNA∪NMsg consists of language-specific nodes NA and message nodes NMsg.
The other parts of the AST t remain unchanged. An LHost that accesses foreign objects
has to define this function f . To compose JavaScript, Ruby, and C we use the messages
n ∈ NMsg where the sub-trees t1, . . . , tk ∈ TNA∪NMsg of n(t1, ..., tk) evaluate to the
arguments of the message.

Read: TLIs use the Read message to access a field of an object or an element of an
array. It can also be used to access methods of classes or objects, i.e., to lookup
executable methods from classes and objects.

Read(trec, tid) ∈ TNA∪NMsg (4.3)

The first subtree trec denotes the receiver of the Read message, the second subtree
tid the name or the index.

Consider the example in Figure 4.2 (a property access in JavaScript obj.value,
see Listing 4.2), fJS replaces the JavaScript-specific object access (node "." in
the AST, implemented as a node of class JSReadProperty) with a Read message
at run time if JavaScript suddenly encounters a foreign object.

JSReadProperty(tobj, tvalue)
fJS7−−→ Read(tobj, tvalue) (4.4)

Rather than using a JSReadProperty node to directly access the value property
of the receiver obj, the JavaScript implementation uses a Read message to access
the foreign object.

Truffle Language Implementation Composition 38

Write: A TLI uses the Write message to set the field of an object or the element of
an array. It can also be used to add or change the methods of classes and objects.

Write(trec, tid, tval) ∈ TNA∪NMsg (4.5)

The first subtree trec denotes the receiver of theWrite message, the second subtree
tid the name or the index, and the third subtree tval the written value.

Execute: TLIs execute methods or functions using an Execute message.

Execute(tf, t1, . . . , ti) ∈ TNA∪NMsg (4.6)

The first subtree tf denotes the function/method itself, the other arguments
t1, . . . , ti denote the arguments.

Unbox: Programmers often use an object type to wrap a value of a primitive type
in order to make it look like a real object. An Unbox message unwraps such a
wrapper object and produces a primitive value. TLIs use this message to unbox
a boxed value whenever a primitive value is required.

Unbox(trec) ∈ TNA∪NMsg (4.7)

The subtree trec denotes the receiver object.

IsNull: Many programming languages use null/nil for an undefined, uninitialized,
empty, or meaningless value. The IsNull message allows the TLI to do a language-
agnostic null-check.

IsNull(trec) ∈ TNA∪NMsg (4.8)

The subtree trec denotes the receiver object.

4.1.2 Message Resolution

The first execution of a message does not directly access the receiver object but triggers
message resolution. The TMLR resolves the message to a foreign-language-specific
AST snippet. LForeign provides an AST snippet that the TMLR inserts into the host
AST as a replacement for the message. This foreign-language-specific AST snippet
depends on the type of the receiver and contains type-specific nodes for executing the
message on the receiver. The TMLR maps the host AST with a language-agnostic
access t′ ∈ TNA∪NMsg to an AST with a foreign-language-specific access t′′ ∈ TNA∪NB

using the function gB, which is defined by LForeign:

TNA∪NMsg
gB−→ TNA∪NB (4.9)

Truffle Language Implementation Composition 39

=

a

obj

=

a ->

Message Resolution

!! !

Language-agnostic
object access

Foreign language-specific
object access

value

Read

obj

valueis C struct?

Figure 4.3: Accessing a C struct from JavaScript: Message resolution inserts a C
struct access into a JavaScript AST.

Message resolution produces an AST that consists of nodes NA ∪ NB. The other
parts of t′ remain unchanged. With respect to the example in Figure 4.3, the TMLR
uses gC (defined by TruffleC) and replaces the Read message with a C-specific struct

access operation upon its first execution. If the receiver is a pointer to a C struct,
then TruffleC maps a Read message to a CMemberRead node (node "->" in the AST):

Read(tobj, tvalue)
gC7−→ CMemberRead(IsStr(tobj), tvalue) (4.10)

The result is a JavaScript AST that embeds a C access operation t′′ ∈ TNJS∪NC . After
message resolution the receiver object is accessed directly rather than by a message. In
order to notice an access to an object of a previously unseen language or a C object
with a different type, message resolution inserts a guard into the AST that checks
the receiver’s type before it is accessed. This is shown in Figure 4.3 where message
resolution inserts a node that checks if obj is a C struct. If this check fails, the
execution falls back to the language-agnostic Read message, which will then be resolved
to a new AST snippet.

An object access is language-polymorphic if it has varying receivers originating from
different languages. In the polymorphic case, Truffle embeds the different language-
specific AST snippets in a chain like an inline cache [53] to achieve best performance.

Truffle Language Implementation Composition 40

!!! ! !!! !

!!! !! !

Case 1
Case 3Case 2

!!! ∪ !!!!"# !

Figure 4.4: Venn diagram of a foreign object access.

4.2 Seamless Foreign Object Access

Language implementers have to define the functions fA and gB. The function fA maps
the AST t to an AST t′ ∈ TNA∪NMsg that uses a message to access the foreign object.
The foreign language defines the function gB that maps t′ to an AST t′′ ∈ TNA∪NB

with a foreign-language-specific object access:

TNA
fA−→ TNA∪NMsg

TNA∪NMsg
gB−→ TNA∪NB

(4.11)

The TMLR composes TLIs automatically by composing fA and gB at run time:

gB ◦ fA : TNA → TNA∪NB (4.12)

It creates an AST t′′ ∈ TNA∪NB where the main part is specific to language A and
the foreign object access is specific to language B. When composing fA and gB three
different cases can occur (see Figure 4.4):

1. If gB is defined for t′ ∈ TNA∪NMsg , a foreign object can be accessed seamlessly.
The language B can replace the language-agnostic object access with a foreign-
language-specific access.

2. If gB is not defined for t′ ∈ TNA∪NMsg , we report a run-time error with a high-level
diagnostic message. The foreign object access is not supported. For example, if
JavaScript accesses the length property of a C array, we report an error. C cannot
provide length information for arrays.

3. A foreign object access might not be expressible in A, i.e., one wants to create
t′ ∈ TNA∪NMsg but language A does not provide syntax for this access. For
example, a C programmer cannot access the length property of a JavaScript
array. In this case one has to fall back to an explicit foreign object access.

Truffle Language Implementation Composition 41

1 var a r r = new Array (5) ;
2 T r u f f l e . e xpo r t (" j s A r r a y " , a r r) ;

Listing 4.3: Array allocation in JavaScript.

1 #include<t r u f f l e . h>
2

3 i n t ∗ a r r = (i n t ∗) Import (" j s A r r a y ") ;
4 i n t l e n g t h = Read_int32 (a r r , " l e n g t h ") ;

Listing 4.4: C code accessing the length property of an array.

4.3 Explicit Foreign Object Access

A host language might not provide syntax for a specific foreign object access. Consider
the JavaScript array arr of Listing 4.3, which is used in a C program. C does not
provide syntax for accessing the length property of an array. We overcome this issue by
providing an interface to the programmer that allows explicitly using generic access.
Using this interface, the programmer can fall back to an explicit foreign object access.
The programmer directly uses generic access in order to access a foreign object. In
other words, this interface allows programmers to handcraft the foreign object access
of t′ ∈ TNA∪NMsg .

Every TLI has an API to use generic access explicitly. For example, to access the
length property of a JavaScript array (see Listing 4.3) from C (see Listing 4.4), the
programmer uses the TruffleC-built-in C function Read_int32. The C implementation
substitutes this Read_int32 invocation by a Read message.

4.4 Discussion

Generic access is a simple and efficient mechanism for cross-language interoperability
between multiple languages. It has the following advantages:

Support for multiple languages: Generic access is independent of any TLI and can
therefore compose multiple languages. Every TLI can access any object that
supports generic access, which makes the TMLR extensible by new languages. In
Section 5.1.3 we explain how a new TLI can be added to the TMLR.

Efficient multi-language development: We can achieve a seamless foreign object ac-
cess by mapping host-language access operations to messages, which are then
mapped back to foreign-language-specific operations. Compared to other ap-
proaches that use an explicit API for every interaction with a foreign language,

Truffle Language Implementation Composition 42

Dynamic Compilation JS

JS JS

JS C

JS
JS

=

a ->

obj

valueis C struct?

Figure 4.5: Language boundaries are completely transparent to the compiler.

this approach is simpler. It makes the mapping of access operations to messages
largely the task of the language implementer rather than the task of the applica-
tion programmer. Programmers are not forced to write boilerplate code as long as
an object access can be mapped from language A to language B (t fA7−→ t′

gB7−→ t′′)
via generic access. Only if not otherwise possible, programmers can explicitly use
generic access to access foreign objects.

High-performance interoperability: Message resolution only affects the application’s
performance upon the first execution of an object access. By generating AST
snippets for accessing foreign objects we avoid compilation barriers between lan-
guages. This allows the compiler to inline method calls even if the receiver is a
foreign object (see Figure 4.5). Widening the compilation unit across different
languages is important [3,95] as it enables the compiler to apply optimizations to
a wider range of code.

Implementation of a Multi-Language Runtime 43

Chapter 5

Implementation of a
Multi-Language Runtime

In this chapter we present two case studies. First, we show an implemen-
tation of generic access for JavaScript, Ruby, and C and explain how we
compose these languages. With this case study we back our claim about
supporting multiple languages and easing an efficient multi-language devel-
opment. Second, we describe how we implement the C extensions API for
Ruby. We use generic access to provide an implementation for this inter-
face, which allows us to run existing production-code. With this case study
we back our claim that the TMLR can support legacy interfaces between
languages.

5.1 Interoperability between JavaScript, Ruby, and C

We want to provide a system that allows programmers to write multi-language ap-
plications where language boundaries are completely transparent. We first discuss
the implementation of generic access for JavaScript, Ruby, and C and we present a
mapping from host-language-specific operations to messages and from there to foreign-
language-specific operations. Second, we discuss how we can bridge differences between
JavaScript, Ruby, and C. These differences are object-oriented and non-object-oriented
programming, dynamic and static typing, explicit and automatic memory management,
or safe and unsafe memory access.

Implementation of a Multi-Language Runtime 44

1 // Impor t s a T r u f f l e O b j e c t from the mul t i−l anguage scope
2 T r u f f l e . impor t (i d) ;
3 // Expo r t s an o b j e c t to the mu l t i−l anguage scope
4 T r u f f l e . e xpo r t (id , v a l) ;
5

6 // Reads from a T r u f f l e O b j e c t
7 T r u f f l e . r ead (r e c e i v e r , i d) ;
8 // Wr i t e s to a T r u f f l e O b j e c t
9 T r u f f l e . w r i t e (r e c e i v e r , id , v a l u e) ;

10

11 // . . .

Listing 5.1: Excerpt of the built-ins (Truffle-object methods) for JavaScript.

5.1.1 Implementation of Generic Access

TruffleJS

JavaScript is a prototype-based scripting language with dynamic typing. It is almost
completely object-oriented. JavaScript objects are associative arrays that have a pro-
totype, which corresponds to their dynamic type. Object property names are string
keys and it is possible to add, change, or delete properties of an object at run time.
JavaScript objects are implemented using the DynamicObject. In TruffleJS, all data
objects are shareable in the sense that they support generic access. TruffleJS maps
property accesses to Read and Write messages and vice versa. Functions are first
class objects. TruffleJS maps a function invocation to an Execute message and vice
versa. TruffleJS maps incoming numeric primitive values to objects of type Number,
i.e., JavaScript’s type for representing number values. Also, TruffleJS unboxes (us-
ing the Unbox message) boxed foreign primitive values (e.g. Ruby’s Float) and maps
them to objects of type Number. Number objects support the Unbox message, which al-
lows sharing them among other languages. Unbox maps the value to a numeric shared
primitive. Table 5.1 summarizes the mapping of JavaScript operations from and to
messages.

The implementation of generic access for TruffleJS also introduces a built-in object
Truffle (see Listing 5.1). The Truffle object defines functions for importing and
exporting objects from and to the multi-language scope. Also, it defines functions to
explicitly access foreign objects. TruffleJS substitutes every call to these functions by
a generic access or a multi-language scope access.

Implementation of a Multi-Language Runtime 45

Access TNA
fA−→ TNA∪NMsg

Property read JSReadProperty(trec, tid)
fJS7−−→ Read(trec, tid)

Property write JSWriteProperty(trec, tid, tval)
fJS7−−→ Write(trec, tid, tval)

Is null JSIsNil(trec)
fJS7−−→ IsNull(trec)

Call JSCall(tfunc, trec . . .)
fJS7−−→ Execute(tfunc, trec . . .)

Receiver trec TNA∪NMsg
gB−→ TNA∪NB

Object Read(trec, tid)
gJS7−−→ JSReadProperty(IsJS(trec), tid)

Object Write(trec, tid, tval)
gJS7−−→ JSWriteProperty(IsJS(trec), tid, tval)

Object IsNull(trec)
gJS7−−→ JSIsNil(IsJS(trec))

Object Unbox(trec)
gJS7−−→ JSNumberToFloat64(IsJS(trec))

Object Execute(trec, . . .)
gJS7−−→ JSCall(IsJS(trec), . . .)

Table 5.1: Mapping JavaScript access operations to messages and vice versa.

TruffleRuby

The Ruby language is heavily inspired by Smalltalk, hence, in Ruby there are no
primitive types. Every value — including numeric values — is represented as an ob-
ject. TruffleRuby implements these objects using the RubyBasicObject class. The
RubyBasicObject wraps the DynamicObject, which is used to store the data content
of a Ruby object. Operations (e.g. arithmetic operations) as well as data access op-
erations (accessing object attributes or array elements) are modeled as function calls
on the receiver object. For example, Ruby arrays or hashes provide a setter method
[]= to set an element of a Ruby array or hash. We map getter and setter invocations
(functions [] and []=) to Read and Write messages and vice versa. In TruffleRuby, all
data objects as well as all methods support generic access and are therefore sharable.
Table 5.2 summarizes the mapping of Ruby operations to and from messages. Truf-
fleRuby maps incoming primitive values to objects of numeric type Fixnum and Float

if this is possible without loss of information (e.g. no truncation or rounding). These
objects are also sharable with other languages, i.e., they support the Unbox message.
This message simply maps the boxed value to the relative shared primitive. For exam-
ple, a host language other than Ruby might use an Unbox message whenever it needs
the object’s value for an arithmetic operation.

Similar to TruffleJS, TruffleRuby defines a built-in class Truffle, which allows ex-
porting and importing variables to and from the multi-language scope and to explicitly
access foreign objects.

Implementation of a Multi-Language Runtime 46

Access TNA
fA−→ TNA∪NMsg

Method call RbDispatch(
RbResolve(trec, tfuncId), trec . . .)

fRuby7−−−−→ Execute(Read(trec, tfuncId), trec . . .)

Is null RbIsNil(trec)
fRuby7−−−−→ IsNull(trec)

Getter call RbDispatch(
RbResolve(trec, "[]"), trec, tid)

fRuby7−−−−→ Read(trec, tid)

Setter call RbDispatch(
RbResolve(trec, "[]="), trec, tid, tval)

fRuby7−−−−→ Write(trec, tid, tval)

Receiver trec TNA∪NMsg
gB−→ TNA∪NB

Object Execute(Read(trec, tid), trec . . .)
gRuby7−−−−→ RbDispatch(RbResolve(

IsRbObj(trec), tid), trec . . .)
Object IsNull(trec)

gRuby7−−−−→ RbIsNil(IsRbObj(trec))

Array Read(trec, tid)
gRuby7−−−−→ RbDispatch(RbResolve(

IsRbAry(trec), "[]"), trec, tid)
Array Write(trec, tid, tval)

gRuby7−−−−→ RbDispatch(RbResolve(
IsRbAry(trec), "[]="), trec, tid, tval)

Hash Read(trec, tid)
gRuby7−−−−→ RbDispatch(RbResolve(

IsRbHsh(trec), "[]"), trec, tid)
Hash Write(trec, tid, tval)

gRuby7−−−−→ RbDispatch(RbResolve(
IsRbHsh(trec), "[]="), trec, tid, tval)

FixNum Unbox(trec)
gRuby7−−−−→ RbFixNumToInt64(IsRbFN(trec))

Float Unbox(trec)
gRuby7−−−−→ RbFloatToFloat64(IsRbFt(trec))

Function Execute(trec, . . .)
gRuby7−−−−→ RbDispatch(IsRbFunc(trec), . . .)

Table 5.2: Mapping Ruby access operations to messages and vice versa.

TruffleC

TruffleC can share primitive C values, mapped to shared primitive values, as well as
pointers to C data with other languages. In our implementation, pointers are objects
that support generic access, which allows them to be shared across all TLIs. Truf-
fleC represents all pointers (i.e., pointers to values, arrays, structs or functions) as
CAddress objects that wrap a 64-bit value. This value is a pointer to the native heap.
Besides the address value, a CAddress object also stores type information about the
pointee. Depending on the type of the pointee, TruffleC resolves the following messages:
A pointer to a C struct can resolve Read/Write messages, which access members of
the referenced struct. A pointer to an array can resolve Read/Write messages that
access a certain array element. Any pointer can resolve the IsNull message, which
checks whether the pointer is a null-pointer. Finally, CAddress objects that reference
a C function can be executed using the Execute message.

TruffleC can bind CAddress objects as well as shared foreign objects to pointer vari-
ables. TruffleC uses generic access to access these foreign objects. Table 5.3 summarizes
how we map C operations to messages and vice versa.

Implementation of a Multi-Language Runtime 47

1 // Impor t s a T r u f f l e O b j e c t from the mul t i−l anguage scope
2 void ∗ Import (const char∗ i d) ;
3 // Expo r t s a p o i n t e r to the mul t i−l anguage scope
4 void Export (const char∗ id , void ∗ v a l) ;
5

6 // Reads a 32− b i t i n t e g e r from a T r u f f l e O b j e c t
7 i n t Read_int32 (void ∗ r e c e i v e r , const char∗ i d) ;
8 // Wr i t e s a 32− b i t i n t e g e r to a T r u f f l e O b j e c t
9 void Wri te_ in t32 (void ∗ r e c e i v e r , const char∗ id , i n t v a l u e) ;

10

11 // . . .

Listing 5.3: Excerpt of the truffle.h header file.

C is a statically typed language and every expression has a static type. Hence, if
TruffleC accesses a foreign object and the access expression has a primitive type, then it
tries to convert the result to a value that has the same type as the expression. Consider
the following example (Listing 5.2):

1 i n t ∗ a r r = Import (" a r r ") ;
2 i n t v a l u e = a r r [0] ;

Listing 5.2: C int expression that reads from a foreign object.

TruffleC converts the result of arr[0] to a C int value. It directly converts shared
primitive values to an int value if this is possible without loss of information. If
the result is a TruffleObject, TruffleC uses Unbox and then does the conversion. If
a conversion is not possible, TruffleC raises a run-time error and reports the type-
incompatibility.

The implementation of generic access for TruffleC also introduces the header file
truffle.h (see Listing 5.3). This header file defines functions for importing and ex-
porting objects from and to the multi-language scope. Also, it defines functions to
explicitly access foreign objects. There are different versions of these functions for all
primitive C types. For example, there is an explicit Read function Read_int32 that
reads from a foreign object and tries to convert the result to an int value. None of the
functions that are defined in truffle.h have an implementation in C. Instead, TruffleC
substitutes every invocation by a generic access or a multi-language scope access.

Implementation of a Multi-Language Runtime 48

Access TNA
fA−→ TNA∪NMsg

struct read CMemberRead(trec, tid) fC7−−→ Read(trec, tid)

struct write CMemberWrite(trec, tid, tval)
fC7−−→ Write(trec, tid, tval)

Array read CElementRead(tarr, tidx) fC7−−→ Read(tarr, tidx)

Array write CElementWrite(tarr, tidx, tval)
fC7−−→ Write(tarr, tidx, tval)

Is null CIsNullPointer(trec) fC7−−→ IsNull(trec)

Function call CCall(tfunc, . . .) fC7−−→ Execute(tfunc, . . .)

Receiver trec TNA∪NMsg
gB−→ TNA∪NB

Ptr to a struct Read(trec, tid) gC7−−→ CMemberRead(IsStr(trec), tid)
Ptr to a struct Write(trec, tid, tval)

gC7−−→ CMemberWrite(
IsStr(trec), tid, tval)

Ptr to an array Read(trec, tidx) gC7−−→ CElementRead(IsAry(trec), tidx)
Ptr to an array Write(trec, tidx, tval)

gC7−−→ CElementWrite(
IsAry(trec), tidx, tval)

Any ptr IsNull(trec) gC7−−→ CIsNullPointer(IsC(trec))
Function ptr Execute(trec, . . .) gC7−−→ CCall(IsFunc(trec), . . .)

Table 5.3: Mapping C access operations to messages and vice versa.

5.1.2 Different Language Paradigms and Features

In this section we describe an intuitive approach for bridging the different paradigms
and features of JavaScript, Ruby, and C. We focus on these languages and explain
how we deal with dynamic and static typing, object-oriented and non-object oriented
programming, explicit and automatic memory management, as well as safe and unsafe
memory accesses. For this discussion, consider a multi-language application, which
consists of two files. The first file (Listing 5.4) contains JavaScript code and the second
file (Listing 5.5) contains C code. The example allocates a JavaScript object (the
counter object, see Listing 5.4), which is then used by the C code (see Listing 5.5).
The JavaScript code exports the object counter using a built-in function. This built-
in stores the reference to the JavaScript object into the multi-language scope of the
application. In turn, the C code imports the object using a C built-in, defined in
truffle.h.

Ruby and JavaScript are more similar (both languages are dynamically typed, object-
oriented, and use the automatic memory management of the TMLR). To keep the
example simple, we write this application in JavaScript and C. However, the following
ideas directly apply also for Ruby.

Implementation of a Multi-Language Runtime 49

1 var coun t e r = {
2 coun t e rVa lue : 0 ,
3 add : funct ion (v a l) {
4 coun t e rVa lue += v a l ;
5 } ,
6 myPrint : funct ion () {
7 p r i n t (coun t e rVa lue) ;
8 }
9 }

10 T r u f f l e . e xpo r t (" coun t e r " , c oun t e r) ;

Listing 5.4: Allocation of a JavaScript object.

1 #include<t r u f f l e . h>
2

3 typedef s t ruc t {
4 void (∗ add) (void ∗ t h i s , i n t v a l) ;
5 void (∗ myPrint) (void ∗ t h i s) ;
6 } Counter ;
7

8 i n t main () {
9 Counter ∗c = (Counter ∗) Import (" coun t e r ") ;

10 c−>add (c , 4 2) ;
11 c−>myPrint (c) ;
12 }

Listing 5.5: C type definition for the foreign object and an object-oriented
access operation.

Dynamic and Static Typing

In [113], Wrigstad et al. describe a concept called like types, which allows integrating
dynamically typed objects in statically typed languages. Dynamically typed objects can
be used in a statically typed language by binding them to like-type variables. Operations
on like-type variables are syntactically and semantically checked against the static type
of these variables, but the actual validity of these operations is only checked at run
time. Our approach is similar, except that in our case any pointer variable in C can
be bound to a foreign object. We bind foreign dynamically typed objects to pointer
variables that are associated with static type information. If a pointer is bound to a
dynamically typed value, we check the usage dynamically, i.e., upon each access we
check whether the operation on the foreign object is possible. We report a run-time
error otherwise.

Listing 5.5 shows a C program, which uses a JavaScript object counter. The C
code associates the variable c with the static type Counter*, which is defined by the
programmer. When the C code accesses the JavaScript object, we check whether add

or myPrint exist and report an error otherwise.

Implementation of a Multi-Language Runtime 50

Object-Oriented and Non-Object-Oriented Programming

The object-oriented programming paradigm allows programmers to create objects that
contain both data and code, known as fields and methods. Also, objects can extend each
other (e.g. class-based inheritance or prototype-based inheritance); when accessing
fields or methods, the object does a lookup and provides a field value or a method.
Generic access allows us to retain the object-oriented semantics of an object access even
if the host language is not object-oriented. Consider the add method invocation (from
C to JavaScript) in Listing 5.5. TruffleC maps this access to the following messages:

CCall(CMemberRead(tc, tadd), tc, t42)
fC7−→ Execute(Read(tc, tadd), tc, t42)

(5.1)

TruffleJS resolves this access to an AST snippet that does the lookup of method add

and executes it:

Execute(Read(tc, tadd), tc, t42)
gJS7−−→ JSCall(IsJS(JSReadProperty(IsJS(tc), tadd)), tc, t42)

(5.2)

A method call in an object-oriented language passes the this object (i.e., the receiver)
as an implicit argument. Non-object oriented languages that invoke methods therefore
need to explicitly pass the this object. For example, the JavaScript function add (see
Listing 5.4) expects the this object as an implicit first argument. Hence, the first
argument of the add method call in C is the this object c.

Vice versa, the signature of a non-object-oriented function needs to contain the this

object argument if the caller is an object-oriented language. For example, if JavaScript
calls the C function, JavaScript passes the this object as the first argument. The
signature of the C function needs to add the this object argument to its signature
explicitly. This approach allows us to access object-oriented data from a non-object-
oriented language and vice versa.

Limitations: Our current approach does not feature cross-language inheritance, i.e.,
class-based inheritance or prototype-based inheritance is only possible with objects that
originate from the same language.

Explicit and Automatic Memory Management

TLIs are running within the TMLR and can exchange data, independent of whether
the data is managed or unmanaged:

Unmanaged allocations: TLIs keep unmanaged allocations on the native heap,
which is not garbage collected. For example, TruffleC allocates data such as arrays or

Implementation of a Multi-Language Runtime 51

structs on the native heap. When accessing a CAddress object via generic access,
the access will resolve to a raw memory accesses. Generic access allows accessing
unmanaged data from a language that otherwise only uses managed data.

Managed allocations: TLIs keep managed allocations on the Java heap, which is
garbage collected. For example, the JavaScript and Ruby implementations use Truffle’s
DynamicObject to represent their data structures. If an application binds a managed
object to a C variable (e.g. Counter *c = Import("counter");, see Listing 5.5), then
TruffleC keeps the pointer to this variable in the Truffle Frame. The Frame’s Object

array holds the values of the function’s local variables (see Section 3.1.5). Thus, the
Java garbage collector can trace managed objects even if they are referenced from
unmanaged languages.

Limitations: If a C pointer variable references an object of a managed language,
operations are restricted. First, pointer arithmetic on foreign objects is only allowed as
an alternative to array indexing. For example, C programmers can access a JavaScript
array either with indexing (e.g. jsArray[1]) or by pointer arithmetic (*(jsArray +

1)). However, it is not allowed to manipulate a pointer variable that is bound to a
managed object in any other way (e.g. jsArray = jsArray + 1). Second, C pointer
variables that are bound to managed objects cannot be casted to primitive values
(such as long or int). References to the Java heap cannot be represented as primitive
values like it is possible for raw memory addresses. Finally, unmanaged data structures
cannot store references to managed objects. For example, it is not possible to assign a
reference to a managed JavaScript object to a C array of pointers. Counter *array[]

= {jsReference}; is forbidden. Non-primitive C data is stored as a sequence of bytes
on the native heap and it is not possible to keep managed references on the native heap.
We report a run-time error-message in these cases.

Safe and Unsafe Memory Accesses

C is an unsafe language and does not check memory accesses at run time, i.e., there
are no run-time checks that ensure that pointers are only dereferenced if they point
to a valid memory region and that pointers are not used after the referenced object
has been deallocated. TruffleC allocates data on the native heap and uses raw memory
operations to access it, which is unsafe. This has the following implications on multi-
language applications:

Unsafe accesses: If C shares data with a safe language, all access operations are
unsafe. For example, accessing a C array in JavaScript is unsafe. If the index is out
of bounds, the access has an undefined behavior (as defined by the C specification).
However, accessing a C array is more efficient than accessing a dynamic JavaScript
array because less run-time checks are required.

Implementation of a Multi-Language Runtime 52

Safe accesses: Accessing data structures of a safe language (such as JavaScript)
from C is safe. For example, accessing a JavaScript array in C is safe. TruffleC
implements the access by a Read or Write message, which TruffleJS resolves with
operations that check if the index is within the array bounds and grow the array in
case the access was out of bounds.

5.1.3 Discussion

In contrast to many other cross-language mechanisms (e.g., FFIs), our generic access
mechanism works for any TLI. This applies also to new TLIs if they support the fol-
lowing:

Transforming foreign object accesses to language-agnostic messages: If a
TLI wants to act as a host language and access another foreign language, it needs
to map object accesses to messages, i.e., a TLI (LNew) has to define TNNew

fNew−−−→
TNNew∪NMsg . Optionally, a TLI can provide an API that allows programmers to
explicitly use generic access (see Section 4.3).

Transforming language-agnostic messages to regular object accesses: If a
TLI (LNew) wants to be used as a foreign language and share objects with other
languages, shared objects need to support generic access. The TLI needs to define
a mapping from language-agnostic messages to access operations that are specific
to LNew: TNA∪NMsg

gNew−−−→ TNA∪NNew .

Multi-language scope: The TLI has to provide infrastructure for the application
programmer to export and import objects to and from the multi-language scope.

The TMLR, including the TLIs for JavaScript, Ruby, and C, eases an efficient multi-
language development, which we evaluate by writing and executing multi-language
benchmarks (see also Section 7). We modified single-language benchmarks, which are
available in C, Ruby, and JavaScript, such that parts of them were written in a dif-
ferent language. We extracted all array and object allocations into factory functions.
We then replaced these factory functions with implementations in different languages,
making the benchmarks multi-language applications. The other parts did not have to
be changed, because accesses to foreign objects can simply be written in the language of
the host. The only extra code that we needed was for importing and exporting objects
from and to the multi-language scope.

Implementation of a Multi-Language Runtime 53

5.2 C Extensions Support for TruffleRuby

In this second case study we implement the C extensions API for Ruby. A C extension
is a C program that can access the data and metadata of a Ruby program by using
a set of API functions (C extension functions), which are part of the Ruby VM MRI.
Developers of a C extension for Ruby access this API by including the ruby.h header
file. The C extension code is then dynamically loaded and linked into the Ruby VM as
a program runs. Figure 5.1 gives an architectural overview of a Ruby application using
a C extension.

We provide the same C extensions API as Ruby does, i.e., we provide all func-
tions that are available when including ruby.h. To do so, we created our own source-
compatible implementation of ruby.h. This file contains the function signatures of all
the C extension functions. Listing 5.6 shows an excerpt of this header file including
a description of the function’s semantic. In the following we discuss how we can pro-
vide an implementation for these functions. We distinguish between local and global
functions in the C extensions API. Local functions access and manipulate Ruby objects
from within C. Global functions manipulate the global object of a Ruby application
from C or directly access the Ruby engine.

5.2.1 Local Functions

TruffleC substitutes every call to a local C extension function with a message in the
AST that accesses the foreign Ruby data directly. The result is an AST t′ ∈ TNC∪NMsg ,
which uses messages to access the foreign object rather than calling a function of the
C extensions API.

The TMLR can resolve these messages because TruffleRuby provides a mapping gRb.
Message resolution uses gRb to map the messages in t′ ∈ TNC∪NMsg to an AST with a
Ruby-specific access t′′ ∈ TNC∪NRb :

TNC∪NMsg
gRb−−→ TNC∪NRb (5.3)

Ruby VM

C
 e

xt
.

AP
I

Ruby code
*.rb files

C extension
*.c files

interpret

lo
ad

 a
nd

lin

k

Figure 5.1: Architecture of a Ruby application using C extensions.

Implementation of a Multi-Language Runtime 54

1 typedef VALUE void ∗ ;
2 typedef ID void ∗ ;
3

4 // De f i n e a C f u n c t i o n as a Ruby method
5 void rb_def ine_method (VALUE c l a s s , const char∗ name ,
6 VALUE(∗ func) () , i n t a rgc) ;
7

8 // Sto r e an a r r a y e l ement i n t o a Ruby a r r a y
9 void r b_a ry_s to r e (VALUE ary , long i dx , VALUE v a l) ;

10

11 // Get the Ruby i n t e r n a l r e p r e s e n t a t i o n o f an i d e n t i f i e r
12 ID r b _ i n t e r n (const char∗ name) ;
13

14 // Get i n s t a n c e v a r i a b l e s o f a Ruby o b j e c t
15 VALUE rb_iv_get (VALUE ob j e c t , const char∗ iv_name)
16

17 // Invoke a Ruby method from C
18 VALUE r b _ f u n c a l l (VALUE r e c e i v e r , ID method_id , i n t argc , . . .) ;
19

20 // Conver t a Ruby Fixnum to a C long
21 long FIX2INT (VALUE v a l u e) ;

Listing 5.6: Excerpt of the ruby.h implementation.

1 #include<ruby . h>
2

3 VALUE a r r a y = . . . ; // Ruby a r r a y o f Fixnums
4 VALUE v a l u e = . . . ; // Ruby Fixnum
5

6 r b_a ry_s to r e (a r r ay , 0 , v a l u e) ;

Listing 5.7: Accessing a Ruby array from C.

The function to resolve the messages to Ruby-specific access operations (gRb) remained
unchanged and we were able to reuse the infrastructure that was already implemented
in TruffleRuby.

Implementation of a Multi-Language Runtime 55

call

0array value

rb_ary_store

0array value

Write
!! !

0

RbDispatch

RbResolve
array

[]=

value

array

is Ruby array?

substitute call
with a message

Figure 5.2: TruffleC substitutes invocations of C extension functions with messages; the
TMLR resolves them to Ruby-specific operations.

The following examples explain how we substitute the C extension functions rb_-

ary_store, rb_funcall, and FIX2INT.

rb_ary_store allows writing an element of a Ruby array. Figure 5.2 shows how Truf-
fleC substitutes the call of rb_ary_store (see source code in Listing 5.7) with
a Write message for setting the Ruby array element. Upon first execution, this
message is resolved by the TMLR, which results in a TruffleC AST that does a
Ruby array access via a setter function ([]=). The resolved AST replaces the
AST for the Write message and is executed from now on.

rb_funcall allows invoking a method on a Ruby object from within a C extension.
TruffleC substitutes this call by two messages, namely a Read message to get
the method from the Ruby receiver and an Execute message, which invokes the
method.

FIX2INT transforms a Ruby Fixnum object to a C integer value. TruffleC substitutes
this call by an Unbox message to the Ruby object.

5.2.2 Global Functions

The C extensions API also offers functions that manipulate the global object class of
a Ruby application from C. For example, these functions can define global variables,
modules, or functions. Global functions can also directly access the Ruby engine (e.g.,
to convert a C string to an immutable Ruby object). TruffleC forwards invocations of
these global C extension functions to an API of the TruffleRuby engine.

In the following we discuss how TruffleC implements calls to rb_define_method and
rb_intern.

Implementation of a Multi-Language Runtime 56

rb_define_method allows defining a new method in a Ruby class. To substitute an
invocation to this function, TruffleC directly accesses the Ruby engine and adds a
C function pointer to a Ruby class object. The function pointer VALUE(*func)()

is a CAddress object. When TruffleRuby invokes this method later, it uses generic
access, i.e., it uses an Execute message to invoke the C function.

rb_intern provides a shared immutable Ruby object representation for a C string.
TruffleRuby exposes a utility function that allows resolving these immutable Ruby
objects, which TruffleC uses to substitute invocations of this methods.

5.2.3 Pointers to Ruby Objects

In TruffleC, a pointer to a Ruby object is a Java reference to a sharable Truffle-

Object. If the C extension introduces additional indirections (i.e., taking a pointer to
a variable that holds a Ruby object) we create an MAddress object (see Chapter 6).
MAddress objects wrap the Ruby pointee and also hold a numeric offset value. They
allow introducing arbitrary levels of indirection. Also, the offset value allows supporting
pointer arithmetic. Whenever the Ruby object needs to be accessed, we use generic
access again.

5.2.4 Discussion

This thesis claims that the TMLR eases an efficient multi-language development that
also supports legacy interfaces between languages. In this case study we show an
implementation of the C extensions API using generic access. We can provide an
implementation that allows us to run Ruby code with C extensions that have been
developed to meet a real business need (see also Section 7). We were able to successfully
execute the existing modules chunky_png1 and psd.rb2, which are both open source
and freely available on the RubyGems website. chunky_png is a module for reading
and writing image files using the Portable Network Graphics (PNG) format. It includes
routines for resampling, PNG encoding and decoding, color channel manipulation, and
image composition. psd.rb is a module for reading and writing image files using the
Adobe Photoshop format. It includes routines for color space conversion, clipping, layer
masking, implementations of Photoshop’s color blend modes, and some other utilities.
Running the C extensions of these gems on top of the TMLR required the following
modifications for compatibility: TruffleC does not support variable-length arrays (see
Section 3.1.6), hence, we replaced two instances of variable size stack allocations with

1Chunky PNG, Willem van Bergen and others, 2015: https://github.com/wvanbergen/chunky_png
2PSD.rb from Layer Vault, Ryan LeFevre, Kelly Sutton and others, 2015: https://cosmos.layervault.

com/psdrb.html

https://github.com/wvanbergen/chunky_png
https://cosmos.layervault.com/psdrb.html
https://cosmos.layervault.com/psdrb.html

Implementation of a Multi-Language Runtime 57

a heap allocation via malloc and free. Running the C extensions on TruffleC also
allowed us to find two bugs. A value of type VALUE (64-bit pointer value) was stored in
a variable of type int (32-bit integer value), which caused different results between the
Ruby module and the C extensions on all Ruby implementations. We have reported this
implementation bug to the module’s authors3. Apart from these minor modifications
we are running all native routines from the two non-trivial gems unmodified.

The implementation of the C extensions API for Ruby serves as empirical evidence
that the TMLR can support legacy interfaces between languages.

3PSDNative, Bug report, 2015: https://github.com/layervault/psd_native/pull/4

https://github.com/layervault/psd_native/pull/4

Managed Data Allocations for C 58

Chapter 6

Managed Data Allocations for C

In this chapter we present a third case study, which demonstrates that the
applications of generic access are manifold and not limited to cross-language
interoperability. We use generic access to substitute native allocations with
managed allocations in TruffleC, hence, we can ensure spatial and temporal
memory safety of a C program execution.

This thesis claims that generic access is a flexible approach for language composition,
which is independent of languages and data structures. We backed this claim with
case studies of cross-language interoperability (see Section 5), however, in this section
we provide another case study where we apply generic access differently. We extend
TruffleC and use generic access to substitute native allocations (i.e., objects on the
native heap) with managed allocations (i.e., objects on the Java heap). Managed
allocations ensure memory safety of a C program execution. Note that this is an
additional contribution of our thesis, which is orthogonal to the other contributions
in the area of cross-language interoperability. Furthermore, the case study in this
chapter allows us to back the flexibility claims of generic access and provides a further
performance evaluation that measures generic access (see Section 7).

We call the memory safe version of TruffleC TruffleCM, where M stands for man-
aged. TruffleCM uses only managed Java objects to represent the data of a C program
execution and does not allocate native data at all. TruffleCM ensures spatial and
temporal memory safety of C programs. A program execution is considered memory
safe [75,76,101] if it ensures spatial and temporal memory safety. Spatial memory safety
ensures that pointers are only dereferenced if they point to a valid memory region [93],
i.e., if the access is within the bounds of the accessed object. This prevents errors
such as null pointer dereferences or buffer overflows. Temporal memory safety ensures
that pointers are not used after the referenced object has been deallocated [93]. This
prevents errors such as dangling pointers or illegal deallocations (e.g. calling free on a
pointer twice).

Managed Data Allocations for C 59

data
offset

MAddress
ManagedAllocation

Descriptor

Int32Array
content
layout

int[]
stride = 4

Integer32
content

int

Structured
content
layout

Content

slot1: 12
slot2: 4.2

Layout

adr slot type
0
8

slot1
slot2

int
dbl

content

AST

Function

Figure 6.1: MAddress objects are pointers to managed allocations.

In the following, we first describe the new data structures that we define (Section 6.1)
and how they are allocated (see Section 6.2). Afterwards, we explain how we can use
generic access to safely access these data structures (Section 6.3).

6.1 Managed Addresses and Managed Objects

Managed objects cannot be referenced by CAddress objects, which wrap raw pointer
values. Hence, TruffleCM introduces MAddress objects that substitute the CAddress

objects of TruffleC. MAddress objects store a data field and an offset (see Figure 6.1).
The data field references a descriptor representing the managed allocation, while the
offset field holds a byte offset relative to the beginning of the managed allocation.
It is updated by address computations and pointer arithmetic and allows us to rep-
resent pointers that point into an object (e.g. to a struct member). When deref-
erencing an MAddress object, the offset is passed to the descriptor, which can map
(e.g. using a layout table) the offset to a data entry of the content (content field of a
ManagedAllocation). Thus we can check whether a pointer references a valid member.

Managed Objects

In TruffleCM, objects of a C program can be represented as array objects, primitive
objects, function objects, and structured objects (see Figure 6.1). All of them are
ManagedAllocations and can be referenced by an MAddress object.

Array objects: We represent C arrays by objects that box a Java array. For example,
if C code allocates an int array, TruffleCM allocates an Int32Array object that

Managed Data Allocations for C 60

wraps a Java int array. An array object holds the size of an element in bytes
(layout field). When an element is accessed, the offset of the MAddress is divided
by this size to get the index of the array element.

Primitive objects: We represent primitive C values (e.g., int, double, ...) as Java
objects that box a Java primitive value.

Function objects: C functions are represented as ASTs, wrapped in Function objects.
MAddress objects can point to a Function object (function pointers), which can
be executed by TruffleCM.

Structured objects: C structs and unions are represented by Structured objects.
The content of an Structured object is an object of type DynamicObject [112]
(see Section 2.2.4) that contains the values of all assigned members. The slots of
a DynamicObject can contain primitive values, address values, as well as other
managed allocations. Consider the example in Listing 6.1, which shows the dec-
laration of a struct S. We assume the object representation of the struct on
an x86-64 platform. The int member a (4 bytes) is stored at offset 0 and the
double member b (8 bytes) at offset 8. The 4 bytes from offset 4 to 8 are not
in use and their content is therefore undefined. The content of the Structured

object of struct S contains two values:

{slot1 7→ 12, slot2 7→ 4.2} (6.1)

The layout table (layout field) is a map storing the offsets, types and slot names
of the members and is used to map an offset to the corresponding slot and its
type. The layout table of the Structured object of struct S (see Listing 6.1)
contains two entries:

{0 7→ (slot1, int), 8 7→ (slot2,double)} (6.2)

If a C program accesses a Structured object with a certain offset, the offset is
mapped to a slot of the content. For example, when accessing the member b of
struct S, the layout table maps the offset 8 to slot2, which contains an 8-byte
double value.

For non-primitive members (e.g., arrays and structs) of a struct or union we
allocate a separate array or Structured object and store it into the slot of the
content. When accessing sub-objects (e.g. when a struct has an array member),
we compute the offset within the sub-object and access it in the same way. Union

member slots can be accessed with the types of the union members.

Managed Data Allocations for C 61

1 s t ruc t S {
2 i n t a ;
3 double b ;
4 } ;
5

6 void f oo () {
7 s t ruc t S ∗ s = ma l l o c (s i z eo f (s t ruc t S)) ;
8 s−>a = 12 ;
9 s−>b = 4 . 2 ;

10 }

Listing 6.1: Writing a struct member.

Address Computation

Accessing array elements or struct members in C involves an address computation.
The same is true for pointer arithmetic. Such computations can be conveniently done
with MAddress objects, i.e., MAddress object have an offset field, which we use to
implement pointer arithmetic in C. For processing the assignment s->b = 4.2; (see
Listing 6.1) a C compiler would add the offset of b (8) to the address s and assign the
value 4.2 to this address. TruffleCM represents the pointer s using an MAddress object
that references a managed allocation of type struct S; its offset is 0. When accessing
s->b, we copy the MAddress object of s and add the value 8 to its offset field thus
referencing the field b. TruffleCM uses this new MAddress object to access the member
b.

To compute the address of an array element, a C compiler would multiply the array
index with the element size and add this as an offset to the address of the array.
TruffleCM uses MAddress objects instead of raw addresses; it also multiplies the index
with the element size and stores this value in the offset field of an MAddress object.

For pointer arithmetic, Section 6.5.6 of the C99 standard [29] defines the following
semantics: For an addition/subtraction, one operand shall be an integer type. When
two pointers are subtracted, both shall point to elements of the same array object and
the result is the difference of the subscripts of the two array elements. If an integer
value is added/subtracted to/from a pointer, we add/subtract this integer value times
the size of the pointed-to type to/from the offset value of an MAddress object. If two
address values are subtracted, we calculate the difference of the subscripts using the
offset values of the MAddress objects. If two addresses do not reference the same array
object, the result is undefined, which conforms to the standard (see Section 6.5.6. §9
of the C99 standard).

Managed Data Allocations for C 62

Data Access

When accessing managed allocations, we distinguish between a strict mode and a relaxed
mode. When running TruffleCM in strict mode, only well-defined memory accesses are
allowed. A well-defined access cannot read from uninitialized memory and the pointer
used in the access must reference a valid destination, i.e., the value at the destination
must have a type that is expected by the access operation. For example, it is not
allowed to dereference a type-punned pointer, i.e., a pointer of type B that was casted
from a pointer of type A. An access via such a pointer would not resolve to a valid
destination. Sections 6.5 §5 and 6.3.2.3 §7 of the C99 standard state that the program
shall not access type-punned pointers [29]. In strict mode, it is only possible to access
a primitive object as well as an array object if the access operation is well-defined, i.e.,
the type of the access operation has to match the element type and the offset of the
MAddress object needs to be aligned (the offset must be 0 for primitive objects or a
whole multiple of the array’s element size). It is only possible to access a Structured

object if the layout table can map an offset to a slot and if the type of the access
operation matches the type of the slot.

When running TruffleCM in relaxed mode, programmers can read from uninitialized
memory and can access any memory destination (undefined memory access). For ex-
ample, a pointer can be casted to a pointer with a different type (type-punning) and
it is possible to dereference it. In these cases, TruffleCM mimics the behavior of plain
C compilers but still ensures spatial and temporal safety. In the following, we describe
the relaxed mode in detail.

Undefined Object Accesses

TruffleCM maps the offset of an MAddress object to a member of a managed allocation.
If this is not possible or if the mapped member does not have the type that is expected
by the access operation, we call this an undefined access.

Primitive object: An undefined read operation to a primitive object returns the same
value as a raw memory read would have produced, i.e., we mimic the object
representation of native C primitives. Consider the example in Listing 6.2:

1 double v = 4 2 . 5 ;
2 double ∗d = &v ;
3 i n t i = ((i n t ∗) d) [0] ;

Listing 6.2: Undefined read operation to a primitive object.

Managed Data Allocations for C 63

The read operation returns an int value that contains the lower 4 bytes of the
double value 42.5. Upon an undefined write access to a primitive object, we
first allocate a new Structured object and copy the data to its content. We also
initialize the layout table with one entry for the primitive value. The program
finally accesses this Structured object and uses it for the rest of the program
execution.

Array object: In case of an undefined read operation from an array object, TruffleCM

reads from all elements that overlap with the accessed element and returns the
same value as a raw memory read would have produced. Let us assume that we
cast an int array to a double*, see Listing 6.3:

1 i n t a [5] ;
2 double v = ((double ∗) a) [0] ;

Listing 6.3: Undefined read operation to an array object.

The read operation reads the int elements (32 bits) at indexes 0 and 1 and
composes their values to a 64 bit double value. Again, undefined write operations
transform the array object to a Structured object. We initialize the layout table
with one entry for each array element.

Structured object: A Structured object can handle any undefined access operation.
We use the layout table to map the offset of an MAddress object to a slot and hence
mimic the object representation of a native allocation on the x86-64 platform. An
undefined read operation reads all slots that overlap with the accessed element,
composes their values, and returns the bit pattern at the given offset. This
produces the same value as a raw memory read from native data would have
produced. Let us assume that we cast a pointer s (of type Struct S*) to a
pointer of type int* and perform an undefined read operation (see Listing 6.4):

1 i n t ∗ i = (i n t ∗) s ;
2 i n t v = i [2] ;
3 i [2] = 13 ;

Listing 6.4: Undefined read and write operation to a structured
object.

The read access of i[2] should return the first 4 bytes of the double value s->b.
Thus, TruffleCM reads slot2 (the double value s->b) and returns the first 4 bytes
of the double value encoded as an int.

Managed Data Allocations for C 64

An undefined write operation can partially overwrite one or more members of a
Structured object. For example, the statement i[2] = 13 attempts to write a 4
byte int value to offset 8, which is mapped to an 8 byte double slot. This means
that slots in a Structured object need to be partially overwritten. We remove all
slots that are partially overwritten. Then we add a new slot to the content for the
new value and also slots for the remaining bytes of the partially overwritten slots.
For the write access i[2] = 13, we first remove the entry 8 7→ (slot2,double) from
our layout table and also remove slot2 from the content. Afterwards we add two
new entries to our layout table ({8 7→ (slot2, int), 12 7→ (slot3,undefined)}). Slot2
contains the value 13 and slot3 contains the remaining 4 bytes of the double

value 4.2, which was previously stored at offset 8. The result is a layout table
with three entries:

{0 7→ (slot1, int), 8 7→ (slot2, int),

12 7→ (slot3,undefined)}
(6.3)

The content stores three values:

{slot1 7→ 12, slot2 7→ 13, slot3 7→ ...} (6.4)

Allocations Without Type Information

In C, programmers can allocate memory without providing information about its type.
Consider the example in Listing 6.5:

1 void ∗p = ma l l o c (1 6) ;

Listing 6.5: Allocation without type information.

In this case, we create a Structured object with a layout table starting in an unini-
tialized state, i.e., if no data was written to this allocation yet, the layout table does not
contain any entries. A write operation then adds a new slot to the content and creates
an entry in the layout table. In other words, when a pointer p is casted to struct

S and dereferenced to write to a field (e.g. p->a = 3;), a new slot (e.g., slot0) is
added to the content, and a corresponding entry is made in the layout table (e.g.,
0 7→ (slot0, int)).

A read operation that cannot be mapped to a slot by the layout table because the
memory is uninitialized produces a default value.

Managed Data Allocations for C 65

6.2 Allocation and Deallocation

We distinguish between stack allocations (memory that is automatically allocated when
a function is called and automatically deallocated when the function returns) and heap
allocations (memory that is manually allocated using malloc, calloc, or realloc, as
well as memory that lives throughout the entire program execution such as static local
variables):

Stack allocations: When a C function is called, a new stack frame is created for its local
variables. TruffleCM allocates all local variables as managed allocations on the
Java heap. When a function returns, these allocations are marked as deallocated.
The GC of the JVM can then reclaim these objects.

Heap allocations: TruffleCM allocates a managed allocation whenever a C program
manually allocates memory (e.g. using malloc). It marks the allocation as deal-
located if it is deallocated manually (e.g. using free). If the C program tries to
access this allocation later or if it calls free twice, we report a high-level run-time
error.

We use the memory management of the JVM to guarantee temporal safety. The GC
automatically deallocates an object if and only if it is not referenced anymore. Marking
managed allocations as deallocated allows us to mimic the behavior of C by simulating
deallocations. We mark managed objects as deallocated by setting the content field of
the descriptor (see Figure 6.1) to null. Thus, we can detect if a pointer is used after
the referent has been deallocated, i.e., when a dangling pointer is accessed or an object
is deallocated twice. This ensures temporal safety.

TruffleCM can even do away with memory leaks that result from forgetting to deal-
locate objects. Such errors cannot occur in TruffleCM, because the GC automatically
frees a managed allocation as soon as it is not referenced any longer. In fact, manual
deallocation becomes superfluous, because managed allocations are garbage collected.

6.3 Implementation with Generic Access

Extending TruffleC by managed objects is simple. We use generic access wherever
TruffleC would normally access the native heap. All managed allocations implement the
SafeAllocation interface, which itself extends the TruffleObject interface. Hence,
all managed allocations can be accessed via messages. TruffleCM removes all TruffleC
nodes that access the native heap and replaces them with message nodes n ∈ NSafeCMsg.

Managed Data Allocations for C 66

There are read and write messages for all primitive C types as well as messages for
reading and writing an MAddress:

NSafeCMsg = {SafeReadDouble,SafeWriteDouble,

SafeReadInt32,SafeWriteInt32, ...,

SafeReadMAddress,SafeWriteMAddress,

SafeExecute}

(6.5)

TruffleCM defines a function fSafeC that maps every unsafe memory access in t ∈
TNTruffleC to one of these messages. We apply this function to the TruffleC ASTs stat-
ically before execution. For example, the TruffleC node to write a struct member of
type double (CMemberWrite) is mapped to a SafeWriteDouble message (see Figure 6.3
on page 72). This node has three children. The first child provides the receiver of this
access operation, e.g., a pointer to a struct. The second child provides the member
to be accessed, i.e., this node returns the byte offset of the member. Finally, the third
child provides the value to be written.

TruffleCM also defines a resolution function gSafeC that maps every message to a
memory safe access operation. This function is applied at run time and is part of
message resolution. It provides AST snippets that contain access operations, which
are specific to the managed allocations. For example, a Structured object requires
an AST snippet that maps an offset to a slot and eventually accesses this slot whereas
an DoubleArray requires an AST snippet that divides an offset by 8 (the size of an
element) and accesses a Java double array. During later execution, the value of an
MAddress can change so that it points to a different type of managed allocation. In
order to detect that, generic access inserts a guard into the AST that checks the object’s
type before accessing the object.

Figure 6.3 on page 72 shows the AST for the statement s->b = 4.2, where a
SafeWriteDouble message node is used to write the double value 4.2 to the struct

member b. Message resolution replaces the SafeWriteDouble node with a SafeWriteS-
lot (a Structured-specific AST node). This node takes the offset of the MAddress

object (s.offset) and adds the member offset (member.offset). It uses this offset to
lookup a slot within the Structured object (strct.layout(off)). Finally, it stores
the value into this slot (strct.content.set(slot, val)). Before the AST accesses
s, it checks if its data really references a Structured object (is Structured ? node). If
during execution s would change to point to a DoubleArray say, the execution would
fall back to using the SafeWriteDouble message again, which would be resolved to a
DoubleArray-specific AST snippet.

Managed Data Allocations for C 67

The Structured-specific access operations are later specialized according to their
execution profile. We use tree rewriting and replace the SafeWriteSlot with a specialized
version (see Section 2.2.1). This gives good performance because of two observations.
First, it is likely that a C program accesses an allocation in a well-defined fashion,
which means that the layout table of a Structured object does not change during run
time. Second, statements that access an allocation are likely to do so with a constant
offset. For example, a struct access s->b always accesses the Structured object with
the same offset. Thus, we speculate that the offset of the MAddress and the layout
table of the Structured object are constant and specialize the SafeWriteSlot on this
assumption. The specialized node caches the slot and directly accesses the content
without any lookup in the layout table.

6.4 Compliance with the C99 Standard

MAddress objects comply with the C99 standard. Section 6.2.6.1 §4 and §5 of the C99
standard define requirements on the representation of pointer types and Section 6.3.2.3
defines the conversions that are valid on pointer values. In the following list we explain
how TruffleCM complies with these requirements:

6.2.6.1 §4: The standard states that two values (other than NaNs) with the same object
representation compare equal, but values that compare equal may have different
object representations1 [29].

An MAddress object uses a unique ID of the descriptor object plus the offset as its
object representation. Even though a pointer is an MAddress object, the system
provides the illusion that it can be read as a word-sized sequence of bytes. Based
on this object representation, we can compare MAddress objects for equality and
also convert them to integers. Two pointers that reference the same object thus
have the same object representation.

6.2.6.1 §5: The standard states that certain object representations need not represent
a value of the object type. If the stored value of an object has such a representation
and is read by an lvalue expression that does not have character type, the behavior
is undefined. If such a representation is produced by a side effect that modifies
all or any part of the object by an lvalue expression that does not have character
type, the behavior is undefined [29].

In TruffleCM it is not possible for programmers to handcraft a valid object rep-
resentation of a pointer. The C standard explicitly states that modifying an

1The object representation of data is the set of n × CHAR_BIT bits, where n is the size of an object of
that type in bytes.

Managed Data Allocations for C 68

object representation by an lvalue expression that does not have character type
is not allowed, but it does not say anything about modification with an lvalue
expression that has character type. We decided that directly modifying an object
representation always creates an invalid pointer. Otherwise it would be possible
to access objects that should be inaccessible.

6.3.2.3 §1, 2, 7, and 8: The standard (6.3.2.3 §1) states that a pointer to void may be
converted to or from a pointer to any incomplete or object type. A pointer to any
incomplete or object type may be converted to a pointer to void and back again;
the result shall compare equal to the original pointer [29]. In 6.3.2.3 §2 it states
that for any qualifier q, a pointer to a non-q-qualified type may be converted to a
pointer to the q-qualified version of the type; the values stored in the original and
converted pointers shall compare equal [29]. In 6.3.2.3 §7 it states that a pointer to
an object or incomplete type may be converted to a pointer to a different object or
incomplete type. If the resulting pointer is not correctly aligned for the pointed-to
type, the behavior is undefined. Otherwise, when converted back again, the result
shall compare equal to the original pointer [29]. Finally, in 6.3.2.3 §8 it states that
a pointer to a function of one type may be converted to a pointer to a function
of another type and back again; the result shall compare equal to the original
pointer [29].

In TruffleCM a pointer of type A can be converted to a pointer of type B without
modifying the corresponding MAddress objects (i.e., the data and offset fields
remain unchanged). Hence, TruffleCM complies with the requirements above.

6.3.2.3 §3 and 4: The C standard (6.3.2.3 §3) states that an integer constant expres-
sion with the value 0, or such an expression cast to type void *, is called a null
pointer constant. If a null pointer constant is converted to a pointer type, the
resulting pointer, called a null pointer, is guaranteed to compare unequal to a
pointer to any object or function [29]. In 6.3.2.3 §4 it states that a conversion of
a null pointer to another pointer type yields a null pointer of that type. Any two
null pointers shall compare equal.

The integer constant 0 can be assigned to an MAddress object. The data field of
such an MAddress object is then null and the offset field is 0, which we consider
the null pointer constant. This constant compares unequal to any other pointer
to an object or function.

6.3.2.3 §5: The C standard (6.3.2.3 §5) states that an integer may be converted to any
pointer type. Except as previously specified, the result is implementation-defined,
might not be correctly aligned, might not point to an entity of the referenced type,
and might be a trap representation [29].

Managed Data Allocations for C 69

An integer may be converted to any pointer type by storing the integer value
in the offset field of the MAddress object and setting the data field to null.
According to the C99 standard, converting an integer to a pointer results in an
undefined behavior. In our case, the pointer value cannot be dereferenced (the
data field is null), which is in accordance with the standard.

6.3.2.3 §6: The C standard (6.3.2.3 §6) states that any pointer type may be converted
to an integer type. Except as previously specified, the result is implementation-
defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type [29].

Any MAddress object may be converted to an integer type. We take the descrip-
tor’s ID (data field of an MAddress object) and concatenate it with the offset
value (offset field of an MAddress object).

In TruffleCM, each pointer variable starts as a null pointer, i.e., the data field is null

and hence the pointer cannot be dereferenced. A valid pointer value is produced by
applying the address-of operator (&) on any C object or by an allocation of memory
(e.g., by a manual malloc or an automatic stack allocation). In these cases, we create
an MAddress object where the data field references the managed allocation. These valid
pointer values can then be modified by pointer arithmetic and address computations
(i.e., by updating the offset of an MAddress object; see Section 6.1). If the data field
of an MAddress is null, any access to it causes a high-level run-time error.

6.5 Discussion

We discuss TruffleCM, which can safely execute C code in a strict and in a relaxed
mode. The strict mode can be used during development to detect undefined operations
of a program, such as accessing type-punned pointers. To run existing source code
without modification we offer the relaxed mode, which mimics the behavior of industry-
standard C compilers. In this mode, TruffleCM can run existing code that depends on
the behavior of industry-standard C compilers without sacrificing spatial or temporal
memory safety. TruffleCM detects memory errors as well as undefined access operations
at run time, immediately before memory is accessed in some illegal way. TruffleCM

throws a Java exception that describes the error and includes also a stack trace at the
error position. Currently, such Java exceptions are caught, the error and the stack
trace are printed, and the program exits. Since the C standard does not specify the
effects of memory-unsafe accesses and undefined memory accesses, this behavior is
fully compliant. This kind of error reporting could either be used during testing to find
bugs, or at run time to further enforce correctness. Listing 6.6 shows an example where
the index of an array access is out of bounds (spatial memory access violation). The

Managed Data Allocations for C 70

1 #include<s t d l i b . h>
2 void doWork (i n t ∗p , i n t N) {
3 i n t i ;
4 f o r (i = 0 ; i <= N; i ++) {
5 p [i] = 0 ;
6 }
7 }
8

9 i n t main () {
10 i n t N = 5 ;
11 i n t ∗p = ma l l o c (N ∗ s i z eo f (i n t)) ;
12 doWork (p , N) ;
13 f r e e (p) ;
14 return 0 ;
15 }

Listing 6.6: The function doWork accesses the array p out of bounds.

BufferOverflowError:
at doWork (Example.c)
at main (Example.c)

Figure 6.2: The example of Listing 6.6 raises a BufferOverflowError.

implementation of doWork erroneously loops with the condition i <= N, rather than
i < N, which causes it to access one element beyond the end of the array within the
loop. TruffleCM reports this as BufferOverflowError and tells the user that the error
occurred in doWork, which was called by main (see Figure 6.2).

TruffleCM cannot share managed allocations with precompiled native code. There-
fore, TruffleCM requires that the source code of the entire C program is available and
is executed under TruffleCM. We provide a Java implementation for functions that are
not available in source code (e.g. functions of standard libraries). Rather than doing a
native call, TruffleCM then uses these Java implementations that substitute the native
implementations. TruffleCM currently has substitutions for various functions defined in
assert.h, limits.h, math.h, stdarg.h, stdbool.h, stdio.h, stdlib.h, string.h,
time.h, and wchar.h. The list of standard library substitution is not yet complete,
however, our future work will focus on completing this and hence make TruffleCM more
complete. Under these premises, we can run C programs entirely on top of the JVM
without ever accessing precompiled native code or unsafe native data.

This case study showed an application of generic access, which is orthogonal to
cross-language interoperability. We used generic access to create a memory-safe im-
plementation of TruffleC by substituting all native allocations of a C program with
managed allocations and treating them like foreign objects. This required only the
following modifications:

Managed Data Allocations for C 71

Managed allocations: We introduced managed Java objects that were used as a sub-
stitution for native data and raw pointer values. We extend the TruffleC nodes for
address computation and pointer arithmetic so that they can operate on pointers
to managed objects.

Allocations: We removed any kind of native memory allocation and replaced it with a
managed allocation.

Generic Access: We used generic access for all operations that would normally access
native data.

This case study also allows us to present a performance evaluation of generic access
apart from cross-language interoperability.

Managed Data Allocations for C 72

Sa
fe

W
rit

eD
ou

bl
e

C
M

em
be

rW
rit

e

Lo
ca

lV
ar

M
em

be
rId

C
on

st

Sa
fe

W
rit

eS
lo

t

C
on

st

Lo
ca

lV
ar

M
em

be
rId

is
 S

tru
ct

ur
ed

?

Lo
ca

lV
ar

M
em

be
rId

C
on

st

! !
"#
$%
!

st
rc

t
=

s.
da

ta
;

of
f

=

s.
of

fs
et

 +
 m

em
be

r.
of

fs
et

;
sl

ot

=
st

rc
t.

la
yo

ut
(o

ff
);

st
rc

t.
co

nt
en

t.
se

t(
sl

ot
,

va
l)

;
! !"

#$
%!

1
re

tu
rn

s
a

m
an

ag
ed

 a
dd

re
ss

 (d
at

a
=

s,
 o
ffs

et
 =

 0
)

re
tu

rn
s

th
e

off
se

t 8
 o

f m
em

be
r b

re
tu

rn
s

th
e

va
lu

e
4.

2

1

1

2

2

3

3

Fi
gu

re
6.
3:

R
es
ol
vi
ng

m
an

ag
ed

al
lo
ca
tio

n-
sp
ec
ifi
c
ac
ce
ss

op
er
at
io
ns
.

Performance Evaluation 73

Chapter 7

Performance Evaluation

This chapter presents a performance evaluation of individual parts of the
TMLR. We present benchmarks that combine different languages and show
that combining a slower language with a faster one yields an overall per-
formance that is somewhere in the middle. We show that the C extensions
API implementation with generic access runs benchmarks faster than all
other Ruby implementations using C extensions. We also demonstrate that
message resolution and cross-language inlining are essential for the perfor-
mance by measuring the effect of temporarily disabling them. Finally, we
demonstrate that generic access does not lead to a performance degradation
(on average) when substituting native allocations with managed allocations
in TruffleC.

We structure our performance evaluation in three parts. First, we summarize the
performance of uniform language implementations with Truffle by comparing TruffleC
to an industry-standard C compiler. Secondly, we evaluate generic access for composing
Truffle language implementations. Finally, we compare TruffleCM to TruffleC and thus
measure the costs of a memory-safe implementation of C.

Uniform Language Implementations with Truffle

The TMLR comes with three language implementations: TruffleJS, TruffleRuby, and
TruffleC. TruffleJS and TruffleRuby are existing implementations and we extend them
by generic access but did not contribute to these implementations in any other way.
Hence, we only provide an extensive performance evaluation for TruffleC. A summary
of the JavaScript and Ruby performance can be found in Section 3.

In Chapter 1 we stated that TruffleC can dynamically compile C code, which features
profile-based optimizations such as inline caches for function pointer calls. We described
the implementation of these optimizations in Chapter 3.1 and claimed that TruffleC

Performance Evaluation 74

benefits from them in terms of performance. In this chapter we evaluate the effect of
these optimizations. We execute a micro benchmark (the example of Chapter 3.1) that
allows TruffleC to exploit all these dynamic optimizations. TruffleC can outperform
GCC on this benchmark. However, we also evaluate TruffleC on number-crunching
benchmarks where dynamic optimizations can hardly be applied. Programs compiled
with TruffleC are on average 28% slower than programs compiled with GCC.

Truffle Language Implementation Composition

We evaluate the composition of languages on top of the TMLR with two different
performance measurements:

First, we want to evaluate the performance of multi-language applications. Every
language implementation can define efficient data representations, which can be shared
across different languages. Generic access ensures that a TLI can directly access foreign
objects. We expect using heavyweight foreign data to have a negative impact on per-
formance. On the other hand, we expect using efficient foreign data to have a positive
effect on performance. For example, accessing a Ruby array in C is less efficient than
accessing a C array because Ruby arrays require more run-time checks. A C array in
Ruby, however, is more efficient because a C array access performs a raw memory ac-
cess without additional run-time checks. Message resolution inserts a foreign-language-
specific access into the AST of a host application, however, it also inserts a language
and type check before the foreign object is accessed. The dynamic compiler can opti-
mize this additional check. We discuss how the compiler minimizes the performance
overhead of this check in detail. Furthermore, we claim that inlining across language
boundaries and cross-language optimizations are critical for performance. We evaluate
the performance impact when disabling message resolution. When disabling message
resolution, the TMLR does not replace a message with a foreign-language-specific AST
snippet that implements the access operation, but we invoke this AST snippet like a
function. The function target (i.e., the foreign-language-specific AST snippet) depends
on the language and type of the receiver object. We do not introduce any additional
complexity to a foreign object access. However, LHost has to treat LForeign as a black
box, which introduces a language boundary.

Second, we compare the performance of the TMLR to the C extensions API im-
plementations of MRI, Rubinius, and JRuby. We claim that the TMLR can run C
extension functions on average over 200% faster than natively compiled C code using
MRI’s C extensions API. In this evaluation we back this claim and run image processing
libraries that have a C extensions implementation. Also, we state that cross-language
inlining and cross-language optimizations are the most beneficial optimization com-
pared to other implementations. Hence, we disable message resolution to verify this
claim.

Performance Evaluation 75

Managed Data Structures for C

TruffleCM is a case study that allows us to back the flexibility claims of generic access.
We substitute native allocations with managed allocations. Generic access ensures
that TruffleCM can directly access managed allocations. However, these access oper-
ations to managed data perform additional checks compared to access operations to
unmanaged data with TruffleC. Generic access introduces language and type checks,
and the access operations introduce checks that ensure memory safety. The dynamic
compiler can optimize these additional checks, which we discuss in detail. We compare
the performance of the managed execution of C code (TruffleCM accesses managed al-
locations with generic access) to the unmanaged execution (TruffleC accesses native
allocations directly) and can show that TruffleCM and TruffleC have the same perfor-
mance on average. For this evaluation, we use the same benchmarks as for the TruffleC
evaluation.

7.1 Evaluation Methodology

To account for the adaptive compilation techniques of Truffle and Graal, we set up
a harness that executes each benchmark 50 times. After these warm-up iterations,
every benchmark reaches a steady state such that subsequent iterations are identically
and independently distributed. This was verified informally using lag plots [60]. We
then sampled the final 10 iterations and calculated the averages for each configuration
using the arithmetic mean. Where we report an error we show the standard deviation.
Where we summarize across different benchmarks we report a geometric mean [28].
Our harness reports scores for each benchmark and its configurations, which is the
proportion of the execution count of the benchmark and the time needed (executions
per second). We ran the TruffleC benchmarks, the multi-language benchmarks, and the
TruffleCM benchmarks on an Intel Core i7-4770 quad-core 3.4GHz CPU running 64 Bit
Debian 7 (Linux3.2.0-4-amd64) with 16 GB of memory. The C extension benchmarks
are long-running applications and the measurement takes multiple days. Therefore, we
ran these benchmarks on a different hardware. We used a server machine with 2 Intel
Xeon E5345 processors with 4 cores each at 2.33 GHz and 64 GB of RAM, running
64bit Ubuntu Linux 14.04.

We focus this evaluation on peak performance of long-running applications where
the startup performance plays a minor role. Hence, we neglect the startup time and
present performance numbers after an initial warm-up. A detailed evaluation of the
start-up performance of Truffle is out of scope and can be found in [68].

Performance Evaluation 76

7.2 Uniform Language Implementations with Truffle

In this section we compare TruffleC to the industry standard C compiler GCC (ver-
sion 4.7.2-5) in terms of peak performance. We based TruffleC on Graal revision
5b24a15988fe from the official OpenJDK Graal repository1.

First, we execute a micro benchmark (Listings 3.1 and 3.2 from Chapter 3.1 on
page 22) that allows TruffleC to exploit its profile-based optimizations. We set up
the function abs in a benchmark harness and pass it a function pointer as well as
two integer values. Using run-time profiling, TruffleC finds out that the value of the
function pointer is always div and the value of b is always 2. On this benchmark we
expect TruffleC to outperform GCC because of the dynamic optimizations.

Second, we evaluate the performance of TruffleC with benchmarks from the Sci-
Mark benchmark suite2 and from the Computer Language Benchmarks Game3. The
benchmarks consist of a Fast Fourier Transformation (FFT), a Jacobi successive overre-
laxation (SOR), a Monte Carlo integration (MC), a sparse matrix multiplication (SM),
a dense LU matrix factorization (LU), a simulation of the N-body problem (NB), a tree
sort algorithm (TS), a generation of random DNA sequences (FA), an algorithm to solve
the Towers of Hanoi problem (TW), a computation of the spectral norm of a matrix
(SN), as well as the Fannkuch (FK) and Mandelbrot (MB) benchmarks, which both do
a lot of integer and array accesses. These number-crunching benchmarks demonstrate
the performance of TruffleC where dynamic optimizations can hardly be applied.

Compared Implementations

The charts in Figures 7.1 and 7.2 are arranged on a linear, higher-is-better scale. We
show the TruffleC performance, the GCC Best performance (the best performance out
of the three optimization levels O1, O2 and O3), and the performance of GCC with
optimization level O0. We normalize our results to GCC O0, i.e., 1 is the performance
of GCC with optimization level O0.

Results

Figure 7.1 shows the evaluation of the micro benchmark; the y-axis shows the normal-
ized score of the benchmark. TruffleC is more than 600% faster than the best GCC
performance. We explain the big difference as follows:

1OpenJDK Graal repository, Oracle, 2015: http://hg.openjdk.java.net/graal/graal
2SciMark 2.0, Roldan Pozo and Bruce R Miller, 2015: http://math.nist.gov/scimark2/index.html
3The Computer Language Benchmarks Game, Brent Fulgham and Isaac Gouy, 2015: http://

benchmarksgame.alioth.debian.org/

http://hg.openjdk.java.net/graal/graal
http://math.nist.gov/scimark2/index.html
http://benchmarksgame.alioth.debian.org/
http://benchmarksgame.alioth.debian.org/

Performance Evaluation 77

Micro-Benchmark
0

5

10

15

1

1.
65

12
.8

4

GCC O0 GCC Best TruffleC

Figure 7.1: TruffleC performance of a micro-benchmark. TruffleC inlines library func-
tions, caches a function pointer call, and profiles values (normalized to GCC
O0 performance; higher is better).

Inlining of library functions: In contrast to GCC, TruffleC can inline the library func-
tion abs, whereas GCC cannot inline independently compiled library functions.
TruffleC can inline functions as ASTs from shared libraries at run time by copying
the AST of the callee and replacing the call node with this copy.

Inline caches for function pointer calls: TruffleC speculates on the function pointer f

in abs being constant (div) and caches the target function, i.e., it builds an inline
cache with one entry. Whenever this call is done via a pointer to div, TruffleC calls
the target directly. As entries in the inline cache are always constant, TruffleC
can even inline the function pointer call. GCC, on the other hand, has to do a
function pointer call because the library does not know that f is always div.

Value profiling: TruffleC profiles all run-time values. In our example it speculates
on the variable b being 2, because this is the value that was seen during the
interpretation so far. Truffle produces machine code that checks if this assumption
is still valid and then uses the constant 2 for b. GCC cannot exploit run-time
feedback nor can it deoptimize machine code in case of an invalid assumption.
Hence, it cannot perform these specializations.

TruffleC can exploit profile information and use it for dynamic optimizations. Thus, it
outperforms the static compilation of GCC.

In Figure 7.2 we apply TruffleC to benchmarks from SciMark and the Computer
Language Benchmarks Game; the x-axis shows the benchmarks that we evaluated. The
y-axis shows the normalized score of the benchmarks (higher is better). The evaluation

Performance Evaluation 78

Me
an NB TS FA TW SN FK MB FF

T
SO
R MC SM LU

0

2

4

6

1 1 1 1 1 1 1 1 1 1 1 1 1

2.
56

2.
41

1.
92

1.
83

4.
7

3.
42

2.
7

1.
99

1.
79

2.
19 2.

49

4.
63

3.
63

1.
85

1.
69

0.
66

1.
48

1.
4

3.
47

1.
89

1.
77 2.

05

1.
8

2.
26

3.
29

2.
07

GCC O0 GCC best TruffleC

Figure 7.2: Performance numbers of TruffleC (normalized to GCC O0 performance;
higher is better).

shows that TruffleC is mostly faster than GCC with optimization level O0 and on
average 28% slower compared to GCC best. We explain the differences as follows:

Function call overhead: A function call in Truffle is much more heavyweight than in
normal C. Truffle needs to pack arguments into an Object array, which is passed
to the callee and afterwards unpacked. Hence, for call-intensive benchmarks (e.g.,
the recursive benchmarks TS and TW) TruffleC has the highest overhead (Truf-
fleC is 70% slower than GCC best on TW). However, future work on Truffle and
the Graal compiler will further optimize calls in Truffle. We expect this gap to
be reduced as part of future work.

Compiler optimizations: For the rest of the benchmarks, TruffleC very much depends
on the optimizations of the Graal compiler. Performance varies between 43%
slower (LU) and 16% faster (FFT) compared to GCC best. The Graal compiler
does not exploit all optimizations possible for arithmetic operations or memory
addressing, which explains the performance difference on these number-crunching
benchmarks. However, future work on the compiler will close this gap.

Performance Evaluation 79

7.3 Truffle Language Implementation Composition

In this chapter we evaluate the peak performance of multi-language applications run-
ning on top of the TMLR. First, we measure the peak performance of our multi-language
version of the SciMark and Computer Language Benchmarks Game benchmarks. Sec-
ond, we measure the peak performance of C extensions benchmarks for Ruby.

7.3.1 Interoperability between JavaScript, Ruby, and C

First, we compare the performance of the individual TLIs on our benchmarks. The
results in Figure 7.3 are normalized to the TruffleC performance. Second, we run the
multi-language version of our benchmarks. We modified the benchmarks, which are
available in C, Ruby, and JavaScript, such that parts of them were written in a different
language. We extracted all array and object allocations into factory functions. We then
replaced these factory functions with implementations in different languages, making
the benchmarks multi-language applications. Compared to the TruffleC evaluation,
not all of our benchmarks were suitable for writing them in multiple languages. We
do not include the benchmarks NB, SN, FK and MB, because some of them only use
primitive values or their implementation is simply too short such that it would not
make sense writing them in multiple languages. We selected the following benchmarks:
FFT, SOR, MC, SM, LU, TS, FA, and TW. The SciMark benchmarks (FFT, SOR,
MC, SM, LU) already had factory functions for all allocations and it was easy to
replace these functions with versions that are written in different languages. For TS
we implemented the allocation of the tree data structure in a different language. The
FA benchmark was modified in a sense that the DNA data structures were allocated
using a different language. Finally, the TW benchmark also allocates the tower data
structures using a different language. We grouped our evaluations such that their
main part was either written in C, in JavaScript, or in Ruby. For each group we
used the single-language implementation as the baseline and show how multi-language
applications perform compared to single-language applications. The x-axis of each
chart in Figures 7.3, 7.4, 7.5, 7.6, and 7.7 shows the different benchmarks. The y-axis
of each chart shows the average scores (higher is better) of the benchmarks. We base
the TMLR on Graal revision bf586af6fa0c.

Results of Single-Language Benchmarks

Figure 7.3 shows that JavaScript code is on average 37% slower and Ruby code on
average 67% slower than C code. C is efficient because C data accesses do not require
run-time checks (such as array bounds checks), but the memory is accessed directly.

Performance Evaluation 80

Me
an FF

T
SO
R MC SM LU TS FA TW

0

0.5

1

1.5

2

2.5

1 1 1 1 1 1 1 1 1

0.
63

0.
81

0.
57

1

0.
27

0.
44

1.
62

0.
46

0.
64

0.
33 0.
38

0.
21

0.
58

0.
1 0.

21

1.
14

0.
55

0.
23

TruffleC TruffleJS TruffleRuby

Figure 7.3: Performance of individual languages on our benchmarks (normalized to C
performance; higher is better).

This efficient data access makes C the fastest language for most benchmarks. How-
ever, if a program allocates data in a frequently executed part of the program, the
managed languages (JavaScript and Ruby) can outperform C. Allocations in TruffleC
(using calloc) are more expensive than the instantiation of a new object on the Java
heap. TruffleC does a native call to execute the calloc function of the underlying
OS. TruffleJS or TruffleRuby allocate a new object on the Java heap using sequential
allocation in thread-local allocation buffers, which explains why JavaScript and Ruby
perform better than C on TS. This benchmark allocates data in a hot loop. The Ruby
semantics require that Ruby objects are accessed via getter or setter methods. Truf-
fleRuby uses a dispatch mechanism to access these methods. This dispatch mechanism
introduces additional run-time checks and indirections, which explains why Ruby is in
general slower than JavaScript or C.

Results of Multi-Language Benchmarks

The multi-language versions of our benchmarks heavily access foreign objects:

C Objects: C data structures are unsafe; access operations are not checked at run
time, which makes them efficient in terms of performance. Hence, using C data
structures in JavaScript or Ruby applications improves the run-time performance.
However, an allocation with calloc is more expensive than an allocation on the
Java heap. Factory functions in JavaScript or Ruby perform better than factory
functions written in C.

Performance Evaluation 81

Me
an FF

T
SO
R MC SM LU TS FA TW

0

0.5

1

1.5

2

2.5

1 1 1 1 1 1 1 1 1

0.
6

0.
87

0.
45

0.
95

0.
26 0.

41

1.
48

0.
5 0.

58

0.
4

0.
42

0.
23

0.
78

0.
14 0.

21

1.
19

0.
53

0.
43

pure C allocations in JavaScript allocations in Ruby

Figure 7.4: Main part in C, allocations in different languages (normalized to pure Truf-
fleC performance; higher is better).

JS Objects: TruffleJS uses a dynamic object implementation where each access in-
volves run-time checks. Examples of such checks are array bounds checks to dy-
namically grow JavaScript arrays or property access checks to dynamically add
properties to an object. These checks are the reason why accesses to JavaScript
objects perform worse than accesses to C objects.

Ruby Objects: TruffleRuby’s dispatch mechanism for accessing objects introduces a
performance overhead compared to JavaScript and even more so to C. TruffleRuby
implements Ruby objects as RubyBasicObjects, which wrap a DynamicObject

that actually contains the data. According to the Ruby semantics, TruffleRuby
invokes getter and setter methods to access the DynamicObject. This additional
indirection is the reason why accesses to Ruby objects are in general slower than
accesses to JavaScript objects or C objects.

The TMLR does not marshal objects at the language boundary but directly passes them
from one language to another and the TLIs use generic access to access them. Message
resolution only affects the performance at the first execution of an object access. After
that, the application runs at full speed. The dynamic compiler can minimize the effect
of generic access’s language and type check on the receiver. Using conditional elimina-
tion [96], the Graal compiler can even remove the additional type/language check by
merging it with the type check on the receiver, which is necessary in dynamically typed
languages anyway. Conditional elimination reduces the number of conditional expres-
sions by performing a control-flow analysis over the IR graph and pruning conditions
that can be proven to be true. Also, it can move generic access’s check out of loops if

Performance Evaluation 82

Me
an FF

T
SO
R MC SM LU TS FA TW

0

0.5

1

1.5

2

2.5

1.
29

1.
15

1.
61

0.
92

1.
76

2.
11

0.
68

1.
41

1.
27

1 1 1 1 1 1 1 1 1

0.
55

0.
49

0.
44

0.
77

0.
56

0.
5

0.
67 0.

79

0.
32

allocations in C pure JavaScript allocations in Ruby

Figure 7.5: Main part in JavaScript, allocations in different languages (normalized to
pure TruffleJS performance; higher is better).

the compiler can prove that a condition is loop-invariant [24, 25]. Hence, we can show
that the performance of a multi-language program mainly depends on the performance
of the individual language parts. Using JavaScript or Ruby data in C programs has a
negative impact on the overall performance. Figures 7.4 and 7.5 show that using Ruby
objects in C or JavaScript programs causes an overhead of up to 86%. On average,
using Ruby data in C causes a performance overhead of 60% and using Ruby data in
JavaScript causes a performance overhead of 45%. On the other hand, using efficient
foreign data has a positive effect on performance. For example, Figures 7.5 and 7.6
show that using efficient C data in JavaScript or Ruby programs can improve perfor-
mance by up to 322%. On average, using C data improves the JavaScript performance
by 29% and the Ruby performance by 85%.

Message resolution allows the Graal compiler to apply its optimizations across lan-
guage boundaries (cross-language inlining). Widening the compilation span across
different languages enables the compiler to apply optimizations to a wider range of
code. Message resolution also allows the Graal compiler to apply escape analysis and
scalar replacement [98] to foreign objects. Consider a JavaScript program that allocates
an object, which is used by a C part of the application. Message resolution ensures
that Graal’s escape analysis can analyze the object access, independent of the host
language. If the JavaScript object does not escape the compilation scope, scalar re-
placement can remove the allocation and replace all usages of the object with scalar
values. To demonstrate the performance improvement due to message resolution we
disable it. In Figure 7.7 we show the performance of our JavaScript benchmarks using
C data structures with and without message resolution. When disabling message reso-

Performance Evaluation 83

Me
an FF

T
SO
R MC SM LU TS FA TW

0

1

2

3

4

5

1.
85

2.
34

2.
92

1.
22

1.
63

4.
22

0.
86

1.
88

1.
47

1.
09

1.
95

1.
56

1.
08

1.
06 1.

35

1.
03

0.
57 0.

711 1 1 1 1 1 1 1 1

allocations in C allocations in JavaScript pure Ruby

Figure 7.6: Main part in Ruby, allocations in different languages (normalized to pure
TruffleRuby performance; higher is better).

lution, every data access as well as every function call crosses the language boundary,
which results in a performance overhead of more than 500% for JavaScript with alloca-
tions in C compared to the same configuration but with message resolution. The Graal
compiler cannot perform optimizations across language boundaries, which explains the
loss in performance. We expect similar results for the other configurations, however,
we have not measured them because disabling message resolution for an TLI requires
a significant engineering effort.

7.3.2 C Extensions Support for Ruby

In this section we compare the TMLR to other multi-language systems that can com-
pose Ruby code and native C code, namely MRI, Rubinius, and JRuby. We show that
the TMLR performs better than these related approaches.

We benchmark examples of real-world C extensions that have been developed to meet
a real business need (see also Section 5.2.4). Also, we used code that is computationally
bound rather than I/O intensive, as our system does nothing to improve I/O perfor-
mance. To the best of our knowledge, there is no benchmark suite that evaluates the
performance of native C extensions extensively. Therefore, we use the existing modules
chunky_png and psd.rb. Both modules have separately available C extension modules.
Oily_png4 includes C extensions for resampling, PNG encoding and decoding, color

4OilyPNG, Willem van Bergen and others, 2015: https://github.com/wvanbergen/oily_png

https://github.com/wvanbergen/oily_png

Performance Evaluation 84

Me
an FF

T
SO
R MC SM LU TS FA TW

0

1

2

3

1.
29

1.
15

1.
61

0.
92

1.
76

2.
11

0.
68

1.
41

1.
27

1 1 1 1 1 1 1 1 1

0.
21

0.
17

0.
12

0.
45

0.
15 0.
2 0.
26

0.
49

0.
11

allocations in C pure JavaScript allocations in C w/o message resolution

Figure 7.7: Main part in JavaScript and allocations in C with and without message
resolution (normalized to pure TruffleJS performance; higher is better).

channel manipulation, and image composition. Psd-native5 contains C extensions for
color space conversion, clipping, layer masking, implementations of Photoshop’s color
blend modes, and some other utilities. In total, we evaluate 43 C extensions. The 43
routines were set up in a benchmark harness for evaluation. The Ruby harness allocates
Ruby data, which is then processed in a C extension, i.e., the computations of these
routines are implemented in C but the data is provided by Ruby.

We base the TMLR on Graal revision 9535eccd2a11. Where an unmodified Java
VM was required, we used the 64bit JDK 1.8.0u5 with default settings. Native ver-
sions of Ruby and C extensions were compiled with the system standard GCC 4.8.2.
Figure 7.8 summarizes our peak performance results of all benchmarks by showing the
geometric mean speedup over all benchmarks (y-axis, higher is better). We compare
all implementations (x-axis) relative to the speed at which the C extensions run when
using MRI’s implementation of the C extensions API.

The standard implementation of Ruby is known as MRI, or CRuby. It is a bytecode
interpreter, with some simple optimizations such as inline caches for method dispatch.
MRI has excellent support for C extensions, as the API directly interfaces with the
internal data structures of MRI. We evaluated version 2.1.2.

Rubinius is an alternative implementation of Ruby using a VM core written in C++
and using LLVM to implement a simple JIT compiler, but much of the Ruby-specific
functionality in Rubinius is implemented in Ruby. Rubinius uses internal data struc-

5PSDNative, Ryan LeFevre, 2015: https://github.com/layervault/psd_native

https://github.com/layervault/psd_native

Performance Evaluation 85

Oily-png and psd-native
0

1

2

3

4

1

0.
4

0.
24

3.
02

1.
4

MRI Rubinius JRuby TMLR TMLR w/o message resolution

Figure 7.8: C extensions benchmarks (normalized to natively compiled C extensions
that interface to MRI; higher is better).

tures and implementation techniques different from those in MRI. Most importantly,
it uses C++ instead of C; so to implement the C extensions API, Rubinius has a
bridging layer. This layer converts C extensions API calls to calls on Rubinius’ C++
implementation objects. We evaluated version 2.2.10.

JRuby is an implementation of Ruby on the Java Virtual Machine. It uses dynamic
classfile generation and the invokedynamic instruction to JIT-compile Ruby to JVM
bytecode, and thus to machine code. JRuby uses Java’s JNI [66] to implement a
bridging layer to support MRI’s C extensions API. This technique is almost the same
as in Rubinius, except that now the interface between the VM and the conversion layer
is even more complex. To share Ruby data with C extensions, JRuby must copy the
data from the managed Java heap onto the unmanaged native heap. Whenever the
native data is modified, JRuby copies the changes back to the managed Ruby object.
To keep both sides of the divide synchronized, JRuby must keep performing this copy
each time the interface is passed. JRuby used to have experimental support for running
C extensions, but after initial development it became unmaintained and has since been
removed. We evaluated the last major version where we found that the code still
worked, version 1.6.0.

TMLR is our system. We implement the C extensions API with generic access.
As before (see Section 7.3.1), we add performance numbers for a configuration that
disables message resolution.

Performance Evaluation 86

Results

The baseline of our evaluation are natively compiled C extensions that interface to MRI.
C extensions that interface to Rubinius are on average 60% slower than C extensions
that interface to MRI. Rubinius needs a bridging layer to meet MRI’s API, which
introduces a significant run-time overhead. The C extensions also failed to make any
progress on three of the benchmarks; we considered these benchmarks to have timed
out and did not include these numbers in the reported mean value. C extensions that
interface to JRuby are on average 76% slower than C extensions that interface to MRI.
JRuby also has a bridging layer to meet MRI’s API that uses JNI, which causes a
significant overhead. The C extensions failed one benchmark with an error about a
missing feature and did not make progress on 17 benchmarks in reasonable time. C
extensions that run on top of the TMLR are on average 202% faster than native C
extensions that interface to MRI. The TMLR performs better because MRI, Rubinius,
and JRuby run the Ruby code in a dedicated VM and the C extensions are statically
compiled and run natively. Every call or data access form native code to the VM
(and vice versa) is a compilation barrier that prevents the compiler from performing
any optimizations across the language boundaries. However, in our system, the C
extensions are executed on top of TruffleC and are therefore running in the same VM.
We use generic access for any foreign object access (C extensions accessing Ruby data),
which removes the language boundaries completely and allows optimizations across
languages. Our system performs best on C extensions that heavily access Ruby data
but otherwise do little computation. Generic access removes all language boundaries,
which in the best case allows compiling the entire benchmark into a single machine
code routine. Performance is similar to native C extensions that interface to MRI if
the benchmarks are computationally intense. In these cases, the performance numbers
are dominated by the computationally intense parts rather than by the foreign data
access. Without message resolution the C extensions run 54% slower. However, the
performance is still 40% faster compared to native C extensions that interface to MRI.

7.4 Managed Data Allocations for C

In this section we compare TruffleC and TruffleCM. TruffleC can directly access the
native data without any run-time checks. In TruffleCM there is a type check for every
data access (introduced by generic access) and also checks that ensure memory safety
(introduced by the managed allocations). We discuss Graal’s efficiency in optimizing
these checks. Also, we compare the performance of TruffleCM to related work that
ensures spatial and temporal safety. TruffleC as well as TruffleCM are based on Graal
revision 5b24a15988fe. For this evaluation we reuse the benchmarks that we have used
to evaluate TruffleC.

Performance Evaluation 87

Me
an NB TS FA TW SN FK MB FF

T
SO
R MC SM LU

0

2

4

6

1 1 1 1 1 1 1 1 1 1 1 1 1

1.
85

1.
69

0.
66

1.
48

1.
4

3.
47

1.
89

1.
77 2.

05

1.
8

2.
26

3.
29

2.
07

1.
85

1.
36

0.
58

1.
43

0.
88

3.
44

2.
06

1.
84 2.

02

2.
93

2.
88

4.
23

1.
76

0.
61

0.
45

0.
15

0.
91

0.
3

2.
1

0.
87

1.
99

1

0.
47

0.
49

0.
45

0.
37

GCC O0 TruffleC TruffleCM SoftBound

Figure 7.9: Performance numbers of TruffleC and TruffleCM (normalized to GCC O0
performance; higher is better).

Figure 7.9 shows the results of the benchmarks. The x-axis of this chart shows the
different benchmarks. The y-axis of this chart shows the average scores (higher is
better) of the benchmarks. The baseline (1) is the performance of GCC O0 (the GCC
performance without optimization). TruffleC uses the same memory management as
plain C compilers, i.e., it allocates data on the native heap and accesses it via unsafe
access operations. TruffleCM replaces these unsafe allocations with safe managed
allocations. TruffleCM executes these benchmarks in strict mode (see Section 6.1).
SoftBound [75,76] is an alternative, LLVM-based approach for memory-safe execution
of C code, which we include in our performance evaluation. SoftBound is a recent
approach for memory-safe execution of C code with good performance and uses compile-
time transformations to insert run-time checks for detecting spatial and temporal safety
violations.

Results

TruffleCM performs various checks when accessing a managed allocation. For example,
when accessing an Array object, it checks if the managed allocation is not null and
if the allocation is an Array object, if the index is within the bounds of the array,
and finally if the expected type of the access expression matches the type of the array
element.

The Graal compiler can eliminate many of these checks and can therefore reduce the
run-time overhead [24, 25, 96, 117]. Using conditional elimination [96], the Graal com-
piler can remove redundant run-time checks by merging them. Conditional elimination

Performance Evaluation 88

reduces the number of conditional expressions by performing a data-flow analysis over
the IR graph and by pruning conditions that can be proven to be true. Loop invariant
code motion [24,25] moves run-time checks out of loops if the compiler can prove that a
condition is loop-invariant. In this case, the static number of checks remains the same,
but a check outside a loop is likely to be executed less often than inside a loop. Array
bounds check elimination [117] fully removes bounds checks if the compiler can prove
that they never fail. Also, whenever possible, the compiler moves bounds checks out
of loops. In addition to that, the Graal compiler speculatively moves guards out of
loops even if they have a control dependence in the loop. In this case, the (possibly
stricter) condition before the loop implies the guard in the loop, which allows removing
the check inside the loop. The performance evaluation shows that the safe execution
of a C program with TruffleCM is on average as fast as the unsafe execution with Truf-
fleC. TruffleCM performs equally well as TruffleC when the Graal compiler is able to
remove all run-time checks (FA, SN, MB, FFT). In other words, there is no perfor-
mance difference between an unsafe memory access and a safe managed object access
when the compiler can remove all run-time checks. Only if the compiler cannot remove
all run-time checks (NB, TW, LU), then TruffleCM is 20% (NB), 37% (TW), and 15%
(LU) slower than TruffleC. Managed allocations allow the compiler to apply further
optimizations. It can apply a sophisticated partial escape analysis with scalar replace-
ment [98] on the objects of a C program. Also, it enables further copy propagation and
common subexpression eliminations. If the compiler can remove all run-time checks
and can exploit further optimizations, then TruffleCM can even outperform TruffleC.
In this case, TruffleCM is between 9% (FK) and 63% (SOR) faster than TruffleC.

If we compare the performance of C code compiled with SoftBound to TruffleCM,
SoftBound is between 8% faster (MB) and 89% slower (SM) (67% slower on average)
than TruffleCM. SoftBound is based on LLVM and the compiler cannot optimize/re-
move the run-time checks as well as the Graal compiler can. We can conclude that
TruffleCM is significantly faster than SoftBound in terms of peak performance.

7.5 Discussion

In this performance evaluation we show that if a TLI uses generic access to access data
(e.g. foreign data), then the performance of this data access mainly depends on the
implementation of the data structure and its access operations. We demonstrate that
the dynamic Graal compiler efficiently removes the language and type checks in generic
access. The performance of a multi-language program depends on the performance of
the individual language parts. Using heavyweight foreign data has a negative impact
on performance (e.g. heavyweight Ruby objects used in C). On the other hand, using
efficient foreign data has a positive effect on performance (e.g. efficient C data used in
Ruby).

Performance Evaluation 89

In addition, generic access ensures excellent performance of multi-language appli-
cations because of two reasons: First, message resolution replaces language-agnostic
messages with efficient foreign-language-specific operations. Accessing foreign objects
becomes as efficient as accessing objects of the host language. Second, the dynamic
compiler can perform optimizations across language borders because these borders were
removed by message resolution. For example, the compiler can inline C functions into
Ruby code and vice versa, which enables optimizations across language boundaries.

Related Work 90

Chapter 8

Related Work

To put the TMLR in context, we discuss related approaches of executing
C code on top of a JVM including approaches that dynamically compile C
code. We also compare the TMLR to related approaches to cross-language
interoperability, including foreign function interfaces, inter-process commu-
nication, and multi-language runtimes. Finally, we compare TruffleCM to
other approaches that ensure memory safety.

8.1 C Language Implementations

Previous efforts to execute C programs on the JVM mostly rely on the translation of
C to bytecode or Java source code. Most approaches do this by first translating the
C code to an IR, such as MIPS machine code or LLVM IR. NestedVM [2] targets the
translation of unsafe native code to safe Java bytecode. It uses a MIPS compiler to
obtain machine code, which is then further translated using two different modes. The
first mode translates this machine code to Java source code, which is then compiled
by javac. The second mode is a direct conversion to Java bytecode. Cibyl [59] is
similar to NestedVM but targets Java J2ME devices. It first translates C to MIPS
code. Afterwards, it generates Java bytecode as well as Java wrappers for system calls.
Cibyl supports the full C language. LLJVM1 compiles a C program to LLVM IR using a
frontend such as Clang2. It then translates the LLVM IR to Java bytecode. We execute
C code on top of a JVM without creating bytecode. TruffleC produces a self-optimizing
AST from the C source code, which is interpreted and eventually compiled to machine
code. Truffle ASTs are flexible, e.g., we can rewrite them to apply optimizations on
the AST level. When the Graal compiler finally compiles the ASTs to machine code, it
uses the profile information collected during interpretation to guide its optimizations.

1LLJVM 2.7, GitHub repository, 2015: https://github.com/davidar/lljvm
2clang: a C language family frontend for LLVM, LLVM, 2015: http://clang.llvm.org

https://github.com/davidar/lljvm
http://clang.llvm.org

Related Work 91

Dynamic compilation allows optimizations to exploit profiling information, e.g., by
replacing variables with constants if their values do not change. To use this information
when compiling C code, Auslander et al. [4] partially evaluate the code by producing
pre-optimized machine code templates in a static compiler. These machine code tem-
plates contain placeholders for variables that will be constant at run time. They use a
fast dynamic compiler that fills the templates with the missing data at run time. The
approach of Auslander et al. [4] requires the programmer to annotate program frag-
ments in order to guide the template creation. TruffleC profiles variable values at run
time and automatically specializes them to constants if possible. TruffleC makes opti-
mistic assumptions about values being constants, function pointer calls being constant
and code parts being never executed. These assumptions can later lead to deoptimiza-
tion of the machine code if they are violated. Execution then continues in the AST
interpreter and TruffleC can re-compile the code with a different specialization at a
later point.

'C and the tcc compiler3 [82] allow the programmer to explicitly designate C state-
ments and expressions in the source code for dynamic code generation at run time
rather than statically compiling them. 'C is an extension of ANSI C. However, the
changes are small, which makes it easy to learn and use. TruffleC, on the other hand,
does not require the programmer to use a different programming language or to ex-
plicitly compile statements dynamically. Truffle schedules compilation of frequently
executed code parts automatically and uses the collected profiling information to guide
its optimizations.

Industry standard C compilers, such as GCC, can compile and optimize C code based
on profile information. Profile-guided optimization contains the following three steps
(see also Section 3.1.4):

1. Programmers can configure the compiler to produce binaries that profile an ap-
plication and dump the profile of a program run (profile code generation).

2. This binary is executed and produces the profile of a program run (profiling run).

3. After the profiling run, the program is compiled a second time (profile-guided
compilation). This time the compiler uses the profile information, which allows
optimizations such as loop unrolling, or the specialization of certain program
paths.

This approach clearly differs from TruffleC because it requires the programmer to manu-
ally collect profile information and to recompile a program. In contrast to that, TruffleC
starts interpreting the C code and automatically collects profile information, which is

3'C, Max Poletto, 2015: http://pdos.csail.mit.edu/tickc

http://pdos.csail.mit.edu/tickc

Related Work 92

used when the IR is dynamically compiled. All this happens without any user inter-
action. The drawback of dynamic compilation is that it optimizes a program every
time it runs, whereas static compilers optimize an application only once, which saves
energy. Also, a dynamically compiled program reaches its peak performance only after
a warm-up phase (in which frequently executed program parts are dynamically com-
piled and optimized), whereas as a statically compiled program runs at full speed from
the beginning. However, a multi-language environment has to deal with foreign ob-
jects of possibly varying languages and thus has to specialize to these languages at run
time. Hence, in our scenario of multi-language development dynamic compilation is
preferable.

8.2 Cross-Language Interoperability

8.2.1 Foreign Function Interfaces

Most modern VMs expose an FFI such as Java’s JNI [67], Java’s Native Access4, or
Java’s Compiled Native Interface5. An FFI defines a specific interface between two
languages. Programmers can compose a pair of languages by using an API that allows
accessing foreign objects. The result is rather inflexible, i.e., in order to interact with a
foreign language, the programmer has to write glue code and this code only works for
a specific pair of languages. Also, FFIs primarily allow integrating C/C++ code, e.g.,
Ruby and C (Ruby’s C extensions mechanism), R and C (native R extensions), or Java
and C [67]. They hardly allow integrating code written in a different language than C.

Wrapper generation tools (e.g. the tool Swig [9] or the tool described by Reppy and
Song [84]) use annotations to generate FFI code from C/C++ interfaces, rather than
requiring users to write FFI glue code by hand. A similar approach is described in [62],
where existing interfaces are transcribed into a new notion instead of using annotations.

Compilation barriers at language boundaries have a negative impact on performance.
To widen the compilation span across multiple languages, Stepanian et al. [100] describe
an approach that allows inlining native functions into a Java application using a JIT
compiler. They can show how inlining substantially reduces the overhead of JNI calls.

Kell et al. [61] describe invisible VMs, which allow a simple and low-overhead foreign
function interfacing. They implement the Python language and minimize the FFI
overhead to natively compiled code.

4Java Native Access (JNA), GitHub repository, 2015: https://github.com/twall/jna
5Compiled Native Interface (CNI), GCC the GNU Compiler Collection, 2015: http://gcc.gnu.org/

onlinedocs/gcj/About-CNI.html

https://github.com/twall/jna
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html
http://gcc.gnu.org/onlinedocs/gcj/About-CNI.html

Related Work 93

Jeannie [52] allows toggling between C and Java, hence, the two languages can be
combined without writing boilerplate code. In Jeannie, programmers can mix both
Java and C code in the same file and Jeannie compiles this code down to JNI.

There are many other approaches that target a fixed pair of languages [10,32,58,86,
113]. These approaches are all tailored towards interoperability between two specific
languages and cannot be generalized for arbitrary languages and VMs. In contrast to
them, our solution provides true cross-language interoperability between any Truffle-
based languages rather than just pairwise interoperability. We can compose languages
and reduce boilerplate code to a minimum, we do not target a fixed set of languages,
and generic access does not introduce a compilation barrier when crossing language
boundaries.

8.2.2 Inter-Process Communication

IDLs (interface description languages) implement cross-language interoperability via
message-based inter-process communication between separate runtimes. This approach
is mainly targeted to remote procedure calls and often not only aims at bridging differ-
ent languages but also at calling code on remote computers. Programmers can define
an interface in an IDL that can then be mapped to multiple languages. An IDL in-
terface is translated to stubs in the host language and in the foreign language, which
can then be used for cross-language communication [42,80,94,104]. These per-language
stubs marshal data to and from a common wire representation. However, this approach
introduces a marshalling and copying overhead as well as an additional maintenance
burden (learning and using an IDL, together with its toolchain).

Using IDLs in the context of single-process applications has only been explored in
limited ways [27, 105]. Also, these approaches retain the marshalling overhead and
cannot share objects directly. Generic access is also based on messages, but they are
resolved at run time and are replaced with direct access operations to foreign objects.
These messages are transparent to the programmer and are automatically generated.
The TMLR makes the mapping of foreign language operations to messages the task of
the language implementer rather than the task of the application programmer. Our
approach accesses foreign objects directly instead of copying them at language borders.
In fact, language borders are completely eliminated so that the dynamic compiler can
optimize across languages and can thus improve the performance of multi-language
applications significantly.

Related Work 94

8.2.3 Multi-Language Runtimes

The TMLR composes language implementations that are running on a shared VM,
which is closely related to Microsoft’s Common Language Runtime [16, 56, 70] as well
as to the RPython [15] runtime. In the following we compare these runtimes to the
TMLR.

The Microsoft Common Language Infrastructure (CLI) [56] describes language im-
plementations that compile different languages to a common IR that is executed by
the CLR [16]. The CLR provides a common type system, an automatic memory man-
agement, a JIT compiler (a function is compiled just before execution), a garbage
collector, a security manager, and a class loader. The CLR can execute conventional
object-oriented imperative languages, dynamically typed language, and the functional
languages (e.g. F#).

The Dynamic Language Runtime (DLR) [43] is a framework for implementing dy-
namic languages on top of the CLR, which is similar to Truffle as a framework on top
of the JVM. Language developers parse source code to an expression tree, which is the
DLR’s representation of source code. The DLR defines a fixed set of language-agnostic
expressions that language implementers use to build up an expression tree. DLR ex-
pression trees can be interpreted by the DLR’s interpreter or converted to the CLR’s
IR, which is directly compiled to machine code. A DLR language implementation
transforms operations of dynamically typed operands to call sites [43]. For example,
an implementation does not emit IR code that adds two numbers for a JavaScript +

operation, but it emits a call site. A call site is a placeholder for an operation that is
resolved at run time. The DLR uses a delegate to implement a call site. A delegate
then calls the different implementations of an operation. In the case of a JavaScript
+ operation, the delegate can call the double instance of a + operation (implemented
as a type check followed by a double addition). This approach is different to Truffle
because Truffle ASTs are self-optimizing and speculatively rewrite themselves with spe-
cialized variants at run time, e.g., based on profile information. This technique allows
specializing on a subset of the semantics of a particular operation. Truffle compiles
frequently executed ASTs to machine code and deoptimizes them if a tree needs to be
re-specialized.

A language implementation on top of the DLR needs to use the object model of the
CLR to implement the objects of a guest language, i.e., it has to represent them using
CLR’s static classes [43]. DLR languages can make dynamic calls on objects defined
in other languages. Similar to generic access, the DLR is inspired by Smalltalk. The
DLR defines a meta-object protocol with defines a set of language-agnostic operations
on objects. These operations on objects are again implemented with call sites and
delegates.

Related Work 95

Microsoft’s approach is different from ours because of the following reasons:

Object representation: Language implementations on top of the CLR (including the
DLR languages) need to use the statically typed and managed object model of the
CLR. Tight interoperability on the IR level is only possible between languages
whose type system corresponds to the CTS. The object access is implemented
using the CLR’s IR.

Generic access, on the other hand, allows every language to have its own represen-
tation of objects and to define individual access operations. TLIs are not bound
to a common object representation, e.g., TruffleJS allocates objects as Dynamic-

Object instances (on the managed Java heap) whereas TruffleC allocates them
as plain byte sequences (on the unmanaged native heap). Generic access resolves
and embeds language-specific AST snippets for each access at run time (e.g., ac-
cess operations to the managed Java heap or a raw memory access to the native
heap).

Languages: The CLR accesses unmanaged code (e.g. C code) via the annotation-based
PInvoke and the FFI-like IJW interface, which uses explicit marshalling and a
pinning API. The TMLR treats unmanaged languages (e.g. C) as first-class
citizens and provides a TLI for them. TruffleC supports generic access and can
access managed and dynamically typed objects. Also, other high-level languages
(e.g. JavaScript) can access unmanaged C data efficiently.

Object access: The DLR uses cached delegates to access foreign objects, which causes
a call site for every foreign object access. Jeff Hardy states in [43] that a for-
eign object access is as fast as other dynamic calls, and almost as fast as static
calls. Generic access avoids this indirection, i.e., there are no call sites between
languages because generic access directly embeds the foreign object access into
the AST of the host application. We specialize a foreign object access on the
language and the type of the foreign object and embed it into the host language’s
AST thus eliminating any boundaries between languages. If the foreign object
suddenly has a different type or comes from a different language, the execution
falls back to the AST interpreter and generic access resolves a new foreign object
access.

Cross-language interoperability on top of RPython [6–8] allows the programmer to
toggle between syntax and semantics of languages on the statement level. Barrett et al.
describe a combination of Python and Prolog called Unipycation [6] or a combination
of Python and PHP called PyHyp [8]. Unipycation and PyHyp compose languages
by combining their interpreters. Both approaches glue the interpreters together on
the language implementation level. The new interpreter is then compiled using a meta-
tracing JIT. To share data across languages, Unipycation and PyHyp wrap objects using

Related Work 96

adapters. Like the TMLR, the approach of Barrett et al. avoids compilation bound-
aries between languages and multi-language applications show good performance. In
contrast to Barret et al.’s approach, however, the TMLR is not restricted to a fixed set
of languages. Unipycation and PyHyp both compose a specific pair of language imple-
mentations whereas generic access is a general mechanism to compose arbitrary Truffle
language implementations. Unipycation, and PyHyp propose a more fine-grained lan-
guage composition compared to our approach. However, when languages are mixed at
source code level, editors, compilers, and debuggers have to be adapted.

8.2.4 Multi-Language Semantics

The semantics of language composition is a well-researched area [1,32,33,69,102,113],
however, most of these approaches do not have an efficient implementation. Our work
partially bases on ideas from existing approaches (i.e., like types from Wrigstad et
al. [113], Section 5.1.2) and therefore stands to complement such efforts.

8.3 Spatial and Temporal Memory Safety

TruffleCM uses managed data allocations for C and can therefore ensure memory safety.
We discuss the Boehm-Demers-Weiser GC [11–14] that automatically manages C ob-
jects. Also, we discuss software-based approaches that ensure memory safety of a C
program execution. TruffleCM is a software-based approach, thus we focus on research
in this area rather than on hardware-based research such as [18,21,73,74,83,91,92,103].
Like existing literature surveys [76], we distinguish between pointer-based approaches
and object-based approaches.

8.3.1 Boehm-Demers-Weiser Garbage Collector

The Boehm-Demers-Weiss GC is a conservative GC for C and C++ that can provide
temporal safety. It uses a mark-sweep algorithm and provides incremental and gener-
ational collection. It works with unmodified C programs by replacing native memory
allocations with GC allocations and removing free calls completely. Also, it can run
in a leak detection mode that allows ensuring temporal safety.

Like TruffleCM, this approach automatically deallocates memory that is not used
anymore. However, the architecture of the two approaches is different. TruffleCM

executes C code on a VM via AST interpretation. It introduces MAddress objects to
represent pointers and allocates managed objects, which allows reusing the GC of an
existing JVM directly.

Related Work 97

8.3.2 Pointer-Based Approaches

Our technique is inspired by pointer-based metadata approaches. Pointer-based ap-
proaches [5, 73, 75–78] store additional information for each pointer of a C program
so that pointers become multi-word values (fat pointers) [5, 77] that hold the actual
pointer value along with metadata (e.g., the upper and the lower bounds of the ref-
erenced object). Pointer arithmetic then modifies the actual pointer value, but the
metadata remains unchanged. When a pointer is dereferenced, the actual pointer value
is checked against the bounds of the object, which ensures spatial safety. To ensure
temporal safety, every allocated object gets a unique identifier (capability) [5]. These
capabilities stay in existence even after the deallocation of an object, which allows check-
ing the pointer’s validity when it is dereferenced. SafeC [5] detects spatial and temporal
memory errors by using fat pointers that encode the pointer value, base and size in-
formation, a storage class (heap, local, or global allocation), and a capability to the
referent. CCured [77, 78] classifies pointers in three categories: SAFE pointers, which
cannot be used for pointer arithmetic, array indexing or type casts and cause almost
no run-time overhead; SEQ pointers, which are fat pointers that support pointer arith-
metic, array indexing and primitive casts; and WILD pointers, which support arbitrary
casts but have additional metadata and require run-time checks. Nagarakatte et al.
describe SoftBound [75] and CETS [76], which use compile-time transformations and
insert runtime checks for detecting spatial and temporal safety violations. These ap-
proaches keep the metadata in a separate metadata space (in contrast to fat pointers),
which retains memory layout compatibility.

An MAddress object can be seen as a fat pointer (to ensure spatial safety) and the
memory management of the JVM ensures temporal safety. The novelty of TruffleCM is
that we transferred the idea of fat pointers to a C interpreter (i.e., TruffleC), which is
implemented in Java. We can reuse the sophisticated automated memory management
(the JVM garbage collector) of the host VM. This allows us to ensure spatial and
temporal safety with little effort. We use a layout table to map the offset of an MAddress

to the corresponding member of a managed allocation and eventually do a Java member
access, which ensures spatial safety. We mark freed objects as deallocated, which allows
us to ensure temporal safety. The GC of the JVM eventually deallocates the object.
Also, TruffleCM is source-compatible with regular C programs and does not require
any changes in them because we mimic the behavior of industry-standard C compilers.
We dynamically compile ASTs with a state-of-the-art dynamic compiler, which is very
good at removing access checks or moving them out of hot loops. After an initial warm-
up and dynamic compilation of the AST we can report that TruffleCM is on average
28% slower than the best performance of GCC. The dynamic compilation of TruffleCM

introduces a warm-up overhead, which related approaches do not need. However, we can
specialize the AST on the profile of a C program execution, which results in excellent

Related Work 98

peak performance. Hence, for long running C applications that require memory safety,
TruffleCM is preferable.

8.3.3 Object-Based Approaches

Object-based approaches track information about each object such as its status (allo-
cated/deallocated) or its bounds and store it in an auxiliary data structure [19, 22, 26,
44,57,79,87]. Spatial and temporal safety is ensured by mapping pointer values to the
tracked information (e.g., using a splay tree [57] or a trie [79]) and by checking that
pointer arithmetic and pointer dereferencing fall within the bounds of the object. Pu-
rify [44] traps every memory access by instrumenting the object code of a program and
by allocating red zones before and after each allocation. Eigler’s mudflap system [26]
inserts an additional pass into GCC’s normal compilation to instrument the C code
and to assert a validity predicate at every use of a pointer. Mudflap caches the lookup
in the auxiliary data structure. Dhurjati and Adve [22] use a fine-grained partitioning
of memory to provide run-time bounds checking for arrays and strings. Ruwase and
Lam [87] prevent buffer overflows by introducing out-of-bound objects for all out-of-
bound pointers. Any pointer derived from an out-of-bound object is bound-checked
before it can be dereferenced.

Our system represents pointer values by MAddress objects that use a Java reference
to refer to the allocation. We detect spatial memory errors when the offset of the
MAddress object cannot be mapped to a member of the referent and temporal errors
when the referent is not allocated (data is null) or the referent is marked as deallocated.
This is different to object-based approaches, hence, we consider TruffleCM as distinct
from object-based approaches.

Summary 99

Chapter 9

Summary

This section outlines future work and finally concludes this thesis.

9.1 Future Work

9.1.1 Cross-Language Interoperability

The TMLR is a good basis for future research in cross-language interoperability. Ex-
amples include research on multi-language inheritance or multi-language concurrency.
Also, generic access can be used to implement further FFIs, e.g., a C extensions API
for other languages.

Additional languages: The TMLR allows adding new TLIs easily. An TLI has to sup-
port generic access and needs access to the multi-language scope. Having these
extensions, the TLI can be added to the TMLR. As future work we want to add
further languages to the runtime. There is a TLI for the functional language Clo-
jure, for the dynamic language Python1 [106,122], and also for the mathematical
language R2. Like we did for JavaScript, Ruby, and C (see Section 5.1.2), this
work requires bridging different language paradigms and features. We did not
include these languages to the case study of this thesis (see Chapter 5) because
at the time of writing this thesis Clojure was in an early state and under heavy
development. Python or R were developed by external collaborators. Hence,
adding these TLIs to the TMLR would have required a major engineering effort
and was therefore intentionally left for future work.

1Zippy - a Python implementation on top of Truffle, Bitbucket repository, 2015: https://bitbucket.
org/ssllab/zippy

2FastR - an R implementation on top of Truffle, Bitbucket repository, 2015: https://bitbucket.org/
allr/fastr

https://bitbucket.org/ssllab/zippy
https://bitbucket.org/ssllab/zippy
https://bitbucket.org/allr/fastr
https://bitbucket.org/allr/fastr

Summary 100

C extensions support for other languages: Besides Ruby, other dynamic languages
also have a C extensions API, e.g. Python3 or R4. Similar to our implemen-
tation for TruffleRuby, an implementation of the C extensions API could simply
substitute invocations of these extension functions with a generic access.

Multi-language inheritance: Currently, there is no support for cross-language inheri-
tance, i.e., class-based inheritance or prototype-based inheritance is only possible
with classes or objects that originate from the same language. However, we are
convinced that the TMLR is extensible in this respect and therefore future re-
search could focus on inheritance across language boundaries.

Cross-language debuggers: The Truffle framework allows the implementation of de-
buggers with zero-overhead [90]. Future research will focus on generalizing the
existing debuggers for TLIs so that they can be used for multi-language appli-
cations. The goal of this work is a zero-overhead debugger for multi-language
applications that allows developers to step into functions or inspect data, which
were implemented or allocated in different languages.

Multi-language concurrency and parallelization: Modern programming languages use
a wide variety of different models for concurrency. Applications, written in mul-
tiple languages need to unify these models and bridge the differences across lan-
guages. Our future research will investigate concurrency and parallelization across
language borders.

As a first step, the author of this thesis started exploring this area of research
in collaboration with Daniele Bonetta (Oracle Labs) at the time of writing this
thesis. The aim of this work is to explore an implicit parallel-data programming
model combining JavaScript data structures with C functions.

9.1.2 TruffleC and TruffleCM

Our future work will extend TruffleC and complete its implementation.

Completeness: TruffleC is not yet complete and does not yet support all features of
the C99 standard (see Section 3.1.6). Features such as flexible array members,
designated initializers, or compound literals are left out for future work. These
features only require an implementation effort and there are no restrictions that
would limit supporting the full C standard.

3Python Language, Python Software Foundation, 2015: https://www.python.org/
4The R Project for Statistical Computing, The R Foundation, 2015: http://www.r-project.org/

https://www.python.org/
http://www.r-project.org/

Summary 101

Multi-threading: At the time of writing this thesis, Truffle had only experimental sup-
port for multi-threading. Hence, there is no multi-threading support for TruffleC
yet. We plan to add multi-threading for TruffleC as soon as the Truffle framework
itself supports concurrent executions of ASTs.

TruffleLLVM: As part of our future work on TruffleC we are planning to replace Truf-
fleC’s parser (the parser that transforms C code to a Truffle AST) with a parser
for LLVM bitcode. Rather than interpreting C code we would then interpret
LLVM bitcode. LLVM bitcode is the internal representation of source code when
using LLVM. There are various front-ends that parse source code (e.g. C/C++
or Fortran) to LLVM bitcode, which is then optimized and transformed to ma-
chine code by LLVM. A TLI that can execute LLVM bitcode would allow us to
execute all languages that have a LLVM front-end, such as C, C++ or Fortran.
This TLI can reuse large parts of TruffleC. Most of the TruffleC nodes can be
directly reused because the semantics of LLVM bitcode is very similar to that
of C. Also, all dynamic optimizations and the memory-safe execution of a pro-
gram that we have implemented for C can be directly applied to LLVM bitcode.
Other languages such as C++ or Fortran would then also benefit from the TMLR
approach.

Our future work on TruffleCM will improve completeness. We will complete the list of
substitutions of standard library functions. This work will make TruffleCM applicable
to full-sized applications.

9.2 Conclusion

In this thesis we proposed the TMLR, a runtime with a set of language implementa-
tions that can efficiently execute multi-language applications. The language implemen-
tations of the TMLR translate source code into a self-optimizing AST. The runtime
hosts managed high-level languages (JavaScript and Ruby) as well as unmanaged low-
level languages (C). We presented TruffleC, which is an AST interpreter for C that
dynamically compiles C code.

Our work allows us to conclude that a uniform approach of language implementa-
tion on the same VM is the most essential factor for efficient cross-language inter-
operability. We compose different language implementations on an AST level via a
language-agnostic mechanism, which we call generic access. Language implementa-
tions use language-independent messages to access foreign objects that are resolved at
their first execution and transformed to efficient foreign-language-specific operations.
Generic access is independent of languages, which allows adding new languages to the

Summary 102

TMLR without affecting existing languages. This approach leads to excellent perfor-
mance of multi-language applications because of two reasons. First, message resolution
replaces language-agnostic messages with efficient foreign-language-specific operations.
Accessing foreign objects becomes as efficient as accessing objects of the host language.
Second, the dynamic compiler can perform optimizations across language borders be-
cause these borders were removed by message resolution. We show that using heavy-
weight foreign data has a negative impact on performance whereas using lightweight
foreign data has a positive effect on performance. Our evaluation shows that the dy-
namic compiler of the TMLR can minimize the effect of generic access’s language and
type check on the receiver.

We presented two different case studies that evaluate generic access. First, we dis-
cussed seamless cross-language interoperability between JavaScript, Ruby, and C. The
TMLR allows programmers to directly access foreign objects using the operators of the
host language. The generic access makes the mapping of access operations to messages
largely the task of the language implementer rather than the task of the end pro-
grammer. Second, we used the generic access to implement the C extensions API for
TruffleRuby. TruffleC substitutes invocations of C extensions API functions and uses
generic access for accessing Ruby objects instead. Our system is therefore compatible
with MRI’s C extensions API and can execute real-world applications.

The TMLR can also ensure memory safety of a C program execution. We introduce
TruffleCM, which uses generic access to substitute native allocations with managed
objects. Access operations to managed data perform additional checks compared to
access operations to unmanaged data. Generic access introduces a type check and
the access operations implement checks that ensure memory safety. We show that
the dynamic compiler can efficiently optimize these additional checks. TruffleCM and
TruffleC have the same performance on average.

The TMLR can be the basis for a wide variety of different areas of future research.
Topics are, for example, multi-language concurrency and parallelism, cross-language
inheritance, or cross-language debuggers.

List of Figures 103

List of Figures

1.1 A shared VM hosts distinct language implementations and composes
them on an IR level. 6

1.2 The TMLR executes different TLIs on top of the GraalVM, which itself
is a modification of the HotSpot™ VM. 8

2.1 The architecture of the TMLR: Three Truffle language implementations
(JavaScript, Ruby, and C) are hosted by the GraalVM. 16

3.1 Compiling C files to TruffleC binary AST files, which are executed on
top of TruffleC. 23

3.2 Profile guided optimization with the GCC. 28
3.3 Relative speedup of different JavaScript implementations compared to

TruffleJS; results taken from [112]. 32
3.4 Relative speedup of different Ruby implementations compared to Truf-

fleRuby; results taken from [112]. 33

4.1 TLIs can import and export objects from and to a multi-language scope. 34
4.2 Accessing a C struct from JavaScript: We replace the property access

with a Read message. 37
4.3 Accessing a C struct from JavaScript: Message resolution inserts a C

struct access into a JavaScript AST. 39
4.4 Venn diagram of a foreign object access. 40
4.5 Language boundaries are completely transparent to the compiler. 42

5.1 Architecture of a Ruby application using C extensions. 53
5.2 TruffleC substitutes invocations of C extension functions with messages;

the TMLR resolves them to Ruby-specific operations. 55

6.1 MAddress objects are pointers to managed allocations. 59
6.2 The example of Listing 6.6 raises a BufferOverflowError. 70
6.3 Resolving managed allocation-specific access operations. 72

7.1 TruffleC performance of a micro-benchmark. TruffleC inlines library
functions, caches a function pointer call, and profiles values (normalized
to GCC O0 performance; higher is better). 77

List of Figures 104

7.2 Performance numbers of TruffleC (normalized to GCC O0 performance;
higher is better). 78

7.3 Performance of individual languages on our benchmarks (normalized to
C performance; higher is better). 80

7.4 Main part in C, allocations in different languages (normalized to pure
TruffleC performance; higher is better). 81

7.5 Main part in JavaScript, allocations in different languages (normalized
to pure TruffleJS performance; higher is better). 82

7.6 Main part in Ruby, allocations in different languages (normalized to pure
TruffleRuby performance; higher is better). 83

7.7 Main part in JavaScript and allocations in C with and without message
resolution (normalized to pure TruffleJS performance; higher is better). 84

7.8 C extensions benchmarks (normalized to natively compiled C extensions
that interface to MRI; higher is better). 85

7.9 Performance numbers of TruffleC and TruffleCM (normalized to GCC
O0 performance; higher is better). 87

List of Listings 105

List of Listings

1.1 C source code. 9
1.2 JavaScript source code. 9

3.1 C source code of the MyLib library. 22
3.2 C source code of the Main application. 22
3.3 Result after dynamic compilation (pseudo code). 25
3.4 Result after dynamic compilation (machine code). 25
3.5 Different locations for local data. 30
3.6 A C struct using a flexible array member. 31
3.7 An initialization using a designated initializer. 31
3.8 Using compound literals for initialization. 31

4.1 This C snipped exports the variable obj which points to a struct of
type S. 35

4.2 This JavaScript snipped imports a variable obj and accesses its value

member. 35
4.3 Array allocation in JavaScript. 41
4.4 C code accessing the length property of an array. 41

5.1 Excerpt of the built-ins (Truffle-object methods) for JavaScript. 44
5.3 Excerpt of the truffle.h header file. 47
5.2 C int expression that reads from a foreign object. 47
5.4 Allocation of a JavaScript object. 49
5.5 C type definition for the foreign object and an object-oriented access

operation. 49
5.6 Excerpt of the ruby.h implementation. 54
5.7 Accessing a Ruby array from C. 54

6.1 Writing a struct member. 61
6.2 Undefined read operation to a primitive object. 62
6.3 Undefined read operation to an array object. 63
6.4 Undefined read and write operation to a structured object. 63
6.5 Allocation without type information. 64
6.6 The function doWork accesses the array p out of bounds. 70

List of Tables 106

List of Tables

5.1 Mapping JavaScript access operations to messages and vice versa. . . . 45
5.2 Mapping Ruby access operations to messages and vice versa. 46
5.3 Mapping C access operations to messages and vice versa. 48

Bibliography 107

Bibliography

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic Typing in a Statically-
typed Language. In Proceedings of the 16th Symposium on Principles of Program-
ming Languages, POPL ’89, pages 213–227, New York, NY, USA, 1989. ACM.

[2] Brian Alliet and Adam Megacz. Complete Translation of Unsafe Native Code
to Safe Bytecode. In Proceedings of the 2004 Workshop on Interpreters, Virtual
Machines and Emulators, IVME ’04, pages 32–41, New York, NY, USA, 2004.
ACM.

[3] M. Arnold, S.J. Fink, D. Grove, M. Hind, and P.F. Sweeney. A Survey of Adaptive
Optimization in Virtual Machines. Proceedings of the IEEE, 93(2):449–466, 2005.

[4] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and
Brian N. Bershad. Fast, Effective Dynamic Compilation. In Proceedings of the
ACM SIGPLAN 1996 Conference on Programming Language Design and Imple-
mentation, PLDI ’96, pages 149–159, New York, NY, USA, 1996. ACM.

[5] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient Detection of
All Pointer and Array Access Errors. In Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and Implementation, PLDI ’94,
pages 290–301, New York, NY, USA, 1994. ACM.

[6] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Unipycation: A Case Study
in Cross-language Tracing. In Proceedings of the 7th ACM Workshop on Virtual
Machines and Intermediate Languages, VMIL ’13, pages 31–40, New York, NY,
USA, 2013. ACM.

[7] Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Approaches to Interpreter
Composition. CoRR, abs/1409.0757, 2014.

[8] Edd Barrett, Lukas Diekmann, and Laurence Tratt. Fine-grained language com-
position. CoRR, abs/1503.08623, 2015.

Bibliography 108

[9] David M Beazley et al. SWIG: An Easy to Use Tool for Integrating Scripting Lan-
guages with C and C++. In Proceedings of the 4th USENIX Tcl/Tk Workshop,
pages 129–139, 1996.

[10] Matthias Blume. No-longer-foreign: Teaching an ML Compiler to Speak C Na-
tively. Electronic Notes in Theoretical Computer Science, 59(1):36–52, 2001.

[11] Hans-J. Boehm. Reducing Garbage Collector Cache Misses. In Proceedings of the
2nd International Symposium on Memory Management, ISMM ’00, pages 59–64,
New York, NY, USA, 2000. ACM.

[12] Hans-J. Boehm. Bounding Space Usage of Conservative Garbage Collectors. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’02, pages 93–100, New York, NY, USA, 2002.
ACM.

[13] Hans J. Boehm. Space Efficient Conservative Garbage Collection. SIGPLAN
Not., 39(4):490–501, April 2004.

[14] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly Parallel Garbage
Collection. In Proceedings of the ACM SIGPLAN 1991 Conference on Program-
ming Language Design and Implementation, PLDI ’91, pages 157–164, New York,
NY, USA, 1991. ACM.

[15] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing
the meta-level: Pypy’s tracing jit compiler. In Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, ICOOOLPS ’09, pages 18–25, New York, NY, USA,
2009. ACM.

[16] D Box and C Sells. Essential .NET. The Common Language Runtime, vol. I,
2002.

[17] David Chisnall. The Challenge of Cross-language Interoperability. Commun.
ACM, 56(12):50–56, 2013.

[18] Weihaw Chuang, Satish Narayanasamy, and Brad Calder. Accelerating Meta
Data Checks for Software Correctness and Security. Journal of Instruction-Level
Parallelism, 9:1–26, 2007.

[19] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. Secure
Virtual Architecture: A Safe Execution Environment for Commodity Operating
Systems. In ACM SIGOPS Operating Systems Review, volume 41, pages 351–366.
ACM, 2007.

Bibliography 109

[20] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451–490, 1991.

[21] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hard-
bound: Architectural Support for Spatial Safety of the C Programming Language.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XIII, pages 103–114,
New York, NY, USA, 2008. ACM.

[22] Dinakar Dhurjati and Vikram Adve. Backwards-compatible Array Bounds Check-
ing for C with Very Low Overhead. In Proceedings of the 28th international
conference on Software engineering, pages 162–171. ACM, 2006.

[23] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, and Christian
Wimmer. Graal IR: An Extensible Declarative Intermediate Representation. In
Proceedings of the Asia-Pacific Programming Languages and Compilers Work-
shop, 2013.

[24] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. Speculation
Without Regret: Reducing Deoptimization Meta-data in the Graal Compiler. In
Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools,
PPPJ ’14, pages 187–193, New York, NY, USA, 2014. ACM.

[25] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug
Simon, and Hanspeter Mössenböck. An Intermediate Representation for Spec-
ulative Optimizations in a Dynamic Compiler. In Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate Languages, VMIL ’13, pages
1–10, New York, NY, USA, 2013. ACM.

[26] Frank Ch Eigler. Mudflap: Pointer Use Checking for C/C+. In GCC Developers
Summit, page 57. Citeseer, 2003.

[27] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling Hell
from Heaven and Heaven from Hell. In Proceedings of the Fourth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’99, pages 114–125,
New York, NY, USA, 1999. ACM.

[28] Philip J. Fleming and John J. Wallace. How not to lie with statistics: The
correct way to summarize benchmark results. Commun. ACM, 29(3):218–221,
March 1986.

Bibliography 110

[29] International Organization for Standardization. C99 Standard: ISO/IEX
9899:TC3. www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf, 2007.

[30] International Organization for Standardization. C11 Standard: ISO/IEX
9899:201x. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf, 2011.

[31] Yoshihiko Futamura. Partial Evaluation of Computation Process – An Approach
to a Compiler-Compiler. Higher-Order and Symbolic Computation, 12(4):381–
391, 1999.

[32] Kathryn Gray, Robert Bruce Findler, and Matthew Flatt. Fine-grained Interop-
erability Through Mirrors and Contracts. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’05, pages 231–245, New York, NY, USA,
2005. ACM.

[33] Kathryn E. Gray. Safe Cross-Language Inheritance. In ECOOP 2008 – Object-
Oriented Programming, volume 5142 of Lecture Notes in Computer Science, pages
52–75. Springer Berlin Heidelberg, 2008.

[34] Matthias Grimmer. A Runtime Environment for the Truffle/C VM. Master’s
thesis, Johannes Kepler University, Linz, 2013.

[35] Matthias Grimmer. High-performance Language Interoperability in Multi-
language Runtimes. In Proceedings of the Companion Publication of the 2014
ACM SIGPLAN Conference on Systems, Programming, and Applications: Soft-
ware for Humanity, SPLASH ’14, pages 17–19, New York, NY, USA, 2014. ACM.

[36] Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler, and Hanspeter
Mössenböck. TruffleC: Dynamic Execution of C on a Java Virtual Machine. In
Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools,
PPPJ ’14, New York, NY, USA, 2014. ACM.

[37] Matthias Grimmer, Manuel Rigger, Lukas Stadler, Roland Schatz, and Hanspeter
Mössenböck. An Efficient Native Function Interface for Java. In Proceedings of
the 2013 International Conference on Principles and Practices of Programming
on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’13, pages
35–44, New York, NY, USA, 2013. ACM.

[38] Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Würthinger, and
Hanspeter Mössenböck. Memory-safe Execution of C on a Java VM. In Pro-
ceedings of the Tenth Workshop on Programming Languages and Analysis for
Security, PLAS’15, New York, NY, USA, 2015. ACM.

www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

Bibliography 111

[39] Matthias Grimmer, Chris Seaton, Roland Schatz, Würthinger, and Hanspeter
Mössenböck. High-Performance Cross-Language Interoperability in a Multi-
Language Runtime. In Proceedings of the 11th Symposium on Dynamic Lan-
guages, DLS ’15, New York, NY, USA, 2015. ACM.

[40] Matthias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössen-
böck. Dynamically Composing Languages in a Modular Way: Supporting C
Extensions for Dynamic Languages. In Proceedings of the 14th International
Conference on Modularity, MODULARITY 2015, pages 1–13, New York, NY,
USA, 2015. ACM.

[41] Matthias Grimmer, Thomas Würthinger, Andreas Wöß, and Hanspeter Mössen-
böck. An Efficient Approach for Accessing C Data Structures from JavaScript.
In Proceedings of 9th International Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and Systems PLE - Work-
shop on Programming Language Evolution, 2014, ICOOOLPS ’14, New York,
NY, USA, 2014. ACM.

[42] Object Management Group. Common Object Request Brooker Architecture
(CORBA) Specification. http://www.omg.org/spec/CORBA/3.3/, 2014.

[43] Jeff Hardy. The Dynamic Language Runtime and the Iron Languages. In Amy
Brown and Greg Wilson, editors, The Architecture Of Open Source Applications,
Volume II. http://aosabook.org, 2008.

[44] Reed Hastings and Bob Joyce. Purify: Fast Detection of Memory Leaks and
Access Errors. In Proc. of the Winter 1992 USENIX Conference. Citeseer, 1991.

[45] Christian Häubl and Hanspeter Mössenböck. Trace-based Compilation for the
Java HotSpot Virtual Machine. In Proceedings of the 9th International Conference
on Principles and Practice of Programming in Java, pages 129–138. ACM, 2011.

[46] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Optimized
Strings for the Java HotSpot&Trade; Virtual Machine. In Proceedings of the 6th
International Symposium on Principles and Practice of Programming in Java,
PPPJ ’08, pages 105–114, New York, NY, USA, 2008. ACM.

[47] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Compact and
efficient strings for Java. Science of Computer Programming, 75(11):1077 – 1094,
2010. 23rd ACM Symposium on Applied Computing 08.

[48] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Evaluation
of Trace Inlining Heuristics for Java. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 1871–1876. ACM, 2012.

http://www.omg.org/spec/CORBA/3.3/
http://aosabook.org

Bibliography 112

[49] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Context-
sensitive Trace Inlining for Java. Computer Languages, Systems & Structures,
39(4):123–141, 2013.

[50] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Deriving Code
Coverage Information from Profiling Data Recorded for a Trace-based Just-in-
time Compiler. In Proceedings of the 2013 International Conference on Prin-
ciples and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools, pages 1–12. ACM, 2013.

[51] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Trace Transi-
tioning and Exception Handling in a Trace-based JIT Compiler for Java. ACM
Trans. Archit. Code Optim., 11(1):6:1–6:26, February 2014.

[52] Martin Hirzel and Robert Grimm. Jeannie: Granting Java Native Interface De-
velopers Their Wishes. In Proceedings of the 22Nd Annual ACM SIGPLAN Con-
ference on Object-oriented Programming Systems and Applications, OOPSLA ’07,
pages 19–38, New York, NY, USA, 2007. ACM.

[53] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing Dynamically-typed
Object-oriented Languages with Polymorphic Inline Caches. In Pierre America,
editor, ECOOP’91 European Conference on Object-Oriented Programming, vol-
ume 512 of Lecture Notes in Computer Science, pages 21–38. Springer Berlin
Heidelberg, 1991.

[54] Urs Hölzle, Craig Chambers, and David Ungar. Debugging Optimized Code with
Dynamic Deoptimization. In Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and Implementation, PLDI ’92, pages 32–43,
New York, NY, USA, 1992. ACM.

[55] Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß, and
Thomas Würthinger. A Domain-specific Language for Building Self-optimizing
AST Interpreters. In Proceedings of the 2014 International Conference on Gen-
erative Programming: Concepts and Experiences, pages 123–132. ACM, 2014.

[56] ECMA International. Standard ECMA-335. Common Language Infrastruc-
ture (CLI). http://www.ecma-international.org/publications/standards/Ecma-335.

htm, 2012.

[57] Richard WM Jones and Paul HJ Kelly. Backwards-Compatible Bounds Checking
for Arrays and Pointers in C Programs. In AADEBUG, pages 13–26. Citeseer,
1997.

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm

Bibliography 113

[58] Simon Peyton Jones, Thomas Nordin, and Alastair Reid. GreenCard: A Foreign-
language Interface for Haskell. In Proc. Haskell Workshop, 1997.

[59] Simon Kågström, Håkan Grahn, and Lars Lundberg. Cibyl: An Environment for
Language Diversity on Mobile Devices. In Proceedings of the 3rd international
conference on Virtual execution environments, pages 75–82. ACM, 2007.

[60] Tomas Kalibera and Richard Jones. Rigorous Benchmarking in Reasonable Time.
In Proceedings of the 2013 ACM SIGPLAN International Symposium on Memory
Management (ISMM), 2013.

[61] Stephen Kell and Conrad Irwin. Virtual Machines Should Be Invisible. In Pro-
ceedings of the Compilation of the Co-located Workshops on DSM’11, TMC’11,
AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, SPLASH ’11 Workshops,
pages 289–296, New York, NY, USA, 2011. ACM.

[62] F Klock II. The layers of Larceny’s Foreign Function Interface. In Scheme and
Functional Programming Workshop. Citeseer, 2007.

[63] Thomas Kotzmann and Hanspeter Mössenböck. Escape Analysis in the Con-
text of Dynamic Compilation and Deoptimization. In Proceedings of the
1st ACM/USENIX international conference on Virtual execution environments,
pages 111–120. ACM, 2005.

[64] Thomas Kotzmann and Hanspeter Mossenbock. Run-time Support for Optimiza-
tions based on Escape Analysis. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 49–60. IEEE Computer Society,
2007.

[65] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Ro-
driguez, Kenneth Russell, and David Cox. Design of the Java HotSpot Client
Compiler for Java 6. ACM Transactions on Architecture and Code Optimization
(TACO), 5(1):7, 2008.

[66] Sheng Liang. Java Native Interface: Programmer’s Guide and Reference.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1999.

[67] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley Professional, 1999.

[68] Stefan Marr and Stephane Ducasse. Tracing vs. Partial Evaluation: Comparing
Meta-Compilation Approaches for Self-Optimizing Interpreters. In Proceedings of

Bibliography 114

the 2015 ACM International Conference on Object Oriented Programming Sys-
tems Languages; Applications, OOPSLA ’15, New York, NY, USA. ACM.

[69] Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-
language programs. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’07, pages 3–10,
New York, NY, USA, 2007. ACM.

[70] Erik Meijer and John Gough. Technical Overview of the Common Language
Runtime. language, 29:7, 2001.

[71] Hanspeter Mössenböck. Adding Static Single Assignment Form and a Graph
Coloring Register Allocator to the Java HotSpot Client Compiler. In Technical
Report 15, Institute for Practical Computer Science, Johannes Kepler University
Linz, 2000.

[72] Hanspeter Mössenböck and Michael Pfeiffer. Linear Scan Register Allocation in
the Context of SSA Form and Register Constraints. In Compiler Construction,
pages 229–246. Springer, 2002.

[73] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdog: Hard-
ware for Safe and Secure Manual Memory Management and Full Memory Safety.
In Proceedings of the 39th Annual International Symposium on Computer Archi-
tecture, ISCA ’12, pages 189–200, Washington, DC, USA, 2012. IEEE Computer
Society.

[74] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. WatchdogLite:
Hardware-Accelerated Compiler-Based Pointer Checking. In Proceedings of An-
nual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO ’14, pages 175:175–175:184, New York, NY, USA, 2014. ACM.

[75] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
SoftBound: Highly Compatible and Complete Spatial Memory Safety for C. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 245–258, New York, NY, USA,
2009. ACM.

[76] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Proceedings of the 2010
International Symposium on Memory Management, ISMM ’10, pages 31–40, New
York, NY, USA, 2010. ACM.

Bibliography 115

[77] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and West-
ley Weimer. CCured: Type-safe Retrofitting of Legacy Software. ACM Trans.
Program. Lang. Syst., 27(3):477–526, 2005.

[78] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe
Retrofitting of Legacy Code. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’02, pages 128–139,
New York, NY, USA, 2002. ACM.

[79] Nicholas Nethercote and Julian Seward. How to Shadow Every Byte of Memory
Used by a Program. In Proceedings of the 3rd international conference on Virtual
execution environments, pages 65–74. ACM, 2007.

[80] Mozilla Developer Network. XPCOM Specification. https://developer.mozilla.

org/en-US/docs/Mozilla/XPCOM, 2014.

[81] Michael Paleczny, Christopher Vick, and Cliff Click. The Java Hotspot Server
Compiler. In Proceedings of the 2001 Symposium on Java Virtual Machine Re-
search and Technology Symposium - Volume 1, JVM’01, pages 1–1, Berkeley, CA,
USA, 2001. USENIX Association.

[82] Massimiliano Poletto. Language and Compiler Support for Dynamic Code Gen-
eration. PhD thesis, Messachusetts Institute of Technology, 1999.

[83] Feng Qin, Shan Lu, and Yuanyuan Zhou. SafeMem: Exploiting ECC-memory for
Detecting Memory Leaks and Memory Corruption During Production Runs. In
High-Performance Computer Architecture, 2005. HPCA-11. 11th International
Symposium on, pages 291–302. IEEE, 2005.

[84] John Reppy and Chunyan Song. Application-specific Foreign-interface Genera-
tion. In Proceedings of the 5th International Conference on Generative Program-
ming and Component Engineering, GPCE ’06, pages 49–58, New York, NY, USA,
2006. ACM.

[85] Manuel Rigger. Truffle/C Interpreter. Master’s thesis, Johannes Kepler Univer-
sity, Linz, 2014.

[86] John R. Rose and Hans Muller. Integrating the Scheme and C Languages. In
Proceedings of the 1992 ACM Conference on LISP and Functional Programming,
LFP ’92, pages 247–259, New York, NY, USA, 1992. ACM.

[87] Olatunji Ruwase and Monica S Lam. A Practical Dynamic Buffer Overflow De-
tector. In NDSS, 2004.

https://developer.mozilla.org/en-US/docs/Mozilla/XPCOM
https://developer.mozilla.org/en-US/docs/Mozilla/XPCOM

Bibliography 116

[88] Thomas Schatzl, Laurent Daynes, and Hanspeter Mössenböck. Optimized Mem-
ory Management for Class Metadata in a JVM. In Proceedings of the 9th Inter-
national Conference on Principles and Practice of Programming in Java, pages
151–160. ACM, 2011.

[89] Arnold Schwaighofer. Tail Call Optimizations for the Java HotSpot VM. Master’s
thesis, Johannes Kepler University, Linz, 2009.

[90] Chris Seaton, Michael L Van De Vanter, and Michael Haupt. Debugging at Full
Speed. In Proceedings of the Workshop on Dynamic Languages and Applications,
pages 1–13. ACM, 2014.

[91] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In USENIX An-
nual Technical Conference, pages 309–318, 2012.

[92] Julian Seward and Nicholas Nethercote. Using Valgrind to Detect Undefined
Value Errors with Bit-Precision. In USENIX Annual Technical Conference, Gen-
eral Track, pages 17–30, 2005.

[93] Matthew S. Simpson and Rajeev K. Barua. MemSafe: Ensuring the Spatial and
Temporal Memory Safety of C at Runtime. Software: Practice and Experience,
43(1):93–128, 2013.

[94] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable Cross-
language Services Implementation. Facebook White Paper, 5, 2007.

[95] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, and Thomas Würthinger.
Compilation Queuing and Graph Caching for Dynamic Compilers. In Proceedings
of the Sixth ACM Workshop on Virtual Machines and Intermediate Languages,
VMIL ’12, pages 49–58, New York, NY, USA, 2012. ACM.

[96] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and
Doug Simon. An Experimental Study of the Influence of Dynamic Compiler
Optimizations on Scala Performance. In Proceedings of the 4th Workshop on
Scala, SCALA ’13, pages 9:1–9:8, New York, NY, USA, 2013. ACM.

[97] Lukas Stadler, Christian Wimmer, Thomas Würthinger, Hanspeter Mössenböck,
and John Rose. Lazy Continuations for Java Virtual Machines. In Proceedings
of the 7th International Conference on Principles and Practice of Programming
in Java, pages 143–152. ACM, 2009.

[98] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. Partial Escape
Analysis and Scalar Replacement for Java. In Proceedings of Annual IEEE/ACM

Bibliography 117

International Symposium on Code Generation and Optimization, CGO ’14, pages
165:165–165:174, New York, NY, USA, 2014. ACM.

[99] Lukas Stadler, Thomas Würthinger, and Christian Wimmer. Efficient Coroutines
for the Java Platform. In Proceedings of the 8th International Conference on the
Principles and Practice of Programming in Java, pages 20–28. ACM, 2010.

[100] Levon Stepanian, Angela Demke Brown, Allan Kielstra, Gita Koblents, and
Kevin Stoodley. Inlining Java Native Calls at Runtime. In Proceedings of the
1st ACM/USENIX International Conference on Virtual Execution Environments,
VEE ’05, pages 121–131, New York, NY, USA, 2005. ACM.

[101] L. Szekeres, M. Payer, Tao Wei, and D. Song. SoK: Eternal War in Memory. In
Security and Privacy (SP), 2013 IEEE Symposium on, pages 48–62, 2013.

[102] Valery Trifonov and Zhong Shao. Safe and principled language interoperation.
Springer, 1999.

[103] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos Prvulovic. Mem-
tracker: Efficient and Programmable Support for Memory Access Monitoring and
Debugging. In High Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, pages 273–284. IEEE, 2007.

[104] Nanbor Wang, Douglas C Schmidt, and Carlos O’Ryan. Overview of the CORBA
Component Model. In Component-Based Software Engineering, pages 557–571.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[105] Michal Wegiel and Chandra Krintz. Cross-language, Type-safe, and Transparent
Object Sharing for Co-located Managed Runtimes. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’10, pages 223–240, New York, NY, USA, 2010. ACM.

[106] Christian Wimmer and Stefan Brunthaler. ZipPy on Truffle: A Fast and Simple
Implementation of Python. In Proceedings of the 2013 Companion Publication
for Conference on Systems, Programming, Applications: Software for Humanity,
SPLASH ’13, pages 17–18, New York, NY, USA, 2013. ACM.

[107] Christian Wimmer and Hanspeter Mössenböck. Optimized interval splitting in a
linear scan register allocator. In Proceedings of the 1st ACM/USENIX interna-
tional conference on Virtual execution environments, pages 132–141. ACM, 2005.

[108] Christian Wimmer and Hanspeter Mössenböck. Automatic Object Colocation
Based on Read Barriers. In Modular Programming Languages, pages 326–345.
Springer, 2006.

Bibliography 118

[109] Christian Wimmer and Hanspeter Mössenböck. Automatic Feedback-directed
Object Inlining in the Java Hotspot Virtual Machine. In Proceedings of the 3rd
international conference on Virtual execution environments, pages 12–21. ACM,
2007.

[110] Christian Wimmer and Hanspeter Mössenböck. Automatic Array Inlining in Java
Virtual Machines. In Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization, pages 14–23. ACM, 2008.

[111] Christian Wimmer and Hanspeter Mössenbösck. Automatic Feedback-directed
Object Fusing. ACM Trans. Archit. Code Optim., 7(2):7:1–7:35, October 2010.

[112] Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer,
and Hanspeter Mössenböck. An Object Storage Model for the Truffle Language
Implementation Framework. In Proceedings of the 2014 International Conference
on Principles and Practices of Programming on the Java Platform: Virtual Ma-
chines, Languages, and Tools, PPPJ ’14, pages 133–144, New York, NY, USA,
2014. ACM.

[113] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund,
and Jan Vitek. Integrating Typed and Untyped Code in a Scripting Language. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’10, pages 377–388, New York, NY, USA,
2010. ACM.

[114] Thomas Würthinger, Danilo Ansaloni, Walter Binder, Christian Wimmer, and
Hanspeter Mössenböck. Safe and atomic run-time code evolution for java and its
application to dynamic aop. In Proceedings of the 2011 ACM International Con-
ference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’11, pages 825–844, New York, NY, USA, 2011. ACM.

[115] Thomas Würthinger, Walter Binder, Danilo Ansaloni, Philippe Moret, and
Hanspeter Mössenböck. Applications of Enhanced Dynamic Code Evolution for
Java in GUI Development and Dynamic Aspect-oriented Programming. In Pro-
ceedings of the Ninth International Conference on Generative Programming and
Component Engineering, GPCE ’10, pages 123–126, New York, NY, USA, 2010.
ACM.

[116] Thomas Würthinger, Walter Binder, Danilo Ansaloni, Philippe Moret, and
Hanspeter Mössenböck. Improving Aspect-oriented Programming with Dynamic
Code Evolution in an Enhanced Java Virtual Machine. In Proceedings of the 7th
Workshop on Reflection, AOP and Meta-Data for Software Evolution, page 5.
ACM, 2010.

Bibliography 119

[117] Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck. Array
Bounds Check Elimination for the Java HotSpot Client Compiler. In Proceedings
of the 5th International Symposium on Principles and Practice of Programming
in Java, PPPJ ’07, pages 125–133, New York, NY, USA, 2007. ACM.

[118] Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck. Visualiza-
tion of Program Dependence Graphs. In Compiler Construction, pages 193–196.
Springer, 2008.

[119] Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck. Array
Bounds Check Elimination in the Context of Deoptimization. Science of Com-
puter Programming, 74(5):279–295, 2009.

[120] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
One VM to Rule Them All. In Proceedings of the 2013 ACM International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming & Software,
Onward! 2013, pages 187–204, New York, NY, USA, 2013. ACM.

[121] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. Self-optimizing AST Interpreters. In Proceedings of the
8th Symposium on Dynamic Languages, DLS ’12, pages 73–82, New York, NY,
USA, 2012. ACM.

[122] Wei Zhang, Per Larsen, Stefan Brunthaler, and Michael Franz. Accelerating
Iterators in Optimizing AST Interpreters. In Proceedings of the 2014 ACM Inter-
national Conference on Object Oriented Programming Systems Languages; Ap-
plications, OOPSLA ’14, pages 727–743, New York, NY, USA, 2014. ACM.

	1 Introduction
	1.1 Problem Setting
	1.1.1 Problem Statement
	1.1.2 Problem Analysis
	1.1.3 Novel Solution

	1.2 A Novel Multi-Language Runtime Implementation
	1.3 Scientific Contributions
	1.4 Project Context
	1.5 Structure of this Thesis

	2 The Graal Virtual Machine
	2.1 Graal Compiler
	2.2 Truffle Language Implementation Framework
	2.2.1 Optimizations on AST Level
	2.2.2 Dynamic Compilation of Truffle ASTs
	2.2.3 Truffle Frame
	2.2.4 Truffle Object Storage Model

	3 Uniform Language Implementations with Truffle
	3.1 TruffleC
	3.1.1 Example
	3.1.2 Compiling C Code to ASTs
	3.1.3 Linking
	3.1.4 Optimizations on AST Level
	3.1.5 Data Allocations
	3.1.6 Limitations

	3.2 TruffleJS
	3.3 TruffleRuby

	4 Truffle Language Implementation Composition
	4.1 Generic Access Mechanism
	4.1.1 Object Access via Messages
	4.1.2 Message Resolution

	4.2 Seamless Foreign Object Access
	4.3 Explicit Foreign Object Access
	4.4 Discussion

	5 Implementation of a Multi-Language Runtime
	5.1 Interoperability between JavaScript, Ruby, and C
	5.1.1 Implementation of Generic Access
	5.1.2 Different Language Paradigms and Features
	5.1.3 Discussion

	5.2 C Extensions Support for TruffleRuby
	5.2.1 Local Functions
	5.2.2 Global Functions
	5.2.3 Pointers to Ruby Objects
	5.2.4 Discussion

	6 Managed Data Allocations for C
	6.1 Managed Addresses and Managed Objects
	6.2 Allocation and Deallocation
	6.3 Implementation with Generic Access
	6.4 Compliance with the C99 Standard
	6.5 Discussion

	7 Performance Evaluation
	7.1 Evaluation Methodology
	7.2 Uniform Language Implementations with Truffle
	7.3 Truffle Language Implementation Composition
	7.3.1 Interoperability between JavaScript, Ruby, and C
	7.3.2 C Extensions Support for Ruby

	7.4 Managed Data Allocations for C
	7.5 Discussion

	8 Related Work
	8.1 C Language Implementations
	8.2 Cross-Language Interoperability
	8.2.1 Foreign Function Interfaces
	8.2.2 Inter-Process Communication
	8.2.3 Multi-Language Runtimes
	8.2.4 Multi-Language Semantics

	8.3 Spatial and Temporal Memory Safety
	8.3.1 Boehm-Demers-Weiser Garbage Collector
	8.3.2 Pointer-Based Approaches
	8.3.3 Object-Based Approaches

	9 Summary
	9.1 Future Work
	9.1.1 Cross-Language Interoperability
	9.1.2 TruffleC and TruffleCM

	9.2 Conclusion

	Bibliography

