

JOHANNES KEPLER

UNIVERSITY LINZ

Altenberger Straße 69

4040 Linz, Austria

jku.at

DVR 0093696

Author

Alexander Stummer

Submission

Institute for System

Software

Thesis Supervisor

o.Univ.-Prof. Dr.

Hanspeter Mössenböck

Assistant Thesis

Supervisor

Dr. Lukas Stadler,

Dr. Christian Wirth

October 2023

ECMASCRIPT’S

PIPELINE OPERATOR

FOR GRAAL.JS

Master’s Thesis

to confer the academic degree of

Master of Science

in the Master’s Program

Computer Science

October 23, 2023 k11808111 2/51

Kurzfassung

JavaScript ist aktuell eine der meistverwendeten Programmiersprachen. Aus diesem

Grund werden kontinuierlich neue Features zur Sprache hinzugefügt. Bevor dies passiert,

müssen Features einen mehrstufigen Prozess durchlaufen um eine standardisierte

JavaScript-version zu gewährleisten. Um es Benutzern zu erlauben, verschiedene

Vorschläge schon vorab auszuprobieren, stellt Graal.js experimentelle Features zur

Verfügung. Einer dieser neuen Vorschläge ist der Pipeline-Operator, welcher sich im

Moment in Stufe 2 des Prozesses befindet. Darüber hinaus ist es eines der

meistgewünschten Funktionen in der Community. Graal.js läuft auf der GraalVM und

verwendet das Truffle-Framework. Dieses ermöglicht Toolsupport und die Interoperabilität

mit anderen Truffle-Sprachen.

Diese Arbeit beschreibt den Ansatz, den Pipeline-Operator als experimentelles Feature in

Graal.js zu implementieren mit Hilfe der in der Spezifikation beschriebenen „Topic

Bindings“. Die Pipeline wird aufgelöst, um die Kompilierung zu vereinfachen und gute

Leistung beizubehalten. Des Weiteren wird der Ansatz mit dem äquivalenten Code ohne

Pipeline verglichen und die Interoperabilität mit anderen Truffle-Sprachen wird getestet.

October 23, 2023 k11808111 3/51

Abstract

JavaScript is currently one of the most used programming languages. Due to this fact, the

language is continuously extended by new features. Before those are added, they need

to run through a multi-stage proposal process by ECMAScript, to ensure a standardized

JavaScript version. To allow users to experiment with and test out different proposals, the

Graal.js engine provides experimental features. One of these new proposals is the

pipeline operator, which is currently at Stage 2 and one of the most desired features by

the community. Graal.js operates on the GraalVM through the Truffle language

implementation framework. This enables tooling support and interoperability between

several languages.

This thesis describes the approach to add the pipeline operator to Graal.js as an

experimental feature by using the topic bindings described in the specification. The

pipeline itself is desugared to simplify compilation and maintain good performance.

Furthermore, the implementation is compared to equivalent code without pipelines and

the interoperability with other Truffle languages is explored.

October 23, 2023 k11808111 4/51

Table of Contents

1. Introduction .. 5

1.1. Motivation .. 5

1.2. Task .. 7

2. Foundations ... 8

2.1. JavaScript ... 8

2.2. ECMAScript proposal process .. 10

2.3. GraalVM .. 11

2.4. Truffle .. 12

2.5. Graal.js .. 14

3. Architecture .. 15

3.1. Nodes .. 16

3.2. Additions to the architecture .. 16

3.3. Pipeline operator syntax .. 17

3.3.1. Topic reference ... 18

3.3.2. Examples .. 18

4. Implementation .. 20

4.1. Approaches ... 20

4.1.1. First approach ... 20

4.1.2. Second approach .. 24

4.1.3. Third approach .. 27

4.2. Error handling ... 31

4.3. Tests ... 32

5. Technical Data ... 34

5.1. Benchmarks .. 34

5.2. Interoperability .. 41

6. Related Work ... 43

7. Conclusion ... 45

8. References .. 48

9. Picture References .. 50

October 23, 2023 k11808111 5/51

1. Introduction

JavaScript is one of the most widely used programming languages in the context of the

web. To keep up with the constantly evolving internet technology and the demands of the

users working with the programming language, new features are proposed regularly. To

maintain a standardized version of JavaScript across different browser environments, an

ECMAScript specification is defined as a standard. The new proposals must run through

multiple stages, where they are being explored and evaluated by a committee. After this

process, features are added to the ECMAScript specification and can then be provided by

the different JavaScript engines.

One of these engines is Graal.js, which is a high-performance JavaScript interpreter

implemented in Java, using the Truffle AST framework provided by the GraalVM. The

interpreter is highly optimizing by using specialization for optimizing the execution.

Furthermore, it also allows interoperability with code of other programming languages

supported by the GraalVM like Java, Kotlin and Python.

1.1. Motivation

Right now, JavaScript provides two options for performing operation chaining – nesting

and chaining.

Nesting means executing one operation and using the result as a parameter in another

operation. This is generally applicable to any type and arbitrary sequence of expressions

in JavaScript. The main issue is the readability of nested operations, especially when the

nesting gets deep and the numbers of parameters for single operations are high. This can

lead to confusions as to which parameters belong to which operation. Moreover, the

statement, which was nested, must be read from right to left (innermost-to-outermost) as

opposed to the natural reading flow of source code. A very simple example of nesting

would be:

function1(function2(function3(value)))

October 23, 2023 k11808111 6/51

Chaining means calling a function as a method on a value. Arbitrary many methods can

be chained to be executed sequentially. This style is of course much more limited as

opposed to the nesting, as first, it can only be used with functions and no other expression

types. Furthermore, not even all functions are applicable to a value. Only functions which

are defined as methods in the class of the value can be called on it. Therefore, this option

is very restricted. Nevertheless, it provides very good readability, as the chained

expressions are read from left to right and the parameters for single methods are clearly

grouped and unambiguously associated. A simple example for chaining would be:

value.function1().function2().function3()

In the year 2020, a survey was performed asking people what they feel was missing from

JavaScript, the fourth highest answer was a Pipeline operator. [6]

This pipeline operator combines the readability of the chaining style with the broad

applicability of the nesting to allow the combination of arbitrary JavaScript expression

types. The example from above would look the following using a pipeline operator:

value |> function1(%) |> function2(%) |> function3(%)

In the current proposal, the % token is used as a placeholder to mark where to use the

previous result in the next expression. The |> is the pipeline symbol. The code is very easy

to read, and it is immediately clear how the expressions are structured, and the flow of

execution can also be seen clearly. [1]

In a real-world application, these pipelines can of course be much larger and more

complex. An example for this can be seen in the following code snippet from the proposal.

[1]

jQuery.merge(this, jQuery.parseHTML(

 match[1],

 context && context.nodeType ? context.ownerDocument || context :

document,

 true

));

context

 |> (% && %.nodeType ? %.ownerDocument || % : document)

 |> jQuery.parseHTML(match[1], %, true)

 |> jQuery.merge(%);

October 23, 2023 k11808111 7/51

console.log(

 chalk.dim(

 `$ ${Object.keys(envars)

 .map(envar => `${envar}=${envars[envar]}`)

 .join(' ')}`,

 'node',

 args.join(' ')

)

);

Object.keys(envars)

 .map(envar => `${envar}=${envars[envar]}`)

 .join(' ')

 |> `$ ${%}`

 |> chalk.dim(%, 'node', args.join(' '))

 |> console.log(%);

The examples show JavaScript code from the jQuery and React libraries. In the upper half

of the code snippet you can see the example without the pipeline and in the lower half the

examples are shown with the pipeline. In general, the version with pipeline gives the code

better structure and a good overview over the specific operations and their parameters.

1.2. Task

The goal of this thesis is the addition of one of the new ECMAScript proposals as an

experimental feature to the Graal.js JavaScript engine – the Pipeline operator. This

proposal is currently at Stage 2 / 4 of the proposal process, which means that a draft

specification already exists, which should be used to fully implement the feature.

Additionally, the implementation should be tested and benchmarked, comparing it to

equivalent code without using the Pipeline operator to evaluate the work.

The remaining chapters are structured in the following way: Chapter 2 explains the

background of the project and provides general information about the technology used.

Chapter 3 explains the architecture of Graal.js and the newly added components during

this thesis. The fourth chapter explains the implementation of the Pipeline operator and

goes into details about the different approaches taken to solve the task. Chapter 5 shows

Technical Data like benchmark results and the interoperability exploration, and the sixth

chapter will look at related work and finally the thesis will be finished with a conclusion.

October 23, 2023 k11808111 8/51

2. Foundations

In this chapter, basic concepts related to this thesis’ work are explained as well as the

existing foundations needed. At first, JavaScript and the ECMAScript proposal process is

shortly explained, followed by a short introduction to the GraalVM and the Truffle

framework. Lastly, basics of the Graal.js interpreter are introduced.

2.1. JavaScript

JavaScript is the go-to programming language for web-based applications. It is a

lightweight, single-threaded, prototype-based, dynamic language, which exists since

1995, when it was released as a proprietary software at Netscape. Later in 1997, the

ECMAScript standard has been introduced to get a standardized specification for scripting

languages for and ensure interoperability between different web browsers.

Since then, new versions of this standard have been released continuously and currently,

the 15th version is the most recent. While it was intended to be a scripting language, it

became a general-purpose language due to its variety of usages in all contexts.[18] [19]

At first, JavaScript was a purely interpreted language. In later versions, Just-in-Time

compilation was added to improve performance. The language allowed websites to

become dynamic, as it could manipulate the DOM (Document Object model).[18]

JavaScript is not self-sufficient. It needs a host-environment to operate in, which provides

objects to be manipulated and input and output, as they are not covered in the

specification. An example of such a host environment is a web browser for client-side

computations. The objects it provides are e.g., windows and text boxes. Furthermore,

scripts can be attached to events to be executed once they occur. As those objects differ

between various environments, the ECMAScript language is specified independent from

them. [19]

Like Ruby or Python, JavaScript is a dynamically typed programming language.

This means that data types of variables are not constant, but instead can change during

runtime. It allows reusing existing variables and assigning different values to it, like a

String to a variable holding an Integer value, e.g., which is not possible in many other

languages. Datatypes defined for JavaScript are Numbers, String, Boolean, Null,

Undefined, bigint, Symbol and Object. [20]

October 23, 2023 k11808111 9/51

Objects are the most important data type in JavaScript, as basically all non-primitive

elements are objects (e.g. functions, arrays and so on). They enable users to also use

some Object-Oriented paradigms when programming JavaScript. A speciality of

JavaScript is the absence of classes. While classes are fundamental in most object-

oriented programming languages as abstract models for objects, JavaScript uses

prototypes. This way, only a constructor function needs to be specified and via the

prototype property each function automatically gets, new fields and methods can be added

to the function later in the code and will be inherited by all objects using it. Since

ECMAScript 2015, a class syntax has been introduced, however it is mostly based on

prototypes as well and mainly focuses on making inheritance and object creation easier

syntactically. [21]

To run JavaScript in the browser, a JavaScript engine is necessary to translate the code

to machine code. Nowadays, there is a wide variety of different JavaScript engines

available, some of the most well-known are the V8 engine by Google, Microsoft’s Chakra

engine and SpiderMonkey, which was the first JavaScript engine to exist. The focus in this

thesis however lies on the Graal.js engine of the GraalVM project.

October 23, 2023 k11808111 10/51

2.2. ECMAScript proposal process

JavaScript is extended by a proposal process. Every new feature, which should be added

to the language eventually, must run through five stages to be accepted as a new addition

to the ECMAScript specification. In these stages, the proposals are presented to a

committee, which then decides, whether this proposal is worth exploring. The stages are

structured in the following way:

• Stage 0 (Strawperson):

Proposals in this stage are either yet to be presented to the committee or they have

not fulfilled certain criteria to be promoted to Stage 1.

• Stage 1 (Proposal):

At this stage, the committee wants to develop solutions for this problem and

problem and solution descriptions are created and reviewed.

• Stage 2 (Draft):

In this Stage, a formal language specification exists, describing the syntax and

semantics of the proposed feature, which should be developed and finally added

to the ECMAScript specification.

• Stage 3 (Candidate):

At this stage, the intended solution is complete and external feedback or

implementation experience is necessary to proceed.

• Stage 4 (Finished):

The proposal can be added to the standard at any time.

Additionally, there is also an Inactive stage for proposals, that were withdrawn or rejected

by the committee. [2]

October 23, 2023 k11808111 11/51

2.3. GraalVM

The GraalVM is a layered approach to achieve high-performance when executing a wide

range of different heterogeneous languages by a common framework, which allows reuse

of multiple optimizing concepts.

As visible in Figure 2-1, the Java HotSpot VM is the bottom layer of the architecture. On

top of that is the Graal compiler, which is a highly optimizing compiler written in Java. To

achieve high performance, it uses partial compilation with method inlining, specializations,

assumptions, and other profiling information. This compiler can directly be used by

languages like, e.g., Java or Kotlin, which are native to the JVM. To also execute other

languages on the GraalVM, another layer in the architecture is needed. This layer is the

Language Implementation Framework called Truffle, which enables developers to write

their own Abstract Syntax Tree Interpreter of the desired guest language. In Figure 2-1,

some of the guest languages are depicted, for which such interpreters already exist. [3]

Figure 2-1: GraalVM architecture overview [1]

October 23, 2023 k11808111 12/51

2.4. Truffle

The Truffle framework1 is an essential part of the GraalVM. It is an open-source library for

implementing programming languages as Abstract Syntax Tree interpreters in Java and

provides native performance, the ability to integrate the language with all other Truffle

languages and tool support. [4]

This approach uses specialization information like type information when interpreting code

to rewrite the AST. After the AST is seen as stable, partial compilation is used to produce

optimized machine code for the specialized AST parts. Should some specialization not

hold afterwards, deoptimization is performed. In this step, the compiled machine code is

invalidated, and execution is transferred back to the interpreter, which can then use the

newly gathered information to recompile the code again with partial evaluation. [3]

Truffle allows developers to write their own self-optimizing AST interpreters for any

programming language of their choice in Java. Würthinger et al. [10] present the approach,

where an Abstract Syntax Tree can be modified during interpretation by replacing a node

in the tree with another node. This allows optimizing dynamic language constructs.

The approach uses profiling feedback to specialize nodes. At first, a general node is

executed in the AST. After incorporating profiling data, this node is replaced by a more

specific node, which performs the operation faster for the current operands. However, this

node is not able to handle all cases. Should later profiling prove one of the assumptions

taken wrong, the node is again replaced with a generic one performing slower but covering

different variants.

1https://www.graalvm.org/latest/graalvm-as-a-platform/language-implementation-

framework/ (Last visited: 21st June 2023)

https://www.graalvm.org/latest/graalvm-as-a-platform/language-implementation-framework/
https://www.graalvm.org/latest/graalvm-as-a-platform/language-implementation-framework/

October 23, 2023 k11808111 13/51

In the figures above, an example is shown for the Truffle partial compilation and

deoptimization parts. For this example, a simple addition is performed. At first, all nodes

of the AST are uninitialized. After executing the nodes for the first time, the nodes profile

to Integer addition. With this information, the respective tree nodes can be rewritten to

Integer nodes and the rest are generic nodes. This tree is then compiled using partial

evaluation to optimize the execution for this case. [3]

If one of the assumptions does not hold, the execution is transferred back to the interpreter

and the machine code is discarded. Again, profiling is used to rewrite the nodes, which

were violating the previous speculations. In the example above, one of the summands is

now a double instead of an integer, which means that also the addition itself must be

changed to an Addition node for doubles. After the new profiling feedback is incorporated,

the code is again compiled aggressively with partial evaluation. [3]

Figure 2-2: Node rewriting and partial evaluation using Truffle [2]

Figure 2-3: Deoptimization, node rewriting and recompilation using Truffle [2]

October 23, 2023 k11808111 14/51

2.5. Graal.js

Graal.js2 is a JavaScript implementation written in Java, which uses Truffle and the

GraalVM compiler to achieve high performance. It is fully compliant with the ECMAScript

standard specification. Due to using the GraalVM architecture, it is also interoperable with

all other Truffle languages and supports tooling. [5]

A detailed description about the architecture and components of Graal.js can be read in

Chapter 3.

2 https://github.com/oracle/graaljs/tree/master/graal-js (Last visited: 21st June 2023)

https://github.com/oracle/graaljs/tree/master/graal-js

October 23, 2023 k11808111 15/51

3. Architecture

Graal.js has several components, the work of this thesis was done in two of them: the

Parser and the runtime system. Therefore, the focus of this chapter lays in explaining

these parts of Graal.js in more detail as well as the Pipeline syntax specifications.

As Graal.js is a very large project with many different components, the focus of this chapter

lies on the parts worked on during this thesis. The Parser was the part of the architecture,

where most of the work of this thesis happened. The runtime system is the component,

which provides the Truffle AST nodes and implementations for all JavaScript language

elements.

A diagram of the components and interaction between them is shown in Figure 3-1.

As shown in Figure 3-1, the Source code is first processed by a Lexer and a Parser. The

Lexer scans the code and creates a Token Stream. This stream is then processed by the

Parser to create the Intermediate Representation as well as check the code for errors and

validity and establish contextual and semantical dependencies. This Intermediate

Representation is a Parser Tree, where dependent nodes are connected. After the parsing

process is finished, the Parser tree is traversed by a Visitor. Whenever the visitor visits a

node, the node is transformed into a Truffle AST node.

Figure 3-1: Simplified Architecture of Graal.js

October 23, 2023 k11808111 16/51

3.1. Nodes

Graal.js uses the Truffle framework to interpret JavaScript code. This framework allows

writing AST interpreters for any programming language. In Graal.js, the AST nodes are all

specified in the runtime system. The abstract base node, JavaScriptBaseNode, is the root

of all other implemented nodes. Starting from this, nodes are implemented for each

operation and language element existing in JavaScript. Some examples for Nodes are

ArrayCreationNode for creating an array, FunctionCallNode for function calls or nodes for

unary and binary operations like the JSNotNode or the JSAddNode and many more.

In each node, execute methods are defined to correctly execute the JavaScript code in

Java. Specialization is used to provide more efficient and performant execution.

For this, partial evaluation is performed by speculating on types and values of variables.

Using these speculations, the code is compiled and executed. Should a speculation fail,

the call transferToInterpreter is performed and execution is continued in the interpreter.

The profiling feedback is then used to update the specializations and the code is compiled

again using partial evaluation.

3.2. Additions to the architecture

In the final approach, only additions to the Parser component are made to realize the

Pipeline operator as an experimental feature. All other components are left unchanged. In

the first approaches, the runtime system was also changed, but these changes were

removed again later, as they were not used anymore.

The changes required in the Parser were additions to two of the Parser methods, where

the expressions are parsed. Temporal variables are created in the process of parsing a

pipeline expression, which are always in the scope of a function. Additionally, the pipeline

token had to be added to be scanned correctly by the Lexer.

October 23, 2023 k11808111 17/51

3.3. Pipeline operator syntax

For indicating the pipeline operator, the token |> is currently used in the specification. This

will most likely also be the final choice. The grammar of the pipeline syntax looks as

following:

 Left expression |> right expression { |> expression }

The pipeline operator (|>) is an infix operator. If the pipeline operator is only used once in

a pipeline, the left expression must return a result, otherwise the placeholder token (%)

cannot be bound to a value. The right expression on the other hand can be any expression

type without restrictions. When chaining multiple pipeline operations, all expressions

except the right-most need to return a result.

Expressions, which should be compatible with pipelines are:

• (Unary) function calls

• Method calls

• Arithmetic operations

• Array literals

• Object literals

• Template literals

• Function literals

• Object constructions

• Await expressions

• Yield expressions

• Import statements

For using these expressions in combination with the pipeline syntax, there are some

restrictions:

• await can only be used inside of an async function body.

• Yield can only be used inside a generator function.

• import can only be used in modules.

All other expression types mentioned above can be used without any restrictions.

October 23, 2023 k11808111 18/51

3.3.1. Topic reference

After executing the left expression, the result needs to be stored for using it in the right

expression. The place, where a user wants to use the previous result, needs to be marked

somehow. For that, a placeholder token (topic reference token) indicates the location.

Right now, the specification defines the % token as a placeholder for the result, although

this may change in later versions as the proposal progresses. If the placeholder token is

not used in a right expression, the syntax is not valid and will throw an error message.

At execution time, when the left side execution finishes, the result is bound to the topic

reference and when executing the right expression, the topic reference token evaluates

to the saved result.

In this approach, the topic binding is implemented using temporal variables, which exist in

the background invisible for the user. They are created when the left side is executed and

after the pipeline statement has been executed, they are again removed. More on the

implementation details can be read in Chapter 4.

3.3.2. Examples

In this section, some very simple and trivial examples explain the usage of the pipeline

syntax in different settings.

A basic example of a pipeline expression is the following:

5 |> double(%);

In this code sample, the left expression is a simple Integer literal (5) and the right side is

a function call (double), which takes one parameter and returns the parameter times two

as a result. When executing this statement, the left side of the pipeline is evaluated first.

The result 5 is then bound to the topic reference (%). Then, the right expression can be

executed, where % is resolved with the value 5, which means the result of the whole

statement is double(5).

The topic reference token can also be used more than once in a right expression. An

example for this:

(1 + 4)*3 |> calculateArea(%, %);

October 23, 2023 k11808111 19/51

Here, the left expression is an arithmetic operation adding 4 + 1 and then multiplying the

result with 3. The result of this calculation should then be used for calculating the area

with the function calculateArea, which takes two parameters for the width and height of an

object. In this example, both parameters are the topic reference, which means the actual

call at runtime will be calculateArea(15, 15). When using the same topic reference token

more than once in the same pipebody, all the placeholders evaluate to the identical result.

Furthermore, chaining arbitrarily many pipeline expressions is possible. A simple example

for this is:

3 + 4 |> new Rectangle(6, %) |> %.calcArea();

In this example, the first expression performs an addition. The result is then used as a

parameter for constructing a Rectangle object. In the right most expression, the method

calcArea() is called on the Rectangle and calculates its area.

For chaining pipelines, the execution order is always form left to right, so 3 + 4 is evaluated

first. The result – 7 – is then bound to the topic reference and the next expression, new

Rectangle(6, 7) is evaluated and the created object is bound to the topic reference and

finally calcArea() is called on the object.

Of course, more pipeline operators can be added and more operations in a single pipeline

performed.

October 23, 2023 k11808111 20/51

4. Implementation

This chapter explains the implementation details and different approaches taken during

this thesis.

4.1. Approaches

To realize the pipeline operator in Graal.js, three different approaches were taken. While

in the first two approaches, changes in the Parser as well as the runtime system were

necessary, for the third, current and final approach, only additions to the Parser are

required.

4.1.1. First approach

In the first approach, the idea was to always treat the pipeline operation as a binary

expression.

This expression has two sub-expressions, the left-side expression of the pipeline operator

and the right-side expression. If multiple pipelines are chained, the right-side expression

is again a binary pipeline expression and if another pipeline occurs, it is again the right

child and so on.

To evaluate the pipeline at runtime, the goal was to add a new Truffle AST Pipeline node

in the runtime system, which performs the topic binding and execution in its execute

method. The topic binding should be resolved by using temporal variables, where the

result of the left expression is saved and then inserted into the right expression.

First, the new operator |> was added to the TokenType enumeration as a binary operator

with the same precedence as the function arrow, the assignment operators, and the

generator operators, as described in the specification.

Then code to parse the pipelines was added to the Parser class. The primaryExpression

method was altered to parse the % token as an identifier, if it occurs at a position, where

it is semantically invalid to be a modulo operator.

October 23, 2023 k11808111 21/51

In that case, an identifier reference is created with the ident name “%pipeDepth”, where

pipeDepth is the nesting depth. For the first pipeline body, it is 1, 2 for the second and so

on. When no pipeline is currently parsed, pipeDepth is 0 and an error is thrown if it is

attempted to use % as an ident.

The parsing of the pipeline itself is done in the expression method, where all kinds of

expressions are parsed in a loop. First, the left side expression is parsed. If the operator

is a pipeline token, the pipeDepth variable gets incremented by 1, then the right side is

parsed in another loop with a recursive call on the expression function. After both

subexpressions are gathered, the pipeDepth is decremented. A check is performed if the

topic reference token is used in the right subexpression. For this, a new PipelineContext

is introduced, which contains the pipeDepth and a Boolean to indicate, whether the topic

reference was parsed for this pipe body. If this is not the case, a syntax error is thrown.

Otherwise, the method newBinaryExpression is called to create a Parser node of the

pipeline expression.

In this method, an additional clause is added to create a Pipeline node, should the operator

be a pipeline. For this to work, a PipelineNode was implemented for the intermediate

representation. This node was modelled as a child node of the BinaryNode. It has two

children, the left and right subexpression and additionally saves the level of pipeDepth for

assigning the topic reference to the correct placeholder identifier.

In Figure 4-1, the abstract structure of the AST of a pipeline is depicted. The red numbers

indicate the order of evaluation/execution. First, the execute method of the PipelineNode

is entered. Second, the left sub expression is evaluated and third, the right sub expression

is evaluated in this approach.

Figure 4-1: AST of a pipeline expression with
execution order

October 23, 2023 k11808111 22/51

In Figure 4-2, the abstract structure of the AST of a nested pipeline is shown. The order,

in which the execute methods of the AST nodes are called is again indicated by the red

numbers.

A very simple, concrete example how the Parser tree of a pipeline looks can be seen in

Figure 4-3. In this example, the expression 1 + 2 |> % + 4 is parsed. The Pipeline node is

the root node, and it has two children, which are both addition nodes. These have again

two children, the summands. For the left child, they are two numbers, 1 and 2 and for the

right node we have 4 and the topic reference token.

Figure 4-2: AST of a nested pipeline expression

Figure 4-3: Parser Tree of the expression 1 + 2 |> % + 4

October 23, 2023 k11808111 23/51

Figure 4-4 shows an example Parser tree of a pipeline chain. The expression parsed is

ints[1] |> multiply(%, 3) |> 100 - %. The first node is an Index node for a simple array

access at a position, with two leaf nodes, the array name, and the index to be accessed.

This is the left child of a Pipeline node. Next, the multiply(%, 3) function call is processed

and a CallNode is created with the function name and its parameters % and 3 as children.

Next, another pipeline operator occurs, so the CallNode becomes the left child of a second

Pipeline node. In the last step, parsing the final subexpression, 100 - %, creates a

Subtraction node with the minuends as child nodes.

As no more pipeline operators occur after that, the Subtraction node is the right child node

of the second Pipeline node and this in turn is the right child of the first pipeline.

For this approach, whenever multiple pipeline operators are chained, the one occurring

first is always the top node and the next one is the right child of that node. Until no more

pipelines occur in the statement, the right child is always another pipeline node.

After the parsing is finished, the Pipeline node of the Parser tree needs to be transformed

to a Pipeline AST node once visited by the Visitor. The visitor is the class

GraalJSTranslator. In this class, the transformations for all existing Parser nodes to

Truffle nodes are implemented.

Figure 4-4: Parser Tree of the expression ints[1] |> multiply(%, 3) |> 100 - %

October 23, 2023 k11808111 24/51

In the case of the PipelineNode, the binary node transformation methods,

enterBinaryNode and enterBinaryExpressionNode, were reused. The only changes

necessary were to add the Pipeline operator to the switch statement to enter the second

method from above.

After coming to this point, some issues with this approach came to light. The main issue

was the order of the Parser nodes. So, the approach was changed slightly, which will be

described in the next subchapter.

4.1.2. Second approach

In the second approach, most of the parts from the first approach were kept. The main

change was the grouping of the Parser nodes.

For a single Pipeline without chaining multiple pipeline operators, also nothing changes.

There is a left subexpression and a right subexpression. The order only changes for

pipeline chaining. In this case, where now the Pipeline node always becomes the left child

of the next Pipeline node as opposed to before, where the first node was the outermost

and following Pipeline nodes became the right children of the previous pipe.

October 23, 2023 k11808111 25/51

In Figure 4-5, the abstract structure of the AST of a chained pipeline expression is shown

with the order of execution stated in red numbers. The top PipelineNode’s execute method

is called first. Next, the second PipelineNode’s execute method is entered and then the

left subexpression of this node is executed, which can again be a PipelineNode. After that,

the right subexpression of the leftmost node is executed. Finally, when all the left side is

executed, the right subexpression of the topmost PipelineNode is evaluated and the result

is returned.

Figure 4-5: Generic AST of a chained pipeline for Approach 2

October 23, 2023 k11808111 26/51

A concrete example for this can be seen in Figure 4-6. The same example expression

ints[1] |> multiply(%, 3) |> 100 - % is used as in the previous section 4.1.1. However, in

this case, after the IndexNode and the CallNode are parsed, they become the left and

right child of the first Pipeline Node. After encountering another Pipeline operator, the first

Pipeline node becomes the left child of the second Pipeline node. The Subtraction node

is then the right child of this Pipeline node.

After performing this change and checking, whether the parsing process works correctly,

the next step was to implement the Pipeline Truffle node. Here the execution of the

pipeline at runtime needs to be specified. The basic idea consisted of three steps:

1. Execute the left subexpression and save the result.

2. Create the topic binding by assigning the saved result to a temporal variable.

3. Execute the right-hand side using the topic binding to resolve the usages of the

topic reference.

To implement all this, an execute method was used, which all Truffle nodes have. The first

step from above is rather straightforward to realize by calling the execute method of the

left subexpression and then assigning the result to a local Object variable.

Figure 4-6: Revised Parser Tree of the expression ints[1] |> multiply(%, 3) |> 100 - %

October 23, 2023 k11808111 27/51

The second part was the one where new issues appeared. After saving the result of the

left side, accessing the placeholder identifiers, and replacing them with the result turned

out to be a bigger challenge than initially thought. In the end, no feasible solution for this

problem was found, which led to the third and final approach of this project.

4.1.3. Third approach

In the third approach, a different angle to solve the task was taken. Instead of trying to

add new Truffle AST nodes and Parser nodes to get the desired outcome, existing nodes

were reused, and the pipeline syntax was “desugared” to fit into those structures. This

resulted in no need to make changes/additions in the runtime system, but only in the

Parser. The new nodes created in the previous approaches were removed.

Parsing the pipeline syntax is moved to the method assignmentExpression, as the

pipeline operator has the same precedence as the assignment operators. A new if-clause

is added to parse the pipelines.

The main change is the topic binding now happens in the Parser as opposed to the

previous approaches, where it was done at runtime. In the first step, the left side

expression is parsed. After that, if a pipeline operator occurs, a BinaryNode assigns this

expression to the placeholder identifier. This is an internal assignment not visible to the

user only for the purpose of creating the topic binding. Next, the right-side expression is

parsed by a recursive call of the assignmentExpression method. In the final step, the

internal assignment and the right side are combined by creating a CommaRightNode.

This node takes two expressions and first executes one – here the assignment - and after

that the other – the right-side expression.

October 23, 2023 k11808111 28/51

In Figure 4-7, the AST structure of a single pipeline expression is shown. The order of

execution in this case again starts with the top-most node of the tree, which is the

CommaRightNode. Next, the Assignment node is entered, which executes the IdentNode

and the expression, which is the left side of the pipeline. Lastly, the right-side expression

is executed. This expression can be of any kind, including another pipeline, in which case

the execution order shown in the picture above will be performed again.

Figure 4-7: AST for the third approach with CommaRightNode

October 23, 2023 k11808111 29/51

In Figure 4-8, the Parser tree of the example from the previous approaches is shown. The

expression 1 + 2 |> % + 4 is parsed in the following way:

First, the left subexpression, 1 + 2, is parsed. In the next step, the topic binding assignment

is inserted by creating the identifier “%1” and assigning the left expression to it by creating

an AssignmentNode. Next, the right expression - % + 4 - is parsed, and finally both the

topic binding and the right side are combined in a CommaRightNode.

As can already be seen from this example, the pipeline tokens are completely removed in

the Parser and therefore no new transformations have to be specified.

For chained pipelines, all expressions except the right most need to be assigned to a

placeholder identifier, which means the pipeline is internally transformed into a chain of

assignments. To show this based on a very simple example again:

Before:

ints[1] |> multiply(%, 3) |> 100 - %

After:

%1 = ints[1]; %2 = multiply(%1, 3); 100 - %2

Figure 4-8: Parser Tree of of the expression 1 + 2 |> % + 4 with third
approach

October 23, 2023 k11808111 30/51

This code sample shows the same pipeline chain as in previous sections as a very simple

example for pipeline chaining. First, ints[1] is parsed and then assigned to %1, which is

then used in multiply(%1, 3). In turn, this expression is assigned to %2. The final

expression, 100 - %2 provides the result of the whole pipeline expression. In Figure 4-9,

the Parser tree for this example is shown as well.

Additionally, the pipeDepth variable is moved to a function context object, which means

there is one variable per function. This is necessary to ensure that also pipelines inside

function literals in a pipeline chain are parsed correctly. Two simple methods are added

to increase and decrease the pipeDepth variable as well.

A special case, which occurs through this approach and needs to be handled explicitly, is

using the pipeline syntax in JavaScript’s strict mode. This mode forces users to write better

and more correct code, as mistakes, that would not be thrown as errors from normal

JavaScript are treated as such in strict mode. One example of such an error is using a

variable without declaring it first.

Figure 4-9: Parser Tree of the expression ints[1] |> multiply(%, 3) |> 100 - % for third
approach

October 23, 2023 k11808111 31/51

This is also the reason, why some additional details must be done for this pipeline syntax

to work in strict mode, as the current implementation uses undeclared variables as

placeholders to save the result of the left-side expression of the pipeline. For this approach

to also work in strict mode, an if-clause is added to check if this code should be executed

in strict mode. If this is the case, a VarNode needs to be created to declare the placeholder

variable with a let-statement. With this, the method declareVar can be called and therefore

it is indicated, that the topic reference variable is indeed declared in the current scope.

This step is especially necessary for enabling the usage of the pipeline in modules, as

they are executed in strict mode per default.

4.2. Error handling

Two new possible syntax errors need to be handled due to introducing the Pipeline.

The first error that can occur is not using the topic reference token (%) in a pipe body.

An example of this error is:

7*7 |> square(3);

In this example, a syntax error will occur, as the topic reference is never used in the right

expression. That is an error, as without the topic reference, the left expression will be

executed, but never used afterwards and the result is just thrown away.

Implementing the detection of this error required the introduction of a new Boolean

variable in the Parser called topicReferenceUsed. This variable is set to false each time

the Parser encounters a |>-token. It is set to true once the first topic reference token is

parsed after a |> token and inside the pipe body. Every further occurrence of the topic

reference on the right side is not relevant for this check. Once the right expression is

parsed, the variable is checked. If it is still false, the error message “Pipe body must

contain the topic reference token(%) at least once” is thrown as a Syntax error.

Furthermore, to also check this error for a chained pipeline, a local variable is introduced

to the method, in which the pipeline is parsed. As the right side of the pipeline is parsed

recursively, the check always happens, after the right side was processed. In the case of

pipeline chaining, each time another pipeline operator occurs, the topicReferenceUsed

variable is reset to false. To maintain the correct Boolean values for each pipe body, the

local variable prevRef saves the previous value of the topicReferenceUsed Boolean to

restore them at the end of the method before returning the parsed expression.

October 23, 2023 k11808111 32/51

This step is necessary to not miss any potential errors as otherwise the variable will always

have the value of the last right side and all other checks will have the same result.

The second error is using the topic reference token outside a pipeline body. This error is

checked in the primaryExpression method, where the topic reference token is parsed. A

simple example for this error kind is:

let sum = % + 10;

To detect this error, the check pipeDepth <= 0 is performed. If this check evaluates to true,

a syntax error with the message “The topic reference cannot be used here!” is thrown.

4.3. Tests

To validate the implementation, the task for me was to write test cases to get a good

coverage. For this, test cases for the different use cases of the pipeline were written. The

first part tested using a Pipeline in combination with all possible expression types on the

right side. On the left side different types of expressions are used to also test their

compatibility with the pipeline. Additionally, test cases for pipeline chains of different depth

were added to test, that the chains work correctly and some special interesting corner

cases.

Furthermore, to test some of the expression types described in Chapter 3.3, it was

necessary to implement basic constructs to properly test them. These constructs were a

unary function (function with one parameter), a function with two parameters and a class

for testing method calls and construction using the pipeline. Moreover, a function returning

a Promise as well as an asynchronous function for testing awaiting a Promise and a

generator function to test the use of yield in the context of a pipeline.

Most of the expression type test cases are kept very simple by performing a calculation,

a function call or an array access on the left side and using the result in the different

expression types with the topic reference placeholder. To verify the result of the operation,

the actual outcome is compared to the expected for equality.

October 23, 2023 k11808111 33/51

In the second part of the tests, different sizes of pipeline chains were tested. The number

of pipeline operators of the statement is always increased by one by appending some step

at the end. Chains from two to 6 sequential pipeline operators were tested in the end. In

one of the statements an interesting corner case was tested, where one pipebody

statement consists of only topic reference /modulo tokens(%) as in the following example.

const example = 15*3 |> % % %;

It is necessary to test for this constellation as well even though it is not really a statement

that will appear in actual code as the result of this operation will always be one. All the test

cases passed in the end, which means that the implementation handles the use cases

described above correctly.

October 23, 2023 k11808111 34/51

5. Technical Data

In this chapter, technical aspects of the implementation of the pipeline operator are shown

in detail like benchmark results and Truffle interoperability tests.

5.1. Benchmarks

For benchmarking, there are several aspects, which should be benchmarked during this

thesis.

1. Comparing the pipeline syntax to equivalent code without using a pipeline

2. Comparing the pipeline implementation to the implementation of other engines

For point 1, two aspects were compared. The first being the different expression types,

which can be used in a pipeline and secondly chaining together multiple pipelines (2 up

to 6 chained pipeline operators). It is also distinguished between running Graal.js as a

plain Java program and using the Graal compiler for additional optimizations through

partial compilation.

For the second point, as only Babel.js currently provides support for the pipeline operator

and no other engines does so at the point of this thesis, the implementation in Graal.js

was compared to the Babel.js pipeline support, although Babel simply transforms the

pipeline to older JavaScript versions.

A small and simple JavaScript file was written for benchmarking, which uses two nested

loops. The first loop is used to setup each run and to take a starting and end time and

calculate the resulting measured time for each execution batch. It is repeated x times. The

inner loop simply executes the operation to be benchmarked repeatedly. After this loop is

finished, the time is again measured, and the time taken to execute the operation n times

and an average for a per operation execution time are calculated. The measured times of

each loop run are also summed up to calculate an overall average after all runs are

completed.

October 23, 2023 k11808111 35/51

Additionally, a warmup run is performed, whose statistics do not count towards the result.

This is done to remove some noise and not have some outliers. For the parameters n and

x from above the values 5 million (n) and 10 (x) were chosen.

Overall, each operation is executed 50 million times, and the average execution time is

calculated using the time it took to execute these.

In the figure below, the results of the benchmarks for comparing different JavaScript

expression kind execution times when using the pipeline versus not using it without the

Graal compiler are visible. Instantly, it becomes clear that using the pipeline results in a

slight increase of the execution time in all the cases below. The biggest difference in

execution time occurs when using the pipeline with yield statements.

Figure 5-1: Benchmarks comparing execution times of single expressions

October 23, 2023 k11808111 36/51

In the case of chaining pipelines, the result is similar, but with one exception. When

chaining three pipelines and using the special case expression % % %, the pipeline is

faster in average execution compared to no pipeline. Moreover, in the graph below, it is

visible that the execution time increases for each additional pipeline in the chain, which is

the expected behaviour. Moreover, the difference in execution time gets larger for each

additional pipeline operator. Also in this case, the pipeline use increases the execution

time compared to without a pipeline.

Figure 5-2: Benchmarks comparing execution times of chained expressions

October 23, 2023 k11808111 37/51

For the second part, the execution times using the Graal compiler were compared. In

Figure 5-3 below, the results of the benchmarks for single expressions are visualized. The

average execution times are much lower compared to the interpreter results. For most of

the expression types compared, the execution times are nearly identical, with the pipeline

even outperforming the no-pipeline expression for the object literal and construction

benchmark. On the other hand, the pipeline is significantly slower when used in

combination with a method call, where the execution time is about three times higher than

without a pipeline. Moreover, the highest impact on execution times is noticeable for the

array operations and template literals with roughly 25% of additional execution time (on

average).

Figure 5-3: Benchmarks comparing execution time of single expressions using the Graal
compiler

October 23, 2023 k11808111 38/51

The chaining benchmarks provided rather different results, as seen in Figure 5-4. The

increase in execution time with pipelines is very steep at about 50 up to 75 percent of the

execution time. This result is surprising, as well as the fact that the number of pipelines

does not really affect the execution time. From two to six chained pipelines, the average

execution time of the benchmark remained rather constant and even decreased slightly

when adding an additional one, e.g., comparing two and three chained pipelines.

Figure 5-4: Benchmarks comparing execution times of chained expressions with the
Graal compiler

October 23, 2023 k11808111 39/51

All in all, these benchmarking results show, that my implementation of the pipeline

operator leads to a slight increase in execution times. As expected, the execution times

are many times faster with the Graal compiler. For single expressions, there is only a

marginal rise in execution time as the result of using the pipeline operator for most types

compared to equivalent expressions without pipelines – regardless of the usage of the

Graal compiler. The most significant outlier is the methodCall benchmark with compiler,

where the increase is staggering at roughly 70 %.

Chaining cases showed a bit of a different picture. In almost all cases, the benchmarked

execution time without the use of the pipeline operator is much faster. Here, you must

differentiate between the two sets of benchmarks (with/without compiler).

Without the compiler, the execution time increases steadily for each additional pipeline

operator added, and even outperforms the non-pipeline equivalent on one occasion and

the increase is at a maximum of 40% for these benchmarks.

With the compiler, the execution time remains almost constant when adding another

pipeline to the chain. However, the percentual difference is higher at about 70 to 75% for

most of the cases.

It was expected that the execution time would increase when using the pipeline operator,

as additional checks and the assignments have to be executed. As the main goal of the

pipeline is to increase readability of chained expressions, the decision to use the pipeline

probably results in a trade-off: If the goal is to write readable and easily understandable

code, the pipeline is the best option. When writing performance-critical code, the pipeline

in its current form is most probably not the number one choice, as the equivalent code is

faster in most cases.

October 23, 2023 k11808111 40/51

Lastly, the new Graal.js pipeline implementation was compared to the only other publicly

existing implementation, which is in Babel.js.

The results of this comparison can be seen below in Picture 18. The blue bars are

representing the average execution times of the pipeline in Graal.js, the red ones in

Babel.js. It is visible, that the execution times are very similar between the two, with slightly

better performance in Graal.js. For two and six chained pipelines, Babel.js is faster by

around 2 %. The biggest performance difference appears to be in the 5-pipeline chain,

where the Graal implementation outperforms Babel.js by 20%.

Figure 5-5: Benchmarks comparing execution times of chained expressions with the
Graal compiler and Babel.js.

October 23, 2023 k11808111 41/51

5.2. Interoperability

Another task of this thesis is to explore the interoperability of the implemented pipeline

operator with other Truffle-based languages. Language interoperability is one of the core

features of GraalVM. It allows the user to take advantage of elements from different

programming languages and combine them. In this part, mainly the interoperability with

Java was explored and some possibilities of combining the implementation of the pipeline

operator with Java code were tried out.

Java interoperability is provided directly when using Graal.js. Classes, construct objects,

call methods and many other Java language concepts can be constructed in JavaScript

code. Special functions are provided to access Java types. [11]

The interoperability was explored by taking some use cases from Java, where a pipeline

operator would be useful and test their compatibility with the JavaScript pipeline using the

Truffle feature.

The first example is about simple function chaining and uses String functions, as chaining

occurs frequently in this context. First, a Java string with the value “Java” was created by

using the Java.type function. Next, the pipeline was used and called the method concat

to concatenate the String with another one and then the toUpperCase and trim methods

were called.

var javaString = new (Java.type('java.lang.String'))("Java") |>

%.concat(" used in JavaScript with a pipeline ") |> %.toUpperCase()

|> %.trim();

This example was executed, and the result was the expected String JAVA USED IN

JAVASCRIPT WITH A PIPELINE. This shows that the new pipeline operator for

JavaScript is interoperable with Java, and you can use it for any method chains to make

them more readable.

October 23, 2023 k11808111 42/51

Another benefit of the interoperability between JavaScript and Java in Graal.js is the ability

to use Java standard libraries in JavaScript code like the Math library. This library provides

helpful functions for calculations like, Math.min()/max(), Math.floor()/ceil(), Math.sqrt(),

Math.round() and also constants like Math.Pi. Again, a simple example using several of

the methods above was created and they were combined with a pipeline operator as

visible in the code snippet below.

var result = Math.pow(2,16) |> % + Math.floor(Math.PI)*Math.max(%, 36*146);

This leads to the conclusion that the JavaScript pipeline implementation of this thesis for

Graal.js is fully interoperable with Java, as long as the main requirement – topic reference

is used in the right-side expression at least once – is fulfilled. The same is also valid for

the other Truffle languages, which allow interoperability with JavaScript. Users should be

able to use the pipeline combined with variables, arrays, objects, and other constructs

without any issues, provided the syntax is valid according to the descriptions in the

previous chapters.

October 23, 2023 k11808111 43/51

6. Related Work

As the Pipeline operator is currently only at Stage 2 out of 4 of the ECMAScript proposal

process, the feature is not (publicly) integrated in most other JavaScript engines. One

engine that supports the pipeline already is Babel.js, where you can experiment with the

pipeline syntax by installing a corresponding plugin. Babel.js is a JavaScript compiler,

which performs syntax transformations to convert new JavaScript syntax to old, browser

compatible code. This allows users to use any novel language features like the Pipeline

and transforms it to equivalent code of the current JavaScript language. [12]

The implementation of the pipeline proposal plugin for Babel is written in TypeScript and

the approach taken is the same as in this thesis. Pipeline expressions are resolved into

chains of assignments with generated variables, which ensure the correct bindings. This

emerges from the Babel.js Github repository.3

The RxJS framework also provides a pipeline functionality. RxJS is a JavaScript library

for reactive functional programming. One feature of this framework is the pipe() function,

which is a pure function. It can be called on an Observable and creates another one as

output. The parameters of the function are the operators that should be performed

sequentially on the Observable. Examples for operators are map(), filter() and many more

functions in this context. [13] This approach is implemented in TypeScript using the

functional paradigm passing parameters from one function to the next to create the pipe.4

The Pipeline operator is also used in other programming languages. Microsoft provides a

pipe operator in F#. It has the same token as pipeline operator (|>) and is used to pipe

results between functions. Like this, functional pipelines can be used. F# also allows to

pipe two or three different arguments with the operators ||> for two parameters and |||> for

three. To enable that, the parameters are combined to a tuple and then piped to the next

function. Furthermore, it is possible to perform backward piping by simply reversing the

operators in the following way: <|, <|| and <|||. This way, piping from left to right can also

be used, which is called backward pipeline by the developers. [7]

3https://github.com/babel/babel/tree/b5d6c3c820af3c049b476df6e885fef33fa953f1/packages/babel-plugin-

proposal-pipeline-operator/src (Last visited: 4th October 2023)
4https://github.com/ReactiveX/rxjs/blob/0bd47eab10dec89f245b888f1f26e03cb36d2a78/package

s/rxjs/src/internal/util/pipe.ts#L4 (Last visited: 8th October 2023)

https://github.com/babel/babel/tree/b5d6c3c820af3c049b476df6e885fef33fa953f1/packages/babel-plugin-proposal-pipeline-operator/src
https://github.com/babel/babel/tree/b5d6c3c820af3c049b476df6e885fef33fa953f1/packages/babel-plugin-proposal-pipeline-operator/src
https://github.com/ReactiveX/rxjs/blob/0bd47eab10dec89f245b888f1f26e03cb36d2a78/packages/rxjs/src/internal/util/pipe.ts#L4
https://github.com/ReactiveX/rxjs/blob/0bd47eab10dec89f245b888f1f26e03cb36d2a78/packages/rxjs/src/internal/util/pipe.ts#L4

October 23, 2023 k11808111 44/51

The F# version of the pipeline was also proposed as a baseline for the JavaScript

proposal; however, this approach was rejected by the committee. The implementation

resolves the pipeline operators using inline functions. With that, the parameters and

functions are desugared in this approach.5

Hack is an object-oriented programming language developed by Meta especially used for

developing websites, which also introduces a variant of a pipeline operator. [8] The Hack

pipeline operator uses the placeholder token - $$ in this case – to store the result of the

left expression and uses this placeholder in some position in the right expression. [9] The

Hack languages pipeline operator is the blueprint for the JavaScript proposal. [1]

The implementation is also very similar to the approach of this thesis, as a special pipe

variable is defined, which the left side expressions of the pipeline are assigned to before

the right side gets executed with the variable in place.6

There are also other languages, where developers can use a pipeline operator.

Languages that support the use of pipelines are e.g., R [14] and Elixir [15]. There is also

a library in Typescript using the pipeline.[16] The most well-known usage of pipes is

probably in the Linux shell. Here pipes are also used to perform sequential operations on

a dataset. [17] However, all these approaches are different to the implemented pipeline

in this thesis, as they do not use a topic reference token.

5https://github.com/dotnet/fsharp/blob/main/src/FSharp.Core/prim-types.fs#L4315-4315(Last

visited: 8th October 2023)
6https://github.com/facebook/hhvm/tree/c46470d9e78fa32604115c59ed91aa55b7b101e7/hphp/

hack/src/parser(Last visited: 8th October 2023)

https://github.com/dotnet/fsharp/blob/main/src/FSharp.Core/prim-types.fs#L4315-4315
https://github.com/facebook/hhvm/tree/c46470d9e78fa32604115c59ed91aa55b7b101e7/hphp/hack/src/parser
https://github.com/facebook/hhvm/tree/c46470d9e78fa32604115c59ed91aa55b7b101e7/hphp/hack/src/parser

October 23, 2023 k11808111 45/51

7. Conclusion

In this thesis, the ECMAScript proposal for a new pipeline operator for JavaScript was

implemented as an experimental feature to Graal.js. The implementation was based on

the current draft specification provided alongside the proposal, which is currently at Stage

2 of the proposal process. Test cases were written to properly test the implementation and

the performance was compared to equivalent code without pipelines using simple

benchmarks.

The test cases cover most of the use cases. Tests include pipes into all the compatible

expression types. Furthermore, also pipeline chains with increasing depth were tested

and edge cases and errors were thoroughly implemented and tested.

Regarding performance, the pipeline operator’s average execution times are a bit slower

than equivalent code using chaining or nesting instead. These differences are mostly

since some additional operations need to be performed in the background to create the

topic binding. As the main objective of the pipeline is increase the readability of chained

expressions, these small differences are acceptable. Compared to the only other existing

solution by Babel.js, the pipeline operator implemented in this thesis performs slightly

better.

Regarding the interoperability with other Truffle languages, the pipeline implementation is

fully interoperable with Java. The pipeline can be used combined with any Java code,

provided the constraints for its use are complied with. This is also valid for all other Truffle

languages.

The implementation is already in the process of being integrated into Graal.js, a pull

request7 has been created in the Github repository and is currently under review. The

implementation is complete under the current specification, although changes may be

necessary once the proposal progresses into the next stages of the process, as some

details of the syntax may be adapted.

7 https://github.com/oracle/graaljs/pull/761 (Last visited: 28th September 2023)

https://github.com/oracle/graaljs/pull/761

October 23, 2023 k11808111 46/51

Acknowledgements

I would like to thank my supervisors, Lukas Stadler and Christian Wirth, for their

continuous support in all aspects over the course of this thesis. Furthermore, I would like

to thank Andreas Wöß for his technical feedback, advice, and suggestions. I would also

like to thank my primary supervisor, Prof. Mössenböck for his feedback on my work.

Finally, I want to especially thank my family and friends for their unconditional support.

October 23, 2023 k11808111 47/51

List of Figures

Figure 2-1: GraalVM architecture overview .. 11

Figure 2-2: Node rewriting and partial evaluation using Truffle 13

Figure 2-3: Deoptimization, node rewriting and recompilation using Truffle 13

Figure 3-1: Simplified Architecture of Graal.js .. 15

Figure 4-1: AST of a pipeline expression with execution order....................................... 21

Figure 4-2: AST of a nested pipeline expression .. 22

Figure 4-3: Parser Tree of the expression 1 + 2 |> % + 4 ... 22

Figure 4-4: Parser Tree of the expression ints[1] |> multiply(%, 3) |> 100 - % 23

Figure 4-5: Generic AST of a chained pipeline for Approach 2 25

Figure 4-6: Revised Parser Tree of the expression ints[1] |> multiply(%, 3) |> 100 - %.. 26

Figure 4-7: AST for the third approach with CommaRightNode 28

Figure 4-8: Parser Tree of of the expression 1 + 2 |> % + 4 with third approach 29

Figure 4-9: Parser Tree of the expression ints[1] |> multiply(%, 3) |> 100 - % for third

approach .. 30

Figure 5-1: Benchmarks comparing execution times of single expressions 35

Figure 5-2: Benchmarks comparing execution times of chained expressions 36

Figure 5-3: Benchmarks comparing execution time of single expressions using the Graal

compiler .. 37

Figure 5-4: Benchmarks comparing execution times of chained expressions with the Graal

compiler .. 38

Figure 5-5: Benchmarks comparing execution times of chained expressions with the Graal

compiler and Babel.js. .. 40

file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925255
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925256
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925257
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925258
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925259
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925260
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925261
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925262
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925263
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925264
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925265
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925266
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925267
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925267
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925268
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925269
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925270
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925270
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925271
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925271
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925272
file:///C:/Users/alexa/Desktop/Master/Masterarbeit/Masters_Thesis.docx%23_Toc147925272

October 23, 2023 k11808111 48/51

8. References

[1] Pipe Operator (|>) for JavaScript proposal. URL: https://github.com/tc39/proposal-

pipeline-operator (Last visited: 21st June 2023)

[2] ECMAScript proposal stages. URL: https://www.proposals.es/stages (Last visited: 21st

June 2023)

[3] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,

Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. 2013. One VM to

rule them all. In Proceedings of the 2013 ACM international symposium on New ideas,

new paradigms, and reflections on programming & software (Onward! 2013). Association

for Computing Machinery, New York, NY, USA, 187–204.

https://doi.org/10.1145/2509578.2509581

[4] Truffle Tutorial. URL: https://www.graalvm.org/latest/community/publications/ (Last

visited: 21st June 2023)

[5] GraalVM JavaScript Implementation. URL: https://www.graalvm.org/latest/reference-

manual/js/ (Last visited: 21st June 2023)

[6] What do you feel is currently missing from JavaScript? https://2020.stateofjs.com/en-

US/opinions/#missing_from_js (Last visited: June 21st 2023)

[7] F# Symbol and Operator reference. https://learn.microsoft.com/de-

de/dotnet/fsharp/language-reference/symbol-and-operator-reference/ (Last visited: 11th

September 2023)

[8] Hack programming language. https://hacklang.org/ (Last visited: 11th September 2023)

[9] Hack documentation, Expressions and Operators: Pipe.

https://docs.hhvm.com/hack/expressions-and-operators/pipe (Last visited: 11th

September 2023)

[10] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and

Christian Wimmer. 2012. Self-optimizing AST interpreters. In Proceedings of the 8th

symposium on Dynamic languages (DLS '12). Association for Computing Machinery, New

York, NY, USA, 73–82. https://doi.org/10.1145/2384577.2384587

https://github.com/tc39/proposal-pipeline-operator
https://github.com/tc39/proposal-pipeline-operator
https://www.proposals.es/stages
https://doi.org/10.1145/2509578.2509581
https://www.graalvm.org/latest/community/publications/
https://www.graalvm.org/latest/reference-manual/js/
https://www.graalvm.org/latest/reference-manual/js/
https://2020.stateofjs.com/en-US/opinions/#missing_from_js
https://2020.stateofjs.com/en-US/opinions/#missing_from_js
https://learn.microsoft.com/de-de/dotnet/fsharp/language-reference/symbol-and-operator-reference/
https://learn.microsoft.com/de-de/dotnet/fsharp/language-reference/symbol-and-operator-reference/
https://hacklang.org/
https://docs.hhvm.com/hack/expressions-and-operators/pipe
https://doi.org/10.1145/2384577.2384587

October 23, 2023 k11808111 49/51

[11] Graal.js Java Interoperability. https://www.graalvm.org/latest/reference-

manual/js/JavaInteroperability/ (Last visited: 28th September 2023)

[12] What is Babel? https://babeljs.io/docs/ (Last visited: 28th September 2023)

[13] RxJS operators. https://rxjs.dev/guide/operators (Last visited: 28th September 2023)

[14] Der %>% Operator: Pipes in R. https://statistikguru.de/r/pipes-in-r.html (Last visited:

28th September 2023)

[15] Elixir Pipe Operator. https://elixirschool.com/de/lessons/basics/pipe_operator

(Last visited: 28th September 2023)

[16] Functional Programming in TypeScript using the fp-ts library: Pipe and Flow Operator.

https://www.thisdot.co/blog/functional-programming-in-typescript-using-the-fp-ts-library-

pipe-and-flow/ (Last visited: 28th September 2023)

[17] Linux-Pipes erklärt. https://www.ionos.de/digitalguide/server/konfiguration/linux-

pipes/ (Last visited: 28th September 2023)

[18] Introduction to JavaScript. https://www.geeksforgeeks.org/introduction-to-javascript/

(Last visited: 10th October 2023)

[19] ECMAScript 2024 Language Specification. https://tc39.es/ecma262/ (Last visited:

10th October 2023)

[20] Variables and Datatypes in JavaScript. https://www.geeksforgeeks.org/variables-

datatypes-javascript/ (Last visited: 10th October 2023)

[21] Introduction to Object Oriented Programming in Javascript.

https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/

(Last visited: 10th October 2023)

https://www.graalvm.org/latest/reference-manual/js/JavaInteroperability/
https://www.graalvm.org/latest/reference-manual/js/JavaInteroperability/
https://babeljs.io/docs/
https://rxjs.dev/guide/operators
https://statistikguru.de/r/pipes-in-r.html
https://elixirschool.com/de/lessons/basics/pipe_operator
https://www.thisdot.co/blog/functional-programming-in-typescript-using-the-fp-ts-library-pipe-and-flow/
https://www.thisdot.co/blog/functional-programming-in-typescript-using-the-fp-ts-library-pipe-and-flow/
https://www.ionos.de/digitalguide/server/konfiguration/linux-pipes/
https://www.ionos.de/digitalguide/server/konfiguration/linux-pipes/
https://www.geeksforgeeks.org/introduction-to-javascript/
https://tc39.es/ecma262/
https://www.geeksforgeeks.org/variables-datatypes-javascript/
https://www.geeksforgeeks.org/variables-datatypes-javascript/
https://www.geeksforgeeks.org/introduction-object-oriented-programming-javascript/

October 23, 2023 k11808111 50/51

9. Picture References

[1] Introduction to GraalVM. https://www.graalvm.org/22.3/docs/introduction/ (Last visited:

21st June 2023)

[2] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles

Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. 2013.

One VM to rule them all. In Proceedings of the 2013 ACM international symposium on

New ideas, new paradigms, and reflections on programming & software (Onward!

2013). Association for Computing Machinery, New York, NY, USA, 189.

https://doi.org/10.1145/2509578.2509581

https://www.graalvm.org/22.3/docs/introduction/
https://doi.org/10.1145/2509578.2509581

October 23, 2023 k11808111 51/51

SWORN DECLARATION

I hereby declare under oath that the submitted Master’s Thesis has been written solely by

me without any third-party assistance, information other than provided sources or aids

have not been used and those used have been fully documented. Sources for literal,

paraphrased and cited quotes have been accurately credited.

The submitted document here present is identical to the electronically submitted text

document.

Traun, October 23, 2023

Alexander Stummer

