
Submitted by
Dipl.-Ing.
Florian Angerer

Submitted at
Institute for
System Software

Supervisor and
First Examiner
a.Univ.-Prof.
Dipl.-Ing. Dr.
Herbert Prähofer

Second Examiner
Prof. Dr.-Ing.
Sven Apel

January 2017

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Configuration-aware Program
Analysis for Maintenance
and Evolution in Industrial
Software Product Lines

Doctoral Thesis

to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

Abstract

Due to increased market demands for highly customized solutions, software systems are
often organized as software product lines (SPLs) where individual solutions are created
from a common code base. SPLs support managing common functionality relevant for
most customers while still allowing to provide specific extensions for particular needs.
Software development in SPLs, however, results in new challenges regarding software
development processes and tool support. Specifically, the many possible variants and
versions calling for effective variability management. Supporting this variability in the
software, however, leads to increased design complexity and maintenance effort.

This thesis presents static program analysis methods and tool support considering
the variability and the configuration in SPLs. Based on a representation of program
dependencies in the form of a conditional system dependence graph (CSDG), which
also encodes the configuration options of a SPL, it introduces methods supporting
different maintenance and evolution scenarios in the SPL context. The inactive code
detection method allows to automatically identify code in a product, which is inactive
due to the specific product configuration. Further, a method for interprocedural and
configuration-aware change impact analysis (CA-CIA) allows determining possibly
impacted products when changing source code of a SPL and also supports engineers
who are adapting specific product variants after an initial configuration.

The methods presented in this thesis particularly focus on the delayed variability prin-
ciple that allows performing configuration-aware program analysis for software systems
using load-time configuration options. So far, research has focused on compile-time
variability that allows to generate software products by including or excluding program
code. However, load-time variability also imposes new challenges for developing, test-
ing, and analyzing variable software systems. Therefore, a comparative experiment has
been conducted to compare the well-established lifted analysis approach to the delayed
variability approach. Results show that the delayed variability approach is significantly
faster but in some cases sacrifices precision for performance.

i

Kurzfassung

Um die hohen Anforderungen des Software Markts erfüllen zu können, werden im-
mer häufiger Software Produktlinien (SPLs) eingesetzt, welche es erlauben individuelle
Lösungen aus vorhandenen Bausteinen zu erstellen. Dabei verwaltet eine SPL Basisfunk-
tionen die für einen Großteil der Kunden benötigt werden wobei eben noch spezielle
Lösungen ergänzt werden können. Die Vorteile von SPLs wurden vielfach gezeigt, aber
durch diese vergleichsweise junge Art von Softwareorganisation entstehen auch neue
Herausforderungen, die den Entwicklungsprozess und die Entwicklungswerkzeuge
betreffen. Um genau zu sein, die Unzahl an möglichen Produktvarianten bringt einen
höheren Aufwand bei Entwurf und Wartung mit sich und Entwickler benötigen Unter-
stützung bei diesen Aufgaben.

Diese Arbeit stellt daher statische Programmanalysemethoden und Werkzeuge vor,
welche Variabilität bzw. Konfiguration in Software Produktlinien unterstützen. Dafür
wird eine Datenstruktur namens Conditional System Dependence Graph (CSDG)
verwendet, welcher alle Daten- und Kontrollabhängigkeiten im Programm repräsen-
tiert und auch die Variabilität abbildet. Die erste Methode verwendet den CSDG
um inaktiven Source Code von konkreten Produktvarianten automatisch zu erken-
nen. Der zweite Ansatz erlaubt es eine globale Auswirkungsanalyse für Änderungen
durchzuführen, wobei die Variabilität des Programms berücksichtigt wird. Dieser
Ansatz ist im speziellen dafür gedacht, Entwickler bei der Wartung der Produktlinie
und bei der Adaptierung von Varianten zu unterstützen.

Die vorgestellten Methoden verwenden das Delayed Variability Analyseprinzip um
Programmanalyse unter der Berücksichtigung von Konfiguration durchzuführen, wobei
speziell auf Konfigurationsoptionen die beim Programmstart geladen werden, abgezielt
wird. Das ist auch der wesentliche Unterschied zu bestehenden Ansätzen, die als
Lifted Analysis bezeichnet werden und sich meist auf Konfiguration während der Über-
setzungszeit konzentrieren. Da es aber Überschneidungen bei den Ansätzen gibt,
präsentiert diese Arbeit auch einen Vergleich zwischen den Ansätzen für Konfiguration
zum Programmstart und zur Übersetzungszeit. Die Ergebnisse zeigen einen deutlichen
Geschwindigkeitsvorteil für Delayed Variability, jedoch zum Preis von Genauigkeit.

iii

v

Acknowledgments

First of all, I would like to thank my advisor Herbert Prähofer for guiding and support-
ing my work over several years. Your efforts enabled me to do a Ph.D. study and you
were always convinced of my work’s potential. Also many thanks to Paul Grünbacher,
who supported me and my research in word and deed.

Further, I want to thank my colleagues and friends. In particular, many thanks to
my fellow teammate Daniela Rabiser for the excellent research cooperation and direct
support for many issues during our joint time in the research laboratory. Special thanks
goes to my former colleagues and today’s friends Peter Hofer and Andreas Grimmer
for direct and indirect support and encouraging words. I learned a lot from you and we
really had a good time. Also many thanks to my colleagues Peter Feichtinger, Mario
Kromoser, and Daniel Hinterreiter for their valuable contributions.

Furthermore, I like to thank our industry partner KEBA AG, in particular, Ernst
Steller, Dietmar Berlesreiter, Michael Petruzelka, and Gottfried Schmidleitner which
continuously provided input and feedback for my work. Additionally, I want to thank
Lukas Linsbauer (JKU), Sven Apel (University of Passau), Andrzej Wąsowski (ITU
Copenhagen), and Claus Brabrand (ITU Copenhagen) for their research cooperation. I
also want to thank the students David Auinger and Alois Mühleder who contributed to
my work.

Last but not least I also thank my family and in particular my wife Stefanie for always
encouraging me to continue and finally finish my Ph.D study.

Contents vii

Contents

Abstract i

Kurzfassung iii

Acknowledgments v

1 Introduction 1
1.1 Research Goals and Approach . 2
1.2 Research Context . 4
1.3 Research Contributions . 7
1.4 Publications . 10

2 Background 13
2.1 Variability . 13
2.2 Software Product Lines . 15
2.3 Static Program Analysis . 16
2.4 Variability-Aware Program Analysis . 19

3 Conditional System Dependence Graph 23
3.1 System Dependence Graph . 23
3.2 Presence Conditions . 26
3.3 Representing and Extracting Variability . 27
3.4 Mixing Load-time and Run-Time Values . 30
3.5 Semantics of the CSDG . 31
3.6 Implementation . 33
3.7 Performance Evaluation . 34
3.8 Summary . 35

4 Identifying Inactive Code and Recovering Feature-to-Code Mappings 37
4.1 Identification of Inactive Code . 38

4.1.1 Problem Illustration . 38
4.1.2 Approach . 39
4.1.3 Implementation . 42
4.1.4 Evaluation . 45

viii Contents

4.2 Automated Extraction of Feature-to-Code Mappings 50

4.2.1 Evaluation . 52

4.3 Related Work . 56

4.3.1 Identifying Inactive Code . 56

4.3.2 Recovering Feature-to-Code Mappings 57

4.4 Summary . 58

5 Configuration-Aware Change Impact Analysis 61
5.1 Problem Illustration . 61

5.2 Approach . 67

5.2.1 Algorithm . 68

5.2.2 Propagation Cases . 72

5.3 Implementation . 76

5.4 Evaluation . 76

5.4.1 Case Study and Code Base Selected for the Evaluation 77

5.4.2 RQ1 – Domain engineering . 78

5.4.3 RQ2 – Application engineering . 81

5.4.4 RQ3 – Performance . 82

5.4.5 Threats to Validity . 82

5.5 Discussion . 84

5.6 Related Work . 85

5.7 Summary . 86

6 Compositional Change Impact Analysis for Configurable So�ware 87
6.1 Problem Illustration . 88

6.2 Approach . 89

6.3 Evaluation . 90

6.3.1 Experiment Subject . 91

6.3.2 Evaluation Strategy . 91

6.3.3 Results . 92

6.4 Related Work . 92

6.5 Summary . 93

7 Comparing Li�ed and Delayed Variability-Aware Program Analysis 95
7.1 Lifted Strategy and SPLLIFT . 96

7.2 Expected Analysis Differences . 96

7.3 Experiment Design . 98

7.3.1 Adapting the Tool Chains . 99

7.3.2 Evaluating Performance . 100

Contents ix

7.3.3 Comparing Precision . 101
7.3.4 Selected SPLs . 102

7.4 Experiment Results . 103
7.4.1 RQ1 – Performance . 104
7.4.2 RQ2 – Precision . 105
7.4.3 Threats to Validity . 106

7.5 Discussion . 107
7.6 Related Work . 108
7.7 Summary . 109

8 Conclusions 111

List of Figures 113

List of Tables 115

Curriculum Vitae 117

Bibliography 125

1

Chapter 1

Introduction

Many software companies target to produce software for a mass-market to increase
their return on investment, while on the other hand, customers increasingly demand
individual solutions [Clements02]. Therefore, systems are often organized as software
product lines (SPLs), which allow managing the common functionality relevant for most
customers and the variability. In such a context, customer-specific solutions are often
built in a multi-stage manner: system variants are first derived from the SPLs and then
adapted and extended to meet the specific requirements of customers [Kästner08].

Dealing with variability is essential in SPLs and techniques are needed for composing
and customizing systems. Many existing approaches dealing with variability assume
that the source code is annotated directly with variability information, which is the case,
e.g., in annotation-based product lines that use preprocessors [Kästner11]. However,
other variability mechanisms, such as load-time configuration options provided via a
file or via program arguments, play an equally important role [Lillack14].

Such variability mechanisms, however, increase the challenges for developing, main-
taining, testing, and analyzing systems and tool support for developers becomes es-
sential. For example, when features are changed in the original SPL (e.g., to fix a bug)
derived product variants often need to be updated.

In addition, complex software systems commonly consist of multiple interdependent
programs written in different languages. For example in the domain of industrial
automation, a software system usually consists of a real-time part typically controlling
time-critical processes and a non-real-time part comprising graphical user interfaces.

Current program analysis approaches and tools have limitations to support variability
and multiple programming languages. However, research on variable software systems
has progressed significantly. For instance, researchers in software product lines and
feature-oriented software development have developed family approaches that allow
analyzing the whole space of software variants by exploiting commonalities between
variants [Thüm14]. However, these techniques are not designed to support variable
software using load-time configuration and to be applied in multi-language software
systems. This means that, although existing approaches can deal with variability, most

2 Introduction

Product Line v1.0

derive

FUNCTION Fun0

 // code2_v1
END_FUNCTION

Pascal

class A {

 // code2_v1
}

Java

Variants 0 … n

Customized Variants 0 … n

FUNCTION Fun0
 // code0_v1
 // code1_v1
 // code2_v1
END_FUNCTION

Pascal

class A {

 // code0_v1
 // code1_v1
 // code2_v1
}

Java

FUNCTION Fun0

 // code2_v1_a
 // code3
END_FUNCTION

Pascal

class A {

 // code2_v1_a
 // code3_new
}

Java

Product Line v2.0

FUNCTION Fun0
 // code0_v2
 // code1_v2
 // code2_v2
END_FUNCTION

Pascal

class A {

 // code0_v2
 // code1_v2
 // code2_v2
}

Java
update

integrate

modifications customizationsRG1

RG2

RG3

Figure 1.1: Customization and evolution process of a multi-language variable so�ware system.

assume compile-time bound variability, e.g., preprocessor directives. Furthermore,
analysis often ends at language borders.

This thesis therefore aims at developing static program analysis for multi-language
variable software systems using load-time configuration options. Specifically, the
work focuses on configuration-aware program analysis supporting developers during
maintenance and evolution.

In the following, we present the research goals and the general approach for achieving
them. Next, we explain the research context, i.e., the cooperation with an industry
partner, which further motivates the research goals. Then, we outline the research
contributions of this thesis and explain its overall structure.

1.1 Research Goals and Approach

Figure 1.1 illustrates a product derivation and evolution scenario common in SPL
development processes. First, a product variant is derived from the SPL platform

Research Goals and Approach 3

by selecting features needed by a customer. Developers then adapt and extend the
derived variants according to the customer’s requirements resulting in customized
variants. The customized variants often implement new or improved functionality,
which is then frequently integrated back into the SPL. Similarly, when changes are
made in the SPL (e.g., to fix a bug), the customized variants often need to be updated.
Assessing the impact of changes, reducing the complexity of source code, and providing
multi-language capabilities is essential in such a context and developers need to have
appropriate tools and techniques. The research goals derived from this scenario are
therefore:

RG1 Support for assessing the impact of changes in variable software. Modifying
the source code of the product family or of partially configured product variants is
a frequent task and therefore developers need support for determining the possible
impact of changes.

RG2 Methods for creating views with reduced source code complexity during main-
tenance. This is necessary because the product family or partially configured product
variants often contain lots of source code irrelevant for a specific maintenance task.

RG3 Program analysis support for multi-language software systems is important,
because large-scale software systems usually consist of subsystems written in different
programming languages. The subsystems are interdependent and changes in one part
may affect other parts.

We rely on static program analysis methods for achieving these research goals.
In general, the research goals call for variability-aware and cross-language analysis
support. To address the goals for the analysis of highly-configurable software systems
and the missing capabilities of existing approaches for specifically handling values
of configuration options, we propose the concept of delayed variability analysis. The
primary requirements for delayed variability analysis are (i) the reuse of standard
implementations of data flow analyses, and (ii) the propagation of the configuration
values in the program for providing variability information. The delayed variability
analysis works by performing an analysis completely variability-oblivious, i.e., ignoring
any variability in the first place, and then recovering the variability and augmenting
the results. This has the advantage that just one analysis is performed. This strategy
avoids the problem of lots of explicit intermediate analysis results because the analysis
is done just once regardless of variability. However, static program analysis always
has to make a tradeoff between run-time performance and precision. The drawback of
this strategy is the loss in precision because the delayed variability analysis needs to
overapproximate situations to be sound.

These requirements are achieved by building a graph structure using standard control
flow and data flow analysis implementations, extracting variability information from

4 Introduction

the program, and adding this information to the graph structure. The actual analysis is
then performed on the graph structure considering the available variability information.

1.2 Research Context

The research was conducted in collaboration with KEBA AG, a company developing
hardware and software platforms and solutions for industrial automation. The develop-
ment of automation solutions is a multi-stage process involving different stakeholders:
KEBA develops and produces hardware and software platforms with associated tool
support. The hardware and software solutions then enable the customers of KEBA,
usually OEMs of manufacturing machines, to develop their own products and cus-
tomized automation solutions. Thus, the software solutions of KEBA have to be highly
configurable to address the manifold requirements of different market segments and
customers. Figure 1.2 shows the typical development process of the industry partner
KEBA which is organized as a multi-stage process relying on several platforms. The Au-
tomation Platform on top of the figure is the central pillar providing runtime systems and
basic capabilities for automation solutions. It is a software product line which allows
instantiating different variants. Based on the automation platform, KEBA provides sev-
eral domain-specific solutions in the form of configurable and adaptable product lines.
An example is the KePlast platform [Lettner13] providing comprehensive capabilities
for the automation of injection molding machines. KePlast implements the following
subsystems: a configurable control core implemented in a proprietary dialect of the
IEC 61131-3 standard, a visualization system written in Java, and programming and
configuration tools to customize the solution based on existing variants. The platform is
then used as a basis for concrete customer-specific products. The customer products are
created in a staged configuration and adaptation process: First, the configuration tool
Application Composer (AppCo) [Lettner13] is used to derive a basic solution. Then, this
initial product is further configured, adapted, and extended. For instance, engineers
may add new features or modify existing ones to meet the customer requirements at
hand. In this process, engineers usually also implement solutions which have potential
to be reused and, therefore, should become part of the core platform.

In an exploratory case study, we investigated KEBA’s software systems and develop-
ment processes to derive characteristics and evolution challenges (cf. [Lettner14a, Let-
tner14b]). First, in workshops with managers and project leaders we got an initial
understanding of development processes and perceived problems. Then, by archival
analysis we investigated their solution artifacts, in particular, how variability is realized
and how engineers perform derivation and adaptions. Finally, we conducted an inter-
view study with application developers to find out about their lived working processes

Research Context 5

Platform
PL Dev.

Automation Platform

Platform Engineering

Application Engineering KePlast Application Engineering OEM

KePlast Platform

KePlast Platform‘

KePlast Platform‘‘

Domain Engineering KePlast

Customer

Reseller

Domain
PL Dev.

OEM Platform

Domain Engineering OEM

Domain
PL Dev.

AE 1 Customer-
specific Ext. 1

Customer-
specif ic Ext. 2

Customer-
specific Ext. N

AE 2

Product 1 Product 2 Product N

Project 1 Project 2 Project N

AE N

AE 1
Customer-

specific Ext. 1

Customer-
specific Ext. 2

Customer-
specific Ext. N

AE 2

Product 1 Product 2 Product N

Project 1 Project 2 Project N

AE N

Figure 1.2: A brief overview of KEBA’s development process [Lettner14a]. The so�ware system
is organized in a layered structure and comprises several platforms. The common
technological platform is the Automation Platform and several domain-specific
solutions are built by KEBA as well as external companies (OEMs) at the top of the
Automation Platform. The domain-specific solutions are further adapted for the
final customers.

and perceived difficulties. In total, ten developers employed by KEBA and two further
developers of a customer of KEBA, a customer is an OEM developing solutions based
on KEBA’s automation platform, were interviewed.

Based on the exploratory case study, eight software evolution challenges were derived
as listed in Table 1.1. The challenges highlighted with boldface font are particularly
relevant for this thesis and its research goals.

In the following paragraphs we describe these challenges in more detail. Please
refer to [Lettner14a] for in-depth descriptions of the other challenges, which have been
addressed in the PhD thesis by Daniela Rabiser [Rabiser16a].

1. Merging in multi-platform / multi-product environments Merging existing applications
and product variants with new platform releases is a major effort for KEBA’s developers.
When building customer-specific applications, application engineers (AEs) derive a plain
application from a platform and then make changes to meet a customer’s requirements.
Upgrading these specific product variants to new platform releases is highly challenging.

6 Introduction

Challenge Key Findings

1 Merging in multi-platform
/ multi-product
environments

Merging requires consideration of
customer-specific extensions, pitfalls of older
platform versions, and variant-specific bug fixes

2 Impact analyses across
multiple platforms and
variants

Lack of adequate approach to assess change
impact on multiple systems and diverse variants

3 Asynchronous release
management in
multi-platform SECOs

Interdepending software platforms evolved by
multiple teams in multiple organizations adhering
to different release cycles

4 Lack of guidance for
modifying software

Huge amount of information on different systems
and variants hinders emphasis on relevant pieces
of information

5 Lack of systematic reuse of
feature implementations

Solutions perfectly suited for reuse are often not
discovered

6 Feature implementations
in multiple languages

Systems exploiting multiple programming
languages and technologies challenge feature and
platform evolution

7 Aligning product
management and developer
views on software features

Multiple role-specific perspectives regarding the
features of a platform may differ considerably

8 SECO-driven platform
evolution

Missing feedback loop supporting communication
and coordination between distributed
development sites

Table 1.1: So�ware evolution challenges [Lettner14a].

AEs have only basic support for identifying the changes that were made since the last
release. They lack support for determining which software components are relevant
for their application and how they can migrate customer-specific extensions to a new
platform release. Due to these difficulties only selected new features are migrated.
Further, it is common practice in this domain that customers skip several platform
releases. This makes merging and upgrading of existing applications even worse.

2. Impact analyses across multiple platforms and variants The developers reported diffi-
culties in predicting the impact of changes on other platforms and product variants
when implementing a customer requirement or when fixing a bug. Tool support is
currently typically limited to basic tools in IDEs such as simple text search. This leads
to high implementation efforts especially if multiple systems and diverse variants need
to be considered. Besides, KEBA’s developers have to consider multiple programming
languages when analyzing the impact of a change, since most changes affect code
written in different programming languages.

4. Lack of guidance for modifying software KEBA’s software solution covers a wide range

Research Contributions 7

of different systems and variants. This makes it difficult for developers following a
clone-and-own development approach [Rubin13] to locate the relevant artifacts (e.g.,
sections in source code) when making changes. For instance, AEs lack mechanisms to
reduce complexity by hiding information not needed for a task.

6. Feature implementations in multiple languages KEBA’s software systems are imple-
mented in different programming languages including C, C++, Java, a dialect of the
IEC 61131-3 standard, and C#. Providing comprehensive tool support is hard given
this diversity and even basic development tasks for which good support is available in
single-language environments can become challenging. An example is refactoring which
becomes complex and time-consuming due to a lack of inter-system and inter-language
support. Furthermore, platforms use different mechanisms to deal with configuration
settings. It is thus hard to evolve features and platforms as both code and configuration
files need to be considered when making changes.

Moreover, an analysis of the KePlast code base showed that the product line plat-
form’s variability is mainly implemented using load-time configuration options, i.e.,
IF statements that evaluate configuration settings. Thus, developers currently have
to consider the entire code base of the product line when making customer-specific
adaptations. During the interviews, participants reported the need to reduce complexity
by hiding information not needed for adapting a system, e.g., filtering program elements
relevant for a particular configuration.

1.3 Research Contributions

Challenge 1, 2, 4, and 6 from Table 1.1 (cf. Section 1.2) describe issues during devel-
opment and maintenance of source code and are targeted by this thesis. For example,
Challenge 2 Impact analysis across multiple platforms and variants calls for a systematic
approach for determining the impact of changes considering variability. In the following,
we give an overview of the contributions of this thesis and briefly discuss how they
address the above challenges. The contributions are then presented in detail in the
subsequent chapters of this thesis.

Contribution 1 – Conditional System Dependence Graph

The conditional system dependence graph (CSDG) in Chapter 3 is the basic data structure
for the configuration-aware program analysis methods of this thesis. The CSDG is based
on the system dependence graph (SDG) that has been introduced by Horwitz et al. [Hor-
witz90] for representing control and data dependencies globally in a program. A SDG
is a directed graph representing different kinds of dependencies between program
elements. It usually represents control flow and data flow dependencies, but other

8 Introduction

types of dependency are possible, e.g., definition-use dependencies [Horwitz90].

The CSDG extends the SDG by introducing presence conditions for representing the
variability of a program. Mechanisms for implementing variability in the source code
are extracted and abstracted for encoding presence conditions for control flow and
data flow dependencies. The presence conditions are attached to edges in the CSDG,
meaning that the dependency is only enabled if the presence conditions evaluates to
true for a certain program configuration. In this way presence conditions are used for
representing the variability information of configurable systems.

Our tool chain builds the CSDG by first building an abstract syntax tree (AST)
from source code, then performing a data flow and pointer analysis using the Soot
program analysis framework [Lam11], followed by extracting the presence conditions
from source code, and finally annotating edges in the SDG for building the CSDG.
Further, the approach allows integrating different source languages, e.g., the approach
allows building a CSDG spanning the industry partner’s IEC 61131-3 language and
Java. In evaluation studies based on our industry partner’s software KePlast we show
that building the CSDG is run-time efficient and also scales for large-scale industrial
systems.

Contribution 2 – Identifying Inactive Code

Application engineers frequently create customer-specific products in two stages: the
required software components are first selected to create an initial product which is then
evolved by refining the selected features and adapting the code to meet the customers’
requirements in a clone-and-own manner. For instance, developers frequently set
configuration options in the code to adjust the product.

However, given that such changes are often necessary in the entire code base, it
is hard to know which part of the code is still relevant for the chosen configuration
options. This means that engineers need to understand and maintain a lot of code that
is potentially inactive in a particular product variant.

The inactive code detection (ICD) approach presented in Chapter 4 is a method for
reducing the source code complexity by determining code that will never be executed
because of the specific product configuration. First, it determines the code which is
conditionally executed based on the product configuration at hand. Then, it uses the
CSDG to follow control dependencies and, in this way, determines the statements that
will never be executed. In a development tool, the code can then be hidden to reduce the
code complexity for developers. The evaluation based on industrial systems shows that
the approach is run-time efficient as it allows handling large-scale system, it is effective
as inactive code size is significant, and it is accurate in the sense that it compares to
analysis results from experts.

Research Contributions 9

Further, the ICD approach has then been used for recovering feature-to-code map-
pings. This results in a novel approach exploiting the synergies between program
analysis and diffing techniques to reveal feature-to-code mappings for configurable
software systems.

The ICD approach specifically contributes to research goals RG2 and RG3 because it
reduces the source code complexity of customized product variants during maintenance
and supports the integration of customer-specific extensions into the SPL.

Contribution 3 – Configuration-Aware Change Impact Analysis

Variability-aware program analysis techniques have been proposed for analyzing the
space of program variants. Such techniques are highly beneficial, e.g., to determine the
potential impact of changes during maintenance. Chapter 5 presents the configuration-
aware change impact analysis (CA-CIA) approach for determining possibly impacted
products when changing source code of a product family. The approach supports engi-
neers who are adapting specific product variants after an initial preconfiguration. The
CA-CIA approach also uses the CSDG to perform program slicing based change impact
analysis (CIA). However, in contrast to traditional CIA, CA-CIA leverages variability
information to improve the precision and provides information about involved product
variants.

The evaluation shows the benefits and the performance of the approach using the
KePlast product line of the industry partner. It shows that the approach provides more
precise results than existing CIA approaches and it can be implemented using standard
control flow and data flow analysis.

The CA-CIA approach contributes to research goals RG1 and RG2 because it considers
variability information when computing the possible change impact for an intended
modification and it allows to compute a change impact for a specific configuration.

Contribution 4 – Compositional Change Impact Analysis for Configurable So�ware

Software systems are usually designed and implemented in a modular way to address
challenges such as complexity, multi-language systems, distributed development, and
continuous and long-term evolution. Analyzing large-scale software systems can lead
to performance issues, resulting in huge dependence graphs and long analysis times.
Therefore, the CA-CIA approach has been extended for supporting a compositional
analysis where CSDG are built for single modules and then can be composed together
in the same way as composing modules.

Thus, the configuration-aware modular CIA (CAM-CIA) approach exploits the modu-
larity of large-scale systems to first perform program analysis for individual modules,
and later compose the pre-computed analysis results. However, partitioning a CSDG

10 Introduction

is not straightforward as it carries presence conditions representing variability. The
approach uses placeholders at module boundaries that are resolved when composing
the pre-computed CSDG modules during configuration-aware program analysis. The
approach is particularly useful in the context of product lines when product variants
are derived by composing modules depending on specific customer requirements.

The evaluation investigates and shows the correctness of the CAM-CIA approach and
its benefits compared to CA-CIA based KePlast product family.

The CA-CIA approach contributes to research goal RG4 since it enables to perform
analysis on subsystems independently and then composing the results

Contribution 5 – Comparing Li�ed and Delayed Variability-Aware Program Analysis

Two strategies have been proposed to make existing program analyses techniques
variability-aware: (i) program analysis can be lifted by considering variability already in
the parsing stage; or (ii) analysis can be delayed by considering and recovering variability
only when needed. Both strategies have advantages and disadvantages, however, a
systematic comparison is still missing.

Thus, an in-depth comparison has been conducted between the tools SPLLIFT and
COACH!, which follow the lifted and the delayed strategy, respectively. It proved that
the SPLLIFT is more accurate in most cases but COACH! is notably faster.

1.4 Publications

The following list summarizes the peer-refereed papers which contribute to this thesis.

ICSSP 2014 [Lettner14b] contains results of our in-depth interview case study. Our
goal was to characterize the system of our industry partner and we therefore
collected software ecosystem characteristics from literature and aligned these
characteristics with findings from our case study.

SEAA 2014 [Lettner14a] presents further results of our interview case study. This paper
investigates the evolution challenges in our industry partner’s software system.

ASE 2014 [Angerer14a] is a doctoral symposium paper describing the goals and plan
for this thesis.

SPLC 2014 [Angerer14b] presents the conditional system dependence graph and shows
how it can be used to find inactive code on the basis of configuration.

ICSME 2014 [Linsbauer14] builds on [Angerer14b] and presents how to combine the
ICD approach with clone detection for compile-time based product lines to be
able to handle SPLs based on load-time configuration options.

Publications 11

ASE 2015 [Angerer15] presents our configuration-aware change impact analysis ap-
proach. It is based on program slicing techniques but uses the CSDG and propa-
gates variability information.

SANER 2016 [Grimmer16] reports how we transform PLC programs to the object-
oriented intermediate language Jimple while preserving analysis semantics.

INDIN 2016 [Prähofer16] discusses how to integrate the different methods developed
in our research project to address the development and evolution challenges of
the industry partner.

ICSME 2016 [Angerer16] describes how to modularize our configuration-aware change
impact analysis to incremental and partial analysis, which is in particular helpful
in multi-language systems.

SoSyM 2016 [Rabiser16b] presents the FORCE modeling approach for multi-purpose
multi-level feature modeling and an Eclipse-based tool implementing this ap-
proach. The approach uses the proposed program analysis methods presented in
this thesis.

13

Chapter 2

Background

This chapter contains the scientific background for this thesis and covers following areas:
the area of variability including variable software, configurable software, software prod-
uct lines, and clone-and-own approaches. The area of program analysis including static
program analysis, program slicing, and change impact analysis. And the combination
of these areas known as variability-aware program analysis.

2.1 Variability

Software variability, i.e., the property of a software system allowing its customization to
different application scenarios, is regarded as a successful implementation strategy for
increasing software reuse and for developing highly customized solutions [Svahnberg05].
It can be applied where requirements are similar and therefore developers have to
implement similar solutions [Lettner14b]. However, as requirements are not really
identical but vary, the implementations also have to vary.

A good practice to manage such differences in the implementations is to have a
common base and just vary the implementation where it is necessary [Clements02].
For implementation of software variability, there are different implementation concepts.
For example, developers may use preprocessor directives [Liebig10], custom-developed
configurators [Lettner13], aspect-oriented programming [Kiczales97], delta-oriented
programming [Schaefer10], feature-oriented programming [Apel09], or load-time con-
figuration options [Lillack14] to name but a few.

For example, the C preprocessor (CPP) is a popular tool which adds an additional
step to prepare the source code for the compiler [Kernighan88]. The CPP also pro-
vides a directive that allows to include or exclude source text depending on a given
configuration. Therefore, it is a simple but powerful mechanism for implementing
variability [Liebig10]. For example, Listing 2.1 is a small program using CPP directives
to implement an optional feature A. By setting the directive, it is possible to include or
exclude the dependent source code, thus realizing variability in software.

However, the use of preprocessors also has major drawbacks. For example, the

14 Background

1 void foo()
2 {
3 int x = 0;
4 x = x + 1;
5 #ifdef A
6 x = x * 2;
7 #endif
8
9 #ifdef !A

10 x = x / 2;
11 #endif
12 printf("%d\n", x);
13 }

Listing 2.1: The source code of a SPL using preprocessor directives to implement
variability.

CPP introduces directives that also appear in the source code, i.e., the CPP defines a
language for metaprogramming [Liebig10]. Therefore, analysis tools for the C program-
ming language can only work on processed source code or need to understand CPP
directives [Kästner11]. Furthermore, while CPP is well integrated into the majority
of the C compiler tool chains (e.g., the GNU Compiler Collection), other preproces-
sors are not related to a programming language at all and integration must be done
manually [Kästner12].

Another widespread technique for implementing variability is to use configuration
options that are loaded from a resource, e.g. a file, for controlling conditional execu-
tion [Lillack14]. This has the advantage that no additional techniques are required and
variability can directly be implemented in the programming language. The value of a
load-time configuration option is determined at the time of the program start, e.g., in
an initializing phase, and then remains constant during program execution. This thesis
therefore makes an important assumption and defines that configuration options’ values
must at least be bound at load time. However, the configuration option’s value is of
course stored in a program variable and may propagate in the program. As an example,
consider the tiny configurable program in Listing 2.2. The program loads properties
from a file named conf.prop, tests if option logging is enabled, and then stores the
result in variable loggingEnabled. If option logging is enabled, a second option named
logToSock is tested and thus the first configuration option already influences the control
flow. Both values are then used to initialize the logging subsystem, however, the values
are not independent.

Load-time configuration options can be seen as a way between compile-time and run-
time configuration. Syntactically, they are indistinguishable from run-time configuration
because a value is loaded from a source and the value is stored in program variables.

Software Product Lines 15

1 class Main {
2 static Properties prop = Properties.load("conf.prop")
3
4 public static void main(String [] args) {
5 boolean log = "on".equals(prop.getProperty("logging"));
6 boolean logToSock = false;
7 if (log) {
8 logToSock = "on".equals(prop.getProperty("logToSock"));
9 }

10 LogManager.initialize(log , logToSock);
11 }
12 }

Listing 2.2: Influence of configuration options on program execution.

Semantically, load-time configuration option are close to compile-time constants because
the value is loaded in the startup phase of the program and remains constant over
program execution time. The major difference to compile-time configuration is that the
configuration value can be used in the program as every other value. It can be used in
expressions, passed as parameter, published as global variable and so on. Another issue
of load-time configuration options also is that the shipped applications always contain
the whole code with all the options and there is no separation between configuration
code and application logic.

2.2 So�ware Product Lines

A software product line (SPL) is a systematic approach for managing the variability of
software [Clements02] [Czarnecki00] [Pohl05]. It is defined as a set of software-intensive
systems sharing common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core assets in a
prescribed way [Clements02]. SPLs identify and manage common functionality relevant
for most customers and then support deriving customized solutions based on the
customers’ individual requirements. The SPL approach consists of two life cycle phases:
domain engineering and application engineering [Pohl05]. In domain engineering, the
commonality and variability of the SPL is defined and reusable artifacts are constructed.
In application engineering, a concrete application satisfying the specific application
requirements is realized by exploiting the commonality and variability of the SPL.

SPLs can be implemented in several ways, e.g., using compositional approaches [Käst-
ner08] or using an ad-hoc approach like clone-and-own [Rubin13] [Linsbauer13]. Com-
positional approaches have been developed to provide an automated process for com-
posing new product variants. In order to derive a product variant, one needs to select
the software artifacts, e.g. features, aspects, or deltas, to be included. A composer then

16 Background

generates the variant by putting the selected artifacts together according to the specific
composition rules.

Such compositional approaches assume that a system has been designed as SPL from
its inception and that features have been decomposed to components already. However,
legacy software systems commonly have not been created with an SPL perspective.
Companies are thus only slowly migrating legacy software systems to SPLs as existing
systems cannot be fully re-implemented using a compositional approach [Linsbauer13].
Furthermore, some programming languages used in industrial practice have only
limited support for using compositional techniques. As a result, products are often
developed using a clone-and-own reuse approach by adapting existing solutions [Ru-
bin13] [Linsbauer13]. Clone-and-own is the process of using an existing product variant
as a basis for a new solution and then adapting the clone such that it fits the new
requirements [Dubinsky13]. Thereby, functionality is often added using load-time con-
figuration options that enable this functionality. Cloning and adapting variants has the
major advantage that this process is very intuitive, there are no initial costs, and existing
variants are not affected by modifications. However, maintaining a clone-and-own
product line quickly becomes very time consuming and error prone [Linsbauer16]. It is
even difficult to determine the variants affected by a change.

2.3 Static Program Analysis

Static program analysis is a technique for acquiring information about the structure
but also run-time behavior of a program without executing it [Nielson99]. Its main
benefit lies in improving the quality of code in early development stages by providing
means to reveal inadequate code constructs (”code smells”), violations of programming
guidelines, and potential defects [Louridas06]. Numerous techniques and tools are
available for general purpose programming languages like C/C++, Java, C# as well
as for many others [Payet12]. Moreover, several empirical studies confirm its valuable
contribution to software quality [Zheng06] [Ayewah08].

Prominent examples for concrete analyses are control-flow analysis, data-flow anal-
ysis [Nielson99], abstract interpretation [Cousot77], program slicing [Weiser81], and
change impact analysis. Control-flow and data flow analyses are techniques originally
developed in context of compiler technology [Muchnick97]. Control-flow analysis
determines how the program can be executed, i.e., which program paths may occur.
Data-flow analysis is about understanding which values can be created in a program
and how the values can be manipulated and used [Allen01]. Typical examples of data
flow analysis methods are reaching definitions, live variables and available expressions.
Abstract interpretation extracts information about the behavior of a program by partially

Static Program Analysis 17

1 BEGIN
2 READ(X, Y)
3 TOTAL := 0.0
4 SUM := 0.0
5 IF X <= 1
6 THEN SUM := Y
7 ELSE BEGIN
8 READ(Z)
9 TOTAL := X*Y

10 END
11 WRITE(TOTAL , SUM)
12 END.

Listing 2.3: The original example as presented by Weiser [Weiser81].

executing the program using abstract operations on abstract values.

Program slicing is a technique for reducing a program to the subset of statements,
i.e., the slice, which faithfully represents a specific program behavior [Weiser81]. The
method is based on the observation that for producing a particular program behavior,
often only a subset of a program is required. The goal usually is to reduce the effort
required to understand and maintain the program by only having to consider a part
of it. For example, consider the program in Listing 2.3, the original example from
Weiser’s paper [Weiser81]. Assume that we are interested in the outcome of value
TOTAL in line 11. Computing a slice starting from this expression results in a smaller
program denoted by the highlighted lines in the listing. Some of the statements have no
influence on the variable’s value and can therefore be ignored when investigating the
problem. Therefore, program slicing is a program analysis technique that computes a
set of program statements, i.e., the program slice, that may affect the values at some
program point, i.e., the slicing criterion.

The original slicing algorithm proposed by Weiser [Weiser81] uses the control flow
graph (CFG) of a program. Ottenstein et al. [Ottenstein84] then formulated slicing
as a graph reachability problem on the procedure dependence graph (PDG) but this
method was limited to intraprocedural slicing. Furthermore, Horwitz et al. [Horwitz90]
introduced the SDG and a traversing algorithm for finding interprocedural slices. In
general, using reachability algorithms on dependence graphs is the most popular way
for computing slices [Xu05].

Change impact analysis (CIA) is the process of determining the potential effects of
a proposed modification in the software [Bohner02]. In the context of this thesis, a
modification of the software means a modification of the source code and the effect of
a modification is a set of impacted statements. Since the exact impact of a change is
again hard or impossible to compute, change impact analysis approaches just compute
a possible impact. There are many CIA approaches and they can be classified into

18 Background

Error States

Error States

States

Time

Program Runs

Approximation

False Positive

Error

Approximation

Figure 2.1: Illustration of state space overapproximation [Cousot05]. The dashed lines repre-
sent real program runs. The green area indicates legitimate program states and the
red areas indicate error states.

guided and unguided techniques, techniques using heuristics, approaches using static
or dynamic approaches and combinations of several approaches. One approach for
change impact analysis is based on program slicing techniques and this thesis pursues
slicing-based CIA techniques.

The core idea of static program analysis is to explore all possible states of the
program based on its source code. However, according to Rice’s Theorem [Rice53] all
non-trivial questions about the behavior of a program are undecidable. Therefore,
static code analysis has to work with approximations of the program [Nielson99]. The
approximation of a program can be explained as follows: executing a concrete program
produces a sequence of program states. The sum of all possible executions forms
the set of reachable states. An approximation of the program is a simplification of
the program’s semantics and has therefore a different set of reachable states. The
goal is to build an over-approximation which has at least the reachable states of the
concrete program but may have additional ones. An analysis is sound if it works on an
over-approximation of the program because then the possible states, i.e., the possible
behavior, of the program is covered. The precision of the approximation is determined
by these additional states, i.e., fewer additional states increase precision.

Figure 2.1 illustrates the relationships between the reachable states, the approximation
and the error states. The red areas at the top and at the bottom of the diagram depict
the error states. The dashed lines indicate the program runs which are actually feasible
in the real program. If a program run reaches a state within a red area, the program

Variability-Aware Program Analysis 19

1 public void foo() {
2 int x = 0;
3 x = x + 1;
4 //#ifdef A
5 x = x * 2;
6 //#endif
7
8 //#ifdef !A
9 x = x / 2;

10 //#endif
11 System.out.println(x);
12 }

(a)

x = 0

x = x * 2

Product Variant 1

System.out.

println(x)

x = x + 1

x = 0

x = x / 2

Product Variant 2

System.out.

println(x)

x = x + 1

(b)

Figure 2.2: A very small SPL with two possible product variants.
(a) A preprocessor-based SPL.
(b) Data dependence graphs for the two possible product variants.

is erroneous. The surrounding blue area indicates an approximation of the program’s
behavior. Obviously, the approximation is an over-approximation because it covers
all reachable states of the real program but also contains states that are actually not
reachable by the real program. If the approximation contains states of a red area (error
states) but the real program does not, the analysis will signal an error in the program
which effectively does not occur. This is called a false positive.

2.4 Variability-Aware Program Analysis

This section describes the fundamental concept of variability-aware program analysis
which is the basis for the CA-CIA approach in Chapter 5.

Using program analysis techniques during development and maintenance of SPLs
requires to consider all possible product variants [Brabrand12]. This is necessary because
every single possible product variant must be considered to ensure that the whole SPL
is correct. Unfortunately, the number of possible product variants grows exponentially
with the number of available options [Thüm14]. For example, the small product line in
Listing 2.2 allows to generate two product variants, one with feature A and one without
it. A developer performing a reaching definitions analysis to ensure that the data flow is
correct for all possible product variants needs to generate every possible product variant
and perform the analysis for each variant individually. Figure 2.2b shows the two
possible data dependence graphs (DDGs) resulting from a reaching definitions analysis.
Obviously, the DDGs are very similar since they differ only in one node. Looking at this
example suggests that it is straightforward to do the analysis only once for all parts that
are in common. Therefore, researcher developed variability-aware program analysis

20 Background

void foo()

x = 0

x = x / 2

System.out.println(x)

x = x * 2

x = x + 1

!AA

A !A

Figure 2.3: The control flow graph for the product family shown in Figure 2.2

that use the same principle as SPLs for analyzing SPLs [Brabrand12] [Liebig13]. The
idea is to do the analysis for all common parts just once and only diverging the analysis
if the program diverges.

This is achieved by annotating intermediate analysis data structures and results with
variability information [Walkingshaw14]. In the case of a reaching definitions analysis,
the intermediate results are the definition sets. For example, consider again the program
in Listing 2.2a. The definition sets {(x, 0)} and {(x, x + 1)} flow out of statements in
line 2 and line 3, respectively, and are independent of features. However, the definition
set flowing out of statement in line 5 depends on feature A being enabled. Therefore,
the definition set {(x, x * 2)} has to be annotated with feature A, which is written as
{((x, x * 2), A)}. In contrast, the definition set flowing out of statement in line 9 is
only valid if the feature A is disabled, i.e., it is {((x, x / 2), !A)}. Thus, by adding
conditions to definition sets representing the product variants, the intermediate results
are made variability-aware.

The core concepts of variability-aware program analysis are late splitting and early
joining [Liebig13]. Late splitting means that the analysis is performed without variability
until variability is encountered. Early joining is the concept of collapsing intermediate
analysis results as soon as possible, i.e., if data flow from different product variants
reaches a destination that is common for several product variants again. Figure 2.3
illustrates the CFG of the program in Listing 2.2a. The CFG is variability-aware
because it contains the information about which edge is valid in which product by
using Boolean presence conditions. When computing the reaching definitions on
the CFG in a variability-aware manner, the analysis will not split until variability is
encountered, i.e., if edge from node x = x + 1 to x = x * 2 or edge from node x = x

+ 1 to x = x / 2 are visited. This is the principle of late splitting. Furthermore, if node

Variability-Aware Program Analysis 21

System.out.println(x) is visited, the incoming information is merged by combining
the presence conditions. In this way, the number of entries in the reaching definition sets
is kept low and the complexity of the variability is moved to the presence conditions.
Of course, this looks like complexity is just shifted to another place but in practice,
handling Boolean formulas is way more efficient than having explicit entries in the
reaching definitions sets.

Variational data structures efficiently represent variability in data and thus enable
variability-aware computations [Walkingshaw14]. In the context of this thesis, variational
data structures are required to represent the variability of a software system. For
example, to store the artifacts of a SPL it is necessary to store the information about
when to include an artifact in a product. Furthermore, variational data structures are
often used for variability-aware program analysis. A well known example for such
data structure is the variational AST which is an important data structure for program
analysis. The tool TypeChef [Kästner11], for instance, parses preprocessor-annotated
source code and represents the variability of the source using a variational AST.

This thesis also describes a variational data structure, the CSDG. Since the CSDG has
been developed and published before the general concept of variational data structures
has been published by Walkingshaw et al. [Walkingshaw14], it is named a bit different.

In this thesis, the term conditional is used in data structures to denote that the data
structure might look different depending on external conditions.

Current variability-aware program analysis techniques incorporate variability infor-
mation from the very beginning. This kind of analysis is usually referred as lifted
analysis [Brabrand12]. The concept of analyzing the whole space of possible program
variants at once has the advantage that it is as precise as analyzing all program variants
one after each other. However, it also has drawbacks as discussed previously, i.e., a lifted
analysis cannot fully handle load-time configuration options. We therefore proposed
the analysis concept called delayed variability analysis (cf. Section 1.1).

Figure 2.4 opposes the two analysis strategies. The delayed variability analysis works
by performing an analysis completely variability-oblivious, i.e., ignoring any variability
in the first place, and then recovering the variability and augmenting the results. This
has the advantage that just one analysis is performed. In contrast to this, a lifted
analysis conceptually performs as many analyses as program variants are possible.
However, it is possible to optimize lifted analysis by sharing analysis results. The
optimization exploits commonalities and just forks the analysis where it is required due
to different variants (cf. early joining and late splitting). Nevertheless, it may be the
case that the lifted analysis needs to split early and cannot join early which leads to
many explicit intermediate results. This situation is avoided in a delayed variability
analysis because the analysis is done just once regardless of variability and can lead to

22 Background

variable
software system

variability-oblivious
results variability-aware

results

lifted analysis
 (n analyses in
 parallel)1 analysis

recovering
variability

delayed

lifted

Figure 2.4: The delayed variability principle.

better run-time performance. However, static program analysis always has to make a
tradeoff between run-time performance and precision. The drawback of this strategy is
the loss in precision because the delayed variability analysis needs to overapproximate
situations to be sound. Chapter 7 provides a detailed comparison and discussion about
the advantages and drawbacks of the two analysis strategies.

Furthermore, the delayed variability concept assumes a graph structure that represents
the execution semantics appropriately. The CSDG, for example, is such a graph structure
satisfying this requirement. The delayed variability concept also allows to incorporate
the specific semantics of a dependence edge in the graph.

23

Chapter 3

Conditional System Dependence Graph

This chapter introduces the conditional system dependence graph (CSDG), the basic data
structure for the configuration-aware program analysis methods presented in this thesis.
The CSDG is based on the system dependence graph (SDG) that has been introduced
by Horwitz et al. [Horwitz90] for globally representing control and data dependencies
in a program. The CSDG extends the SDG by introducing presence conditions for
representing the variability of a program and is therefore a variational data structure
(cf. Section 2.4).

This chapter is based on [Angerer14b] and [Grimmer16] and is organized as follows:
Section 3.1 introduces the SDG. Then, Section 3.2 explains how the SDG is extended
to represent variability resulting in the CSDG. Further, Section 3.3 describes how to
detect variability in a program and how to insert variability information into the CSDG.
Section 3.4 describes how to deal with expression that mix load-time values and run-
time values. Section 3.5 defines the semantics of the CSDG, in particular, the semantics
of the variability information. Section 3.6 gives an overview of the tool chain for
building the CSDG. Finally, Section 3.7 reports numbers on a performance evaluation
for building the CSDG.

3.1 System Dependence Graph

A SDG is a directed graph representing different kinds of dependencies between
program elements. It usually represents control-flow and data-flow dependencies, but
other types such as definition-use dependencies are also possible [Horwitz90]. In this
thesis the following node types are used for representing concrete or abstract program
elements in the SDG (cf. Figure 3.1):

Method nodes represent methods, procedures, functions or any other type of callable
program unit. In the following no distinction is made between those types of program
elements but the term method is used as a synonym for all types of callable program
units. Thus, method nodes represent the entries of callable program elements. Further,
they allow grouping parameter nodes and statement nodes. Figure 3.1 shows the SDG

24 Conditional System Dependence Graph

1 EXTERNAL BOOL config_double;
2 INT global := 0;
3
4 PROCEDURE main
5 INT a := foo(bar());
6 PRINT("result = %d", a);
7 END_PROCEDURE
8
9 PROCEDURE foo(INT p0) : INT

10 IF config_double THEN
11 RETURN p0 * 2;
12 ELSE
13 RETURN p0;
14 END_IF
15 END_PROCEDURE
16
17 MODULE M1
18 PROCEDURE bar : INT;
19 global --;
20 IF global < 0 THEN
21 global := 0;
22 END_IF
23 RETURN global;
24 END_PROCEDURE
25 END_MODULE
26
27 MODULE M2
28 PROCEDURE bar : INT
29 global --;
30 RETURN global;
31 END_PROCEDURE
32 END_MODULE

Listing 3.1: Sample program for illustrating the CSDG.

for the sample program in Listing 3.1. There are method nodes for the procedures main,
foo and the two variants of bar in Module M1 and M2, respectively. Additionally, the
artificial method node root is used to represent the entry point of an application and
acts as a container for global variables.

Statement nodes represent the statements in methods and always belong to one method
node.

Call nodes are used to represent method calls, i.e., call nodes are special types of
statement nodes. They are particularly important in the SDG as they link statement
nodes to method nodes. Figure 3.1 shows call nodes for the calls to methods foo and
for both versions of bar.

Formal parameter nodes are used for representing any data dependencies between
a methods and its environment. The return values of methods and access to global
variables are also represented as formal parameter nodes. Figure 3.1 contains formal
parameter nodes (with black background) for the method parameters, return values,

System Dependence Graph 25

r

o

o

t

m

a

i

n

f

o

o

M

1

:

:

b

a

r

M

2

:

:

b

a

r

c

o

n

f

i

g

_

d

o

u

b

l

e

r

e

t

p

0

g

l

o

b

a

l

r

e

t

r

e

t

g

l

o

b

a

l

p

r

i

n

t

f

(

"

r

e

s

u

l

t

=

%

d

"

,

a

)

a

=

f

o

o

(

b

a

r

(

)

)

f

o

o

b

a

r

b

a

r

c

o

n

f

i

g

_

d

o

u

b

l

e

g

l

o

b

a

l

a

b

a

r

(

)

R

E

T

U

R

N

p

0

R

E

T

U

R

N

p

0

*

2

I

F

c

o

n

f

i

g

_

d

o

u

b

l

e

g

l

o

b

a

l

-

-

I

F

g

l

o

b

a

l

<

0

R

E

T

U

R

N

g

l

o

b

a

l

g

l

o

b

a

l

:

=

0

g

l

o

b

a

l

-

-

R

E

T

U

R

N

g

l

o

b

a

l

m

a

i

n

f

o

o

M

1

:

:

b

a

r

M

2

:

:

b

a

r

m

e

t

h

m

e

t

h

o

d

n

o

d

e

s

t

a

t

s

t

a

t

e

m

e

n

t

n

o

d

e

f

p

a

r

f

o

r

m

a

l

p

a

r

a

m

e

t

e

r

c

a

l

l

c

a

l

l

n

o

d

e

d

a

t

a

d

e

p

e

d

g

e

c

o

n

t

r

o

l

d

e

p

e

d

g

e

p

a

r

a

m

e

t

e

r

e

d

g

e

p

c

p

r

e

s

e

n

c

e

c

o

n

d

i

t

i

o

n

a

p

a

r

a

c

t

u

a

l

p

a

r

a

m

e

t

e

r

T

F

T

M1
_li
nk
ed

M2
_li
nk
ed

!co
nfi
g_
do
ub
le

co
nfi
g_
do
ub
le

Fi
gu
re
3.
1:
Th
e
CS
DG

fo
rt
he
sa
m
pl
e
pr
og
ra
m
in
Li
st
in
g
3.
1.

26 Conditional System Dependence Graph

and the global variable global accessed in the two versions of procedure bar.

Actual parameter nodes represent expressions for actual parameters in method calls.

The SDG contains the following types of edges for representing the various types of
dependencies between program elements:

Control edges link method nodes with statement and call nodes directly contained in
the method. Control edges represent that a statement or call will be executed if the
method is called. Furthermore, conditional statements are represented as control edges
labeled with true (T), to connect the condition with all the nodes of the then branch, and
edges labeled with false (F), to connect the condition with the nodes of the else branch.
For example, the statement a := foo(bar()) in Listing 3.1 is executed unconditionally
as soon as the procedure main is executed. Therefore, the corresponding statement node
in the SDG (cf. Figure 3.1) is directly connected to the corresponding method node
with a control edge. The statement RETURN p0 * 2 is only executed if the condition
config_double evaluates to true. This is represented by the control edge labeled with
T between the corresponding statement nodes in the SDG. On the other hand, the
statement RETURN p0 is only executed if the same condition evaluates to false. This is
represented by the control edge labeled with F.

Parameter edges connect method nodes with all formal parameter nodes used by the
method. Analogously, there are parameter edges from a call node to the actual parameter
nodes. Parameter edges are represented with dashed-dotted lines in Figure 3.1.

Data dependence edges show data dependencies between parameter or variable nodes
and statement nodes in the SDG. Data dependence edges between actual and formal
parameter nodes show parameters passing during method calls. Data dependence
edges between statement nodes represent data-flow dependencies. In Figure 3.1 data
dependencies are shown with dashed lines.

3.2 Presence Conditions

A CSDG is built by annotating edges in the SDG with presence conditions. Presence
conditions are Boolean formulas representing the variability of system, i.e., the Boolean
formulas describe a set of valid product variants [Kästner11]. An edge is valid for a
specific configuration if the condition is satisfied with respect to that concrete product
configuration. Hence, a condition defines the presence of a certain edge for specific
product configurations.

Dependent on the type of edge, the presence conditions can be interpreted as follows:
if a control dependence edge is annotated with a presence condition, the execution of
the program element will only occur in a configuration satisfying the presence condition.
Analogously, a presence condition attached to a data dependence edge means that the

Representing and Extracting Variability 27

if

$op $stats

"enable".equals

prop.getProptery($name0)

..."enable".equals

prop.getProptery($name0)

AST Pattern
private Properties prop =
 Properties.load("configuration.properties");

if("enable".equals(prop.getProperty($name0))
 $op "enable".equals(prop.getProperty($name1))
 $op ...)
{

 // stats
}

Source Code Pattern

$op($name0, $name1, ...)

$stats

"enable".equals

SDG

Figure 3.2: CSDG condition extraction.

data flow only exists in the product variants satisfying the presence condition.

Consider the configuration variable config_double in Listing 3.1: There will be
presence conditions on the edges connecting the statement node config_double in
procedure foo with nodes RETURN p0*2 and RETURN p0 as shown in the CSDG in
Figure 3.1. Further, the modules M1 and M2 contain two alternative implementations of
procedure bar. Depending on which module is actually linked, one of the variants will
be called. Therefore, there are presence conditions M1_linked and M2_linked on the
two respective edges.

3.3 Representing and Extracting Variability

There are different ways how variability can be implemented in a program and the
presence conditions are used for expressing and abstracting from different variability im-
plementation concepts. For example, variability can be implemented using conditional
statements testing configuration settings (load-time configuration options) [Lillack14];
aspect-oriented programming [Kiczales97] can be used to inject additional behavior
with cross-cutting implementations; or module link configurations determining the
modules to be used in case alternative modules are available. Section 4.1.3 shows

28 Conditional System Dependence Graph

1 switch(movementAxes)
2 {
3 case 1: /* code for 1-dimensional robot */
4 break;
5 case 2: /* code for 2-dimensional robot */
6 break;
7 case 3: /* code for 3-dimensional robot */
8 break;
9 default: /* error */

10 }

Listing 3.2: Source code sample of the industry partner handling a non-Boolean
configuration option.

examples for variability mechanisms used by the industry partner.

Furthermore, compile-time variability [Kästner11] allows implementing variability
by selecting and composing source code snippets, e.g., in C/C++ using preprocessor
directives. Such compile-time variability mechanisms, however, may modify the source
code in a non-structured way, i.e., the composed code may violate the language syntax.
An approach to cope with preprocessor approaches is by transforming compile-time to
load-time variability. However, this issue is not pursued further in this thesis and the
reader is referred to von Rhein et al. [vonRhein16], which describe a comprehensive
approach for handling compile-time variability.

In the approach pursued in this thesis, Boolean formulas are used for defining
presence conditions. Further, for representation and handling of presence conditions,
binary decision diagrams (BDDs) are employed which allow a concise encoding and
provide highly efficient operations for manipulating Boolean formulas. However, this
comes with the major restriction that the abstracted value of a configuration option
can only be true or false. Therefore, an approach for encoding arbitrary configuration
conditions is needed.

In real-world programs, configuration is often not only of strict Boolean nature. For
example, the industry partner also uses numeric values for configuration options. Their
robot control software is able to handle robots with one, two, or three movement axes
and this is specified using the value domain {1, 2, 3}. The source code testing the
configuration option movementAxes is shown in Listing 3.2. To cope with this situation,
predicates for testing for specific configuration values are introduced, e.g., IS_THREE_-
AXIS_ROBOT(movementAxes) for testing for a 3-dimensional robot. This, however, gets
infeasible when value domain are huge, e.g., the Integer value domain, because this
would lead to 232 possible predicates. However, the industry partner does not use huge
value domains and often just enumerations with a few values are used for configuration,
which can easily be represented by Boolean predicates.

Furthermore, relations between predicates are lost in abstraction. For ex-

Representing and Extracting Variability 29

ample, code testing if(movementAxes < 0 && movementAxes > 3) is unsatisfiable.
By abstracting the conditions to predicates LESS_THAN_ZERO(movementAxes) and
GREATER_THAN_THREE(movementAxes) one looses the information that both cannot be
true at the same time and the conjunction will always be false.

Variability information is extracted from the source code and thus the variability
mechanism used in a software system must be known. Recall that variability may be
implemented in different ways, e.g., using preprocessor directives or configuration
options. The approach presented in this thesis specifically targets to support load-time
configuration options. Thus, it is assumed that programs load configuration options in the
start-up phase and then store them in program variables, which stay constant during
execution.

For finding configuration options, the source code of a system is analyzed to find
statements loading (and possibly combining) configuration options and store them in
program variables, i.e., statements that assign configuration conditions to configuration
variables. Each configuration condition then becomes a seed condition attached to a node
in the SDG and the CSDG represents the configuration options in the form of Boolean
configuration conditions indicating which options are enabled.

Finding seed conditions depends on the way how variability is implemented. For
instance, the industry partner’s developers use a dedicated interface to test if a configu-
ration option is enabled. Therefore, in our case study mining seed conditions is done by
a structural analysis of the AST of the program. Figure 3.2 illustrates the process: first,
a source code pattern for matching a specific variability implementation is defined. In
the example, the pattern defines the use of method java.util.Properties.getProperty(String).
If the method call occurs in a conditional test of a branch statement, the name of the
configuration option is extracted and used as seed condition. The pattern also allows
logical combinations of several configuration options and uses pattern variables $op for
logical operators. Second, the source code pattern is transformed into an AST pattern
and the actual matching is done on the AST. The seed condition is then built from the
matching logical operator $op and the matching configuration option names $name0,

$name1, This seed condition is finally attached to the outgoing edge of the SDG
node representing the branching statement. The negation is attached to the edge of the
else branch, if it exists.

Abstracting and extracting variability information may of course lead to information
loss. As it is the case in static program analysis, however, this just leads to less precision
and the analysis still remains sound.

In the case of abstracting non-Boolean value domains, the abstraction is sound
and the precision decreases because more product variants are allowed. Recall the
above example introducing the two predicates LESS_THAN_ZERO(movementAxes) and

30 Conditional System Dependence Graph

1 if(movementAxes == 1) {
2 // ...
3 }
4 if(movementAxes == 2) {
5 // ...
6 }

Listing 3.3: A small code snippet demonstrating that predicate abstraction leads to
overapproximation.

1 int value = 12345;
2 if(SomeCustomConfInterface.isEnabled("log")) {
3 Logger.info("Value is: " + value);
4 }

Listing 3.4: A small code snippet demonstrating that variability extraction may lead to
overapproximation.

GREATER_THAN_THREE(movementAxes). As mentioned previously, the conjunction of
these two predicates is false, however, the abstraction looses the dependency between
the predicates. Listing 3.3 illustrates this situation. If the first branch statement is
entered, the second branch statement will not be entered. However, the abstraction
using predicates does not know about this and for the analysis, both branches may be
entered. If an analysis assumes that both branches can be entered, it also assumes that
more program states are possible as can be reached during execution of the program.
This is exactly the definition of overapproximation.

In the case of variability extraction, information may be lost if variability implementa-
tion patterns are not detected. Again, assume there is a branch statement testing a config-
uration option which is not detected. The analysis still remains sound if this information
is missed because it is then assumed that the branch statement and the consequent
statements are valid for all product variants using Boolean formula true. Listing 3.4
provides an example for this situation. Assume the call SomeCustomConfInterface.
isEnabled(...) tests a load-time configuration option not recognized by the analysis
tool. Then the presence condition will default to true at the corresponding control
dependency indicating that the log statement will be executed in every configuration.
Therefore, every program variant again has more program states which is again the
definition for overapproximation (cf. Section 2.3).

3.4 Mixing Load-time and Run-Time Values

The value of load-time configuration options is stored in common program variables
which is then called a configuration variable. However, this means that the configuration

Semantics of the CSDG 31

1 static Properties prop = ...;
2 static boolean c0 = "enable".equals(prop.get("option0"));
3
4 public static void main(String [] args) {
5 boolean x = ...;
6 if(c0 && x) {
7 foo();
8 }
9 if(c0 && !x) {

10 foo();
11 }
12 }

Listing 3.5: A programmixing load-time and run-time values in branch expressions.

variable can be used in branch expression together with every other program variable.
In Listing 3.5 variable c0 is a configuration variable and x is a common program variable.
The two different kinds of variables are used in the expression of the branch statements.

In order to keep the approach sound, it is necessary to ignore such expressions or in
other words, to abstract to presence condition true. It can, however, make sense to defer
this conservative abstraction for two reasons:

(i) The unknown value of the run-time variable could be eliminated by a negation.
(ii) The information that code partially depends on configuration can be useful.

To overcome the problem of unsoundness, a unique placeholder variable represents the
run-time value. For example, instead of extracting the presence condition true from the
branch statement in line 6, it is possible to use formula c0∧ ux whereas ux represents
the unknown run-time value of variable x at the particular program point.

To further illustrate the possible benefit of deferring the abstraction, Listing 3.5 has a
second branch statement in line 9. Now, assume that method foo is just called from
these two call sites. Then the method only depends on configuration option c0 because
c0 ∧ ux ∨ c0 ∧ ¬ux is equivalent to just c0. Deferring the abstraction hence allows to
eliminate the dependency on the run-time value and therefore preserves the variability
information, which would otherwise be lost.

3.5 Semantics of the CSDG

In this section the semantics of the CSDG is formally defined. The definitions build on
the semantics of the SDG, which are well-defined in literature [Ferrante87].

Definition 1. System Dependence Graph A SDG is a tuple

SDG = (V, E, T)

32 Conditional System Dependence Graph

where V is the set of nodes of the SDG and E ⊆ V ×V × T are the edges and T : E→
{control, data} is set of edge types.

The control-flow edges e = (a, b, t) ∈ E ∧ T(e) = control represent the execution
semantics. Intuitively, a node b is control dependent on a node a if the node a decides if
b will be executed. The common example for this is an IF statement which decides if
the statements in the body are executed.

The definition of control-flow dependency is based on by Ferrante et al. [Ferrante87]
and is as follows:

Definition 2. Control-Flow Dependency There is a control-flow dependency (a, b, t) ∈
E, t = control between nodes a, b ∈ V if node a decides if node b is executed. We write
a ctrl−→ b. More formally: a ctrl−→ b if

1. There is a path p from a to b in the control-flow graph such that b post-dominates
every vertex v ∈ p, v ̸= a, and

2. b is not the immediate post-dominator of a

In other words, if a node has children in the control flow graph (CFG), then the node
is a decision point. If a node b post-dominates a child of node a, then node b is control
dependent on node a. In this case, node a then was the nearest decision point for the
execution of b.

This definition uses the post-dominator relationship on the CFG which is defined as
follows.

Definition 3. Post Dominance Relationship Node b post-dominates node a in the CFG
if every path from a to EXIT (excluding a) contains b [Ferrante87].

Based on the definition of the SDG, a formal definition of the CSDG is as follows.

Definition 4. CSDG A CSDG is a tuple

CSDG = (V, E, T, C, PC)

where V, E and T are the same as in the SDG, C is a set of Boolean configuration
variables and PC is the presence condition function

PC : E× {True, False}C → {True, False}

which for each edge determines a Boolean presence value which is dependent on the
value assignments of Boolean configuration variables.

Implementation 33

Parser and

Resolver

ASTM

Jimple

Generator

System

Dependence

Graph Builder

PLC Program:

Structured Text,

Instruction List,

Sequential

Function Chart

Soot

SootClass

SootClass

SootFields

SootMethods

Figure 3.3: Components and intermediate data structures of the analysis tool chain. First,
a parser generating an AST representing the program was created. Second, a
code generator that outputs Jimple code based on the AST for the Soot analysis
framework was implemented. Third, Soot is then used to perform the necessary
analyses to build the CSDG.

3.6 Implementation

We implemented a tool chain building the CSDG. Figure 3.3 provides an overview
of the tool chain [Grimmer16]. However, the industry partner’s software system
KePlast is implemented in a programming language conforming to the IEC 61131-3
industry standard, a standard for programmable logic controller (PLC) programming.
Unfortunately, the standard does not define a full programming language and therefore
many manufacturer-specific dialects exist. Due to the diversity of the dialects, program
analysis tools are hardly available for IEC 61131-3 based languages. KEBA also has
its own language dialect and an analysis tool is also not available. It was therefore
necessary to implement a full language front end for the analysis framework whereas
the goal was to reuse existing technology to reduce the effort.

The implemented parser for the IEC 61131-3 language and used the CoCo/R parser
generator [Wöß03] which generates an AST for an entire system. It uses OMG’s
ASTM [OMG07] as this reduces the effort for implementing an AST model for a
programming language. The ASTM specification defines a generic part (generic ASTM)
and a language-specific part (specialized ASTM). The generic ASTM (GASTM) provides
AST node types commonly required in most imperative programming languages. This
includes statement nodes for branches, loops, assignments, and so on. The specialized
ASTM (SASTM) is supposed to be extended by the language implementer to support
language-specific structures. In this case, the extension consisted mainly of node types
representing definition types, i.e., variable definitions with special semantics, which
are unique to KEBA’s language dialect. Next, a code generator performs an analysis
preserving transformation [Zhang06] that represents the control-flow and data-flow
semantics of the program. The generator (cf. block Jimple Generator in Figure 3.3)
therefore creates Jimple code based on the AST and also links the generated code to
the AST nodes. Jimple is the intermediate language of Soot used to perform program
analysis and optimization. Note, that the Jimple code does not represent the exact

34 Conditional System Dependence Graph

execution semantics of the original PLC program since this would require to fully
implement KEBA’s runtime environment. As soon as the Jimple code is available, the
analysis capabilities of Soot are used for building the CSDG. This primarily involves a
control-flow, reaching definitions, and pointer analysis.

As soon as the program to analyze is available as Jimple code, the analysis framework
computes the intraprocedural PDGs based on intraprocedural control and data-flow
information. This is the first step towards the creation of the SDG and PDGs represent
the same information as the SDG but are limited to individual procedures. As an
optimization, the analysis tool implements the algorithm by Harrold et al. [Harrold93]
which computes PDGs directly based on the AST. However, this algorithm is limited to
structured programs and therefore the generic but slower post-dominator approach as
described by Ferrante et al. [Ferrante87] is available as backup procedure. The backup
is necessary because unstructured transfer of control may happen, for example, when
using the assembly-like Instruction List language. The SDG is then created by linking
individual PDGs. Call nodes in the PDGs are then linked with the corresponding
method nodes. The analysis framework also resolves data dependencies induced by
indirect access via reference and pointer variables considering points-to sets. At this
point, it is worth to mention that KEBA’s IEC 61131-3 dialect does not allow any pointer
arithmetic which is beneficial for the run-time performance of the analysis. Having all
this information, the SDG can be completed.

3.7 Performance Evaluation

The performance evaluation had the goal to find out whether building the CSDG with
the analysis framework is fast enough for using the tool chain during maintenance tasks.
Therefore, the run-time performance evaluation used 34 different product variants from
the KePlast platform. The set of products thereby covered the full bandwidth in terms
of size in lines of code. We also included real customer variants and complemented
these with freshly generated product variants. A dedicated goal was to cover every
available feature of the product line at least once in a product variant. The conducted
performance measurements determine the time required to build the AST, to generate
Jimple code, and to generate PDGs and the SDG. Furthermore, the evaluation also
measured the peak memory consumption (Java heap space). All performance runs were
executed 10 times and the result is the median of the single values.

The tool chain is written in Java and we conducted the performance evaluation runs
using a Java 8 HotSpot 64-Bit Server VM on Windows 7 running on a PC with an
Intel Core i7 with 2.93 GHz and 16 GB DDR3-SDRAM. Table 3.1 shows the results of 8
representative products (PVs) of different size (the others show similar results). The

Summary 35

PV Size PM AST JCG PDG SDG Total SDG Size
[kLOC] [GB] [sec] [sec] [sec] [sec] [sec] [k#Node]

1 53 1.5 2.8 2.5 11.2 14.2 30.7 106
2 60 2.1 3.9 3.2 20.1 22.3 49.5 164
3 81 1.8 3.9 4.0 22.4 19.5 49.8 187
4 98 3.3 4.9 5.4 20.9 42.8 74.0 188
5 205 7.3 10.2 16.5 107.6 36.8 171.1 416
6 253 8.0 12.2 23.5 130.5 49.9 216.1 604
7 265 9.4 12.7 24.4 135.4 53.8 226.3 626
8 302 9.5 14.9 29.8 163.9 62.9 271.5 708

Table 3.1: Results from the run-time performance evaluation. The size of the product variants
(PV) is specified in lines of code (Size). PM indicates the peak memory consumption.
AST represents the time needed for parsing and building the AST. JCG is the time
for the Jimple code generation. PDG specifies the time required to build the PDGs
including their instantiation, SDG is the time required for building the SDG. Total is
the overall time needed. SDG Size shows the size of the resulting SDGs in number of
nodes.

selected program sizes range from 53 kLOC to 302 kLOC. The total time for the whole
analysis process is between 30 and 271 seconds, which is reasonable given the scope
of the analyses. The resulting SDGs contain between 106k and 708k nodes. It can be
observed that the time required to build the AST (column AST) and to generate the
Jimple code (column JCG) is only about 1/6 of the overall time. Most time is spent on
building the PDGs and the SDG, which uses the analysis results delivered by Soot.

Figure 3.4 relates the size and the total analysis time for 34 product variants (the
selected product variants contained in Table 3.1 have circles as markers). We see a
strong linear correlation (Pearson’s correlation coefficient 0.982; p-value < 2.2× 10−16).
We found a similar strong correlation for the peak memory consumption (Pearson’s
correlation coefficient 0.983; p-value < 2.2× 10−16). From these results it can be deduced
that our implementation scales well to large-scale industrial applications.

3.8 Summary

This chapter introduced the conditional system dependence graph (CSDG) which is the
basic data structure for the configuration-aware program analysis methods presented
in this thesis. The CSDG is based on system dependence graph (SDG) and is built
from the SDG by annotating edges with presence conditions. Presence conditions are
Boolean formulas representing the variability of the system. An edge in the CSDG is
valid if the associated presence condition is satisfied with respect to a concrete product
configuration. Further, the semantics of CSDG were formally defined by relying on

36 Conditional System Dependence Graph

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

 0 50 100 150 200 250 300

To
ta

l t
im

e
 [

se
c]

Lines of code [kLOC]

Figure 3.4: Timings tested on 34 product variants. The data points represented as circles are
also shown in Table 3.1.

definitions of the SDG, control-flow dependency, and post dominance relationships.
This chapter also showed how variability mechanisms, i.e., the implementation

of variability in the source code, are abstracted for extracting presence conditions.
Abstracting and extracting variability information may lead to information loss, however,
abstracting results in overapproximations and analysis results are still sound. Further,
it was shown how to deal with non-Boolean configuration options and how to deal
with situations where configuration variables are set together with normal program
variables.

Finally, the implementation of the CSDG and the tool chain to build it were discussed.
The run-time performance evaluation showed a linear correlation between the lines of
code and the time as well as the memory consumption. Soot’s analysis implementations
obviously benefit from the restrictive nature of IEC 61131-3 languages, e.g., no dynamic
memory allocations and no dynamic binding, because the algorithms converge quite fast.
However, this is not automatically the case and implementing some optimizations like
using a cache for the results of reaching definitions analysis is necessary. In summary,
the performance results allow to conclude that the tool chain scales for industrial
applications.

37

Chapter 4

Identifying Inactive Code and Recovering
Feature-to-Code Mappings

One of the findings of the interview case study presented in Section 1.2 is that the
industry partner first uses a custom-developed configuration tool for creating an initial
product based on selecting the desired product features. This process is called staged
derivation and is widely used in practice [Czarnecki05b]. Engineers then refine and
adapt the source code to develop a solution for a particular customer. This means that
developers customize the selected features by configuring their properties, similar to
the idea of staged configuration [Lettner14b, Lettner13, Czarnecki04].

It is common in product lines that configuration parameters and configuration
variables are evaluated by conditions or annotations in the code. However, a drawback
of this approach is that the product variants created during application engineering
contain a lot of code that is actually inactive, if considering the detailed configuration
settings. Developing and maintaining product variants in such a way is cumbersome
for application engineers as they have to read and understand a lot of source code that
could be discarded for the specific product variant.

Feature-to-code mappings [Kästner08], feature location approaches [Eisenbarth03],
or traceability techniques [Egyed10] help developers identifying source code related
to particular features. However, the in-depth analysis of the industry partners systems
showed that such mappings are frequently incomplete and do not consider the often
complex source code dependencies of feature implementations. For instance, the code
activated by a configuration parameter can have complex dependencies that need to
be considered when identifying the inactive code for a certain configuration. The
above mentioned approaches do not support a configuration-aware analysis of code
dependencies.

This chapter presents a configuration-aware program analysis method based on
the conditional SDG introduced in Chapter 3, which allows to identify code that is
inactive in particular configurations. It is based on our publications [Angerer14b]
and [Linsbauer14] and split into two parts: the first part (Section 4.1) presents our

38 Identifying Inactive Code and Recovering Feature-to-Code Mappings

inactive code detection (ICD) approach for the automatic identification of inactive code
for a concrete product variant based on configuration settings. The approach marks
all code parts as inactive that cannot be executed in the current product configuration.
Specifically, the first part provides three contributions: (i) An approach for identifying
inactive source code based on configuration settings. (ii) A demonstration of the
flexibility of the approach by tailoring and implementing it for an industrial product
line. We show specific extensions for system-specific variability mechanisms and
capabilities of an industrial programming language. (iii) The evaluation demonstrates
the effectiveness of the approach in an industrial setting by computing the inactive
code of different configurations. Results of the evaluation in Section 4.1.4 show that the
approach provides accurate results, which were verified with a domain expert.

The second part (Section 4.2) then relies on the method for inactive code detection and
presents a technique for the recovery of feature-to-code mappings. It contributes a novel
approach exploiting the synergies between program analysis and diffing techniques to
reveal feature-to-code mappings for configurable software systems. The evaluation in
Section 4.2.1 demonstrates the feasibility of the approach with a set of KePlast products.

Section 4.3 discusses related work and Section 4.4 concludes this chapter with a
summary.

4.1 Identification of Inactive Code

4.1.1 Problem Illustration

This section illustrates how inactive code is detected and why it is difficult to handle it
manually.

Inactive code is defined as the code that is contained in the source code of a concrete
product variant but may never be executed. This can happen, e.g., when configuration
options are used to enable functionality in the program and when the options’ values are
bound at load time. Inactive code arising from load-time configuration options cannot
be detected by a compiler which cannot know their value at the time of compilation.

Listing 4.1 illustrates the problem with a configurable program. Using the class
java.util.Properties to load the value of configuration options transactions and
logging. The value of configuration option transactions is used in method main

in the branch statement. The consequent branch of this statement contains calls to
the methods start, commit, and doOperation. In the alternative branch, the method
doOperation is called a second time. There are also two nested branch statements in
lines 10 and 19 testing if the logging functionality is enabled. The if statement testing
the configuration option’s value is called the activator code, deciding about the execution
of the implemented functionality.

Identification of Inactive Code 39

1 class Main {
2 static Properties p = Properties.load("conf.prop")
3
4 public static void main(String [] args) {
5 if("on".equals(p.getProperty("transactions"))) {
6 Transaction t = new Transaction ();
7 t.start();
8 doOperation ();
9 t.commit ();

10 if("on".equals(p.getProperty("logging"))) {
11 log("transaction successful");
12 }
13 } else {
14 doOperation ();
15 }
16 }
17 public static void doOperation () {
18 // ...
19 if("on".equals(p.getProperty("logging"))) {
20 log("operation completed");
21 }
22 }
23 public static void log(String msg) { /* ... */ }
24 }
25
26 public class Transaction {
27 void start() { /* ... */ }
28 void commit () { /* ... */ }
29 }

Listing 4.1: Small configurable program.

Assume that the configuration option transactions is not enabled and therefore
the calls to methods start, doOperation, and commit will not be executed. However,
method doOperation is called a second time in the alternative branch. Further assume
that configuration option logging is enabled. At first sight, it also seems that method
log is inactive since it is used in an inactive branch. However, method doOperation

also uses the logging functionality.

In this illustration, it is very easy to find out that the methods start and commit are
inactive while the methods doOperation and log are still executed. In complex systems,
the problem is of course not that obvious. As observed in the industry partner’s source
code, there are many places for code activations and deep call chains with many shared
methods. Doing such an analysis manually would be cumbersome and error prone.

4.1.2 Approach

Figure 4.1 illustrates the ICD approach, which used the CSDG introduced in Chapter 3
as the basis for identifying the inactive code in a given product variant. First, the

40 Identifying Inactive Code and Recovering Feature-to-Code Mappings

Product Line

create prune

if(conf0) {
 // then0
}
if(conf1) {
 // then1
}
if(conf2) {
 // then2
}

extract

conf1

conf0 conf22 3

true

true false

conf0 = true
conf1 = true

Configuration

CSDG Pruned CSDG

1

Figure 4.1: The approach identifies inactive source code in product variants by computing a
CSDG and evaluating presence conditions based on a given system configuration.

concrete product configuration is transformed into assignments to the variables used in
the presence conditions. Therefore, this transformation is a complementary part of the
second step of building the CSDG of extracting the presence conditions and establishes
a semantic link between a configuration and the statements in the program.

Identifying inactive code is then accomplished by a reachability analysis in the CSDG.
Initially all nodes in the CSDG are marked inactive. Then our algorithm starts at the
root procedure node. The reachability analysis recursively follows the edges and marks
all reached nodes active until all reachable nodes are visited. If a presence condition is
attached to an edge, it is followed only if the condition is satisfied regarding the values
of the variables representing the product configuration. As a final step, the information
from the active and inactive nodes is transferred to the corresponding statement nodes
in the AST.

Semantics

Formally the inactive code detection problem can be defined as follows. Recall the
definition of the CSDG (cf. Section 3.5), i.e.,

CSDG = (V, E, T, C, PC)

Assume
v0 ∈ V

to be the start node representing the single entry point of the program. Let

cvals ∈ {True, False}C

Identification of Inactive Code 41

be an assignment of Boolean values to configuration variables and therefore represents
a concrete configuration. Then, a pruned SDG

SDGp = (Vp, Ep, Tp)

representing the SDG of the active code for the product configuration cvals is constructed
as follows. Let (v0, v1, v2, ..., vn) ∈ V* be a valid path from node v0 to node vn, i.e.,
vi

control−−−→ vi+1 ∈ E, i ∈ {0, 1, 2, ..., n− 1}. The set of nodes Vp ⊆ V is the set of nodes
vi reachable from start node v0 along any valid path (v0, v1, ..., vn) where all the edges
vi

control−−−→ vi+1 are control dependence edges and all the presence conditions for edges
evaluate to true for the current configuration. Formally

Vp = {vn ∈ V|∃(v0, v1, ..., vn) ∈ V* :

∀i ∈ {0, 1, 2, ..., n− 1} : vi
control−−−→ vi+1 ∈ E ∧ PC(vi

control−−−→ vi+1, cvals)}

Then, the set of edges Ep ⊆ E is the remaining set of edges between nodes in Vp, i.e.,

Ep = {v1 → v2|v1 → v2 ∈ E ∧ v1, v2 ∈ Vp}

The function Tp is just the function T restricted to the domain Ep, i.e.,

Tp : Ep → {control, data}

with Tp(e) = T(e). Note that the result of pruning is a SDG and not a CSDG, i.e., the
variability information is abandoned.

Algorithm

Algorithm 1 shows the algorithm for identifying inactive code in pseudo code. It takes
three parameters, (i) the CSDG, (ii) the node representing the single entry method of
the system, and (iii) the concrete product configuration. The CSDG is the data structure
CSDG = (V, E, T, C, PC) (cf. Section 3.5), the second parameter is a method node v0 ∈ V
and the third parameter is a Boolean vector cvals ∈ {True, False}C. The algorithm
performs a reachability analysis on the CSDG only following the control dependencies
if their associated presence conditions are satisfied. Function PC(csdg, e, con f) selects
and applies the CSDG’s presence condition function. The result of the algorithm is then
a set of unvisited nodes which are not reachable in the control dependence subgraph
meaning that they cannot be executed with the provided configuration.

Figure 4.2 further illustrates how Algorithm 1 works. The left side shows the initial
control dependence subgraph of the program in Listing 4.1. Initially, all nodes are

42 Identifying Inactive Code and Recovering Feature-to-Code Mappings

Algorithm 1 The algorithm for identifying the inactive code.
procedure IdentifyInactiveCode(csdg = (V, E, T, PC), v0, cvals)

visited ← ∅
queue ← {v0}
while queue ̸= ∅ do

n ← removeFirst(queue)
visited ← visited ∪ {n}
for e = (n control−−−→ s) ∈ E do

if s /∈ visited ∧ s /∈ queue then
if PC(e, cvals) then

queue ← queue ∪ {s}
end if

end if
end for

end while
return V(csdg) ∖ visited

end procedure

unvisited and therefore gray. Starting at node main, the algorithm follows each outbound
control dependency and marks every visited node. If there is a presence condition at an
edge, the formula is evaluated by applying the provided configuration. Furthermore, if
the presence condition evaluates to f alse, the edge is ignored and the successor will
not be visited over this edge. The right side of the figure shows the result of this
example assuming configuration option transactions is disabled and logging is enabled,
i.e., trans = f alse ∧ log = true.

4.1.3 Implementation

The approach has been customized and implemented for the KePlast product line (refer
to Section 1.2) of the industry partner KEBA AG to demonstrate its feasibility and
flexibility. To do so, the analysis framework presented in Section 3.6, which specifically
targets the programming language of the industry partner, builds the CSDG required
for this approach. The analysis framework needs to know the used variability patterns
to extract seed conditions. Therefore, first it is described what kind of patterns occur in
KePlast programs. Second, it is then described how configuration files are used as a
concrete product configuration to evaluate the presence conditions.

Used Variability Mechanisms

In order to implement variability, KEBA uses three mechanisms that have been identified
based on expert knowledge and manual review of the source code. All three mechanisms

Identification of Inactive Code 43

main

if(..."transactions"...)

commit() doOperation()

commit doOperation

doOperation()

... ...

start()

start

...

log(...)

log

...

if(..."log"...)

if(..."log"...)

log(...)

true

trans

trans

!trans

trans

trans

log

(a)

main

if(..."transactions"...)

commit() doOperation()

commit doOperation

doOperation()

... ...

start()

start

...

log(...)

log

...

if(..."log"...)

if(..."log"...)

log(...)

true

trans

trans

!trans

trans

trans

log

(b)

Figure 4.2: Illustration of the algorithm for identifying inactive code. (a) shows the control
dependence subgraph before pruning and (b) shows the result.

belong to the class of load-time variability, which is bound at program startup. The
three mechanisms are as follows:

System variables are special program variables representing endpoints to hardware
machine equipment like sensors and actuators. Therefore, these variables are declared
globally in the program. They are also an important variability mechanism to represent
optional equipment used in a product configuration. For example, the system variable
di_ImpulseInput represents an optional digital input sensor for providing impulses
of a rotating machine component. For testing the presence of system variables in the
program as depicted in Listing 4.2, a function IS_LINKED(var) is available and heavily
used in KePlast for implementing variation points.

1 IF IS_LINKED(di_ImpulseInput) THEN
2 // ...
3 END_IF

Listing 4.2: Code snippet testing if a system variable is available.

Configuration parameters are another widely used variability mechanism. The KePlast
user interface provides special configuration forms for setting configuration parameters
prior to system start-up. For example, the parameter buzzer_signal_duration defines

44 Identifying Inactive Code and Recovering Feature-to-Code Mappings

1 IF buzzer_signal_duration > 0 THEN
2 // ...
3 END_IF

Listing 4.3: Code snippet testing if some functionality is enabled.

1 // Hydraulic Machine
2 PLUG_CONNECTION
3 fb0 : FB_HYDRAULIC;
4 END_PLUG_CONNECTION
5
6 // Electric Machine
7 PLUG_CONNECTION
8 fb0 : FB_ELECTRIC;
9 END_PLUG_CONNECTION

Listing 4.4: Code snippet testing if some functionality is enabled.

how long an alarm will be signaled by the buzzer. As illustrated in Listing 4.3, variable
buzzer_signal_duration can be zero deactivating this functionality.

Module linking is another mechanism. Modules represent loadable program units in
the target language and are used as an elementary variability mechanism in KePlast. It
is common practice to implement different variants of a control function in different
modules and to decide which variant to use by specifying the respective module in
a configuration file. For example, KePlast supports hydraulic machines and electric
machines. Thus, for the main control components separate module variants exist
supporting either the hydraulic or electric machine. To represent this specific situation,
Boolean variables are introduced as presence conditions in the CSDG representing
the chosen module. For example, Listing 4.4 shows how to define the two different
modules for different machine types. The so-called plug connection allows to specify a
type for a variable fb0. Depending on the machine type, i.e., hydraulic or electric, the
implementation is specified by using the corresponding type.

Configuration Files

A prerequisite for identifying inactive code of product configurations is to create and set
the variables used in the presence conditions. Besides supporting different variability
implementation mechanisms, the approach further needs to be tailored to support
different types and formats of configuration files used during the staged configuration
process.

For instance, engineers use configuration files to define the required modules. In
this case the variables representing the modules to be linked are set to true while all
other module variables remain false. There are also text files containing system variable

Identification of Inactive Code 45

declarations which correspond to the hardware input/output ports. Listing 4.5 shows
an example of a configuration file defining which input/output ports are available.
For example, the identifier IO.ONBOARD.DI:0 is the address of an input/output port
and the line name="Subsystem.di_Closed" specifies the program variable connecting
to this port. If there is an entry for a program variable in the configuration file, then
the call IS_LINKED(di_Closed) will evaluate to true in Subsystem0. Again, all variables
representing system variables in the product configuration are set to true while all other
remain false.

Finally, the parameter settings defined in the dedicated configuration forms are
written to an initialization file in the form of key-value pairs. The values are retrieved
at start-up to set the variables used in the presence conditions accordingly.

1 [IO]
2 [IO.ONBOARD]
3 [IO.ONBOARD.DI:0]
4 name="Subsystem0.di_Closed"
5 [IO.ONBOARD.TI:7]
6 name="Subsystem1.ti_OilTemp"
7 [IO.ONBOARD.DI:18]
8 name="Subsystem2.di_ImpulseInput"

Listing 4.5: Configuration file example defining input/output ports.

4.1.4 Evaluation

The evaluation was performed using the approach as implemented and customized
for KEBA’s KePlast product line. It investigates the effectiveness and accuracy of the
approach for identifying inactive code. The effectiveness shows how much code can
be identified as inactive for different configuration options. The accuracy evaluation
compares the results of the automated analysis to the results of a manual code analysis
performed by a domain expert of KEBA.

E�ectiveness

It has been shown that the cost of code maintenance increases with source code size
and complexity [Banker93]. Therefore, effectiveness answers to what extent the ICD
approach can ease maintenance tasks for application engineers by reducing code size. In
particular, the code that is identified and marked as inactive for different configuration
options is measured. The metrics inactive code size and inactive code scattering are used
for assessing the effectiveness of the approach.

The metric inactive code size is measured in lines of code (LOC), counted based on
the AST which maintains traces to source code lines for that purpose. The LOC metric

46 Identifying Inactive Code and Recovering Feature-to-Code Mappings

 1

 2

 3

 4

 6

 10

 16

 25

 40

 1 10 100 1000

in
a
c
ti
v
e
 c

o
d
e
 s

c
a
tt
e
ri
n
g
 (

fi
le

s
)

inactive code size (LOC)

Product Variant P1

 1

 2

 3

 4

 6

 10

 16

 25

 40

 1 10 100 1000

in
a
c
ti
v
e
 c

o
d
e
 s

c
a
tt
e
ri
n
g
 (

fi
le

s
)

inactive code size (LOC)

Product Variant P2

Figure 4.3: E�ectiveness of the approach for individual configuration options of KePlast prod-
uct variants P1 and P2. The x-axis represents the identified inactive code size (LOC).
The y-axis represents the scattering of inactive code (files). For both axes a loga-
rithmic scale is used. The size of the bubbles indicate the number of configuration
options with equal data points.

Identification of Inactive Code 47

considers only code lines containing statements and neglects empty lines, comment
lines, and lines with closing tags (e.g. END_IF). Thus, our LOC metric conforms to
popular code counting standards [Park92].

The metric inactive code scattering metric indicates to what extent the code belonging
to a configuration option is spread across files. This is important from the perspective of
product line maintenance as it is more difficult to understand the effects of configuration
options when implementations are distributed across multiple files and components.

The evaluations are applied to the code bases of two different product variants.
Product variant P1 represents a KEBA customer project and was created by first
selecting a base product using the AppCo [Lettner13] composition tool and then further
customizing it to address customer requirements. The size of P1 is 102k LOC and it
has 247 configuration options. The second product variant P2 was created using the
AppCo composition tool. Therefore, the product P2 represents a standard product
configuration. The size of P2 is 72k LOC and it has 146 configuration options. Note that
product P1 is significantly larger due to the customer-specific extensions.

For measuring the effectiveness of the ICD approach, the test program individually
disabled each configuration option in P1 and P2 by assigning a value logically disabling
the option while keeping all other configuration options unchanged. Then, the inactive
code (LOC) was measured as well as the scattering of inactive code (files). Observations
revealed that more than 90% of the configuration options affect only single source code
modules. Therefore, the inactive code size and scattering metrics are computed for indi-
vidual modules to reflect the typical work mode of developers. When a configuration
option was used in several modules, it was measured several times, separately for each
module using it.

Results Figure 4.3 shows the inactive code size in LOC (x-axis) and scattering in
number of files (y-axis) for the different configuration options in P1 and P2 using a
logarithmic scale. Each data point in the diagram represents a configuration option.
As some configuration options have identical or almost identical data points (see next
paragraph for an explanation), the diagrams use bubbles to indicate the number of
configuration options with equal data points.

Discussion The results for the evaluation of effectiveness in Figure 4.3 show a signifi-
cant size of inactive code for most of the configuration options. Many are in a range
between 200 and 1000 LOC, some even exceed 1000 LOC. Furthermore, the inactive
code also scatters over several files for a majority of the configuration options. Therefore,
the inactive code will not be obvious to a developer performing a maintenance task.
As expected, there is a strong correlation between inactive code size and inactive code

48 Identifying Inactive Code and Recovering Feature-to-Code Mappings

scattering. The Spearman’s rank correlation coefficient is 0.98 for product P1 and 0.97
for product P2.

However, the number of data points shown in Figure 4.3 is smaller than the number
of configuration options available in the two product variants (247 in P1; 146 in P2).
In fact, just 53 and 44 different data points exist for P1 and P2, respectively. There are
three explanations for this phenomenon: first, there are many code duplicates with
only small differences. Therefore, the inactive code size of two different configuration
options can be the same in terms of LOC even if the inactive code lines are disjunct.
Investigations revealed that the amount of code clones is significant which can be
explained by the development process. Second, in some modules a lot of code is never
used independently of the configuration options, e.g., because some types have never
been instantiated. In particular, this happens in library modules implementing basic
data structures and algorithms. Third, disabling specific configuration options can
result in activating code while other code becomes inactive and vice versa.

Accuracy

To perform the evaluation for accuracy, a domain expert of our industry partner
manually analyzed the inactive source code for selected configuration options and
compared the results of the manual analysis with the results from the analysis tool.
The domain expert is the development lead of the investigated SPL and has in-depth
knowledge about the entire KePlast system. Due to time constraints of the expert, it
was necessary to focus on one product variant, i.e., product variant P1, and a limited
set of configurations options covering both small and large inactive code and different
scattering. Table 4.1 shows the five configuration options together with the inactive
code size (IC) and inactive code scattering (IS) computed by the tool. Note that these
configuration options do not necessarily have a Boolean type. They can be logically
disabled by removing an entry from an external configuration file meaning that the
configuration option will then never be defined.

The evaluation comprised three steps:

(1) The domain expert was briefed about the goals of the analysis and the task.

(2) The domain expert used KEBA’s IDE to mark the source code that becomes
inactive as a result of disabling the selected configuration option. The expert first
performed a text-based search for the variable implementing the configuration option
currently explored. All locations found were then further investigated. Furthermore, the
expert explored all dependencies (e.g., value assignments to a global variable, procedure
calls, etc.). Code considered as inactive was commented out in the IDE. It took the
domain expert 135 minutes in total to investigate the five configuration options.

(3) A researcher compared the output of the manual code marking with the automated

Identification of Inactive Code 49

Option IC IS RC TC Acc
[LOC] [#files] [LOC] [LOC]

di_ImpulseInput 53 4 13 0 80.3%
ti_OilTemp 64 1 9 0 87.7%

di_EmergencyStop 278 5 2 275 99.3%
di_ButtonManual 339 5 1 275 99.7%

ao_Valve 712 10 33 215 95.6%

Table 4.1: Inactive code size (IC) and inactive code scattering (IS) for the investigated configu-
ration options. RC denotes the number of lines only found by the domain expert.
TC denotes the number of lines only found by the tool. ACC is the accuracy of the
computed results compared to the manual identification.

analyses results. A line-based diffing tool was used to compare each modified copy of
the source code to the unmodified source code. Three cases were distinguished: (i) the
domain expert’s assessment and the tool results match, (ii) the domain expert identified
inactive code not found by the tool, (iii) the tool identified inactive code not found by
the domain expert. In cases (ii) and (iii) the author reviewed the conflicting statements
to find the reason for the divergence.

Results The results of the comparison and the accuracy are depicted in Table 4.1.
Column RC shows the reported conflicts in LOC corresponding to conflict case (ii), i.e.,
the numbers denote the LOC that have not been marked by the tool but by the domain
expert. Column TC shows the reported conflicts in LOC corresponding to conflict case
(iii), i.e., the numbers denote the LOC that have not been marked by the domain expert
but by the tool. The accuracy is based on this number and computes by the fraction of
inactive code found by the tool related to the inactive code found by the domain expert:
ACC = IC

IC+RC .

Discussion The conclusions from our accuracy evaluation are twofold: on the one hand,
manually identifying inactive code is a tedious and time-consuming task. Although
the only objective was to identify inactive code per configuration option, it took on
average 27 minutes. This is significant given that typical products have more than 100
configuration options.

Table 4.1 shows that the domain expert identified some inactive code which was not
found by the tool (column RC). The domain expert also removed declarations when the
declared element was not used anymore. This is not supported by our tool currently,
however, the tool could easily be extended with a feature for finding unused variables
after the identification of inactive code. Furthermore, the domain expert removed
statements which were active but did not have any effect, e.g., assignments to variables

50 Identifying Inactive Code and Recovering Feature-to-Code Mappings

which are never read. Again, extending our approach to find such irrelevant statements
would be straightforward.

On the other hand, for some configuration options the tool found a lot of inactive
code which was not identified by the domain expert (cf. column TC in Table 4.1), thus
confirming the importance of our automated approach. In these cases the inactive code
found by the tool is not directly related to the configuration option and was thus not
marked by the domain expert.

Threats to validity The evaluation of the approach is based on a single product line in
a specific application domain and for a specific programming language. Our evaluation
did not demonstrate how well the approach would work for other programming
languages and PLs. However, there is a high confidence that the approach works well in
other settings. A prerequisite is that the variation points can be evaluated at load-time
based on configuration options, which is a common technique used in PLs. Reisner et
al. [Reisner10], for example, show that open source systems heavily use configuration
options to support creating different software variants. A further prerequisite for our
approach is that it must be possible to build an SDG.

Effectiveness was evaluated only for two partially preconfigured product variants of
KePlast. However, P1 and P2 are representative examples of product variants created in
a staged configuration process based on the KePlast system. The evaluation showed
good results for both variants and since the architecture of the system is the same for
other product variants, results will be similar.

Due to limited availability and time constraints, accuracy was determined with a
single domain expert from industry and a small set of configuration options. However,
the results from the automated analysis matched for the configuration options investi-
gated by domain expert. An exception was active but irrelevant code which was also
identified by the domain expert but is not considered in our current implementation of
the approach.

4.2 Automated Extraction of Feature-to-Code Mappings

The second part of this chapter relies on the ICD approach and presents a technique for
the recovery of feature-to-code mappings. As pointed out in Chapter 1 software product
lines are rarely planned and developed from scratch. Instead they are typically the result
of maintaining and evolving code bases over many years by using, for example, clone-
and-own approaches. However, existing techniques supporting the development and
maintenance of SPLs frequently rely on feature-to-code mappings to relate high-level
variability abstractions such as features to variation points — the locations in artifacts

Automated Extraction of Feature-to-Code Mappings 51

where variability occurs. Due to the unplanned nature of such systems, feature-to-code
mappings either do not exist or are frequently outdated.

Linsbauer et al. [Linsbauer13] and Fischer et al. [Fischer14] present the extraction
and composition for clown-and-own (ECCO) approach that allows recording variability
traces in clone-and-own product lines. ECCO compares different program variants to
extract feature-to-code traces, interactions between features, and dependencies between
traces. It assumes as input a set of n product variants about which two things are
known:

(i) the source code that implements each product variant and
(ii) the set of features that each program variant provides.

It is not important how these product variants came to be. They can be separately
maintained variants created by a manual clone-and-own approach or product variants
generated using a more structured approach like preprocessor annotated source code.

The output of ECCO are traces defining how source code is related to features. For
instance, a trace defines for a particular part of the code which features it implements
likely, at most, or certainly not [Fischer14]. ECCO also considers feature interactions, i.e.,
traces that refer to source code that is present only when all interacting features are
present, and negative features, i.e., traces that refer to source code that is included in case
of the absence of a feature. ECCO therefore uses the concept of modules similar to Liu
et al. [Liu06]. Such traces are represented as presence conditions called modules similar
to Liu et al. [Liu06], of the form δi(f0, f1, ..., fn) where n is the order of interaction, i.e.,
the number of interacting feature pairs. The list contains positive or negative features
fi where fi ∈ { f0,¬ f0, f1,¬ f1, f2,¬ f2, ..., fn,¬ fn}, i.e., fi means the presence condition
requires feature fi to be enabled and ¬ fi means the presence condition requires feature
fi to be disabled. If the module contains just one feature, i.e., δ0(f0), then this denotes
the bare feature. If the module contains two features, e.g., δ1(f0, f1), then this denotes
the interaction of two features and the module is only present if the features are present
at the same time. Furthermore, ECCO also extracts dependencies between traces. For
example, a trace A that contains a statement calling a method which is part of another
trace B depends on that trace B. Based on this information ECCO constructs a variability
model that can be used as a starting point for manually defining a feature model.

Lastly, ECCO also comes with a composition tool that can use the previously ex-
tracted information to compose product variants with given sets of features they shall
implement.

ECCO identifies the feature traces based on the differences between product variants.
The results of this analysis can be used to integrate different product clones into a single
system representing the variability mined in the product variants. Thus, the ECCO ap-
proach relies on differences in products’ source code which show the presence of feature

52 Identifying Inactive Code and Recovering Feature-to-Code Mappings

combinations. However, when using load-time configuration mechanisms, ECCO fails
as no differences can be observed in the source code. Figure 4.4 shows an example of
two product variants. In order to compute the feature traces, ECCO compares the two
product variants with respect to structural differences. However, there are no structural
differences since the program using load-time configuration options and the source code
of all features is always present. Therefore, the ICD approach and the ECCO approach
are combined for identifying feature-to-code mappings in such systems. First ICD
identifies the active and inactive code for a specific product configuration. ECCO then
computes a feature-to-code mapping which not only considers which code is present
but also which code is finally active in a product configuration. Figure 4.4 illustrates this
process. The listing on the left shows the program with feature transactions enabled and
the listing on the right shows the same program with the feature disabled. The lines
with gray background indicate the inactive code. Without having the information of
inactive code, ECCO cannot determine any structural differences between the variants
except of a very small difference in the configuration file. Using inactive code detection,
ECCO is able to work with load-time configuration options properly. In this way, the
integration of program analysis and diffing techniques improves the automated recovery
of feature-to-code mappings.

In the following, the combination of the ICD and ECCO approach will be shown
based on a case study.

4.2.1 Evaluation

The goal of this evaluation is to show that extracted traces and the dependencies among
the traces are consistent with the feature model. For this purpose, we applied the
combination of the two approaches to the industry partners software system KePlast.

Recall, the industry partner KEBA uses a multi-stage product configuration process
(cf. Section 1.2). In the first stage, the AppCo configuration tool selects components
for inclusion in the final product variant on a coarse-grained level. However, the
components are still configurable and they use load-time configuration options for this
task. This configuration process causes the problem of inactive code such that the actual
code of a product variant can only be determined when considering the load-time
configuration options.

Since the evaluation requires a feature model, we reverse-engineered a feature model
for the Mold1 component of KePlast. Feature models have been developed to describe
the variability of selected subsystems. The feature model for component Mold1 was
reverse-engineered in two stages. First we analyzed KEBA’s custom-developed configu-
ration tool, which is used for deriving a base system solution by selecting components
and defining initial configuration settings. Our analysis resulted in an initial feature

Automated Extraction of Feature-to-Code Mappings 53

1 class Main {
2 public static void
3 main(String [] args) {
4 if(.. transactions ...) {
5 Transaction t =
6 new Transaction ();
7 t.start();
8 doOperation ();
9 t.commit ();

10 if(... logging ...) {
11 log (...);
12 }
13 } else {
14 doOperation ();
15 }
16 }
17 }
18
19 public class Transaction {
20 void start() {
21 ...
22 }
23 void commit () {
24 ...
25 }
26 }

(a) δ2(base, transactions, logging)

1 class Main {
2 public static void
3 main(String [] args) {
4 if(.. transactions ...) {
5 Transaction t =
6 new Transaction ();
7 t.start();
8 doOperation ();
9 t.commit ();

10 if(... logging ...) {
11 log (...);
12 }
13 } else {
14 doOperation ();
15 }
16 }
17 }
18
19 public class Transaction {
20 void start() {
21 ...
22 }
23 void commit () {
24 ...
25 }
26 }

(b) δ1(base, logging)

Figure 4.4: Two product variants of a small SPL with one feature.
(a) Product variant with feature transitions enabled.
(b) Product variant having feature transitions disabled.

model for the component Mold1. Second we discussed and refined this initial feature
model with the development lead of the KePlast platform. The feature model is shown
in Figure 4.5a.

In order to fulfill the goals, the evaluation investigates two research questions RQ1
and RQ2.

RQ1. Does the extracted trace information correctly reflect the variability in the system?

To answer this question we use ECCO’s compositor which uses the extracted trace
information to generate product variants. We use it to re-compose the same products
that were used as input (i.e., the products with the same features) based solely on the
extracted trace information. This means that we decide about including a trace’s code
based on the features of that product variant. We then compare these re-composed
product variants to the corresponding original product variants generated by the KePlast

54 Identifying Inactive Code and Recovering Feature-to-Code Mappings

closureunit

IMMType
Horizontal

Vertical

Movement
ToggleLever

DirectClamping

ImpulseCounter

HighPressureReleaseValve

PressureAmplifier

MoldProportionalValve
PositionClosed

OpenLoop

EjectorMovementSensor

ResistiveTransducer

LimitSwitch

SSITransducer

Cores

AirValves

ClampingForceSensor

EjectorSafetyPlateDigin

MoldPressureSensor

ValveGates

Hotrunner

Legend:

Mandatory
Optional
Alternative
Abstract
Concrete

ToggleLever ⇒ ¬ HighPressureReleaseValve

DirectClamping ⇒ ¬ ImpulseCounter

ToggleLever ⇒ ¬ PressureAmplifier

(a)

limitswitch

d^1(closureunit, ¬directclamping)

AND d^1(¬highpressurereleasevalve, closureunit)

closure-

unit

valvegates

moldpressuresensor

pressureamplifier OR directclamping

OR highpressurereleasevalve OR coresairvalves

pressureamplifier

highpressurereleasevalve AND directclamping

hotrunner

d^1(closureunit, ¬limitswitch)

pressureamplifier OR openloop

OR positionclosed

pressureamplifier OR directclamping

OR limitswitch OR clampingforcesensor

OR highpressurereleasevalve

ssi-transducer AND togglelever AND resistivetransducer

AND openloop AND clampingforcesensor AND cores

d^1(¬airvalves, closureunit)

AND d^1(togglelever, ¬airvalves)

AND d^1(¬airvalves, moldpressuresensor)

horizontal

vertical

ejectorsafetyplatedigin

positionclosed

impulsecounter

(b)

Figure 4.5: The comparison of the feature model and the trace dependency graph.
(a)Mold1 feature model.
(b) Extracted trace dependency graph. Each node represents a trace to the code of
a feature or feature interaction.

product configuration tool.

More specifically, we create n KePlast product variants using the KePlast configurator
and use them as input to our approach. The size of the KePlast products range
from 53,000 to 58,000 LOC when ignoring empty lines and comments. We then use
the ECCO’s compositor to re-compose these variants based on the extracted trace
information. Finally, we compare the re-composed variants to the corresponding
original variants generated by the KePlast configurator (after using ICD to remove
the inactive code) and determine its correctness. Ideally they will all match their
counterparts.

We measure the correctness of a composed product variant with respect to a ground-
truth product variant generated from the KePlast configurator by means of the precision
and recall metrics computed for the source code of the product variants. For example, a
recall of 1.0 means that the composed product contains all the source code the original
counterpart contains, and a precision of 1.0 means that the composed product contains
no source code represented as AST nodes, that is not also contained in the original
product variant.

Automated Extraction of Feature-to-Code Mappings 55

Results When using n = 15 available KePlast product variants as input to our approach
and then recomposing them using the extracted trace information, the resulting average
precision is 1.0, i.e., the composed products contain no source code that is not also
contained in their respective original product variants. The average recall is 1.0 which
means that the composed products contain all source code of their original counterparts.
This shows that the extracted traceability information is sufficient to re-compose the
original product variants indicating that the extracted traces are correct.

RQ2. Do the dependencies between the traces—the implementation variability—
adhere to the design variability?

To answer this question we compare the extracted trace dependency graph (i.e., the
dependencies between the traces) to the feature model of the KePlast system and check
whether the set of product variants described by the feature model is a subset of the
set described by the extracted dependency graph (i.e., allowed by the implementation).
If the feature model would allow for the creation of product variants that are not
supported by the implementation then possible reasons can be that i) the extracted
traces and/or their dependencies are erroneous, ii) the previously reverse-engineered
feature model is erroneous, or iii) we uncovered a flaw in the KePlast software system
where it is possible to create variants that will not work. Specifically, we created n
KePlast product variants and used them as input to our approach. We then compared
the resulting dependency graph to the manually reverse-engineered feature model.

Results The extracted trace dependency graph is shown in Figure 4.5b. The nodes are
labeled with single features and feature interactions (written as δi(feature_1, . . . , feature_i)
with i representing the number of interacting features). Each node represents a trace to
the code of a feature or feature interaction. Negative features (¬feature) express that the
features must not be present for the traced code to be included in a product variant.
The dependency graph’s structure is very simple. There are almost no dependencies
between traces. Dependencies mostly occur within traces or with the base, as expected.
One trace (in the top right) does not have any dependencies. This is because there were
differences in the list of features but the corresponding features could not be associated
with any code.

When comparing this dependency graph to the feature model shown in Figure 4.5b
one can see high similarity. To a large extent the dependency graph matches the feature
model and the feature model violates only few dependencies in the graph. For example
ClosureUnit depends on MoldPressureSensor. This would make the latter a mandatory
feature which it should not be according to the feature model. Identifying the causes
for these deviations will be part of future work. For instance, we want to determine

56 Identifying Inactive Code and Recovering Feature-to-Code Mappings

whether there is a flaw in the KePlast system, the reverse-engineered feature model,
or the extracted traces. We hope that our approach will enable software engineers to
efficiently and effectively identify and reconcile differences between how variability
is modeled and how it is actually realized. Additionally one can see that the feature
model’s cross-tree constraint DirectClamping ⇒ ¬ImpulseCounter, saying that these
features exclude each other, is also reflected in the dependency graph (see highlighted
area in Figure 4.5b). The trace for ImpulseCounter requires code elements from the trace
containing ¬DirectClamping meaning that ImpulseCounter cannot be present in a product
variant if also feature DirectClamping is present.

4.3 RelatedWork

4.3.1 Identifying Inactive Code

Several authors have presented analysis techniques considering program level variability
and configuration mechanisms. Variability-aware program analysis techniques target
to consider variability during program analysis to reduce the total analysis effort
compared to analyzing every possible product variant separately. Examples are variable
abstract syntax trees, variability-aware type checking, control flow graphs, and liveness
analysis [Kästner11] [Liebig13]. Similarly, we also use variability information for
finding inactive code. However, since in our context variability is mainly implemented
using load-time configuration options instead of compile-time variability like #IFDEF

directives, we do not need variability-aware parsing. Furthermore, in contrast to
the work of Bodden et al. [Bodden13] and Liebig et al. [Liebig13] the focus is not
on analyzing the code base before creating variants. We analyze already derived
product variants using common analysis techniques to find source code inactive due to
configuration.

Tartler et al. [Tartler09] also identifies dead code on a block level by checking the
consistency between model-level and code-level feature constraints. They evaluated
their approach with the Linux kernel by extracting variability constraints and depen-
dencies of code blocks from preprocessor directives and feeding the information into a
database. Furthermore, they analyzed the KConfig files and also extracted constraints
and dependencies into a second database. Finally, they compared the databases to find
inconsistencies such as code that will never be included, i.e., dead code. However, their
work also assumes compile-time variability and the fact that code is directly annotated
by the corresponding feature conditions. Furthermore, they do not follow control
dependencies and can therefore not find dead code due to transitive dependencies.

Zhang and Ernst [Zhang13] present the ConfDiagnoser approach which uses static
analysis, dynamic profiling, and deviation analysis to reveal the root cause of config-

Related Work 57

uration errors. Their technique first performs thin slicing [Sridharan07] to determine
the affected branch conditions in the source code. The program is then instrumented
and the run-time behavior of these branches is recorded resulting in an execution
profile. In the last step, the profile is compared to a pre-built database to detect behavior
anomalies. Their approach could also find dead code due to configuration using the
execution profile. However, our approach is a pure static analysis approach without
instrumentation. This is in particular a requirement in our industrial setting because a
developer does not necessarily have the possibility to run the code since this requires
the actual hardware. Furthermore, dynamic analysis approaches are not conservative
which may lead to the problem that code is identified to be dead but actually is not.
This can happen if the created execution profile does not cover erroneous program runs.

Reisner et al. [Reisner10] empirically analyze how configuration options affect pro-
gram behavior. In particular, the authors use symbolic evaluation to discover how
run-time configuration options affect line, basic block, edge, and condition coverage for
different subject programs. Furthermore, they indicate that configurable software might
contain lots of inactive code, e.g., they found out that 11% of the source code of the free
FTP server vsftp are unused in the single-processor mode, a finding that is supported
by our evaluation results.

Our approach for identifying inactive code is related to program slicing [Xu05] and
slicing-based change impact analysis [Arnold96] because we use the CSDG to perform
our analysis. Similar to our CSDG, Snelting [Snelting96] attaches path conditions
taken from conditional statements to the edges. However, our conditions represent the
variability of the system only. Due to the focus of our work on variability, our analysis
is able to deal with larger programs (cf. [Hammer06]). Our approach further compares
to CIA techniques. According to Lehnert [Lehnert11], CIA can be used to propose
software artifacts which are possibly affected by a change or to estimate the amount of
work required to implement a change. CIA uses dependency analysis [Ryder01, Ren04,
Badri05,Petrenko09] and program slicing techniques [Tonella03,Korpi07]. Our approach
does basically the same but instead of just performing slicing, we also evaluate the
presence conditions and stop slicing.

4.3.2 Recovering Feature-to-Code Mappings

Researchers have developed different automated and semi-automated approaches for
recovering feature-to-code mappings. Xue et al. [Xue12] present the FL-PV approach to
improve feature location in product variants by exploiting commonalities and differences
of product variants. Their approach uses source code differencing formal concept
analysis (FCA), and information retrieval techniques. First, they use differencing to
related differences in features to differences in source code resulting in traces. Then, they

58 Identifying Inactive Code and Recovering Feature-to-Code Mappings

use FCA to further find commonalities and differences in traces and to create minimal
partitions. Third, they use latent semantic indexing (LSI) reestablish the connection
between features and code elements. Rubin et al. [Rubin12] suggest heuristics for
improving the accuracy of feature location techniques by analyzing multiple product
variants.

However, despite successes in this field trace recovery remains a human-intensive
activity. Indeed, researchers have pointed out that it is risky to neglect humans in
the traceability loop [Hayes05] and studies exist on how humans recover such traces
manually [Egyed10].

Relating high-level variability abstractions such as features or decisions to variation
points—the locations in artifacts where variability occurs—is also addressed in product
line engineering approaches that rely on inclusion conditions or presence conditions
(e.g., [Heidenreich08,Dhungana11]). Researchers have investigated representing variabil-
ity on model or program elements [Czarnecki05a, Heidenreich08]. For instance, Kästner
et al. [Kästner09] present the CIDE SPL tool for analyzing and decomposing legacy
code based on annotating code fragments. However, in practical settings feature-to-code
mappings are often incomplete or unavailable. As Kästner et al. [Kästner14] pointed
out, locating feature code cannot be fully automated and user involvement is required.
In our context, finding the initial seed means defining a variation point which requires
human expertise and domain knowledge. However, our approach assists developers as
they only have to create a partial mapping manually which is used as a seed into the
program code to automatically find active and inactive code elements for a particular
feature by analyzing code dependencies.

4.4 Summary

The first part of this chapter introduced the inactive code detection (ICD) approach for
finding code in product variants that cannot be executed because of the configuration.
The inactive code is dead code in a certain product configuration. However, the
code may be used in other configurations. The motivation and context of this work
is given by the industry partner that uses load-time configuration options causing
product variants to contain inactive code. The technique allows hiding inactive code
in a product configuration to support application engineers. It is based on a CSDG
representing control dependencies, data dependencies, and the variability of the system.
The identification of inactive code is then accomplished by a reachability analysis of the
graph together with an evaluation of presence conditions.

The approach has been implemented and evaluated for the KePlast product line. The
implementation extends the analysis framework presented in Section 3.6 by the adapta-

Summary 59

tion to the system-specific variability mechanisms for extracting presence conditions,
by reading the system-specific configuration files, and by the implementation of the
reachability analysis including presence condition evaluation.

The evaluation investigated the effectiveness and accuracy of the approach. The
results show that the approach effectively identifies inactive code, even for large sizes
and if scattered across multiple modules and files. The accuracy has been assessed by
comparing the results to a manual code analysis performed by a domain expert.

The second part of this chapter showed how to use the ICD approach for recovering
feature-to-code mappings. ECCO is a tool for recovering feature-to-code mappings
in SPLs. ECCO has been shown to be able to successfully recover feature traces from
a set of product configurations. However, ECCO assumes compile-time variability
and relies on differences in the source code of product variants. When working with
load-time variability, no difference in the source code can be observed as the differences
in product variants are in the active and inactive code. Therefore, the ICD approach and
the ECCO approaches were combined so that ECCO not only considers source code
differences but also differences in active and inactive code. The evaluation shows that
the combination produces sound results with respect to the input variants, i.e., it was
possible to re-compose the input product variants from the extracted traces.

61

Chapter 5

Configuration-Aware Change Impact Analysis

The previous chapters introduced the CSDG and presented the ICD approach as a
configuration-aware program analysis method using the CSDG. This chapter is based
on [Angerer15] and introduces another method, the configuration-aware change impact
analysis (CA-CIA) approach as one of the core contributions of this thesis.

Change impact analysis (CIA) is an essential program analysis technique for identi-
fying possibly impacted source locations when modifying a program. As Section 1.2
reports, the industry partner KEBA needs to determine the impact of changes when
evolving their solutions. Assessing the impact of changes during software evolution is
a major effort and one of the most difficult tasks. However, traditional slicing-based
CIA has no dedicated support for configurable software. Lifting the required program
analyses to gain variability-aware CIA is a possible way but does not specifically support
load-time variability (cf. Chapter 1). This chapter thus presents a delayed variability ap-
proach making CIA configuration-aware by using the CSDG and propagating variability
information.

The remainder of this chapter is organized as follows. Section 5.1 illustrates why
existing variability-aware program analysis is not sufficient for the analysis of config-
urable software using load-time variability. Section 5.2 explains the CA-CIA algorithm.
Section 5.3 describes the implementation of the approach and optimizations in the
implementation to allow handling large-scale software systems. The evaluation of the
approach is presented in Section 5.4. Section 5.5 discusses advantages and disadvan-
tages of the approach. Sections 5.6 and 5.7 conclude this chapter with related work and
a summary.

5.1 Problem Illustration

CIA allows to automatically determine and systematically review the possibly impacted
source code for changes. However, state-of-the-art CIA techniques [Chen01, Jász08,
Bohner02,Black01] do not consider load-time variability. For example, Listing 5.1 shows
an illustrative program example that can be configured by enabling or disabling the

62 Configuration-Aware Change Impact Analysis

1 class Main {
2 static Properties p = Properties.load("conf.prop")
3 static boolean c0 = "on".equals(p.getProperty("c0"));
4 static boolean c1 = "on".equals(p.getProperty("c1"));
5
6 public static void main(String [] args) {
7 A obj = new A();
8 D d = new D();
9 if(c0) {

10 obj = new B();
11 return;
12 } else if(c1) {
13 obj = new C();
14 }
15 int res = obj.foo(d);
16 System.out.println(res);
17 }
18 }
19 class A {
20 int foo(D d) {
21 return 2;
22 }
23 }
24 class B extends A {
25 int foo(D d) {
26 return d.bar() * d.bar();
27 }
28 }
29 class C extends A {
30 int foo(D d) {
31 return 2 * d.bar();
32 }
33 }
34 class D {
35 int bar() {
36 if(!c1) return 1;
37 return 0;
38 }
39 }

Listing 5.1: Configurable program using load-time variability to demonstrate the e�ect of
configuration on program analysis.

Problem Illustration 63

configuration options c0 and c1. Existing CIA techniques do not provide information
about the product variants that are affected by a change. Even this small configurable
program shows that manually determining the set of affected products is difficult
due to many dependencies. Assume a developer changes the return statement in
line 36 and wants to know if there is an impact on the print statement in line 16.
Figure 5.1 shows the corresponding SDG of the program. The return statement subject
to change is represented by the node in the lower-right corner. Existing CIA techniques
follow the forward edges and mark all visited nodes as possibly impacted by the
intended change. This means that the nodes labeled return d.bar()* d.bar(), return
2 * d.bar(), int res = obj.foo(d) and System.out.println(res) are in the set of

impacted statements. Therefore, for existing CIA techniques the print statement is
considered impacted if the return statement is modified.

However, configuration options influence the control and data flow in the program
and therefore need to be considered, i.e., one has to propagate configuration options
and see if the impact really prevails by determining if the statements are executed and
the data flows are valid under certain conditions.

Figure 5.2 illustrates how the variability information is propagated to gain this
information. It shows four snapshots of the CSDG: (a) shows how seed condition !c0

from node IF c0 is propagated, (b) shows how seed condition c0 from node IF c0

is propagated, (c) shows how the presence condition of the change impact criterion
return 1 is used, and (d) shows how presence conditions at the final impacted statement
are combined. The following describes the single snapshots in detail:

Snapshot (a): Figure 5.2a shows the first five steps of the illustrated propagation. First,
the seed condition !c0 arises from statement IF c0 which tests a configuration
value. Since the successor IF c1 is in the else branch of the if statement, the
condition c0 is negated finally revealing the seed condition !c0. The first prop-
agation step moved condition !c0 over node IF c1 and reaches the next seed
condition c1. In this case, the two conditions are conjunctively combined resulting
in !c0 && c1. The resulting condition is then moved iteratively to successors
int res = obj.foo(d), C.foo, return 2, and D.bar. Since these nodes are not
related to configuration, the presence condition does not change.

Snapshot (b): Figure 5.2b shows the next five propagation steps. The seed condition c0

is moved iteratively to successors int res = obj.foo(d), C.foo, return 2, and
D.bar. Again, these nodes are not related to configuration and do not modify the
presence condition in any way. However, when the condition is moved over node
D.bar, it is disjunctively combined with condition !c0 && c1 because the node is
a method node and the two incoming edges represent call edges. Therefore, the
conditions are disjunctively combined because either of the calls may happen and

64 Configuration-Aware Change Impact Analysis

int res = obj.foo(d)

main

A obj = new A()

obj = new B()

System.out.println(res) D d = new D()IF c0

IF c1

obj = new C()

B.foo C.foo

D.bar

return d.bar() * d.bar() return 2 * d.bar()

IF !c1

return 0 return 1

return A.foo

return2

Figure 5.1: SDG for the small configurable program in Listing 5.1.

the analysis has to assume that both calls are possible. This node is thus called a
join node and the two incoming presence conditions are combined to c0 || c1.

Snapshot (c): Figure 5.2c shows the final propagation steps and the steps for the change
impact analysis. Condition c0 || c1 from node D.bar first propagates over node
IF !c1 and results in condition c0 && !c1. Now, the presence condition is at
the change impact criterion return 1 and the change impact is computed by
following the outbound edges while carrying the presence condition.

Snapshot (d): Finally, the print statement is reached (cf. Figure 5.2d) and the condition
c0 && !c1 from the change impact is combined with the incoming presence
condition !c0. The combination is a contradiction, i.e., the result is always
false and there will be no change impact to the print statement when changing
return 1.

Problem Illustration 65

_int res = obj.foo(d)

main

A obj = new A()

obj = new B()

System.out.println(res) D d = new D()IF c0

IF c1

obj = new C()

B.foo C.foo

D.bar

return d.bar() * d.bar() return 2 * d.bar()

IF !c1

return 0 return 1

return A.foo

return2

!c0 && c1

!c0

c1

!c0 && c1

!c0 && c1

!c0 && c1

!c0 && c1

c0

!c0

!c0

c0

(a) Propagating seed condition !c0 to change im-
pact criterion.

_int res = obj.foo(d)

main

A obj = new A()

obj = new B()

System.out.println(res) D d = new D()IF c0

IF c1

obj = new C()

B.foo C.foo

D.bar

return d.bar() * d.bar() return 2 * d.bar()

IF !c1

return 0 return 1

return A.foo

return2

!c0 && c1

!c0

!c0 && c1

!c0 && c1

!c0 && c1

!c0 && c1

c0 || c1

c0

c0

c0

c0

!c1

!c0

!c0

c0

(b) Propagating seed condition c0 to change im-
pact criterion.

_int res = obj.foo(d)

main

A obj = new A()

obj = new B()

System.out.println(res) D d = new D()IF c0

IF c1

obj = new C()

B.foo C.foo

D.bar

return d.bar() * d.bar() return 2 * d.bar()

IF !c1

return 0 return 1

return A.foo

return2

!c0 && c1

!c0

c1

!c0 && c1

!c0 && c1

!c0 && c1

!c0 && c1

!c1

c0 || c1

c0

c0

c0

c0

c0 && !c1

c0 && !c1

c0 && !c1

c0 && !c1

!c0

!c0

c0

(c) Propagating presence condition !c0 && c1
from change impact criterion along forward de-
pendencies.

_int res = obj.foo(d)

main

A obj = new A()

obj = new B()

System.out.println(res) D d = new D()IF c0

IF c1

obj = new C()

B.foo C.foo

D.bar

return d.bar() * d.bar() return 2 * d.bar()

IF !c1

return 0 return 1

return A.foo

return2

!c0 && c1

!c0

c1

!c0 && c1

!c0 && c1

!c0 && c1

!c0 && c1

c0 && !c1

c0 || c1

c0

c0

c0

c0

c0 && !c1

c0 && !c1

c0 && !c1

!c0

FALSE

!c0

c0

(d) Combining presence condition of change im-
pact criterion and of impacted statement to
false.

Figure 5.2: The steps for the propagation of the variability information showing the CSDG and
how the presence conditions are propagated.

66 Configuration-Aware Change Impact Analysis

1 class Main {
2 static Properties prop = Properties.load("conf.prop")
3
4 public static void main(String [] args) {
5 boolean c0 = "on".equals(prop.getProperty("F"));
6 boolean c1;
7 if (c0) {
8 c1 = "on".equals(prop.getProperty("X"));
9 } else {

10 c1 = "on".equals(prop.getProperty("Y"));
11 }
12
13 A obj;
14 if (c1) {
15 obj = new A1(); // indirectly depends on c0
16 } else {
17 obj = new A2(); // indirectly depends on c0
18 }
19 obj.foo();
20 }
21 }

Listing 5.2: Influence of configuration options on program execution.

Moreover, configuration conditions once loaded and assigned to intermediate vari-
ables may spread in the program in different forms. For example, in Listing 5.2 the
value of a configuration option is stored in a local variable c0 (line 5), which is used
subsequently to decide which other configuration option to load (line 7). Currently
available analysis techniques cannot handle such situations as they assume a strict
separation of the variability mechanism from program control flow, i.e., they do not
consider that the execution of the statements in lines 15 and 17 also depends on the
configuration option c0. In this small example it is obvious that the execution of the
statements in lines 15 and 17 also depends on conditions c0∧ c1 and ¬c0∧ ¬c1. Finally,
the call in line 19 also depends on both configuration options since the reaching objects
depend on both configuration options.

It is thus essential to know which configurations can reach which locations in the
program. This is accomplished by a reaching definitions calculation for configuration
variables. The conditions reaching a particular location in the code are therefore called
reaching conditions.

Relating to the formal definition of the CSDG, i.e., CSDG = (V, E, T, C, PC) (cf. Sec-
tion 3.5), reaching conditions are defined as follows:

Definition 5. Reaching Conditions

RC : E→ (Var → 2{True,False}C
)

Approach 67

where E is the set of edges in the CSDG, Var is the set of program variables, and C is a
set of Boolean configuration variables.

That means RC is function mapping each edge to a function which maps variables
to subsets of possible configurations. Then, possible configurations are expressed as
subsets of allowed configuration vectors.

In order to represent the reaching conditions accordingly, the definition of the CSDG
is extended by the reaching conditions as follows:

Definition 6. CSDG with reaching conditions (RC)
A CSDG is a tuple

CSDG = (V, E, T, C, PC, RC)

where V, E, T, C, and PC are the same as in Definition 4.

5.2 Approach

The CA-CIA approach follows the delayed variability analysis concept. It determines
the configuration-aware change impact by propagating presence conditions as well as
reaching conditions to CSDG nodes. A naïve approach would be to globally propagate
all seed conditions until every CSDG node is annotated with the appropriate condition
and then performing a forward slice starting at the statements of interest. However, it
is expected that most changes will affect only a subset of the code. Propagating the
conditions globally and in advance would thus be too costly. Therefore, the CA-CIA
algorithm propagates presence conditions only in the required domain.

Figure 5.3 shows the steps for computing the configuration-aware change impact. The
approach starts at the node for which we want to compute the change impact, i.e, the
CIA criterion. First, it determines the backward slice for the CIA criterion by computing
all statements that possibly have an influence on the CIA criterion. This set of nodes is
the so-called domain. It then propagates the presence conditions and reaching conditions
according to propagation rules (cf. Section 5.2.2) within the computed backward slice
such that presence conditions and reaching conditions are attached to all incoming
edges of the CIA criterion. Next, it determines the actual change impact by performing
a forward slice, starting with the CIA criterion and propagating the presence conditions
and reaching conditions.

Further, the approach needs to know the presence conditions and reaching conditions
for all nodes in the change impact to compute the correct conditions. Figure 5.4
illustrates the situation where some nodes visited during the forward slice do not
have presence conditions on the incoming control flow edge. The box with the dashed
border denotes the domain, i.e., the set of nodes and edges that already have presence

68 Configuration-Aware Change Impact Analysis

backward
slice propagation

a b

c

...

forward
slice

a
b

c|b

b b

bb

b

...

c|b|a

a b

c

...

a
b

c|b

b b

bb

b

...

c|b|a

c|b|a

c|b|a

Figure 5.3:Overview of the CA-CIA approach. Starting with the CSDG containing the seeds
conditions, first a backward slice is computed to determine all influencing nodes.
Second, conditions are propagated within the computed backward slice. Then, the
incoming condition of the CIA criterion is taken and a forward slice is computed.

...

...

...

...

c0 c0 c0

c1

domain

Figure 5.4: A sequence of nodes visited during a change impact analysis (forward slice). The
node with the bold border is the change impact criterion. The red control edge
from the red node does not have a presence condition yet.

conditions attached. The highlighted control edge from the filled node is not part of
the domain and does not yet have a presence condition. However, a presence condition
on this edge might also have an influence on the presence conditions of the impacted
statements. Therefore, the node with this incoming edge is remembered, and in the end,
a backward slice and the propagation within this slice are performed. We thus mark
all nodes with incoming edges that not yet have presence conditions. After collecting
these nodes, we compute a backward slice to determine the final propagation domain.
Finally, we apply the propagation algorithm in this domain and label all edges in the
change impact with the correct conditions. This way we do not miss any conditions
and avoid global propagation across the CSDG.

5.2.1 Algorithm

Algorithm 2 shows the main algorithm for CA-CIA as outlined above. First, a backward
slice starting at the CIA criterion is computed to determine the domain, i.e., the subgraph

Approach 69

of the SDG, which has influence on the criterion. Second, the variability information,
i.e, the presence conditions and reaching conditions, are propagated within this domain.
In this way, the influencing variability information is brought to the CIA criterion. Next,
a forward slice is performed that carries the presence condition from the CIA criterion
along the dependence edges during forward slicing. The reached nodes are possibly
impacted by a modification of the CIA criterion but only under the carried presence
condition. Then, the nodes that have been visited but are not part of the domain, are
used for a further backward slice. This is necessary because the nodes may have no
presence conditions as illustrated in Figure 5.4. Once the backward slice is computed
resulting in an extended domain, another propagation phase is performed to have
presence conditions on all nodes.

The following algorithms Algorithm 3 to Algorithm 7 will show the individual steps.

Algorithm 2 CA-CIA algorithm
1: procedure ConfigurationAwareCIA(csdg = (V, E, T, C, PC, RC), criterion)
2: domain← BackwardSlice(csdg, criterion)
3: csdg← Propagate(csdg, domain)
4: (csdg, visited)← ChangeImpact(criterion, domain)
5: extendedDomain← BackwardSlice(csdg, visited∖domain)
6: csdg← Propagate(csdg, extendedDomain)
7: end procedure

Algorithm 3 defines the backward slicing algorithm as presented by Ottenstein et al.
[Ottenstein84]. Since the CSDG is an extended SDG, we can simply perform a graph
traversal. Therefore, we first insert the CIA criterion into the queue and then determine
all reachable nodes.

Algorithm 3 The backward slicing algorithm.
procedure BackwardSlice(csdg = (V, E, T, C, PC, RC), criterion)

visited ← ∅
queue ← criterion
while queue ̸= ∅ do

n ← removeFirst(queue)
visited ← visited ∪ {n}
for (p→ n) ∈ E) do

if p /∈ visited then
queue ← queue ∪ {p}

end if
end for

end while
return visited

end procedure

70 Configuration-Aware Change Impact Analysis

Algorithm 4 is the core of the CA-CIA approach. The input parameters of the
algorithm are the CSDG and the domain to perform propagation in. In particular,
the domain specifies the nodes to consider while other nodes will not be visited. The
algorithm starts with looking for nodes with seed conditions (cf. Section 3.3) by iterating
over the nodes in the domain. The actual propagation of variability information is
performed using two fringe sets. The inner loop moves conditions over nodes as long as
the successor does not have a seed condition attached. If the successor edge’s condition
has changed, the successor node is added to the fringe. Therefore, the inner loop
implements a fixed point algorithm which runs until the conditions do not change any
longer. Since the algorithm stops its propagation at seeds, the conditions will always be
softened and hence the inner loop always terminates. However, if a node with a seed
conditions is reached, it might be necessary to also update its successors. Therefore, the
successors of seed nodes are put into the back fringe to be processed in a second round.

Algorithm 4 The propagation algorithm distributing variability information within a domain.
procedure Propagate(csdg = (V, E, T, C, PC, RC), domain)

f rontFringe ← ∅
for n ∈ domain do

if hasSeed(n) then
f rontFringe ← f rontFringe ∪ {n}

end if
end for
repeat

while f rontFringe ̸= ∅ do
n ← removeFirst(f rontFringe)
for e = (n→ s) ∈ E do

if hasSeed(s) then
backFringe ← backFringe ∪ {s}

else
(csdg, changed) ← MoveCondition(sdg, n, e)
if changed then

f rontFringe ← f rontFringe ∪ {s}
end if

end if
end for

end while
f rontFringe ↔ backFringe . exchange fringes

until f rontFringe = ∅
return csdg

end procedure

Algorithm 5 is the change impact algorithm and performs a forward slice. Starting at
the provided CIA criterion, it follows the outgoing edges and collects all visited nodes.

Approach 71

The input parameters of the algorithms are the CSDG, the change impact criterion
where the analysis starts from, and the set of nodes that influence the criterion’s
presence condition. The algorithm performs a graph reachability analysis but also
moves the presence conditions and reaching conditions during traversal. It then outputs
an updated CSDG and the set of visited nodes. Note, the result is preliminary because
nodes still may have control predecessors without presence conditions. This is fixed
with a second propagation phase after this algorithm returned.

Algorithm 5 The condition-moving change impact algorithm formulated in pseudo code.
procedure ChangeImpact(csdg = (V, E, T, C, PC, RC), criterion, domain)

visited ← ∅
queue ← criterion
while queue ̸= ∅ do

n ← removeFirst(queue)
visited ← visited ∪ {n}
for e = (n→ s) ∈ E do

(csdg, _)← MoveCondition(csdg, n, e)
if s /∈ visited then

queue ← queue ∪ {s}
end if

end for
end while
return (csdg, visited)

end procedure

Algorithm 6 is responsible for performing a single propagation step. It therefore has
three parameters: the CSDG, the currently visited node n, and the target edge e. The
function computes the incoming presence condition and reaching conditions from the
predecessor edges. Algorithm 7 accomplishes this combination. Then it propagates the
incoming presence condition and reaching conditions to the outgoing edge e. Before the
successor edge is updated using setCondition, it checks if any condition has changed.
The result of the comparison is the updated CSDG and a flag indicating a change.

Algorithm 6 Computes the incoming condition for a node, tests if the condition has changed,
and returns the updated CSDG.

procedure MoveCondition(csdg = (V, E, T, C, PC, RC), n, e)
(pc, rc)← ComputeIncomingCondition(csdg, n, e)
changed← PC(e) ̸= pc ∨ RC(e) ̸= rc
csdg← setCondition(csdg, e, (pc, rc))
return (csdg, changed)

end procedure

72 Configuration-Aware Change Impact Analysis

...

IF f0

stmt

[C,...]

 [C && f0, ...]

(a)

... ...

...

...

[f0, ...] [f1, ...]

 [f0 || f1, ...]

(b)

Figure 5.5: Basic cases of propagating presence conditions.
(a) Introducing a presence condition on a control edge.
(b) Joining presence conditions.

5.2.2 Propagation Cases

This section describes the basic propagation cases as performed by Algorithm 7. These
propagation cases depend on the concrete type of analysis to perform and therefore the
following cases are for CA-CIA.

Each case is illustrated by a fraction of the CSDG with three node levels. The upper
node level are the predecessors, the middle node level contains the current node to
process, and the lower level contains the successors. The node types are not specified
explicitly since they results from the content of the node and the edge types are
specified by the line type. Solid lines represent control dependence edges and dashed
lines represent data dependence edges. Furthermore, the presence conditions (PC) and
reaching conditions (RC) are depicted by a tuple [PC, RC]. If the tuple contains three
dots (. . .), the element at this position does not matter.

Case 1. Introducing a presence condition on a control edge (Figure 5.5a) In this
case a branch node tests a configuration condition. The incoming edge to node IF f0

will only be executed if condition C is satisfied. However, the branch node further
tests a configuration condition f0. Hence, the control dependence successors will
only be executed if this node is executed and the generated presence condition is
satisfied. Therefore, the outgoing edge leading to the node representing the then-branch
is labeled with presence condition C && f0. Similarly, the edge to the node representing
else-branch is labeled with C and the negation of f0.

Case 2. Joining presence conditions (Figure 5.5b) In this propagation case, a node

Approach 73

...

IF !x

stmt

x := f0 && f1

[true, ...]

 [!(f0 && f1), ...]

[..., {(x, f0 && f1)}]

(a)

... ...

stmt

...

...

[f0, {}] [f1, {}]

 [C0 && (f0 || f1),{}]

[C0,...]

(b)

Figure 5.6: Propagation cases with interaction between presence and reaching conditions.
(a) Introducing and using new configuration variables. The reaching condition
(x, f 0∧ f 1) is used by branch statement IF !x. Therefore, a new presence condi-
tion is created by negating the reaching condition.
(b) Propagating presence conditions to data dependence edges. The outgoing
edge will only be valid if the statement is executed, i.e., C0 is satisfied, and if at
least one incoming data edge is valid, i.e., f 0∨ f 1 is fulfilled.

has multiple incoming control dependence edges, each carrying distinct presence
conditions. The conditions of the input edges are combined disjunctively and the
combined condition is then applied to every outgoing edge since the node may be
executed if either of the two control predecessors is executed.

Case 3. Introducing and using new configuration variables (Figure 5.6a) In this
case, a reaching condition is transformed to a presence condition. A new configuration
variable x is introduced, which stores a combination of two configuration conditions
f0 and f1. A data dependence edge propagates this definition to an if-statement using
the variable x in its branch condition. Thus, the outgoing control edge is labeled with a
presence condition !(f0 && f1).

Case 4. Propagating presence conditions to data dependence edges (Figure 5.6b)
This case shows how presence conditions on incoming control and data dependence
edges are propagated to an outgoing data dependence edge. First, the presence
conditions of incoming control dependence edges propagates to all outgoing data
dependence edges, as the data dependence of the node only occurs if the node is
executed. Therefore, the outgoing data dependence edge gets a presence condition C0
in the example. Secondly, there are incoming data dependence edges with presence
conditions f 0 and f 1. However, the statement can only be executed if one of these edges
provides data. The outgoing data dependence edge is thus only valid if the statement is

74 Configuration-Aware Change Impact Analysis

... ...

x := fB

...

[...,{(x,fA)}]

 [...,{(x,fB)}]

(a)

x := fA x := fB

stmt

...

...

[..., {(x, fA)}] [..., {(x, fB)}]

 [..., {(x, fA || fB)}]

[...]

(b)

Figure 5.7: Basic cases of propagating reaching conditions.
(a) Updating a reaching condition set by a new configuration condition introduced
by assigning configuration variable x.
(b) Joining reaching condition sets. The two incoming definitions of configuration
variable x are combined disjunctively.

executed and if there is incoming data, i.e., the condition C0∧ (f 0∨ f 1) is satisfied.

Case 5. Updating reaching condition sets (Figure 5.7a) This case deals with propa-
gating a reaching condition set across a node introducing a new configuration condition.
The reaching condition set of the outgoing data dependence edge is updated with the
new definition for variable x, i.e., (x, fB) overwrites definition (x, fA).

Case 6. Joining reaching condition sets (Figure 5.7b) In this case a node has two
incoming and one outgoing data dependence edge. The reaching conditions are
combined using a union operation but reaching conditions for the same variables (x,

fA) and (x, fB) are combined using a logical OR operator.

Algorithm 7 describes how the incoming presence condition and reaching conditions
are computed. It implements the propagation cases. The input parameters are the CSDG,
the current node, and the successor edge. The variable PCC is the presence condition
function resulting from control dependence edge predecessors. The variable PCD is
the presence condition function resulting from data dependence edge predecessors.
The variable RCD is the reaching conditions function resulting from data dependence
edge predecessors. In the first loop, the algorithm iterates over all incoming edges and
depending on the predecessor edge’s type, the presence condition and the reaching
conditions are combined as illustrated by Case 2 and Case 6. For combining the
reaching conditions function, the operator operator ⊕ is used. It forms the union of
two given reaching condition functions RC(e0) and RC(e1) but definitions affecting

Approach 75

the same variables are joined by combining the condition disjunctively. For example,
{(x, f A)} ⊕ {(x, f B)} = {(x, f A ∨ f B)} as illustrated in Figure 5.7b. After the for
statement, the algorithm then tests if the node n contains an assignment statement and
the receiver of the assignment is a variable contained in the reaching conditions. If
so, the reaching conditions are updated such that (x, f B) is the only element using x
on the left side in RC(e) as (cf. Case 5). The else branch covers Case 3. It is tested if
the node is an if statement and the expression contains a configuration variable. If so,
the expression expr is converted to a presence condition by replacing all occurrences
of variables available in RC(e). The resulting presence condition is then conjunctively
combined with PCC. In the end of the algorithm, the new presence condition and
reaching conditions are combined and returned. If the successor edge e is a control edge,
the PCC is conjunctively combined with the seed condition (cf. Case 1). If the successor
edge e is a data edge, the PCC is conjunctively combined with PCD (cf. Case 4) and the
seed condition (cf. Case 1) and reaching conditions RCD are returned.

Algorithm 7 Computes the incoming condition for a provided edge.
procedure ComputeIncomingCondition(csdg = (V, E, T, C, PC, RC), n, e)

PCC ← ∅ . presence condition for control dependence edges
PCD ← ∅ . presence condition for data dependence edges
RCD ← ∅
for pe = (p t−→ n) ∈ E do

if T(pe) = control then
PCC ← PCC ∪ PC(pe)

else if T(pe) = data then
PCD ← PCD ∪ PC(pe)
RCD ← RCD⊕ RC(pe)

end if
end for
if n = "x := fB" ∧ x ∈ Vars(RCD) then

Update RCD by inserting tuple (x, f B).
This replaces any tuple with x on the left side.

else if n = "IF expr" ∧ ∃var ∈ expr : var ∈ Vars(RCD) then
Extract configuration condition from expression (cf. Section 3.3) and
replace configuration variables by mapped values in RCD.
Conjunctively combine this formula with PCC.

end if
if T(e) = control then

return (PCC ∩ getSeed(n), ∅)
end if
if T(e) = data then

return (PCC ∩ PCD ∩ getSeed(n), RCD)
end if

end procedure

76 Configuration-Aware Change Impact Analysis

5.3 Implementation

The tool COACH! implements the configuration-aware change impact analysis approach
and was used to evaluate the approach on the industry partner’s software product line
KePlast. Recall, KePlast has been developed in a proprietary dialect of the IEC 61131-3
standard, for which no parser or compiler suitable for program analysis was available.
Therefore, the analysis framework presented in Section 3.6, which specifically targets
the programming language of the industry partner, builds the CSDG required for this
approach.

The algorithm for performing CA-CIA has already been specified in the previous
section (cf. Section 5.2) using pseudo code. Hence, this section will focus on the
description of some vital performance optimizations.

Explicit SDG representation Building a SDG on the level of Jimple statements blows
up the number of required statement nodes in the SDG. To cope with this issue, the
CSDG representation was implemented to implicitly represent statement nodes in
memory. The implicit SDG implementation leverages basic blocks from the CFG to
reduce the number of control dependencies to store. Furthermore, intraprocedural
edges and statement nodes are created on demand to safe memory. The drawback of
this implementation is that traversing the SDG is more expensive in terms of run-time
performance. To boost run-time performance, it is necessary to implement a CSDG
explicitly representing all edges and statement nodes.

Shortcut evaluation As it is usually done in most programming languages, COACH!
uses a shortcut evaluation when computing the incoming condition. In particular, if
the control predecessors are combined disjunctively and one of the predecessors carries
condition true, the iteration can be aborted. This optimization helps a lot especially for
heavily used library nodes that are often in the processing fringe with thousands of
control predecessors.

Method collapsing If a method is known to not alter the variability information,
i.e., not containing any nodes with seed conditions and not using reaching conditions,
COACH! does not propagate the variability information through the method but moves
the condition directly to the outgoing edges to save many intermediate propagation
steps.

5.4 Evaluation

The evaluation investigates the benefits regarding complexity reduction and the perfor-
mance of the CA-CIA approach in two use cases: (i) development and maintenance in
domain engineering, i.e., for determining the different product variants affected by a
change; and (ii) development and maintenance in application engineering, i.e., for de-

Evaluation 77

termining code affected by a change made to a specific product variant. Specifically, we
use product families of the industry partner to explore the following research questions:

RQ1. How beneficial is the configuration-aware CIA for maintaining a product line? The
hypothesis investigated by this research question is that the approach is more beneficial
the higher the variability complexity is. In the worst case it could happen that only
trivial variability information, i.e., presence condition true, is available. In this case, the
approach is not helpful at all and RQ1 evaluates this question. We thus estimate the
benefit by computing the degree and complexity of variability information a domain
engineer needs to consider when determining the impact on product variants after
changing code in a product line.

RQ2. How beneficial is the configuration-aware CIA for maintaining a specific product
variant? This situation is common in clone-and-own product lines. Some of the
variability has already been resolved, e.g., by setting configuration options. However,
developers still need to adapt and fine-tune the product variant to meet specific customer
needs. We estimate the benefit by computing the increased precision of the change
impact, as a smaller change impact will reduce the development effort.

RQ3. Is the performance of the configuration-aware CIA sufficient for realistic maintenance
tasks? A major problem of static program analysis is high run-time complexity. We
perform benchmarking to show the practicality and suitability of the approach in
realistic maintenance tasks.

5.4.1 Case Study and Code Base Selected for the Evaluation

To investigate these research questions, we applied our tool COACH! to the industry
partner’s product line KePlast. Recall the development process applied by KEBA’s
developers for KePlast (cf. Section 1.2). KEBA uses a custom-developed product
configuration tool to select components from the KePlast platform based on customer
requirements. The selected components are then adapted and extended by application
engineers to meet specific customer needs not yet covered by the platform. In this stage,
the derived software is still configurable by using load-time configuration options, the
variability mechanism targeted by the CA-CIA approach.

As a baseline for the evaluation, product variants from KePlast’s families which
contain a maximum number of features selectable together in the product configuration
tool are derived. These maximum products do not contain the full code base of the
product line, but are an approximation good enough for the purpose of this study. In
particular, we used 9 different still configurable product variants with a size ranging
from 53 kLOC (family4) to 302 kLOC (family2).

Furthermore, these maximum product variants of a family indeed have commonalities
and differences. In the case of the industry partner’s product families, the common

78 Configuration-Aware Change Impact Analysis

code implementing the mandatory features is a substantial part of the source code
because it includes implementations for basic data structures and algorithms used in
all product variants. The evaluation therefore concentrates on the variable part of the
analyzed product families to obtain data that is most relevant for the research questions.
Specifically, change impacts containing at least one presence condition are considered.
This was the case for 27% of all change impacts in our case study (median across
product families).

5.4.2 RQ1 – Domain engineering

As argued before, the benefit of the configuration-aware CIA depends on the complexity
of the variability information and the contradictions of the presence conditions, which
allow pruning the change impact. Recall that in the CA-CIA approach variability
information is propagated based on the program dependencies and is therefore usually
not visible directly in the source code.

We define three metrics to characterize the variability of a code base.

The Variability Complexity is the ratio of edges with variability information to the total
number of edges within a change impact. CA-CIA is more beneficial if more edges are
annotated with variability information, as this would make a manual CIA even harder.

The Variability Interaction Order measures the average number of involved distinct
configuration options in the variability information. This is computed by counting the
number of distinct configuration options in a single presence condition and computing
the mean of these numbers over all edges. For example, if the two presence conditions
a ∧ b and ¬a ∨ c are in a change impact, the interaction measure would be 2+2

2 = 2.
This metric thus represents the interaction between different configuration options.
The benefit of the approach increases with the order of the variability interaction, as
manually analyzing complex interactions is hard to infeasible.

Contradicting Conditions Ratio. The propagation of presence conditions may result
in contradicting presence conditions, which can never become valid, regardless of the
product configuration. Such invalid edges allow removing statements from the change
impact. The measure is the ratio of invalid edges to the total number of edges. A higher
value is better because the change impact is smaller and more precise.

Method. COACH! performed CA-CIA for every single statement in the selected
product families. This was done in two phases: in phase 1 we built the CSDG for
the product family. This included parsing the source code, performing control flow,
data flow and pointer analysis to build the SDG, and extracting the initial conditions
from the source code. In phase 2 it performed the configuration-aware change impact
analysis as described in Section 5.2.1. Specifically, COACH! iterated over all statement
nodes in the CSDG and performed a configuration-aware CIA.

Evaluation 79

0

5
 k

1
0

 k

1
5

 k

2
0

 k

2
5

 k

3
0

 k

3
5

 k

4
0

 k

 0
 0

.1
 0

.2
 0

.3
 0

.4
 0

.5
 0

.6
 0

.7
 0

.8
 0

.9
 1

Number of change impacts

P
o

rt
io

n
 o

f
n

o
d

e
s
 w

it
h

 v
a

ri
a

b
ili

ty
 i
n

fo
rm

a
ti
o

n

fa
m

ily
0

 (
9

8
 k

L
O

C
)

fa
m

ily
1

 (
8

6
 k

L
O

C
)

fa
m

ily
2

 (
3

0
2

 k
L

O
C

)
fa

m
ily

3
 (

7
1

 k
L

O
C

)
fa

m
ily

4
 (

5
3

 k
L

O
C

)
fa

m
ily

5
 (

7
5

 k
L

O
C

)
fa

m
ily

6
 (

6
7

 k
L

O
C

)
fa

m
ily

7
 (

7
2

 k
L

O
C

)
fa

m
ily

8
 (

2
6

6
 k

L
O

C
)

(a
)R
Q
1–
Va
ria
bi
lit
y
Co
m
pl
ex
ity
.

0

2
 k

4
 k

6
 k

8
 k

1
0

 k

1
2

 k

1
4

 k

1
6

 k

1
8

 k

 1
 2

 4
 8

 1
6

 3
2

Number of change impacts

N
u

m
b

e
r

o
f

in
te

ra
c
ti
n

g
 v

a
ri
a

b
le

s

(b
)R
Q
1–
Va
ria
bi
lit
y
In
te
ra
ct
io
n
O
rd
er
.

0

5
 k

1
0

 k

1
5

 k

2
0

 k

2
5

 k

3
0

 k

3
5

 k

4
0

 k

 0
 0

.1
 0

.2
 0

.3
 0

.4
 0

.5
 0

.6
 0

.7
 0

.8
 0

.9
 1

Number of change impacts

P
o

rt
io

n
 o

f
c
o

n
tr

a
d

ic
ti
n

g
 n

o
d

e
s

(c
)R
Q
1–
Co
nt
ra
di
ct
in
g
Co
nd
iti
on
sR
at
io
.

1
0

0

1
 k

1
0

 k

1
0

0
 k

 0
 0

.1
 0

.2
 0

.3
 0

.4
 0

.5
 0

.6
 0

.7
 0

.8
 0

.9
 1

Number of change impacts

R
e

la
ti
v
e

 s
iz

e
 o

f
th

e
 r

e
d

u
c
e

d
 c

h
a

n
g

e
 i
m

p
a

c
t

to
 o

ri
g

in
a

l
s
iz

e

(d
)R
Q
2
–
Re
la
tiv
e
Ch
an
ge
Im
pa
ct
Si
ze
.

Fi
gu
re
5.
8:
Re
su
lts
fo
rR
Q
1a
nd
RQ
2
co
m
pu
te
d
by
ap
pl
yi
ng
ou
rt
oo
lt
o
a
se
to
fr
ea
l-w
or
ld
pr
od
uc
tf
am

ili
es
pr
ov
id
ed
by
th
e
in
du
st
ry
pa
rt
ne
r.

80 Configuration-Aware Change Impact Analysis

Results. Figure 5.8a shows the results of the evaluation for the metric Variability
Complexity. The x-axis shows the complexity values, i.e, the portion of nodes with
variability information. The values are grouped into intervals of width 0.1. Thus the
x-axis represents intervals]0.0, 0.1[, [0.1, 0.2[, . . . , [0.9, 1.0] and an interval is denoted by
its middle value. The y-axis is the number of change impacts contained in a certain
interval. The chart shows the cumulative distribution of change impacts for these
groups. For example, the data point at 0.65 of the family2 says that approximately
25, 000 change impacts had a variability complexity value in interval]0.0, 0.7[. Therefore,
a presence condition was available for up to 70% of the statements in the change impact.

Figure 5.8b shows the results for metric Variability Interaction Order. The x-axis shows
the average number of configuration options involved in the presence conditions of a
change impact. The y-axis is the number of change impacts that have a certain average
number of involved configuration options. For example, the family6 has a peak at x = 4,
i.e., around 6, 000 change impacts involve on average 4 configuration options.

Figure 5.8c shows the results for metric Contradicting Conditions Ratio. The x-axis
shows the portion of nodes that are invalid because of a contradicting condition. The
values are again grouped into intervals of width 0.1. The x-axis therefore represents
intervals]0.0, 0.1[, [0.1, 0.2[, . . . , [0.9, 1.0] and again, an interval is denoted by its middle
value. The y-axis again represents the number of change impacts as in Figure 5.8a.
The chart shows the cumulative distribution of change impacts for these groups. For
example, in family2 at x = 0.15 the size of 33, 000 change impacts could be reduced by
up to 20%.

Discussion. The results of metric Variability Complexity shown in Figure 5.8a show that
the approach is beneficial given the complexity of variability in real-world systems. The
graph shows a cumulative distribution function. The steeper a line the more variability
information is available in the computed change impacts. The chart also shows that
larger product families provide even more variability information. For example, consider
family2, the largest product family in our study. It first grows moderately until 0.45
but then it starts to grow faster, i.e., 50% of the statements in most change impacts had
variability information available. When combining the data in Figure 5.8a to one value,
we see that overall the change impacts have 50%-60% presence conditions available on
average (median). We therefore conclude that CA-CIA is even more beneficial in larger
systems, as more variability information needs to be considered.

The results for metric Variability Interaction Order shown in Figure 5.8b show a similar
picture. Dealing with interactions involving 2 or 3 configuration options is already quite
cumbersome. The results show that the majority of all change impacts had presence
conditions with up to 5 configuration options involved on average. Other empirical
studies have shown an interaction degree of 2 or 3 to be common [Apel13], similar

Evaluation 81

to these results. However, there were also quite a few change impacts with higher
numbers of 10 to 35 configuration options per presence condition, an order that is
almost infeasible to comprehend by developers.

Section 5.4.1 describes that the analysis is performed on product families which
have already been partially configured and can be compiled. Therefore, the product
families’ source code does not contain any mutually exclusive feature implementations.
So regarding the Contradicting Conditions Ratio we did not expect a significant increase
of the precision of change impacts by finding contradicting presence conditions. This
did in fact happen for the analyzed product families family0, family4, and family5. The
corresponding lines in Figure 5.8c do not increase, i.e., no statements could be removed
from the change impacts. However, the precision of change impacts in other product
families could still be increased. For example, the difference between the last two data
points of family2 shows that it was even possible to find approximately 2, 000 change
impacts whose size could be reduced by 90–100%.

5.4.3 RQ2 – Application engineering

For this use case we perform CIA for a specific product configuration, i.e., we remove
elements from the result that have not been used in this specific configuration. Again,
we distinguish between change impacts with and without variability information,
because the latter one covers most commonly just library code, which is less interesting
in terms of variability. We define metric Relative Change Impact Size to measure the
reduced numbers of edges in the change impact after evaluating the presence conditions
compared to the original change impact. The original change impact is the configuration-
aware change impact but ignoring the presence conditions.

Method. Analogously to the method for RQ1, we performed the configuration-
aware CIA for every single statement of our product families (phase 1). However, for
answering RQ2, we created concrete product configurations by randomly generating
Boolean values for each known configuration option (phase 2). When computing the
change impact, the presence conditions were then evaluated using these randomly
generated values for the configuration options. We measured the reduction of the
change impact size compared to its original size. This was repeated 10 times with
different generated values to compute an average for the Relative Change Impact Size.

Results. Figure 5.8d shows the results for RQ2. Each line corresponds to one of the
analyzed product families. The x-axis and y-axis represent the same as in Figure 5.8a.
The results are again grouped into intervals of width 0.1. For example, the data point at
x = 0.85 of family4 means that the size of approximately 800 change impacts has been
reduced by 10% to 20%.

Discussion. We observe that evaluating the presence conditions after computing the

82 Configuration-Aware Change Impact Analysis

change impacts reduces the size to 90% in most cases. Figure 5.8d shows a sharp edge
at the end of all lines, which means most change impacts are in the last group. We
expected these numbers to be more distributed across the other groups. But there are
also many change impacts that could be reduced to less than 80% of their original size.
To answer RQ2, we conclude that evaluating the presence conditions yields noticeable
benefit for maintenance because fewer statements have to be considered, although we
expected to do better.

5.4.4 RQ3 – Performance

One major problem of static program analysis techniques is commonly their analysis
time. We therefore measured the analysis time of our tool when analyzing the industry
partner’s product families.

Method. The performance evaluation needs to consider both building the CSDG and
performing the configuration-aware CIA. We already showed in Section 3.7 that building
the CSDG, including the time needed to do all required analyses, is in a nearly linear
relation to the size of the analyzed software. The same is true for the peak memory
consumption. In this evaluation, we thus report performance results for the technical
contributions of the CA-CIA. We therefore measured the size of all configuration-aware
change impacts and the time required to compute them (cf. phase 2 of RQ1 and RQ2).

Results. The results of this evaluation part are shown in Figure 5.9. A cross in the
chart represents a change impact. The x-axis lists the size of the change impacts in terms
of included statements. The y-axis shows the time required to compute the change
impacts in milliseconds. The performance evaluation has been executed on an Intel
Core i7-4770, 3.40 GHz, 16 GB DDR3-RAM machine running MS Windows 7 64-bit.

Discussion. The results show that the computation of a change impact is fast and never
takes longer than 3.5 seconds. It also seems that the time required to compute a change
impact does not depend on its size because we cannot observe any linear or higher-order
dependency on the change impact size. We assume the time is dominated by the first
step of the CA-CIA algorithm, i.e., computing the backward slice to determine the
possible influencing presence conditions. However, computing the change impact is
negligible compared to the time required to build the SDG which took between 30 and
270 seconds (cf. Section 3.7).

5.4.5 Threats to Validity

There is a potential bias caused by the selection of product families in a specific
application domain that have been developed in a specific programming language. This
section thus present detailed evaluation results and avoid generalizations of how well
the approach would work for other programming languages and PLs. However, the

Evaluation 83

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20000 40000 60000 80000 100000 120000 140000

T
im

e
 [
m

s
]

Size of change impact [#statements]

Figure 5.9: RQ3 – Average time required to compute configuration-aware change impacts of a
specific size.

evaluation focuses on load-time configuration options, a variability mechanism that is
widely used in all programming languages. Also, given that companies typically do not
provide access to data about their product lines we believe that our evaluation results
are valuable and promising.

Specifically, the evaluation is based on partially configured product families, that have
been derived from a product line by selecting all features defined in a custom-developed
configurator. COACH! could not analyze the full code base of the product line, as
the variability information is stored implicitly in the configurator. As a result the
evaluation is based on a less configurable code base, e.g., certain alternative features are
not included. However, this means that the results would be even more favorable for
the full code base.

A prerequisite of the approach is that the mechanism for implementing variability
in source code is known. This could be a problem in software projects without any
conventions for this aspect, as extracting the initial conditions might not be possible.
However, related work [Berger10] indicates that most of the time it is known how
variability is realized. Furthermore, Reisner et al. [Reisner10] show that open source
systems heavily use configuration options to implement variability.

The analyzed product families are executed in a runtime environment that provides li-
brary functions, whose implementation is unknown. This is also a source of imprecision
when building the CSDG. However, such system functions occur in almost all execution
environments and must be handled appropriately. Our implementation handles this

84 Configuration-Aware Change Impact Analysis

problem by assuming the worst case if something is not known. For example, if a system
variable returns a reference to a variable and this reference cannot be determined, we
assumed that every reference may be returned. This is the common strategy to preserve
soundness but sacrifices precision.

Several measures have been taken to mitigate the risk of incorrect computations: the
data flow and pointer analysis of the widely used Soot tool suite are used to build
the SDG, so there is a high confidence that this part of the implementation produces
correct results. Furthermore, the part of the implementation that extracts variability
information from source code has already been reviewed by a developer of the industry
partner in a qualitative process as reported in the evaluation of Chapter 4.

5.5 Discussion

This chapter presented the CA-CIA approach which is the main application of the de-
layed variability analysis concept in this thesis. The problem illustration (cf. Section 5.1)
the need for an analysis that is able to handle load-time configuration. But there are
additional advantages and disadvantages of our approach we want to discuss in this
section.

The delayed variability analysis concept allows to implement analyses based on
existing implementations. This is an intrinsic property because instead of modifying
the analysis itself, variability information is added afterwards. Therefore, the effort
for implementing a variability-aware analysis can be quite low. Of course, some
preconditions must be fulfilled and the most important one is that results of the analysis
must be a graph data structure that represents control dependencies, i.e., the control
dependence subgraph (CDS). However, since the CDS can be built using standard
data-flow analysis, this restriction is not problematic because this is available for most
programming languages.

A further advantage of the delayed variability concept is that it enables specific
treatment of dependency types. In the case of CA-CIA, data dependencies are handled
in a special way to leverage the information how configuration values are propagated.
In this way, it is possible to improve the analysis by doing an additional but very
lightweight analysis on top of the result. CA-CIA uses the information of propagated
configuration values to improve the precision by introducing new seed conditions
(cf. Figure 5.6a in Section 5.2.2). Other special treatments for other types of dependencies
are of course possible but have to be specified for the particular analysis.

Related Work 85

5.6 RelatedWork

The concept of delayed variability and the CA-CIA approach are related to work
concerning (i) variability-aware program analysis and (ii) run-time variability and
load-time configuration options.

Variability-aware program analysis. Several approaches use information about vari-
ability for eliminating redundant computations in variability-aware program analysis.
For instance, the approach by Kästner et al. [Kästner11] parses preprocessor-based
product lines written in C, i.e., unpreprocessed C source code, to build a variability-
aware abstract syntax tree (VAST) using presence conditions to represent variability.
The approach also provides a variability-aware type checker on top of the VAST.
Liebig et al. [Liebig13] implemented two variability-aware analyses, i.e., type checking
and variable liveness analysis, for analyzing the Linux kernel, a very large preprocessor-
based product line. The authors also implemented the variability-aware monotone
framework to demonstrate that variability-aware approaches are able to handle large-
scale product lines. Brabrand et al. [Brabrand12] describe how to make an intraproce-
dural data-flow analysis variability-aware by adding propositional formulas to interme-
diate results during analysis. All these approaches extract variability information in
the beginning of the analysis chain and consider this information in every subsequent
analysis step. For example, it is common to build a variable AST and a variable control
flow graph to then carry out the variability-aware analysis. Considering variability
throughout these intermediate steps allows to implement analyses that are as precise as
the brute force approach of analyzing all product variants individually, which is usually
taken as the ground truth to compare to.

The work presented by Midtgaard et al. [Midtgaard14] further generalizes the lifting
framework of Brabrand et al. [Brabrand12] to be applicable to all analyses that can
be represented with abstract interpretation. The presented approach is currently not
automated but describes how to make an analysis variability-aware in a systematic way.

Run-time variability and load-time configuration options. The idea of delayed variability-
aware program analysis was proposed originally to support program analysis in product
lines using load-time variability mechanisms. For instance, Lillack et al. [Lillack14]
present an approach for tracking load-time configuration options by using a taint
analysis to determine source code depending on configuration options and to compute
presence conditions for the code. Xu et al. [Xu13] introduce a tool named SPEX that
analyzes a program’s source code to infer constraints for configuration options by
tracking the data-flow of each configuration variable. They use program slicing to
reduce the domain to consider but only on a configuration variable’s data-flow graph.
The reduced domain is then used to infer constraints for configuration options by
analyzing the statements using them. This is related to the CA-CIA approach, as we also

86 Configuration-Aware Change Impact Analysis

analyze how configuration variables are used. However, SPEX concentrates on reverse-
engineering of a variability model instead of computing the influence of variability on
the program. Reisner et al. [Reisner10] investigates the effect of configuration options to
the behavior of programs in an empirical study. They use symbolic evaluation to find
out how settings of run-time configuration options affect line, basic block, edge, and
condition coverage of test suites. We also compute the influence of configuration options
to statements. However, the CA-CIA approach is not limited to compute the impact
when changing a configuration option’s value but works with arbitrary statements.

5.7 Summary

This chapter introduced the configuration-aware change impact analysis (CA-CIA)
approach as one of the core contributions of this thesis. The problem illustration
showed that configuration influences the control and data flow in programs, thus
motivating CA-CIA.

CA-CIA uses the delayed variability concept (cf. Section 1.1) to make program slicing
based CIA configuration-aware using the CSDG. It propagates presence conditions
representing the variability of the analyzed software system.

The main part of this chapter described the CA-CIA by specifying the algorithms in
pseudo code. CA-CIA implements an incremental propagation approach for avoiding
global propagation within the of variability information within the whole CSDG. Fur-
thermore, six basic propagation cases illustrated how presence conditions are combined
and propagated.

The description of the implementation discussed some crucial optimizations, i.e.,
explicit representation of the CSDG, shortcut evaluation, and method collapsing, which
were required to make CA-CIA fast and applicable for large-scale systems.

The CA-CIA approach was evaluated regarding the benefit and performance using
9 product families of the industry partner KEBA. It investigated in detail the complexity
and distribution of variability information and the required analysis time. The eval-
uation of the CA-CIA approach shows, that variability has substantial influence on
the programs control flow. Specifically, it was observed that in more than 50% of all
computed change impacts, half of the impacted nodes carried variability information.
The results also show that the interaction degree of configuration options is high, further
justifying the importance of a configuration-aware approach. Specifically, interaction or-
ders involving up to 35 configuration options were observed. The run-time performance
showed that the technique scales for industrial systems.

87

Chapter 6

Compositional Change Impact Analysis for
Configurable So�ware

Software systems are usually designed and implemented in a modular way to address
challenges such as complexity, multi-language development, distributed development,
and continuous and long-term evolution. When analyzing modular systems, one
would like to exploit the modular structure of the system to perform the analysis in a
compositional way. However, if the analysis uses global information, performing an
analysis just on modules independently from other modules is difficult. For example,
variability is often a global information and needs to be addressed accordingly.

This chapter is based on [Angerer16] and presents the CAM-CIA approach that
builds on the CA-CIA technique presented in Chapter 5. Specifically, the challenge
of modularizing the analysis lies in correctly handling the variability information
represented by Boolean conditions.

Since the CSDG is built by adding interprocedural dependencies between PDGs,
modularizing the CSDG could be done by cutting these dependencies. However, the
CA-CIA technique cannot simply be modularized in this way as it propagates variability
information across the CSDG when computing a change impact. Cutting interprocedural
dependencies will lead to incorrect results and therefore modularizing the analysis
requires treatment of variability information. The CAM-CIA approach addresses this
problem and is intended to support program analysis in large-scale software product
lines. It is common in product lines to create product variants by composing modules
in a staged configuration process as explained in Section 1.2. In such a development
context program analysis can exploit the modularity of the system by first analyzing
individual modules, and later reusing and composing the pre-computed analysis results.
The approach enables incremental CA-CIA, therefore reducing the analysis effort if
changes just affect a single module.

The contributions of this chapter are

(i) an approach for compositional CA-CIA using placeholders to modularize variabil-
ity information,

88 Compositional Change Impact Analysis for Configurable Software

Program Entry

Program Entry

foo0

... if(Conf.isEnabled("A"))

...

bar

...

foo1

...if(Conf.isEnabled("B"))

...

Module2

Module0

foo0

... if(Conf.isEnabled("A"))

...

bar

...

foo1

...if(Conf.isEnabled("B"))

...

Module1

true

true true

 A

A

 A || B

true

truetrue

B

B

true

true true

 A

A

true

true

Figure 6.1: Partial CSDG demonstrating the problem of cutting dependencies carrying variabil-
ity information during analysis. The dashed lines indicate module boundaries.

(ii) support for composing pre-computed analysis modules, and
(iii) an experiment showing that the compositional CIA produces the same results as

the non-compositional version and can be applied in an incremental manner.

The remainder of this chapter is organized as follows: Section 6.1 illustrates the prob-
lem of modularizing the CSDG and in particular the variability information. Section 6.2
explains the modularizing approach based on placeholders for conditions. Section 6.3
explains the setup of our evaluation and discusses its results. Section 6.4 discusses
related work and Section 6.5 concludes this chapter.

6.1 Problem Illustration

Performing CA-CIA in a compositional way is challenging as it requires a backward
slice (cf. Chapter 5) to determine all possibly influencing nodes as simply stopping
backward slice at a module boundary would reveal invalid results. Invalid in this
context means that a result differs from the corresponding result in the monolithic
version of the analysis. Thus, a way to handle the information missing from other
modules is needed. Compositional CA-CIA can only be achieved by modularizing the
underlying data structure, i.e., the CSDG. Building the CSDG involves two phases:

1. Performing control and data flow analysis for each method resulting in PDGs.
2. Linking the PDGs by inserting interprocedural dependencies representing calls or

data flow over parameters, global variables, and so on.

Therefore, a straightforward strategy to modularize the CSDG is to cut the interpro-
cedural dependencies gaining analysis modules at the granularity of methods. Figure 6.1

Approach 89

FUNCTION Fun0
 a := GET('exec');

 IF a THEN
 /* depends on
 conf0 */
 END_IF

END_FUNCTION

class Enabler {

 public void init() {
 if(conf0) {
 exec := TRUE;
 }

 if(conf1) {
 // then1
 }
 if(conf2) {
 // then2
 }
}

Program
SDG with
Placeholders

SDG after
Composition

P4

P4 c0

P0

c0

P4 c0

c1

c1 c0

c0

c1 c0

P1

P1 c0

P0

c0

P1 c0

c1

Step 1 Step 2

Figure 6.2:Overview of the CAM-CIA approach: in Step 1, the configuration-aware CIA is per-
formed on the available modules. Placeholders (P0, P1) are introduced for un-
available modules (shown in gray). In Step 2, the partial results are composed by
loading missing modules and replacing concrete values for the placeholders.

shows a partial CSDG with variability information. The dashed lines indicate module
boundaries and a module is in this case a method. Assume we want to do an analysis in
Module2 and therefore need to know the variability information reaching this module.
Method bar is called by methods foo0 and foo1 introducing conditions A and B, respec-
tively. If Module1 and the corresponding variability information are missing, we need
to assume that the default condition true flows in. Therefore, instead of resulting in
condition A ∨ B we just would gain true. However, this is different to what the analysis
would reveal if there are no modules and the result is therefore invalid. Nevertheless,
condition true is not unsound but a crude over-approximation and therefore not useful
at all.

6.2 Approach

Figure 6.2 depicts a high-level view of the two-step CAM-CIA approach:

Step 1 CAM-CIA first performs a modified configuration-aware change impact
analysis that introduces placeholders to support modularity. It stops traversing the SDG
during a forward or backward slice at defined barriers – the boundaries of the program
modules that are analyzed independently. This could, for example, be a method, a
package, or a subsystem. Therefore, the approach introduces a condition placeholder if
it reaches a barrier. The condition placeholders serve as substitutes for the variability
information not known in this phase, i.e., if slicing stopped due to a barrier. The
placeholder is then used during forward slicing instead of the concrete condition. It is
crucial to handle the missing variability information especially during backward slicing,

90 Compositional Change Impact Analysis for Configurable Software

which determines the presence condition for a statement (cf. Section 5.2.1).

The placeholder-based approach is shown in Step 1 of Figure 6.2. The SDG consists
of independent PDGs with interprocedural dependencies. The PDGs are shown as
boxes with dashed borders. However, the PDGs may not be available (shown in gray),
for example, if currently not loaded. Therefore, the interprocedural link would be
considered as interrupted. During the backward slicing phase of the CA-CIA, the
placeholder variables P1 and P2 are introduced if interrupted links are encountered.
These placeholders are further used during forward slicing as a replacement for the still
missing information.

Step 2 In the composition phase, the approach computes the concrete conditions for
placeholders and replaces them accordingly. This is done by loading the PDG of the
module causing the placeholder to be introduced. Two cases need to be distinguished
once the PDG has been loaded: (1) if the PDG has already been analyzed, the concrete
presence condition for the placeholder is already known and can simply be replaced;
(2) if the PDG first needs to be analyzed, the concrete presence conditions are computed
by performing a backward slice at the corresponding nodes. The nodes can only be
method nodes or formal parameter nodes because such nodes form the interface of a
PDG. For example, in Figure 6.2, Step 2 the placeholder P1 is replaced by the concrete
condition c1. This replacement is performed for all presence conditions that use the
placeholder P1. In this way, it is not necessary to recompute the variability information
since the result is valid with respect to the available modules.

6.3 Evaluation

The evaluation investigates the correctness of the CAM-CIA approach and its benefits
compared to the non-compositional configuration-aware change impact analysis. Specif-
ically, the following two research questions are explored using product families of our
industry partner.

RQ1. Are the results of the CAM-CIA correct compared to the non-compositional version?
The results of the compositional analysis are compared to the results of the non-
compositional CA-CIA. Specifically, the non-compositional CA-CIA (cf. Chapter 5)
produces the ground truth and compare its results to the one of the CAM-CIA.

RQ2. What is the benefit of the compositional CAM-CIA compared to CA-CIA? The
CAM-CIA approach benefits during composition from situations where the condition
placeholders can be eliminated, e.g., due to a contradiction or tautology. In this case,
the variability information of other analysis modules would not be required. To answer
this question, we count the number of cases in which this situation occurs.

Evaluation 91

6.3.1 Experiment Subject

We applied the approach to KEBA’s KePlast software system. One product variant
containing the maximum number of features selectable together in the product con-
figuration tool was derived from the KePlast platform as a baseline for the evaluation.
This maximum product does not contain the full code base of the product line but is an
approximation good enough for the purpose of our study. Within KePlast, the compo-
nent Mold serves as a starting point for the CIA. Its size is about 13,000 LOC in KEBA’s
domain-specific programming languages, translating to 43,500 Jimple statements.

6.3.2 Evaluation Strategy

To answer RQ1 and RQ2, we used the same evaluation strategy as for CA-CIA approach
(cf. Chapter 5), i.e., computing the configuration-aware change impact for every single
statement in the evaluation subject. The evaluation driver performed the CAM-CIA
and CA-CIA for every single Jimple statement in the selected component. This was
done in two phases: Phase 1 built the CSDG. This included parsing the source code,
transforming the code to Jimple, building the SDG, and extracting the initial conditions
from the source code. Phase 2 performed the compositional CA-CIA and the non-
compositional CA-CIA. Specifically, we iterated over all method nodes of component
Mold and all statement nodes for each method node. Every statement node was then
taken as a CIA criterion for the compositional and non-compositional CA-CIA. While
we computed the change impacts starting with statements in component Mold, many
resulting change impacts obviously contain statements from other components of the
KePlast product line. Our initial tests when preparing the experiment showed that
about one third of the change impacts contain the entire system. This is possibly the
result of reaching central nodes in the KePlast architecture. We decided to exclude these
change impacts in our evaluation, as they are not useful for developers.

To answer the research questions RQ1 and RQ2, we define following metrics: CI
is the total number of computed change impacts, i.e., the number of statements taken
as CIA criterion. We compute the change impacts using the compositional and non-
compositional CA-CIA for every CIA criterion and compare the two results. ECI is
the number of equal change impacts for the compositional and non-compositional CA-
CIA (cf. RQ1). If ECI equals CI we can assume the compositional CIA to be correct.
PNR (placeholders not required) is the number of change impacts where placeholders
disappeared during change impact analysis and did not have to be resolved during
composition. Regarding RQ2 the metric PNR allows estimating the number of cases
for which we can omit Phase 1 of the composition, i.e., computing the backward slice
and performing a condition propagation to determine the concrete formula for the
placeholder. In other words, PNR represents the number of change impacts that are

92 Compositional Change Impact Analysis for Configurable Software

more easy to resolve in the composition phase as a result of our compositional approach.

6.3.3 Results

We computed the compositional and non-compositional configuration-aware change
impact for CI=23,124 Jimple statements of Mold, excluding the change impacts that con-
tained the entire system as described above. The compositional and non-compositional
variants matched in all 23,124 cases, confirmed by the ECI value of 23,124. This suggests
that our compositional approach works correctly (RQ1).

Regarding RQ2 we grouped the change impacts by their size (the number of nodes)
as shown in Figure 6.3. The chart shows the total number of change impacts for the
different groups (height of the bars), and the PNRs for the different groups (black bars),
i.e., the change impacts requiring no resolution of placeholders. We omitted the 15,870
change impacts with less than 3 nodes in the chart.

The fractions of PNRs are relatively high for all groups. This is not surprising for
small sizes of CIs as they will mostly contain local nodes. However, the results also
show high fractions of PNRs for large change impacts, demonstrating the benefit of our
approach.

The main threats to validity are related to run-time performance. Our experiment
demonstrated scalability of the approach for the change impact sizes reported in
Figure 6.3. However, we encountered problems in the composition phase of our
approach for change impacts including the entire system. Upon investigation, we
discovered that this is caused by the used implementation of presence conditions,
which is based on binary decision diagrams (BDDs). While BDDs, however, are very fast
for logical operations, replacing a variable in a BDD is a costly operation. Thus, for
overcoming this problem we are considering alternative implementations for presence
conditions support more efficient replacements of variables. However, this issue did not
affect the results of our experiment in any way.

6.4 RelatedWork

The problem of modularization has already attracted attention in related areas such as
object-oriented program slicing and cross-language analysis. Larsen et al. [Larsen96]
developed an program slicing approach for object-oriented programs, which uses
the object structure to modularize the analysis. Similar to our work, their approach
enables the reuse of previously computed analysis results. Korel et al. [Korel98]
perform program slicing at the level of modules for better understanding the slices.
Their approach reduces the size of slices by using modules as abstraction. Cross-
language program analysis approaches also need to modularize the analysis as they

Summary 93

0

500

1,000

1,500

2,000

2,500

3,000

3-9 10-19 20-49 50-99 100-199 200-299 >300

N
r o

f C
ha

ng
e

Im
pa

ct
s

Size of Change Impacts

non-PNR

PNR

Figure 6.3: Results for metric PNR for di�erent sizes of changes impacts.

have to deal with multiple subsystems written in different programming languages.
Strein et al. [Strein06] address this problem in the context of software refactoring.
Their analysis approach integrates all language modules into one common model
representing the whole system. The XLL approach by Mayer et al. [Mayer12] relies on
explicit communication links between independent models. Each model represents one
language part and the parts are connected by explicitly defined links. Program analysis
then exchanges information if such links are visited.

6.5 Summary

This chapter presented the CAM-CIA approach for performing compositional CA-CIA
using program dependence graphs as modules. The work addresses the challenge
of correctly handling global variability information that is required before the actual
change impact analysis can be computed. Placeholders are used to deal with missing
variability information at module boundaries. It has been shown that the CA-CIA can
be performed within a module without restrictions, resulting in sets of nodes and edges
where the edge conditions may contain placeholders. CAM-CIA also described how to
compose analysis modules by resolving placeholder variables.

The evaluation investigated the correctness of the CAM-CIA approach and its benefits
compared to the non-compositional CA-CIA approach. It therefore performed both
analysis for 23,124 statements in the KePlast product family. The results show that the
CAM-CIA gives the same results after the composition of modules.

95

Chapter 7

Comparing Li�ed and Delayed
Variability-Aware Program Analysis

Section 2 already discussed the difference between lifted analysis and delayed variability
analysis approaches. This chapter presents results of an in-depth comparison of the two
tools SPLLIFT and COACH! implementing the different analysis strategies.

SPLLIFT [Bodden13] is an implementation of the lifted strategy that is based on
Brabrand’s lifting framework [Brabrand12], while COACH! (cf. Chapter 5) uses the de-
layed strategy. While both tools have been shown to be useful, a systematic comparison
to investigate their benefits and trade-offs is still missing. This chapter describes an
in-depth experiment comparing the performance and precision of the tools SPLLIFT and
COACH!. It report results and lessons learned intended for developers and software
analysts that need to develop or select a variability-aware program analysis technique
for a certain purpose or development context.

Although the two tools share the same goal – adding variability information to
analysis results – they still cannot be compared directly. It was thus necessary to
develop an experiment design enabling the comparison of reaching definitions analysis.
Specifically, the contributions described in this chapter are: (i) an automated approach
that uses SPLLIFT to build a variability-aware system dependence graph; and (ii) results,
experiences, and lessons – in particular regarding performance and precision – gained
from applying SPLLIFT and COACH! during the experiment to a number of SPLs.

This chapter is structured as follows: Section 7.1 introduces SPLLIFT and gives
examples on what kinds of results are computed. Section 7.2 discusses expected
differences in the results. Section 7.3 explains the design and implementation of the
experiment in detail. Section 7.4 presents the results regarding performance and
precision. Section 7.5 discusses the comparison results and lessons learned. Section 7.6
discusses related work on comparative studies while Section 7.7 rounds out the chapter
with a conclusion and an outlook on future work.

96 Comparing Lifted and Delayed Variability-Aware Program Analysis

7.1 Li�ed Strategy and SPLLIFT

Recall variability-aware program analysis introduced in Section 2.4. This general concept
for representing variability information in form of Boolean formulas is the foundation
for making an analysis variability-aware, while not specifying a process for performing
the analysis. The lifting framework presented by Brabrand et al. [Brabrand12] defines
a systematic way for transforming a specific class of analyses into variability-aware
analyses. SPLLIFT [Bodden13] implements Brabrand et al.’s lifting framework, which
can automatically convert any interprocedural data-flow problem [Reps95] into a lifted
version allowing to perform existing analyses in a variability-aware manner. The current
implementation is based on Soot [Lam11], a program analysis framework for Java.
Therefore, programs are transformed into Soot’s intermediate representation Jimple
before being analyzed. SPLLIFT uses the generic Heros solver [Bodden12] for IDE
problems [Sagiv96]. The concrete analysis to be executed can be defined either by
selecting an existing analysis implementation or by defining a new IFDS problem and
implementing respective transfer functions. The analysis problem is then automatically
lifted to a variability-aware SPL analysis.

The current implementation of SPLLIFT assumes that variability is defined using the
Colored IDE (CIDE) [Kästner08]. In this tool colors represent features and variability
is specified by coloring program statements. Source code may also be colored with
multiple features, e.g., when defining feature interaction code. Listing 7.1 demonstrates
how CIDE maps source code to features. The optional feature A is associated with
the color yellow while the counter feature is associated with the color green. CIDE
also provides a tool for generating product variants by selecting a set of features and
composing code only for the selected features.

SPLLIFT retrieves the variability information (the colors) from CIDE, enumerates all
features by assigning them a unique number, and converts this information into a bit
set, with every bit uniquely representing a feature. The bit set is then attached to the
corresponding Jimple statements used by the Soot analysis framework. A conjunctive
feature interaction like A ∧ B can be expressed by setting several bits in a bit set. In
this way, every statement has an associated set of features. SPLLIFT then analyzes the
annotated Jimple code and considers the variability information during the analysis by
generating annotated results as outlined above for reaching definition sets.

7.2 Expected Analysis Di�erences

Due to the different way SPLLIFT and COACH! perform their analyses, COACH! is
expected to be less precise as it needs one program encoding all possible product
variants. This will usually lead to higher imprecision due to the over-approximations

Expected Analysis Differences 97

void foo()

x = 0

x = x / 2

System.out.println(x)

x = x * 2

x = x + 1

!AA

A !A

(a) CFG for SPLLIFT

void foo()

x = 0

x = x / 2

System.out.println(x)

x = x * 2

x = x + 1

if(! FM.isEnabled("A"))

if(FM.isEnabled("A"))

(b) CFG for COACH!

Figure 7.1: Control flow graphs for li�ed and delayed analyses.

1 public void foo() {
2 int x = 0;
3 x = x + 1;
4 if (FM.isEnabled("A")) {
5 x = x * 2;
6 }
7 if (!FM.isEnabled("A")) {
8 x = x / 2;
9 }

10 System.out.println(x);
11 }

Listing 7.1: SPL using load-time configuration options.

of the a feature-oblivious analysis which does not consider the dependencies between
presence conditions. Consider the small SPL in Listing 7.1 and the resulting control
flow graph in Figure 7.1b. There are four statements defining variable x, however,
the print statement in the last line will never receive the value of statement in line 3,
because one of the two assignment statements in line 5 and 8 will always be executed,
thus overwriting the first assignment. As can be seen in Figure 7.1a, SPLLIFT is able
to handle this situation precisely because it considers the presence dependency of
these two assignments at the time of the data flow analysis. COACH!, on the other
hand, first computes the reaching definitions completely variability-oblivious and also
ignores the presence dependency. Therefore, it has to assume that every branch may be
entered independently, which finally induces the spurious edge. Figure 7.2 shows the
system dependence graph for the program in Listing 7.1. The highlighted edge will be
computed by COACH! but not by SPLLIFT.

98 Comparing Lifted and Delayed Variability-Aware Program Analysis

void foo()

x = 0

x = x / 2

System.out.println(x)

x = x * 2

if (FM.isEnabled("A")) if (!FM.isEnabled("A"))x = x + 1

Figure 7.2: The variability-oblivious system dependence graph for the small product line. The
highlighted edge is induced by COACH! due to an overapproximation but not by
SPLLIFT since it can handle such situations precisely.

7.3 Experiment Design

Both the lifted and the delayed strategy aim at considering variability information
in SPL analysis, but do it in different ways. This section describes the setup of our
experiment comparing SPLLIFT and COACH! regarding performance and precision by
applying the two approaches to five SPLs. Specifically, the experiment explores two
research questions:

RQ1 – Performance. How do the approaches differ concerning the execution time
required to compute the results?

RQ2 – Precision. How do the results differ regarding their precision?

In order to ensure a fair comparison of the analysis results and the measured run
time, tool chains for SPLLIFT and COACH! are prepared to process the same inputs and
produce the same output data structures. A prerequisite for the comparison is that both
approaches compute the same SDGs if variability is ignored. This must be the case
because both tools use the IFDS framework to compute the data dependencies. Both
tools have therefore analyzed each SPL while completely disabling the extraction of
feature information. The experiment continued only after checking that the pairwise
results of both tools were equal.

Figure 7.3 shows an overview of the two-phase experiment. In the preparation phase,
the source code and feature information of the chosen SPLs are parsed. Specifically, a
CIDE project is parsed and transformed into Soot’s intermediate representation Jimple.
The colors representing features are extracted from the CIDE project. The Jimple
statements are annotated with feature tags associating them with a set of features. If

Experiment Design 99

Annotated

Jimple IR

CIDE Feature

Extractor

CIDE SPL

Java Bytecode

Parser

SPLLIFT Lifted

IFDS Reaching

Definitions

Variability-aware

Data Dependence

Graph

SDG

Builder

CSDG

Data

Dependence

Graph

SDG

Builder

SDG

IFDS

Reaching

Definitions

CA-CIA

Delayed

Analysis

CSDG

SPLLIFT

COACH!

Preparation Phase Analysis Phase

Variability

Information

Jimple IR
RQ2 - Precision RQ1 - Performance

Figure 7.3: An overview of the conducted experiment. In the preparation phase, the source
code of the SPLs is parsed ignoring variability. SPLLIFT and COACH! are triggered to
build the CSDG and the resulting CSDGs are compared and expected to be equal.
In the analysis phase, the source code and the variability information of the SPLs
are parsed. SPLLIFT and COACH! are triggered to build the CSDG. The time required
to build the CSDG is measured and the precision of the variability information is
compared.

a Jimple statement does not have a feature tag, it is assumed that the statement is
included in all possible product variants.

In the analysis phase the two alternative approaches are executed: the SPLLIFT tool
chain indicated by the upper dotted box and the COACH! tool chain indicated by the
lower dotted box. Starting at this point, SPLLIFT and COACH! are triggered to build the
CSDG. The tool chain thereby measures and compares the time required to build the
CSDGs and the precision of the variability information in the resulting CSDGs.

7.3.1 Adapting the Tool Chains

In order to ensure that both tools can work with the selected SPLs and produce
comparable results, it was necessary to adapt the tool chains.

For COACH!, we added a preprocessing step for adequately extracting the variability
information from CIDE product lines. The COACH! approach has been designed to
handle load-time configuration options and it can therefore not directly analyze CIDE
product lines. As described in Section 3.2, the options were identified in a separate step
and corresponding seed conditions were added directly to the SDG. In other words,
the approach assumes that variability is implemented using branch statements in the
programming language. Further, COACH! assumes that variability is on the level of
basic blocks and that there is one preceding block that controls the variable block. Hence,
COACH! was modified such that variability can be handled at the level of statements.
Therefore, it stores seeds conditions on control dependence edges and not on SDG
nodes as before. In this way, COACH! does not need any kind of variability encoding
that would alter the program code and possibly affect the analysis tools’ behavior.

100 Comparing Lifted and Delayed Variability-Aware Program Analysis

Further, in the tool chain for SPLLIFT, a postprocessing step to build the CSDG was
introduced after the lifted analysis step. This CSDG builder is exactly the same as for
COACH!, except that it uses the results of the lifted IFDS reaching definitions analysis
to create data dependence edges. However, to ensure a fair comparison, the steps for
generating the Jimple IR, for extracting variability information, and for running the
lifted analysis remained unchanged.

7.3.2 Evaluating Performance

RQ1 investigates the run-time performance of the two tool chains. The performance
test drivers repeatedly execute the two tool chains to measure the time required for
the analysis, which is the focus of the experiment. For the SPLLIFT, the measured time
includes the time required to solve the lifted reaching definitions problem and the time
required to finally build the CSDG. This corresponds to the steps SPLLIFT Lifted IFDS
Reaching Definitions and SDG Builder in Figure 7.3. For the COACH!, the measured
time includes the time required to do the variability-oblivious reaching definitions
analysis, building the SDG and propagating the variability information in the SDG.
This corresponds to steps IFDS Reaching Definitions, SDG Builder, and CA-CIA Delayed
Analysis in Figure 7.3. However, measurements ignore the time required to parse the
product lines’ source code and to extract the feature information as these steps were
exactly the same for both tool chains.

All measurements have been conducted on an Intel Core i7-4770, 3.40 GHz, 16 GB
DDR3-RAM machine running MS Windows 7 64-bit. Since the Java VM compiles just-
in-time, some overhead might arise due to so-called warm-up effects of the JIT compiler
and other VM internal processes. The measurements therefore follow a practice which
is commonly used in performance engineering [Hofer16]. The test driver executes the
tools in so-called rounds, each consisting of 50 iterations. An iteration is one run of one
tool chain. The complete Soot environment and any caches of the whole analysis tool
chains were completely reset between the iterations. Furthermore, every round has
been started in a fresh Java VM process to also reset VM internal caches. The run-time
figures are then plotted on a graph to be able to visually identify the warm-up phase
of the Java VM. The number of iterations in the warm-up phase are dependent on the
analyzed product line and lies around 20 iterations. The warm-up iterations were then
excluded from any measurements.

The final value for the run time is computed by first computing the median for every
round and further computing the geometric mean over all rounds. In this way the
influence of VM warm-up effects could be kept very low in the measurements.

Experiment Design 101

7.3.3 Comparing Precision

RQ2 compares the presence conditions in the two computed CSDGs. The test driver
stored the CDSGs’ data dependence edges and their presence conditions in a file,
grouping the edges by the method they belong to. Specifically, it dumped the CSDG
into a result file by iterating over all reachable method nodes, writing a header for every
method node and dumping the successor edges of all nodes within a method. The list
of methods and the list of edges per method were then sorted to achieve result files
which are easily comparable. The dump file also stores the condition representing the
feature model as proposed by Batory [Batory05].

The two files generated by the test driver for the SPLLIFT and COACH! tool chains
are then compared to compute following metrics:

∙ ESPLLIFT and ECOACH represent the number of data dependence edges in the
SPLLIFT and COACH! result files.
∙ EIC is the number of equal edges ignoring conditions, i.e., edges with the same

source and destination in both result files, regardless of the attached conditions.
∙ EqE represents the number of equal edges that have equal conditions in both

result files.
∙ ACPSPLLIFT and ACPCOACH are the condition precision metrics of the compara-

ble edges in the SPLLIFT and COACH! result files, i.e., edges which have same
source and destination. The metrics thus quantify the precision of the presence
conditions in the CSDG. As a presence condition represents a set of valid product
configurations, the precision of a presence condition depends on the number of
possible product variants it represents, i.e., fewer product variants mean higher
precision. For example, the presence condition true stands for any possible
product variant and means that the annotated element may occur in any possible
product. Hence, the simplest but most imprecise variability information is the
condition true.

Since BDDs are used to represent presence conditions, it is easily possible to compute
all satisfiable assignments of a presence condition and take this as a measurement for
the possible product variants the condition represents. However, conditions do not
necessarily contain every feature and the dependencies in the feature model may further
exclude product variants. It is therefore necessary to take the condition representing
the feature model and combine it with the presence conditions using the conjunctive
operator AND.

Based on those considerations, the following formula defines the precision of a pres-
ence condition c:

prec(c, f mcond) = 1− count(allsat(c ∧ f mcond))
count(allsat(f mcond))

102 Comparing Lifted and Delayed Variability-Aware Program Analysis

Project Size [LOC] Features
berkeleyDB 84,000 56

gpl 1,400 29
lampiro 45,000 20
mm08 5,700 34

prevayler 80,000 5

Table 7.1: SPLs used in the experiment.

where f mcond is the formula representing the feature model. That means, the precision
of a presence condition is defined by 1 minus the fraction of the number of product
variants possible when considering the presence condition c and the feature model
f mcond and the number of all product variants possible in f mcond. For illustration,
assume there is feature model with two optional features f0 and f1 resulting in the
feature model condition f0 ∨ f1. Let’s further assume that there is no feature interaction,
then there will be code that is annotated with f0 or with f1 only. All satisfiable
assignments of condition f0 are allsat(f0) = { f0 = true}, i.e., there is only one satisfying
assignment. However, also considering the condition representing the feature model,
the formula for all possible assignments is f0 ∧ (f0 ∨ f1) and there are two possible
satisfiable assignments, namely {(f0 = true, f1 = f alse), (f0 = true, f1 = true)}. Hence,
count(allsat(f0 ∧ (f0 ∨ f1))) is 2. Then the number of all possible product variants
is determined by count(allsat(f0 ∨ f1)) which equals to 3. Thus, the precision of the
presence condition f0 in feature model f0 ∨ f1 is 1− 2

3 = 1
3 .

7.3.4 Selected SPLs

The five SPLs BerkeleyDB, Graph PL (GPL), Lampiro, Mobile Media 08 (MM08), and
Prevayler are the input for the experiment. Four of these SPLs were chosen, as they were
already used in an earlier evaluation of SPLLIFT [Bodden13] and variability information
is available in the CIDE format. The Prevayler product line is an additional evaluation
case. Table 7.1 summarizes the lines of code and number of features for these projects.
The following briefly describes the projects:

BerkeleyDB1 is a high-performance data base system for storing key-value data. It was
originally not designed as an SPL and had been written in C without explicit feature
information. However, the Java version of the BerkeleyDB was decomposed into 56
features by Kästner et al. [Kästner07].

The Graph Product Line is a collection of graph algorithms design as an SPL [Kästner08].
It has just about 1,400 LOC and 29 features, which are heavily used.

1http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/
index.html

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

Experiment Results 103

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

800 ms

900 ms

1000 ms

1100 ms

1200 ms

1300 ms

berkeleydb gpl lampiro mm08 prevayler

coach
spllift

11506ms 1845ms

Figure 7.4: Results for RQ1 on run-time performance of SPLLIFT and COACH!.

Lampiro is an open source implementation of an XMPP instant messenger. It is a J2ME
application with about 45,000 LOC and 20 features and has been designed as SPL from
its inception.

Mobile Media 08 is an academic project and has been designed as SPL from its
inception. It is a rather small J2ME application with 5,700 LOC and 34 features.

Prevayler is an in-memory data base system for Java. It was not designed as SPL but
researchers have annotated its variability. Despite the size of 80,000 LOC the product
line has only 5 features.

The source code of these projects is available on the website SPL2go2. However, the
projects used for this experiment are variants with slight modifications as they are used
in [Bodden13]. In particular, the projects have an additional class DummyMain, to ensures
that code is reachable as the Soot analysis would ignore unused code.

7.4 Experiment Results

The following sections report comparative results regarding the performance and
precision of SPLLIFT and COACH!.

2http://spl2go.cs.ovgu.de/

http://spl2go.cs.ovgu.de/

104 Comparing Lifted and Delayed Variability-Aware Program Analysis

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

800 ms

900 ms

1000 ms

1100 ms

1200 ms

1300 ms

berkeleydb gpl lampiro mm08 prevayler

coach
spllift

9113ms 1802ms

Figure 7.5: Results for the smoke test on run-time performance of SPLLIFT and COACH!. During
the smoke test, both analysis tools completely ignored variability.

7.4.1 RQ1 – Performance

The results of the performance evaluation are shown in Figure 7.4. Additionally, Fig-
ure 7.5 shows the results of the smoke test, i.e., the tools completely ignored variability
during analysis. The values shown represent the geometric mean over all rounds. The
median of all iterations is computed for each round excluding identified warm-up
iterations (cf. Section 7.3). Furthermore, the diagram also shows error bars providing
information about the deviation of the single iterations. The error bars are very small,
indicating that the measured run times for the single iterations are stable and trustwor-
thy. There are no error bars for SPLLIFT’s value for BerkeleyDB and Lampiro because the
values are out of the diagram’s range and error bars would not make sense in this case.
But since the value for COACH! is about 10 times smaller, this does not matter anyway.

The performance results answering RQ1 show that building the CSDG using COACH!
is significantly faster compared to SPLLIFT. We expected that the step SDG Builder
would take longer in the SPLLIFT tool chain as accessing the variability-aware reaching
definitions results is more time consuming if additionally storing a presence condition.

Overall, comparing the total run time (cf. Figure 7.4) shows that the COACH! tool
chain runs notably faster. Explaining this significant difference is difficult and providing
a definite answer is not possible. The discussion section will report some possible
explanation.

Experiment Results 105

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

berkeleydb gpl lampiro mm08 prevayler

ESPLLIFT ECOACH EIC EqE

Figure 7.6: Results for RQ2 comparing the precision of the analyses. The number of edges is
normalized to SPLLIFT’s results to ease comparison.

7.4.2 RQ2 – Precision

The results shown in Figure 7.6 compare the results regarding precision. The diagram
shows the results for metrics ESPLLIFT, ECOACH, EIC and EqE for each product line,
normalized to ESPLLIFT.

Comparing the bars for metrics ESPLLIFT and ECOACH show that COACH! does not
produce more data dependence edges, i.e., the number of edges is almost equal. Note,
the results only contain edges with a condition other than false. Therefore, if an edge is
missing in the result file of SPLLIFT but the edge is present in the result file of COACH!,
we know that the missing edge could be excluded due to a more precise computation
(cf. Section 7.2). The metric EIC measures the intersection of edges between the two
tools, i.e., a higher value is better. For example, the value of EIC for GPL is nearly 1.0,
i.e., almost all data dependence edges computed by SPLLIFT were found by COACH!.
This metric can be taken as an argument for soundness of the comparison because the
structure of the SDG will therefore be very similar. Metric EqE is a fraction of EIC and
indicates how many edges also have the same condition. Again, a higher value is better
but EqE can never be larger than EIC.

Figure 7.7 shows the precision for presence conditions (cf. metrics ACPSPLLIFT and
ACPCOACH) using box plots. We computed the precision for all conditions of pairs of
edges with the same source and destination but with a different condition. That means,
all edges which are not within EqE are considered. For example, if SPLLIFT outputs
the edges {a c0−→ b, a

c1−→ c} and COACH! outputs the edges {a c2−→ b, a
c3−→ c} the

106 Comparing Lifted and Delayed Variability-Aware Program Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

berkeleydb gpl lampiro mm08 prevayler

coach
spllift

Figure 7.7: RQ2. The distribution of the precision of presence conditions of edges with the
same source and destination butwith a di�erent conditions. Lampiro and Prevayler
don’t have any such edges with di�erent conditions.

precision value is computed for c0, c1, c2 and c3. The boxes in the Figure 7.7 show the
2nd and 3rd quartile of the distribution of the ACPSPLLIFT and ACPCOACH values. The
whiskers cover values from the 12.5% to the 87.5% quantile. As the box plots show,
both tools produce conditions covering the full precision range from 0.0 to 1.0. The
precision of the conditions on edges with the same source and destination is on average
notably worse for COACH! than for SPLLIFT in the case of GPL. The two tool chains
do not compute any different conditions for the product lines Lampiro and Prevayler
while SPLLIFT slightly outperforms COACH! in case of MM08 because the median is
lower for COACH!.

7.4.3 Threats to Validity

The main threats to validity in this work are related to performance measurement and
the product line selection.

Performance measurements. Since the whole tool chain is written in Java, the
measured run time also contains time consumed by internal Java VM subsystems
and the measurements may slightly vary from run to run. However, the applied
measurement procedure developed in the performance engineering community allows
to report reliable results. For instance, repeating all measurements 50 times in the same
VM process and not considering outliers caused by warm-up effects of the VM. For this
reason, we also report the median of all run time values.

Discussion 107

The performance numbers for SPLLIFT are significantly better than the results pre-
sented in the original publication [Bodden13], i.e., SPLLIFT performed a lot better in
this experiment setting although the analysis part of SPLLIFT was not modified and the
original snapshot provided by one of the authors of [Bodden13] were used. This was
somehow surprising as one would expected the number of the run-time performance
measurements for reaching definitions to be similar when applying the approach to the
same SPLs. A reasonable explanation for the difference is that the measurements in
the original paper have been made about four years earlier and better hardware and in
particular optimizations in the Java VM have caused the improvements.

Selected product lines. There is a potential bias caused by the selection of the
analyzed product lines. Our aim was to run SPLLIFT in the very same way as described
by Bodden et al. [Bodden13] but just for the reaching definitions analysis. Therefore,
this experiment replicated their analyses using the same product lines (see Section 7.3.4),
allowing to argue that the results computed by SPLLIFT are correct.

7.5 Discussion

Performance The performance measurements show, that the delayed analysis is notably
faster than the lifted analysis when building the CSDG. There are two main reasons for
this difference. First, as explained in Section 7.2, the delayed approach uses variability-
oblivious algorithms for doing control and data flow analysis. Computing the control
and data flow dependencies is, in the first place, faster because they do not have to
consider variability. However, in doing so they sacrifice precision for performance. Then
some additional effort is required for recovering the variability information. However,
this study showed that the recovery was fast in the case of building the CSDG. Second,
the delayed variability analysis approach allows optimizing recovery of variability
information for a specific purpose. For instance, COACH! was optimized for the
problem of adding variability information to control and data flow dependencies in the
CSDG.

Applicability The lifted variability analysis and in particular the SPLLIFT tool are more
general as they are designed to handle any data flow analysis which can be formulated
as IFDS problem. On the other hand, a delayed approach is usually designed for a
specific problem. Recall that the delayed approach first does a variability-oblivious
analysis and then recovers variability information for a specific purpose, e.g., variability
information in the SDG as in the COACH! approach.

Another restriction for the delayed strategy is that it requires a source code base
that can be compiled without preprocessing while lifted strategy is able to handle
preprocessor-based product families. On the other hand, COACH! is built for handling

108 Comparing Lifted and Delayed Variability-Aware Program Analysis

load-time variability, a type of variability SPLLIFT cannot handle currently. However,
this difference is basically just due to the different goals and it has been shown that it is
possible to transform programs to use another variability mechanism [vonRhein16].

Precision A higher precision is expected for SPLLIFT as it can handle certain situations
more precisely, as already pointed out in Section 7.2. The results show that for product
lines GPL, Lampiro, MM08, and Prevayler the data dependence edges found by both
tools when not considering conditions are almost equal (cf. metric EIC). That means
the differences are quite small and both approaches produce very similar output which
does not confirm the expectation in the first place. However, looking at the conditions
of edges reveals that SPLLIFT is more precise than COACH! for systems with high
variability, like GPL (cf. metrics EqE, ACPSPLLIFT, and ACPCOACH). The results show
that SPLLIFT is more precise compared to COACH! for systems with high variability.
For example, BerkeleyDB is a quite large software system having just a little variability
whereas GPL is a small and highly configurable software.

Result Implications The decision for a specific analysis approach will first be deter-
mined by the kind of the employed variability mechanism. When setting up the tool
chain for the experiment it came out that using COACH! for compile-time variability
was not straightforward and required some time-consuming adaptations. On the other
hand, using SPLLIFT for load-time variability is also not supported out of the box.
Second, the choice also depends on the kind of problem to be solved. SPLLIFT supports
every IFDS problem without any further effort, however, the bare results provided by
SPLLIFT will usually require some postprocessing. For instance, in this case the results
of SPLLIFT are provided via an interface allowing to query data dependencies between
statements. The postprocessing step then was to use this interface for building the
CSDG, while COACH! directly works on the final data structure, e.g., the SDG.

7.6 RelatedWork

Related work for variability-aware program analysis and tracking of load-time config-
uration options has already been discussed before (e.g. for Chapter 5). This section
therefore concentrates on related work doing some kind of comparison between analysis
techniques.

For comparing different implementation strategies, Brabrand et al. [Brabrand12] have
implemented four different versions of their lifting framework. Analysis A1 (brute
force) builds all possible product variants and analyzes them one by one using a
standard data flow analysis. Analysis A2 (consecutive feature-sensitive analysis) is a
variability-aware analysis, but analyzes just one product configuration at a time. The
simultaneous feature-sensitive analysis A3 uses a lifted lattice analyzing all possible

Summary 109

product variants at once by maintaining one lattice element per valid product variant.
The shared simultaneous feature-sensitive analysis A4 further improves A3 by sharing
lattices where possible (cf. late splitting and early joining in Section 2.4). The authors
compare the run-time performance of all four analysis variants among each other and
therefore do a very similar comparison as in this experiment. However, this experiment
compares two variability-aware approaches and since the precision of the results are
considered additionally.

Liebig et al. [Liebig13] compare their analyses to sampling-based approaches, which
use specific strategies to generate concrete product variants that are analyzed. The
used strategies aim at producing samples that are representatives for certain groups of
variants and therefore do not cover all product variants. They showed that variability-
aware analyses are faster and have full variant coverage compared to sampling strategies.
Again, the paper does not compare the quality of results which are assumed to be
deterministic and equal.

Lillack et al. [Lillack14] do not compare their approach to others but they compare
the results of their tool to an oracle and measured the accuracy of the results. This
comparison is similar to the precision comparison in this experiment. However, the
evaluation in this chapter does not use a defined ground truth but uses defined metrics
to compare the precision of two strategies.

7.7 Summary

This chapter reported results of a comparative study of two different techniques for
providing variability-awareness in program analysis. The lifted strategy implemented
in the SPLLIFT tool considers variability already during the parsing stage. Therefore,
the results of SPLLIFT’s analysis are as precise as analyzing all possible product variants
separately. However, SPLLIFT targets compile-time variability and cannot handle the
propagation of load-time configuration values. The delayed strategy implemented by
the COACH! tool presented in this thesis recovers variability only when needed. This
enables COACH! to handle load-time configuration but it cannot handle compile-time
variability if the structure of the program varies.

CIDE is an development environment for SPLs and allows to specify variability by
coloring statements. CIDE does not allow to break the structure of the program but
it still uses compile-time variability and therefore CIDE projects are suitable input for
both approaches.

The study described in this chapter compared the tools COACH! and SPLLIFT regard-
ing performance and precision using CIDE projects as input. The chapter also explained
the expected differences in performance and precision due to the different analysis

110 Comparing Lifted and Delayed Variability-Aware Program Analysis

strategies of the two tools.
The results show that the delayed strategy is significantly faster (about 10x) for all

input SPLs but generally less precise. However, the degree of imprecision depends
on the variability complexity of the particular SPL. Furthermore, implications of the
results are discussed that may help researchers and practitioners that need to perform
variability-aware analysis in their context.

111

Chapter 8

Conclusions

The motivation for the research presented in this thesis was twofold: (i) variable
software systems, and (ii) multi-language software systems. It particularly addressed
the problems arising in program analysis from load-time configuration options during
maintenance of variable software and the use of multiple programming languages.

A main goal of the methods presented in this thesis was to support developers
during maintenance and evolution of such software systems. Therefore, we defined
three research goals: RG1 support for assessing the impact of changes in variable
software, RG2 methods for creating views with reduced source code complexity during
maintenance, and RG3 program analysis support for multi-language software systems.
These research goals call for variability-aware and cross-language analysis support.

In distinction to other approaches, the methods of the thesis pursue a delayed vari-
ability analysis approach which especially target on handling load-time configuration
options. The CSDG has been introduced as a variational data structure for supporting
the analysis methods. It is a system dependence graph representing all control and data
dependencies globally in a program together with the variability of the system in the
form of presence conditions. The CSDG is computed based on the delayed variability
analysis approach as first a variability-oblivious SDG is built and variability is added to
the SDG in the last stage. The CSDG is the basis for the ICD approach to determine
code that will never be executed in a concrete product configuration and the CA-CIA
approach for doing a slicing-based CIA which also considers the variability of systems.

In the following the contributions of this thesis are summarized:

Contribution 1 The conditional system dependence graph (CSDG) presented in
Chapter 3 is the basic data structure for the configuration-aware program analysis
methods. It is based on system dependence graph (SDG) and is built from the SDG by
annotating edges with presence conditions. The chapter also showed how variability
mechanisms, i.e., the implementation of variability in the source code, are abstracted
for extracting presence conditions. Further, it showed how to deal with non-Boolean
configuration options and how to deal with situations where configuration variables are
set together with normal program variables. The performance evaluation showed that

112 Conclusions

building the CSDG is fast and in our case scaled with the size of the analyzed software.
Contribution 2 Chapter 4 introduced the inactive code detection (ICD) approach for

finding code in product variants that cannot be executed because of the configura-
tion. The inactive code is dead code in a certain product configuration but may be
used in other configurations. The technique allows hiding inactive code in a product
configuration by performing a reachability analysis on the CSDG. Furthermore, we
also showed how to use the ICD approach together with ECCO for recovering feature-
to-code mappings. ECCO is an approach that allows recording variability traces in
clone-and-own product lines and relies on differences in the source code of variants.
However, with load-time configuration options, there are no source code differences
in products but only differences in active and inactive code and therefore the inactive
code must first be identified. The evaluation showed that the ICD approach is effective
and accurate. We also showed that the combination of ICD and ECCO produces sound
results with respect to the input variants, i.e., it was possible to re-compose the input
product variants from the extracted traces.

Contribution 3 Chapter 5 introduced the configuration-aware change impact analy-
sis (CA-CIA) approach. CA-CIA uses the delayed variability concept to make program
slicing based CIA configuration-aware using the CSDG. It propagates presence con-
ditions representing the variability of the analyzed software system. CA-CIA avoids
global propagation of variability information within the whole CSDG by determining
possibly influencing statements. The evaluation of CA-CIA showed that the approach is
beneficial since it provides variability information and can reduce change impact size
because of configuration. The run-time performance showed that the technique scales
for industrial systems.

Contribution 4 Chapter 6 presented the CAM-CIA approach for performing compo-
sitional CA-CIA using program dependence graphs as modules. It has been shown that
the CA-CIA can be performed within a module without restrictions, resulting in sets of
nodes and edges where the edge conditions may contain placeholders. CAM-CIA also
described how to compose analysis modules by resolving placeholder variables. The
evaluation showed the correctness of the CAM-CIA approach and its benefits compared
to the non-modular CA-CIA approach.

Contribution 5 Chapter 7 reported results of a comparative study of two different
techniques for providing variability-awareness in program analysis. The lifted strategy
implemented in the SPLLIFT tool considers variability already during the parsing stage.
The delayed strategy implemented in the COACH! tool presented in this thesis recovers
variability only when needed. The study described in this chapter compared the two
tools regarding performance and precision using CIDE projects as input. The results
show that COACH! is significantly faster (about 10x) but generally less precise.

List of Figures 113

List of Figures

1.1 Customization and evolution process of a multi-language variable soft-
ware system. 2

1.2 A brief overview of KEBA’s development process [Lettner14a]. 5

2.1 Illustration of state space overapproximation [Cousot05]. 18
2.2 A very small SPL with two possible product variants. (a) A preprocessor-

based SPL. (b) Data dependence graphs for the two possible product
variants. 19

2.3 The control flow graph for the product family shown in Figure 2.2 20
2.4 The delayed variability principle. 22

3.1 The CSDG for the sample program in Listing 3.1. 25
3.2 CSDG condition extraction. 27
3.3 Components and intermediate data structures of the analysis tool chain. . 33
3.4 Timings tested on 34 product variants. The data points represented as

circles are also shown in Table 3.1. 36

4.1 Overview of the ICD approach. 40
4.2 Illustration of the algorithm for identifying inactive code. 43
4.3 Effectiveness of the approach for individual configuration options of

KePlast. 46
4.4 Two product variants of a small SPL with one feature. 53
4.5 The comparison of the feature model and the trace dependency graph. . 54

5.1 SDG for the small configurable program in Listing 5.1. 64
5.2 The steps for the propagation of the variability information showing the

CSDG and how the presence conditions are propagated. 65
5.3 Overview of the CA-CIA approach. 68
5.4 A sequence of nodes visited during a change impact analysis. 68
5.5 Basic cases of propagating presence conditions. 72
5.6 Propagation cases with interaction between presence and reaching condi-

tions. 73
5.7 Basic cases of propagating reaching conditions. 74

114 List of Figures

5.8 Results for RQ1 and RQ2 computed by applying our tool to a set of
real-world product families provided by the industry partner. 79

5.9 RQ3 – Average time required to compute configuration-aware change
impacts of a specific size. 83

6.1 Partial CSDG demonstrating the problem of cutting dependencies car-
rying variability information during analysis. The dashed lines indicate
module boundaries. 88

6.2 Overview of the CAM-CIA approach. 89
6.3 Results for metric PNR for different sizes of changes impacts. 93

7.1 Control flow graphs for lifted and delayed analyses. 97
7.2 The variability-oblivious system dependence graph. 98
7.3 An overview of the experiment comparing COACH! and SPLLIFT. 99
7.4 Results for RQ1 on run-time performance of SPLLIFT and COACH!. . . . 103
7.5 Results for the smoke test on run-time performance of SPLLIFT and

COACH!. During the smoke test, both analysis tools completely ignored
variability. 104

7.6 Results for RQ2 comparing the precision of the analyses. The number of
edges is normalized to SPLLIFT’s results to ease comparison. 105

7.7 The distribution of the precision of presence conditions. 106

List of Tables 115

List of Tables

1.1 Software evolution challenges [Lettner14a]. 6

3.1 Results from the run-time performance evaluation. The size of the prod-
uct variants (PV) is specified in lines of code (Size). PM indicates the peak
memory consumption. AST represents the time needed for parsing and
building the AST. JCG is the time for the Jimple code generation. PDG
specifies the time required to build the PDGs including their instantiation,
SDG is the time required for building the SDG. Total is the overall time
needed. SDG Size shows the size of the resulting SDGs in number of nodes. 35

4.1 Inactive code size (IC) and inactive code scattering (IS) for the investigated
configuration options. RC denotes the number of lines only found by the
domain expert. TC denotes the number of lines only found by the tool.
ACC is the accuracy of the computed results compared to the manual
identification. 49

7.1 SPLs used in the experiment. 102

117

Curriculum Vitae

Personal Information

Name Dipl.-Ing. Florian Friedrich Angerer, BSc
Date of Birth July 22, 1986
Personal Status married, two children
Nationality Austrian
Email florianangerer@gmx.at

Education

2012 - 2017 PhD in Computer Science – Johannes Kepler University Linz

Autumn 2010 Semester Abroad – Swiss Federal Institute of Technology

2010 - 2012 MSc in Computer Science (with distinction)
Johannes Kepler University Linz

2008, 2009, 2010 Merit Scholarship

2007 - 2010 BSc in Computer Science (with distinction)
Johannes Kepler University Linz

Employment History

Feb 2013 - CDL MEVSS - Johannes Kepler University
Jan 2017 Researcher / Software Engineer

My research focused on program analysis for configurable and modular soft-
ware systems to support evolution and maintenance. Besides the scientific
research, I was responsible for the development of the analysis framework
implementing my approach. This involved supervision of a small team with
up to three student researchers working in this project.

mailto:florianangerer@gmx.at
http://www.jku.at
http://www.ethz.ch
http://www.jku.at
http://www.jku.at
http://mevss.jku.at

118 Curriculum Vitae

Mar 2012 - Johannes Kepler University
Jan 2013 Researcher / Software Engineer

Conducted a project in cooperation with Manus.M GmbH with the goal of
automated network configuration for mobile devices.

Mar 2011 - Johannes Kepler University
Jan 2013 Researcher / Software Engineer

In cooperation with ENGEL Austria GmbH, I developed an analysis frame-
work for analyzing PLC programs for code smells and defects. The tool is
currently used on ENGEL’s nightly build server for their PLC software.

2006 - Arbeiter Samariterbund OÖ
2007 Community Service

Experience

Conference/Workshop Talks
ICSME 2016 (Raleigh, NC, USA)
ASE 2015 (Lincoln, NE, USA)
FOSD Meeting 2015 (Traunkirchen, Austria)
ICSME 2014 (Victoria, BC, Canada)
SPLC 2014 (Florence, Italy)
ASE 2014 (Vasteras, Sweden)
ETFA 2013 (Cagliari, Italia)
FOSD Treffen 2013 (Dagstuhl, Germany)
ETFA 2012 (Cracow, Poland)

Teaching
Autumn 2013 Grundlagen der Programmierung (Introduction to Programming)
Spring 2014 Praktische Informatik 2 (Data Structures)
Spring 2015 Praktische Informatik 2 (Data Structures)

Supervision of Master’s Thesis
Analysis of PLC Programs Using the Program Analysis Framework SOOT

(DI Andreas Grimmer)

Supervision of Bachelor’s Thesis
Jimple Code Generator for SFCs (DI David Auinger)
IEC Editor in Eclipse (Alois Mühleder)

http://ssw.jku.at
http://ssw.jku.at
https://www.asb.or.at/
http://epub.jku.at/obvulihs/content/titleinfo/851619
http://epub.jku.at/obvulihs/content/titleinfo/851619
http://ssw.jku.at/Teaching/Projects/SFC2JimpleGenerator/SFC2JimpleGenerator.pdf
http://ssw.jku.at/CDLMod2/EclipseIECEditor.pdf

119

Glossary 121

Glossary

AE application engineer. 5, 7, 119, Glossary: application engineer
AppCo Application Composer. 4, 47, 52, 119
application engineer A software engineer realizing a concrete application satisfying the

specific application requirements by exploiting the commonality and variability of
the SPL.. 5, 119

AST A tree structure representing syntactic structure of the program’s source code.
Each node corresponds to some syntactic element of the code.. 8, 119

AST abstract syntax tree. 8, 21, 29, 33, 34, 40, 45, 54, 119, Glossary: AST
Automation Platform KEBA’s basic platform for creating domain-specific solutions. It

provides real-time capabilities, communication services, debugging and logging
facilities, runtime systems for automation-specific languages, et cetera.. 4, 5, 119

BDD binary decision diagram. 28, 101, 119

C preprocessor Language facility performing a first compilation step [Kernighan88]. It
can include files, replace tokens, or conditionally include source code.. 13, 119

CA-CIA configuration-aware change impact analysis. 9, 10, 19, 61, 67–70, 72, 76–78, 80,
82, 84–88, 90, 91, 93, 111–113, 119, Glossary: configuration-aware change impact
analysis

CAM-CIA configuration-aware modular CIA. 9, 10, 87, 89–91, 93, 112, 114, 119, Glossary:
configuration-aware modular CIA

CDS control dependence subgraph. 84, 119, Glossary: control dependence subgraph
CFG control flow graph. 17, 20, 32, 76, 119, Glossary: control flow graph
change impact analysis The process of determining the potential effects of a proposed

modification in the software [Bohner02].. 9, 17, 61, 119
CIA change impact analysis. 9, 17, 18, 57, 61, 63, 68, 86, 88, 91, 111, 112, 119, Glossary:

change impact analysis
CIDE Colored IDE. 58, 109, 112, 119
clone-and-own Ad-hoc approach for reusing software by simply cloning existing im-

plementations and then adapting the clone to fulfill new requirements.. 119
COACH! configuration aware change !mpact. 10, 76–78, 83, 95–101, 103–109, 112, 114,

119
conditional system dependence graph Refer to Chapter 3.. 7, 23, 35, 111, 119
configuration option A variable that can be specified externally from the program and

thus might have influence on the program’s behavior.. 14, 119
configuration-aware change impact analysis Refer to Chapter 5.. 9, 61, 86, 112, 119
configuration-awaremodular CIA Refer to Chapter 6.. 9, 119
control dependence subgraph The subgraph of the PDG just containing control depen-

dencies.. 84, 119
control flow graph A directed graph structure encoding all possible program execution

paths. The graph consists of an entry, exit, and basic block. 17, 32, 119

122 Glossary

CPP C preprocessor. 13, 14, 119, Glossary: C preprocessor
CSDG conditional system dependence graph. 7–11, 21–23, 26, 27, 29, 31–36, 39–42, 44,

57, 58, 61, 63, 65–72, 74, 76, 82, 86–89, 91, 100, 101, 108, 111–114, 119, Glossary:
conditional system dependence graph

data dependence graph The subgraph of the PDG just containing data dependencies..
19, 119

DDG data dependence graph. 19, 119, Glossary: data dependence graph
delayed variability Performing an analysis completely variability-oblivious, i.e., ignor-

ing any variability in the first place, and then recovering the variability and
augmenting the results. 3, 21, 22, 61, 67, 84, 85, 95, 111, 113, 119

early joining 20, 21, 119
ECCO extraction and composition for clown-and-own. 51–54, 59, 112, 119

HMI human-machine interface. 119, Glossary: human-machine interface
human-machine interface The part of the application, that handles the human-machine

interaction.. 119

ICD inactive code detection. 8–10, 38, 39, 45, 47, 50, 52, 54, 58, 59, 61, 111–113, 119,
Glossary: inactive code detection

ICFG interprocedural control flow graph. 119, Glossary: interprocedural control flow
graph

IEC 61131-3 Is the third part of the IEC 61131 standard for programmable logic con-
trollers. Part 3 defines four programming languages for PLC programming. 4, 7,
8, 33, 34, 36, 76, 119

IFDS inter-procedural, finite, distributive, subset problems [Reps95]. 119
inactive code detection Refer to Chapter 4.. 8, 38, 58, 112, 119
interprocedural control flow graph A control flow graph where all call and reutnr nodes

are connected to the corresponding entry and exit nodes of the single control flow
graphs of procedures.. 119

Jimple Soot’s intermediate representation for program code. 11, 33, 34, 119

KConfig KConfig is a configuration database organizing configuration options for the
Linux kernel in a tree structure.. 56, 119

KEBA KEBA. 4–7, 33, 34, 42, 45, 47, 48, 52, 61, 77, 86, 91, 113, 119
KEBA AG KEBA AG (http://www.keba.com). v, 4, 42, 119
KePlast KEBA’s domain-specific solution platform for plastics injection molding ma-

chines.. 4, 7–10, 33, 34, 38, 42–46, 48, 50, 52–56, 58, 76, 77, 91, 93, 113, 119

late splitting 20, 21, 119
li�ed analysis A program analysis converted to be able to analyze a whole product

family. 21, 95, 119
liveness analysis A classical data-flow analysis computing for each program point

which variable values are still required.. 119
load-time configuration option A configuration option which value is bound during

the initialization phase of a program.. 14, 15, 27, 111, 119

http://www.keba.com

Glossary 123

MEVSS Monitoring and Evolution of Very-Large-Scale Software Systems. 119

PDG procedure dependence graph. 17, 34, 87, 88, 90, 119, Glossary: program dependence
graph

PLC programmable logic controller. 33, 119, Glossary: programmable logic controller
program dependence graph Explicitly represents data and control dependencies of a

procedure [Ferrante87].. 17, 119
programmable logic controller A hard real-time system usually controlling manufac-

turing processes.. 33, 119

SDG system dependence graph. 7, 8, 17, 23, 24, 26, 27, 29, 31, 32, 34–37, 41, 50, 63, 69,
76, 89–91, 98, 100, 105, 108, 111, 113, 119, Glossary: system dependence graph

so�ware product line A set of software-intensive systems sharing common, managed
set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed
way [Clements02].. 1, 15, 119

Soot A Java analysis and optimization framework https://sable.github.io/soot/.
33, 34, 36, 103, 119

SPL software product line. 1–3, 9, 10, 15, 16, 19–21, 48, 50, 53, 59, 95, 99, 107, 109, 110,
113, 119, Glossary: software product line

SPLCIA Lifted change impact analysis tool using SPLLIFT. 119
SPLLIFT A tool for performing data flow analyses formulated in the IFDS framework for

SPLs.. viii, 10, 95–109, 112, 114, 119
system dependence graph A directed graph representing different kinds of dependen-

cies between program elements in the whole program.. 7, 23, 35, 111, 119

variability-aware program analysis Directly analyzes the variable code base instead of
individually analyzing every possible product variant [Liebig13].. 19–21, 61, 95,
96, 119

https://sable.github.io/soot/

125

Bibliography

[Allen01] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Archi-
tectures: A Dependence-Based Approach. Morgan Kaufmann Publishers,
2001.

[Angerer14a] Florian Angerer. Variability-aware change impact analysis of multi-
language product lines. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 903–906.
2014.

[Angerer14b] Florian Angerer, Herbert Prähofer, Daniela Lettner, Andreas Grimmer,
and Paul Grünbacher. Identifying Inactive Code in Product Lines with
Configuration-Aware System Dependence Graphs. In Proceedings of the
18th International Software Product Line Conference, SPLC ’14, pages
52–61. 2014.

[Angerer15] Florian Angerer, Andreas Grimmer, Herbert Prähofer, and Paul Grün-
bacher. Configuration-Aware Change Impact Analysis. In Proceedings
of the 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’15, pages 385–395. 2015.

[Angerer16] Florian Angerer, Herbert Prähofer, and Paul Grünbacher. Modular
Change Impact Analysis for Configurable Software. In Proceedings of the
32th International Conference on Software Maintenance and Evolution,
ICSME ’16. 2016.

[Apel09] Sven Apel and Christian Kästner. An Overview of Feature-Oriented
Software Development. Journal of Object Technology, 8(5):49–84, 2009.

[Apel13] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner,
and Brady Garvin. Exploring Feature Interactions in the Wild: The
New Feature-interaction Challenge. In Proceedings of the 5th International
Workshop on Feature-Oriented Software Development, FOSD ’13, pages
1–8. 2013.

[Arnold96] Robert S. Arnold. Software Change Impact Analysis. IEEE Computer
Society Press, 1996.

[Ayewah08] Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John
Penix, and William Pugh. Using Static Analysis to Find Bugs. IEEE
Software, 25(5):22–29, sep 2008.

126 Bibliography

[Badri05] Linda Badri, Mourad Badri, and Daniel St-Yves. Supporting Predictive
Change Impact Analysis: A Control Call Graph Based Technique. In Pro-
ceedings of the 12th Asia-Pacific Software Engineering Conference, APSEC
’05, pages 167–175. 2005.

[Banker93] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig.
Software Complexity and Maintenance Costs. Communications of the ACM,
36(11):81–94, 1993.

[Batory05] Don Batory. Feature Models, Grammars, and Propositional Formulas. In
Proceedings of the 9th International Conference on Software Product Lines,
SPLC ’05, pages 7–20. 2005.

[Berger10] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and
Krzysztof Czarnecki. Variability Modeling in the Real: A Perspective
from the Operating Systems Domain. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, ASE ’10,
pages 73–82. 2010.

[Black01] Sue Black. Computing ripple effect for software maintenance. Journal of
Software Maintenance and Evolution: Research and Practice, 13(4):263–279,
2001.

[Bodden12] Eric Bodden. Inter-procedural Data-flow Analysis with IFDS/IDE and
Soot. In Proceedings of the ACM SIGPLAN International Workshop on
State of the Art in Java Program Analysis, SOAP ’12, pages 3–8. 2012.

[Bodden13] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo
Borba, and Mira Mezini. SPLLIFT: Statically Analyzing Software Product
Lines in Minutes Instead of Years. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’13, pages 355–364. 2013.

[Bohner02] Shawn A. Bohner. Extending Software Change Impact Analysis into COTS
Components. 27th Annual NASA Goddard/IEEE Software Engineering
Workshop, 2002. Proceedings., 2002.

[Brabrand12] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, and Paulo Borba. In-
traprocedural Dataflow Analysis for Software Product Lines. In Proceedings
of the 11th Annual International Conference on Aspect-oriented Software
Development, AOSD ’12, pages 13–24. 2012.

[Chen01] Kunrong Chen and Václav T. Rajich. RIPPLES: Tool for Change in
Legacy Software. In Proceedings of the IEEE International Conference on
Software Maintenance. ICSM 2001, pages 230–239. 2001.

[Clements02] Paul Clements and Linda Northrop. Software Product Lines: Practices
and Patterns. SEI Series in Software Engineering. Addison-Wesley,
2002.

Bibliography 127

[Cousot77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’77, pages
238–252. 1977.

[Cousot05] Patrick Cousot. MIT Course 16.399: Abstract Interpretation. http://
web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/, 2005.

[Czarnecki00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addisson-Wesley, 2000.

[Czarnecki04] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged
Configuration Using Feature Models. In Proceedings of the 3rd International
Software Product Line Conference, SPLC ’04, pages 266–283. Springer,
2004.

[Czarnecki05a] Krzysztof Czarnecki and Michal Antkiewicz. Mapping Features to
Models: A Template Approach Based on Superimposed Variants. In Pro-
ceedings of the 4th International Conference on Generative Programming
and Component Engineering, pages 422–437. 2005.

[Czarnecki05b] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged
Configuration through Specialization and Multilevel Configuration of Fea-
ture Models. Software Process: Improvement and Practice, 10(2):143–169,
2005.

[Dhungana11] Deepak Dhungana, Paul Grünbacher, and Rick Rabiser. The DOPLER
Meta-Tool for Decision-Oriented Variability Modeling: A Multiple Case
Study. Automated Software Engineering, 18(1):77–114, 2011.

[Dubinsky13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,
Martin Becker, and Krzysztof Czarnecki. An Exploratory Study of
Cloning in Industrial Software Product Lines. 2013 17th European Confer-
ence on Software Maintenance and Reengineering, pages 25–34, 2013.

[Egyed10] Alexander Egyed, Florian Graf, and Paul Grünbacher. Effort and
Quality of Recovering Requirements-to-Code Traces: Two Exploratory Ex-
periments. In Proceedings of the 18th IEEE International Requirements
Engineering Conference, RE 2010, pages 221–230. 2010.

[Eisenbarth03] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating
Features in Source Code. IEEE Transactions on Software Engineering,
29(3):210–224, 2003.

[Ferrante87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Pro-
gram Dependence Graph and Its Use in Optimization. ACM Transactions
Programming Languages and Systems, 9(3):319–349, 1987.

[Fischer14] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and
Alexander Egyed. Enhancing Clone-and-Own with Systematic Reuse for

http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

128 Bibliography

Developing Software Variants. In Proceedings of the 30th International
Conference on Software Maintenance and Evolution, ICSME ’14, pages
391–400. 2014.

[Grimmer16] Andreas Grimmer, Florian Angerer, Herbert Prähofer, and Paul Grün-
bacher. Supporting Program Analysis for Non-Mainstream Languages:
Experiences and Lessons Learned. In Proceedings of the IEEE 23rd Inter-
national Conference on Software Analysis, Evolution and Reengineering,
SANER ’16, pages 460–469. 2016.

[Hammer06] Christian Hammer, Jens Krinke, and Gregor Snelting. Information
Flow Control for Java Based on Path Conditions in Dependence Graphs.
In Proceedings of the IEEE International Symposium on Secure Software
Engineering, ISSSE 2006, pages 87–96. 2006.

[Harrold93] Mary J. Harrold, Brian Malloy, and Gregg Rothermel. Efficient Con-
struction of Program Dependence Graphs. ACM SIGSOFT Software Engi-
neering Notes, 18(3):160–170, 1993.

[Hayes05] Jane Huffman Hayes and Alex Dekhtyar. Humans in the Traceability
Loop: Can’t Live With ’Em, Can’t Live Without ’Em. In Proceedings of the
3rd International Workshop on Traceability in Emerging Forms of Software
Engineering, TEFSE ’05, pages 20–23. 2005.

[Heidenreich08] Florian Heidenreich, Jan Kopcsek, and Christian Wende. FeatureMap-
per: Mapping Features to Models. In Companion of the 30th International
Conference on Software Engineering, ICSE Companion ’08, pages 943–
944. 2008.

[Hofer16] Peter Hofer. Efficient Execution Time Profiling on the Java Virtual Machine
Level. Phd thesis, Johannes Kepler University Linz, 2016.

[Horwitz90] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural
Slicing Using Dependence Graphs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 12(1):26–60, 1990.

[Jász08] Judit Jász, Árpád Beszédes, Tibor Gyimóthy, and Václav Rajlich.
Static Execute After/Before as a Replacement of Traditional Software Depen-
dencies. In Proceedings of the IEEE International Conference on Software
Maintenance, ICSM ’08, pages 137–146. 2008.

[Kästner07] Christian Kästner, Sven Apel, and Don Batory. A Case Study Imple-
menting Features Using AspectJ. In Proceedings of the 11th International
Software Product Line Conference, SPLC ’07, pages 223–232. 2007.

[Kästner08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
Software Product Lines. In Proceedings of the 30th International Conference
on Software Engineering, ICSE ’08, pages 311–320. 2008.

[Kästner09] Christian Kästner, Sven Apel, Salvador Trujillo, Martin Kuhlemann,
and Don S. Batory. Guaranteeing Syntactic Correctness for All Product

Bibliography 129

Line Variants: A Language-Independent Approach. In Proceedings of the
47th International Conference on Objects, Models, Components, Patterns,
TOOLS-EUROPE 2009, pages 175–194. 2009.

[Kästner11] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian
Erdweg, Klaus Ostermann, and Thorsten Berger. Variability-aware
Parsing in the Presence of Lexical Macros and Conditional Compilation. In
Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’11, pages
805–824. 2011.

[Kästner12] Christian Kästner. Virtual Separation of Concerns: Toward Preprocessors
2.0. it - Information Technology Methoden und innovative Anwendungen
der Informatik und Informationstechnik, 54(1):42–46, 2012.

[Kästner14] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. Variabil-
ity Mining: Consistent Semi-automatic Detection of Product-Line Features.
IEEE Transactions Software Engineering, 40(1):67–82, 2014.

[Kernighan88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall Englewood Cliffs, 1988.

[Kiczales97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. ACM Computing Surveys, 28:220–242, 1997.

[Korel98] Bogdan Korel and Jurgen Rilling. Program Slicing in Understanding of
Large Programs. In Proceedings 6th International Workshop on Program
Comprehension, pages 145–152. 1998.

[Korpi07] Jaakko Korpi and Jussi Koskinen. Supporting Impact Analysis by
Program Dependence Graph Based Forward Slicing. In Advances and
Innovations in Systems, Computing Sciences and Software Engineering,
pages 197–202. Springer Netherlands, 2007.

[Lam11] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The
Soot framework for Java program analysis: a retrospective. In Proceedings
of the Cetus Users and Compiler Infastructure Workshop, CETUS 2011,
pages 35–43. 2011.

[Larsen96] Loren Larsen and Mary J. Harrold. Slicing Object-Oriented Software. In
Proceedings 18th International Conference on Software Engineering, pages
495–505. 1996.

[Lehnert11] Steffen Lehnert. A Taxonomy for Software Change Impact Analysis. In
Proceedings of the 12th International Workshop on Principles of Software
Evolution and the 7th Annual ERCIM Workshop on Software Evolution,
IWPSE-EVOL ’11, pages 41–50. 2011.

130 Bibliography

[Lettner13] Daniela Lettner, Michael Petruzelka, Rick Rabiser, Florian Angerer,
Herbert Prähofer, and Paul Grünbacher. Custom-developed vs. Model-
based Configuration Tools: Experiences from an Industrial Automation
Ecosystem. In Proceedings of the 17th International Software Product Line
Conference Co-located Workshops, SPLC ’13 Workshops, pages 52–58.
2013.

[Lettner14a] Daniela Lettner, Florian Angerer, Paul Grünbacher, and Herbert
Prähofer. Software Evolution in an Industrial Automation Ecosystem: An
Exploratory Study. In Proceedings of the 40th Euromicro Conference Series
on Software Engineering and Advanced Applications, SEAA 2014, pages
336–343. 2014.

[Lettner14b] Daniela Lettner, Florian Angerer, Herbert Prähofer, and Paul Grün-
bacher. A Case Study on Software Ecosystem Characteristics in Industrial
Automation Software. In Proceedings of the International Conference on
Software and System Process, ICSSP 2014, pages 40–49. 2014.

[Liebig10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and
Michael Schulze. An Analysis of the Variability in Forty Preprocessor-
based Software Product Lines. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, ICSE ’10, pages 105–
114. 2010.

[Liebig13] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens
Dörre, and Christian Lengauer. Scalable Analysis of Variable Software.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 81–91. 2013.

[Lillack14] Max Lillack, Christian Kästner, and Eric Bodden. Tracking Load-time
Configuration Options. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE ’14, pages 445–456.
2014.

[Linsbauer13] Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed.
Recovering Traceability Between Features and Code in Product Variants.
In Proceedings of the 17th International Software Product Line Conference,
SPLC ’13, pages 131–140. 2013.

[Linsbauer14] Lukas Linsbauer, Florian Angerer, Paul Grünbacher, Daniela Lettner,
Herbert Prähofer, Roberto Lopez-Herrejon, and Alexander Egyed.
Recovering Feature-to-Code Mappings in Mixed-Variability Software Sys-
tems. In Proceedings of the 30th International Conference on Software
Maintenance and Evolution, ICSME ’14, pages 426–430. 2014.

[Linsbauer16] Lukas Linsbauer. Managing and Engineering Variability Intensive Sys-
tems. Phd, Johannes Kepler University Linz, 2016.

[Liu06] Jia Liu, Don Batory, and Christian Lengauer. Feature Oriented Refac-
toring of Legacy Applications. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages 112–121. 2006.

Bibliography 131

[Louridas06] Panagiotis Louridas. Static Code Analysis. IEEE Software, 23(4):58–61,
2006.

[Mayer12] Philip Mayer and Andreas Schröder. Cross-Language Code Analysis
and Refactoring. In Proceedings of the 2012 IEEE 12th International
Working Conference on Source Code Analysis and Manipulation, SCAM
2012, pages 94–103. 2012.

[Midtgaard14] Jan Midtgaard, Claus Brabrand, and Andrzej Wąsowski. Systematic
Derivation of Static Analyses for Software Product Lines. In Proceedings
of the 13th International Conference on Modularity, MODULARITY ’14,
pages 181–192. 2014.

[Muchnick97] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[Nielson99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles
of Program Analysis. Springer-Verlag New York, 1999.

[OMG07] OMG. Abstract syntax tree metamodel (ASTM). Technical report, TCS,
IBM and others, 2007.

[Ottenstein84] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence
graph in a software development environment. ACM SIGPLAN Notices,
19(5):177–184, 1984.

[Park92] Robert E. Park. Software Size Measurement: A Framework for Counting
Source Statements. Technical report, Carnegie Mellon University, 1992.

[Payet12] Étienne Payet and Fausto Spoto. Static analysis of Android programs.
Information and Software Technology, 54(11):1192–1201, 2012.

[Petrenko09] Maksym Petrenko and Václav Rajlich. Variable Granularity for Im-
proving Precision of Impact Analysis. In Proceedings of the IEEE 17th
International Conference on Program Comprehension, ICPC ’09, pages
10–19. 2009.

[Pohl05] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software Prod-
uct Line Engineering. Foundations, Principles, and Techniques. Springer
Science & Business Media, 2005.

[Prähofer16] Herbert Prähofer, Florian Angerer, Rudolf Ramler, and Friedrich
Grillenberger. Static Code Analysis of IEC 61131-3 Programs: Comprehen-
sive Tool Support and Experiences from Large-Scale Industrial Application.
IEEE Transactions on Industrial Informatics, PP(99):1–10, 2016.

[Rabiser16a] Daniela Rabiser. Multi-Level Feature Modeling in Industrial Software
Ecosystems. Phd, Johannes Kepler University Linz, 2016.

[Rabiser16b] Daniela Rabiser, Herbert Prähofer, Paul Grünbacher, Michael
Petruzelka, Klaus Eder, Florian Angerer, Mario Kromoser, and An-
dreas Grimmer. Multi-purpose, multi-level feature modeling of large-scale

132 Bibliography

industrial software systems. Software {&} Systems Modeling, pages 1–26,
2016.

[Reisner10] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and
Adam Porter. Using Symbolic Evaluation to Understand Behavior in
Configurable Software Systems. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, ICSE ’10, pages 445–454. 2010.

[Ren04] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder, and Ophelia
Chesley. Chianti: A Tool for Change Impact Analysis of Java Programs.
ACM SIGPLAN Notices, 39(10):432–448, 2004.

[Reps95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise Interprocedural
Dataflow Analysis via Graph Reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’95, pages 49–61. 1995.

[Rice53] Henry G. Rice. Classes of Recursively Enumerable Sets and Their Decision
Problems. Transactions of the American Mathematical Society, 74(2):358–
366, 1953.

[Rubin12] Julia Rubin and Marsha Chechik. Locating Distinguishing Features
Using Diff Sets. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’12, page 242. 2012.

[Rubin13] Julia Rubin and Marsha Chechik. A Framework for Managing Cloned
Product Variants. In Proceedings of the 35th International Conference on
Software Engineering, ICSE 2013, pages 1233–1236. 2013.

[Ryder01] Barbara G. Ryder and Frank Tip. Change Impact Analysis for Object-
oriented Programs. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE
’01, pages 46–53. 2001.

[Sagiv96] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise Inerprocedural
Dataflow Analysis with Applications to Constant Propagation. Theoretical
Computer Science, 167(1–2):131–170, 1996.

[Schaefer10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. Delta-Oriented Programming of Software Product Lines.
In Proceedings of the 14th International Conference on Software Product
Lines: Going Beyond, pages 77–91. 2010.

[Snelting96] Gregor Snelting. Combining Slicing and Constraint Solving for Validation
of Measurement Software. In Static Analysis, volume 1145 of Lecture
Notes in Computer Science, pages 332–348. Springer Berlin Heidelberg,
1996.

[Sridharan07] Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. Thin Slicing.
In Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07, pages 112–122. 2007.

Bibliography 133

[Strein06] Dennis Strein, Hans Kratz, and Welf Löwe. Cross-Language Program
Analysis and Refactoring. In Proceedings of the 6th IEEE International
Workshop on Source Code Analysis and Manipulation, SCAM ’06, pages
207–216. 2006.

[Svahnberg05] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. A Taxonomy of
Variability Realization Techniques. Software - Practice and Experience,
35(8):705–754, 2005.

[Tartler09] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-preikschat, and
Daniel Lohmann. Dead or Alive: Finding Zombie Features in the Linux
Kernel. In Proceedings of the 1st International Workshop on Feature-
Oriented Software Development, FOSD ’09, pages 81–86. 2009.

[Thüm14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and
Gunter Saake. A Classification and Survey of Analysis Strategies for
Software Product Lines. ACM Computing Surveys (CSUR), 47(1):1–45,
2014.

[Tonella03] Paolo Tonella. Using a Concept Lattice of Decomposition Slices for Pro-
gram Understanding and Impact Analysis. IEEE Transactions on Software
Engineering, 29(6):495–509, 2003.

[vonRhein16] Alexander von Rhein, Thomas Thüm, Ina Schaefer, Jörg Liebig, and
Sven Apel. Variability Encoding: From Compile-Time to Load-Time
Variability. Journal of Logical and Algebraic Methods in Programming,
85(1):125–145, 2016.

[Walkingshaw14] Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and
Eric Bodden. Variational Data Structures: Exploring Tradeoffs in Com-
puting with Variability. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming & Software, Onward! 2014, pages 213–226. 2014.

[Weiser81] Mark Weiser. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, pages 439–449. 1981.

[Wöß03] Albrecht Wöß, Markus Löberbauer, and Hanspeter Mössenböck. LL(1)
Conflict Resolution in a Recursive Descent Compiler Generator. In Pro-
ceedings of the Joint Modular Languages Conference, JMLC 2003, pages
192–201. 2003.

[Xu05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen.
A Brief Survey of Program Slicing. SIGSOFT Softw. Engineering Notes,
30(2):1–36, March 2005.

[Xu13] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. Do Not Blame
Users for Misconfigurations. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 244–259. 2013.

134 Bibliography

[Xue12] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. Feature Location in
a Collection of Product Variants. In Proceedings of the Working Conference
on Reverse Engineering, WCRE ’12, pages 145–154. 2012.

[Zhang06] Xiaolan Zhang, Larry Koved, Marco Pistoia, Sam Weber, Trent Jaeger,
Guillaume Marceau, and Liangzhao Zeng. The Case for Analysis Pre-
serving Language Transformation. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis, ISSTA ’06, page 191. 2006.

[Zhang13] Sai Zhang and Michael D. Ernst. Automated Diagnosis of Software
Configuration Errors. In Proceedings of the 35th International Conference
on Software Engineering, ICSE ’13, pages 312–321. 2013.

[Zheng06] Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes,
John P. Hudepohl, and Mladen A. Vouk. On the Value of Static Analysis
for Fault Detection in Software. IEEE Transactions on Software Engineering,
32(4):240–253, 2006.

Bibliography 135

Statutory Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have not
used other than the sources indicated, and that all direct and indirect sources are
acknowledged as references.
This printed thesis is identical with the electronic version submitted.

Place, Date Signature

	Abstract
	Kurzfassung
	Acknowledgments
	Introduction
	Research Goals and Approach
	Research Context
	Research Contributions
	Publications

	Background
	Variability
	Software Product Lines
	Static Program Analysis
	Variability-Aware Program Analysis

	Conditional System Dependence Graph
	System Dependence Graph
	Presence Conditions
	Representing and Extracting Variability
	Mixing Load-time and Run-Time Values
	Semantics of the CSDG
	Implementation
	Performance Evaluation
	Summary

	Identifying Inactive Code and Recovering Feature-to-Code Mappings
	Identification of Inactive Code
	Problem Illustration
	Approach
	Implementation
	Evaluation

	Automated Extraction of Feature-to-Code Mappings
	Evaluation

	Related Work
	Identifying Inactive Code
	Recovering Feature-to-Code Mappings

	Summary

	Configuration-Aware Change Impact Analysis
	Problem Illustration
	Approach
	Algorithm
	Propagation Cases

	Implementation
	Evaluation
	Case Study and Code Base Selected for the Evaluation
	RQ1 – Domain engineering
	RQ2 – Application engineering
	RQ3 – Performance
	Threats to Validity

	Discussion
	Related Work
	Summary

	Compositional Change Impact Analysis for Configurable Software
	Problem Illustration
	Approach
	Evaluation
	Experiment Subject
	Evaluation Strategy
	Results

	Related Work
	Summary

	Comparing Lifted and Delayed Variability-Aware Program Analysis
	Lifted Strategy and spllift
	Expected Analysis Differences
	Experiment Design
	Adapting the Tool Chains
	Evaluating Performance
	Comparing Precision
	Selected SPLs

	Experiment Results
	RQ1 – Performance
	RQ2 – Precision
	Threats to Validity

	Discussion
	Related Work
	Summary

	Conclusions
	List of Figures
	List of Tables
	Curriculum Vitae
	Bibliography

