
Author
Felix Schenk, BSc

Submission
Institute for
System Software

Thesis Supervisor
a.Univ.-Prof. Dipl.-Ing.
Dr. Herbert Prähofer

July 2024

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstr. 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Development of a Java
Debugger Framework
Based on the Espresso
VM and Its Compilation
to JavaScript

Master’s Thesis
to obtain the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

i

Acknowledgments

First and foremost, I would like to thank Prof. Herbert Prähofer for his helpful guidance and
encouragement throughout the supervision of my thesis. Additionally, I would like to thank
Simon Grünbacher for the countless discussions and creative input. In general, I consider
myself very fortunate to have worked with the JavaWiz development team, who provided
invaluable feedback and support throughout the project.

Furthermore, I would like to express my gratitude to the team of Oracle Labs, especially
Raphael Mosaner for coordinating communication and providing prompt technical advice. I
also want to thank Patrick Ziegler, Aleksandar Prokopec, Gilles Duboscq and Allan Gregersen
for their assistance with technical questions related to Espresso and WebImage.

Last but not least, I am immensely thankful to my mother, Iris Schenk, and my step-father,
Markus Forster, for their relentless support throughout my studies. Your encouragement has
been pivotal in my journey. Thank you.

This work has been funded by Oracle Labs within the research project Java VM Compiler
Performance, subproject GraalVM: JavaWiz Visualization Tooling.

Abstract ii

Abstract

JavaWiz is a visual debugger for Java designed to aid programming novices and programming
teachers by providing various visualizations. These visualizations show intermediate program
states. Currently, JavaWiz is distributed as a Visual Studio Code plugin, requiring users to
download the appropriate software and setting up Java.

The goal of this thesis is to make JavaWiz accessible via a website. Thus, with this thesis,
a new version of JavaWiz has been implemented which allows running JavaWiz in a web
browser. First, a new backend of JavaWiz has been developed based on the Espresso VM by
Oracle and the Truffle Debug API. Then, this new backend has been compiled to JavaScript
using WebImage.

The thesis presents the implementation of the JavaWiz backend based on Espresso, the
necessary modifications for compiling it with WebImage, an approach for handling multiple
files with the web version, an approach for loading JavaWiz with predefined examples and a
comparison of the performance of the different versions of JavaWiz.

Zusammenfassung

JavaWiz ist ein visueller Debugger für Java, der Programmieranfängern und -lehrenden durch
verschiedene Visualisierungen helfen soll. Diese Visualisierungen zeigen Zwischenzustände des
Programms. Derzeit wird JavaWiz als Plugin für Visual Studio Code bereitgestellt, weswegen
Nutzende die entsprechende Software herunterladen und Java einrichten müssen.

Das Ziel dieser Arbeit ist es, JavaWiz über eine Website zugänglich zu machen. Daher wurde
in dieser Arbeit eine neue Version von JavaWiz implementiert, die es ermöglicht, JavaWiz in
einem Webbrowser auszuführen. Zunächst wurde ein neues Backend von JavaWiz implemen-
tiert, das auf der Espresso VM von Oracle und der Truffle Debug API basiert. Dann wurde
dieses neue Backend mithilfe von WebImage zu JavaScript kompiliert.

In dieser Arbeit werden die Implementierung des JavaWiz-Backends auf der Grundlage von
Espresso, die für die Kompilierung mit WebImage erforderlichen Anpassungen, ein Ansatz
für die Handhabung mehrerer Dateien in der Web-Version, ein Ansatz zum Laden von Java-
Wiz mit vordefinierten Beispielen und ein Laufzeitvergleich der verschiedenen Versionen von
JavaWiz beschrieben.

Table of Contents iii

Table of Contents

1 Introduction 1
1.1 Goals of this Work . 2
1.2 Structure . 3

2 Background 5
2.1 JavaWiz . 5
2.2 GraalVM . 8

2.2.1 Compiler . 9
2.2.2 Truffle . 9
2.2.3 WebImage . 11

3 Related Work 13
3.1 Java Visualizer . 13
3.2 Java Program Flow Visualizer . 14

4 Approach 16
4.1 Espresso as a VM . 17
4.2 Backend in JavaScript . 18
4.3 Handling Multiple Files . 18

5 Espresso Backend 21
5.1 Launching and Executing . 21
5.2 Debugging and Stepping . 22
5.3 Building Trace States . 26

5.3.1 Extracting the Call Stack and the Heap 28
5.3.2 Extracting Loaded Classes and Statics 35
5.3.3 Standard I/O Stream Handling . 36
5.3.4 Extracting Input Buffer Information 37

6 JavaScript Backend 40
6.1 Architectural Changes . 40

6.1.1 Sending Requests through a Shared Array Buffer 43
6.1.2 Debugging Espresso after its Compilation with WebImage 44

6.2 Substituting File I/O . 46
6.3 Supporting Reflection . 48

Table of Contents iv

7 Handling Multiple Files 50
7.1 Extending the Frontend . 51

7.1.1 Storing Multiple Files in the Frontend 51
7.1.2 Reacting to File Changes . 52

7.2 Adapting the Backend . 53

8 Loading Predefined Examples 55
8.1 Loading a Predefined Configuration . 55
8.2 Example Website . 58

8.2.1 Greatest Common Divisor . 60
8.2.2 Read Integer . 60
8.2.3 Matrix Multiplication . 61
8.2.4 Integer List . 62

9 Evaluation 64
9.1 Hello World . 65
9.2 Quicksort . 65
9.3 List of Persons . 66
9.4 Minesweeper . 66
9.5 Object Array . 68

10 Limitations and Outlook 69
10.1 General Limitations . 69
10.2 Future Improvements . 70

11 Conclusion 71

References 72

Appendix 79

1

Chapter 1

Introduction

This thesis builds on and extends JavaWiz [1], which is developed at the Institute for System
Software (SSW) at the Johannes Kepler University, Linz. At its core, JavaWiz is a visual
debugger and is currently distributed as a Visual Studio Code (VS Code) extension. It
features various visualizations, including a desk test [1] depicting changes of variables over
time, a graph of the call stack and the heap [1], a flowchart [2], special renderings for data
structures, like arrays, linked lists [3] and trees [3] and an input buffer visualization. In
cooperation with Oracle Labs, JavaWiz is continuously extended and improved.

The frontend of JavaWiz is written in TypeScript [4] with the framework Vue.js [5]. For
the dynamic and interactive visualizations, D3.js [6] is used, enabling data-driven graphics
and animations between different program states. JavaWiz’ backend is written in Kotlin [7],
which is compiled to Java bytecode. The frontend and backend adhere to a client-server
architecture and communicate over a WebSocket [8] interface [1].

In addition to the VS Code extension, we want to make JavaWiz available to users via
a website. This would reduce the complexity of setting it up and JavaWiz would be easily
accessible. Because of the current architecture, the server would have to run the code provided
by users. Consequently, the server hosting JavaWiz would be required to have extensive
resources, and the system would have to be secure enough in order to execute untrusted code
by users.

One way to overcome these issues is to run and debug the Java code provided by users on the

Chapter 1. Introduction 2

client side. This can be accomplished by utilizing the GraalVM [9] by Oracle, which makes it
possible to run Java code in a JavaScript runtime. This way, the Java code is executed by the
client’s browser’s engine, reducing workload and security concerns when hosting JavaWiz.

GraalVM is a high-performance polyglot Virtual Machine (VM) written in Java [10]. It
features Truffle which seamlessly composes different language implementations in a single
multi-language runtime [11]. Truffle provides a framework for implementing language in-
terpreters defined as self-optimizing abstract syntax tree (AST) interpreters [12]. There are
Truffle implementations for JavaScript, Python, Ruby, R, LLVM languages and many more
[10, 12, 13]. Additionally, Truffle is capable of handling Java bytecode with Espresso, a full
Java Virtual Machine (JVM), which allows Java bytecode to be executed within another
JVM in a meta-circular fashion [13].

Additionally, GraalVM features the creation of native images, Ahead-Of-Time (AOT) com-
piled native executables [10, 13]. Together with Substrate VM [13], an embeddable, precom-
piled VM, Java applications can be compiled with Native Image to mitigate startup time and
enhance performance in general. On top of that, GraalVM offers WebImage, an AOT com-
piler cross-compiling Java bytecode to JavaScript utilizing various optimizations and control
flow reconstruction [14].

This was only a brief overview of the GraalVM. A more detailed explanation, including
descriptions of the just mentioned features and aspects, will follow in Section 2.2.

1.1 Goals of this Work

Combining both JavaWiz and GraalVM allows executing code provided by the user on the
client side. Using Espresso and WebImage from GraalVM, the goals of this thesis are:

1. Instead of utilizing a separate JVM process, JavaWiz should employ Espresso to directly
run and debug the provided code within the backend.

2. With the help of WebImage, the backend with Espresso as a VM should be compiled
to JavaScript and distributed alongside the frontend.

3. The web version of JavaWiz should be extended to support multiple source files and
text files.

Chapter 1. Introduction 3

As a result, the dependency on a system-side JVM is removed and Java code is executed on
the client side within a JavaScript runtime environment. Figure 1 provides a general overview
of what we want to accomplish. The upper part outlines the architecture of the first goal.
The user enters Java source code in the frontend depicted on the left. Upon clicking the start
button, the source code is sent to the backend via a WebSocket connection. With the current
version of JavaWiz, the backend would start a VM in a separate process and communicate
with it through the Java Debug Interface (JDI) [1]. By employing Espresso, as illustrated in
the figure, the source code can be executed and debugged directly in the backend. During
debugging, intermediate states are sent to the frontend to be visualized. These states form
a trace in the frontend which the user can navigate. Following the user demanding a new
step, the frontend sends a request to the backend. Consequently, the user code is executed
there until the requested step has concluded. Then, all collected trace states are sent to the
frontend.

The architecture of the second goal is shown in the lower part of the figure. Using WebImage,
the JavaWiz backend with Espresso is compiled to JavaScript. Moreover, the communication
between frontend and backend has to be adapted to meet the requirements of the JavaScript
environment. With this transformation, both the backend and the frontend can be executed
directly in the user’s browser’s JavaScript engine.

In Chapter 4 we will show a more detailed view of these architectures.

JavaScript
Frontend

Java Backend
with Espresso

source code

trace state

request step

trace state

JavaScript
Frontend

JavaScript Backend
with Espresso

source code

trace state

request step

trace state

WebImage

Figure 1: Overview of the Architecture of this Work.

1.2 Structure

This thesis is structured as follows:

Chapter 1. Introduction 4

• Chapter 2 further elaborates on JavaWiz and the GraalVM.

• Similar tools to JavaWiz are discussed in Chapter 3.

• The approaches to reach the goals of this thesis are covered in Chapter 4.

• Chapter 5 deals with employing Espresso in the JavaWiz backend.

• Compiling the backend to JavaScript using WebImage and associated modifications
and challenges are discussed in Chapter 6.

• Chapter 7 covers extending the frontend and adapting the backend to support handling
multiple files in the web version of JavaWiz.

• The system is demonstrated by presenting several examples in Chapter 8.

• Chapter 9 compares the different versions of the backend in terms of start-up time and
runtime.

• Limitations and future developments are given in Chapter 10.

• The thesis presents a summary and a conclusion of the work in Chapter 11.

5

Chapter 2

Background

This chapter provides an overview of the systems and technologies this thesis is built on.
First, the existing system JavaWiz is described. Following, we introduce GraalVM, the
platform enabling this thesis.

2.1 JavaWiz

JavaWiz is a tool developed at the Institute for System Software that targets novice pro-
grammers. It functions akin to a debugger and additionally provides visualizations for the
execution of Java programs. Originally initiated with the master’s thesis of Katrin Kern [1],
JavaWiz has undergone enhancements by various visualizations introduced by subsequent
student projects and theses:

• Andreas Schlömicher implemented a flowchart component [2].

• Melissa Sen developed a visualization of the input stream and a sequence diagram
component [15].

• Simon Grünbacher contributed to the development of the VS Code extension and var-
ious other improvements.

• Additionally, I created visualizations specifically tailored for linked lists [3], binary trees
[3] and arrays.

Chapter 2. Background 6

As mentioned earlier, there exists a VS Code extension for JavaWiz. When installed, users
can run Java applications with JavaWiz. Figure 2 presents a screenshot of the extension.
The sections are described in the following:

1 The built-in editor of VS Code is utilized to display and edit the source code. The
line which will be executed next is highlighted in blue.

2 Upon launching, the JavaWiz pane appears on the right-hand side of the editor. It
includes a toolbar and space for visualizations.

3

JavaWiz offers multiple stepping controls allowing users to restart the program, step
back one step, step over, step into and step out a method and run to a line in the
code. The status indicates whether JavaWiz is replaying previous states or whether
the debugger is providing new program states.

4

Users can show different visualizations with the icons in the toolbar. The screenshot
displays the stack and heap visualization. Other options include a flowchart compo-
nent, the desk test, an input stream visualization, an array component, a linked list
visualization and a binary tree component.

5 Below both the editor and the JavaWiz panel, an input/output terminal is available.
It serves to display the program’s output and to enter user input.

Figure 2: The JavaWiz Visual Studio Code Extension.

There exists a web version of JavaWiz in addition to the VS Code extension. It is accessible
through a browser and incorporates a component with a text editor in place of the editor of
VS Code. With this version, the backend is executed in a separate process. The main goal
of this thesis is to provide a web-only version of JavaWiz. Thus, we will use the web version

Chapter 2. Background 7

for this thesis.

Why is the backend run in a separate process? To clarify that, let us look at JavaWiz’
architecture shown in Figure 3. JavaWiz has two main components: the frontend and the
backend. The former contains the code editor, a console and the visualizations (cf. Figure 2).
The backend is responsible for parsing, modifying, compiling and executing the Java program.
Frontend and backend communicate through a WebSocket interface in the following way:

1. When the user presses the compile and run button in the frontend 1 , the source code
is sent to the backend.

2. First, the backend parses and modifies the source code 2 . As a result of modifica-
tions, some statements are instrumented for providing specific trace information, cf.
Section 5.3.1. For instrumentation, the AST generated by the JavaParser [16] is used.

3. Next, the backend compiles 3 both the unmodified source code and the modified
source code. Compiling the unmodified source code is done to send the user feedback
about compile errors.

4. Then, a thread with a JVM 4 is started for debugging the class files of the modified
source code 5 . To extract state information, the JVM and the backend communicate
through the JDI. Additionally, the backend dictates through the JDI when the VM
should continue execution and in turn determines whether to send the collected program
states to the frontend.

5. The VM 4 is suspended before the first statement in the main function. Its current
state along with an AST generated by the parser 2 are sent to the frontend.

6. If visible, the frontend 1 visualizes the AST in the flowchart component and the first
state of the program in the other visualizations.

7. When the user initiates a step request, it is forwarded to the backend.

8. The backend continues execution 4 until the request is fulfilled. The collected inter-
mediate states are sent to the frontend 1 .

9. Upon receiving the response of the backend, the frontend 1 processes the states. The
states are stored and form a trace, which the user can navigate through. The latest

Chapter 2. Background 8

state received by the debugger is visualized.

10. Steps 7 to 9 may repeat until the end of the program is reached. Subsequently, the
user is still able to browse through the history of states, but there is no communication
between the frontend and backend anymore.

IIJava

Backend

IIJavaScript

Virtual Machine

HelloWorld.class

debugs

Frontend
public class HelloWorld {
__public static void main(String[] args) {
____System.out.println("Hello World!");
__}
}

Heap
Stack

javac

launches

communication through JDIcommunication through
WebSockets

send source code info

request step

send source code

send state

2
3 5

4

1

JavaParser

Figure 3: The Architecture of JavaWiz.

Chapter 4 will cover how this architecture is modified to achieve the goals defined in Sec-
tion 1.1.

2.2 GraalVM

After outlining JavaWiz, we want to take a closer look at GraalVM, which has been briefly
introduced in Chapter 1. GraalVM consists of various projects [9, 13] but altogether it is a
high-performance Java Development Kit (JDK) distribution. It can be used to compile Java
applications to native executables and additionally offers a polyglot VM. In the following
sections, we want to give an overview of some projects within GraalVM:

• In Section 2.2.1 we want to briefly take a look at the compiler project. It performs
aggressive optimizations on Java bytecode and compiles it to machine code [17].

• Truffle is a framework for the execution and interoperability of various programming
languages in a single VM [11]. It will be the topic of Section 2.2.2.

• Cross-compiling Java to JavaScript can be performed by employing WebImage [14].
This will be outlined in Section 2.2.3.

For an in-depth introduction, see the papers cited in the following or the GraalVM website
[18].

Chapter 2. Background 9

2.2.1 Compiler

The Graal compiler aggressively performs optimizations including but not limited to inlining,
constant folding and escape analysis [10]. These optimizations are performed on the Graal
Intermediate Representation (IR), which is structured as a directed graph in static single
assignment form, in which both the data flow and the control flow are represented [17].

Figure 4 shows a Graal IR of an if statement as an example (cf. [17]). The value for the
variable result depends on which branch of the statement is executed. Since the graph
adheres to static single assignment form, a Phi node is employed. With it, the value for the
variable after the if statement can be determined.

Figure 4: Example Graph of the Graal Intermediate Representation (taken from [17]).

When using Graal as JIT compiler, program execution works as the following (cf. Figure 5):
The interpreter interprets bytecode and generates profiling information [19]. This informa-
tion is used by the Just-In-Time (JIT) compiler to create machine code and deoptimization
information in the course of compiling bytecode. Graal applies speculative optimizations.
When an assumption is not met, the execution is transferred from optimized code back to
the interpreter by using deoptimization.

2.2.2 Truffle

Truffle is a framework for implementing self-optimizing AST interpreters where a node can
rewrite itself [20]. The Graal compiler compiles the interpreter together with the executed
program and generates efficient machine code by applying partial evaluation. Let us take a
look at the system structure for executing a guest language application in Figure 6 (cf. [20]).

Chapter 2. Background 10

Figure 5: Graal Compiler System Structure (taken from [19]).

At the top, the guest language application is executed. It is written in the guest language
by the application developer. Below it, the layer for the language interpreter is run. It is
written by the language developer in a managed host language, in Truffle’s case Java. All of
this is dependent on the host services, also written in Java, which are processed by the OS.

Figure 6: System Structure of Running a Guest Language Implementation (taken from [20]).

What makes for a self-optimizing AST interpreter? We want to explain this using Figure 7
(cf. [20]). It shows an AST consisting of uninitialized nodes. They are rewritten to generic
nodes or to ones with concrete types by using profiling information. If executed repeatedly,
the resulting AST is compiled using partial evaluation.

Figure 7: Example of Node Rewriting (taken from [20]).

If assumptions on type information turn out to be false during execution, deoptimization is
triggered (cf. Figure 8) [20]. Subsequently, nodes are rewritten to match the updated type
information. With these modifications, the AST may be compiled again.

Chapter 2. Background 11

Figure 8: Example of Deoptimization After Node Rewriting (taken from [20]).

Various other optimizations are applied during the interpretation of such an AST, which
mitigate the overhead of the dynamic interpretation [20]. Further, it is possible for Truffle
languages to interoperate [11].

Espresso

This thesis builds on Espresso, which is a meta-circular JVM which uses the Truffle framework
to interpret and execute Java bytecode [13]. It enables running code inside an isolated context
and dynamically loading and running Java. In this thesis, Espresso is employed to debug
Java code entered by a user of JavaWiz and will finally be run in a JavaScript runtime.
Chapter 4 will explain this in detail.

To generate a trace state during execution, we need to access the internal state of Espresso.
For this purpose, Truffle provides a Debug API. This API is language agnostic and provides
debugging functionality for all Truffle languages. For example, it offers access to the stack
and heap of the executed program. If language specific debugging information is required,
the internal structure of a Truffle language has to be taken into account. Section 5.3 will
cover how the state of Espresso is extracted.

2.2.3 WebImage

Cross-compiling Java to JavaScript can be achieved with WebImage [14]. WebImage builds
upon Native Image and uses the Substrate VM to apply its static analysis technique to enable
AOT compilation [21].

The system structure is depicted in Figure 9 (cf. [14]). Java bytecode is input to the system
and statically analyzed to retrieve which classes and methods are reachable. This static
analysis is required because compiling the entire Java code of an application including its
libraries and a whole JDK would be infeasible. Subsequently, this information is fed to the
Graal frontend which applies numerous optimizations and outputs a Graal IR. The Graal
backend is replaced, since the IR should not be executed but rather converted to JavaScript

Chapter 2. Background 12

source code. For that, a structured control flow has to be reconstructed, since the Graal IR
is unstructured. Next, the IR is used to generate JavaScript source code which can be run
by a JavaScript VM.

Figure 9: System Structure of WebImage (taken from [14].

13

Chapter 3

Related Work

For related work, we are looking for online Java debuggers which are capable of visualizing
intermediate program states. Katrin Kern found several programs similar to the VS Code
version of JavaWiz [1]. Here, we especially take a look at tools available via a website. In
the following sections, we will introduce two related projects.

3.1 Java Visualizer

Java Visualizer [22] was developed by David Pritchard and Will Gwozdz. It reuses the
frontend of the Online Python Tutor [23] by Philip Guo. The Java adaption was developed
by the Centre for Education in Mathematics and Computing at the University of Waterloo
[24]. Both the website of the center [24] and the website of the Online Python Tutor [23]
host the Java Visualizer, while the former has more features.

A screenshot of the tool is shown in Figure 10. The left side contains the visualized code and
user controls for stepping. The visualization of the call stack and the heap is displayed on
the right. With the help of the graphical representation, it is easier for programming novices
to understand references, arrays, call stack generation and more. The version on the website
of the Centre for Education in Mathematics and Computing [22] supports console input and
command line arguments. It is important to note, that console input has to be specified
before running the program.

The tool has some limitations [26]:

Chapter 3. Related Work 14

Figure 10: Screenshot of the Java Visualizer [25].

• Source code entered by users is sent to a server running the backend. It tries to execute
the whole program and then sends data for visualizations back to the frontend. As
mentioned in Section 1.1, one of the goals of this thesis is to execute the code on the
client side. This leads to less load and improved security on the server hosting the tool.
Additionally, JavaWiz allows running the program step-by-step, i.e., as far as the user
requested. This means that new program states are generated in real time, and it also
allows handling console input live.

• Java Visualizer currently supports only Java 8, an outdated version of Java. JavaWiz
currently supports Java 17, which is newer than Java 8. Since it is not the newest
version, the JavaWiz team is trying to remove all dependencies constraining the Java
version. Chapter 10 will give more insights on this.

• The online tool only offers executing a single source file, while the goal of this thesis is
to support multiple source files as well as text input and output files.

3.2 Java Program Flow Visualizer

Another tool for visualizing Java code is the Java Program Flow Visualizer, written by Luther
Tychonievich [27]. Similar to JavaWiz, the motivation to create it was to help students
learning programming in a university course [28].

Chapter 3. Related Work 15

Figure 11 shows a screenshot of the Java Program Flow Visualizer. On the upper left side
is the executed code. Next to it is a timeline showing when each line was executed. Below
both is a visualization of the call stack and the program’s output. Hovering over a point in
time in the timeline shows the corresponding state of the stack and of the program output.
The tool does only support a subset of Java [27], yet it runs fully on the client side. For that,
it employs a Java interpreter written in JavaScript [28].

Figure 11: Screenshot of the Java Program Flow Visualizer [27].

Despite running Java code on the client side, the Java Program Flow Visualizer has some
drawbacks:

• Since only a subset of Java is supported, the capabilities of the tool are limited. The
system allows creating integers, doubles and booleans, yet there is no support for objects
[27]. As a result, it particularly does not allow for exceptions or accessing the Java
standard library. In contrast, objects and the Java standard library are supported by
JavaWiz, as it utilizes a full JVM to run the code. Nevertheless, there are also some
related limitations when using JavaWiz which we will discuss in Chapter 10.

• Because of the limited version of Java, the tool does not support multiple source files
nor multiple methods [27]. Contrary, one goal of this thesis is to support multiple files.

• Reading console input or handling native calls in general is not supported by the
Java Program Flow Visualizer [27]. In contrast, various native calls are supported
by JavaWiz including reading from the standard input stream and file I/O, see Sec-
tion 5.3.3 and Section 6.2.

16

Chapter 4

Approach

After introducing the used technologies and related work, this chapter proposes approaches
on how to reach the goals set in Section 1.1. We want to briefly revisit them in the following:

• Removing the separate VM is the first step to fulfill this thesis’ goals. Section 4.1 is
about replacing the current VM with Espresso. As a result, Java programs are run and
debugged directly within the backend.

• While this step removes complexity, the server would still have to provide enough
resources to run all user’s code, as it would have to run the backend. Section 4.2 covers
how the backend is compiled to JavaScript with WebImage which enables it to be run
in a browser. As a result, the server has to host the generated JavaScript file, but does
not need to execute untrusted code anymore.

• The third objective, to extend JavaWiz to be capable of handling multiple files, will be
covered in Section 4.3.

The three objectives extend the existing JavaWiz architecture, as introduced in Section 2.1.
Recall that there are two parts, the frontend and the backend. The former is responsible
for building a trace, visualizing states within it and handling user interaction. The backend
is responsible for parsing, modifying, compiling and debugging code entered by users. The
latter is done by a JVM running in a separate process.

Chapter 4. Approach 17

4.1 Espresso as a VM

This section covers replacing the existing VM with Espresso. The proposed architecture
is shown in Figure 12. Changes to JavaWiz’ architecture in Figure 3 of Section 2.1 are
emphasized with bold fonts and thicker lines. Employing Espresso leads to several changes:

1. The most significant change is the utilization of the Truffle Debug API to commu-
nicate with Espresso. It replaces the current dependence on the JDI. As covered in
Section 2.2.2, the API exposes the current state of debugged Truffle executions. Thus,
it provides access to the state of the program running in Espresso.

2. Launching a main function with Espresso differs from launching it with a VM in a sep-
arate process. However, this change has relatively little impact, compared to the other
modifications. To achieve a similar architecture, the backend runs in multiple threads.
One thread determines if Espresso should continue execution and communicates with
the frontend. Another thread executes Espresso and extracts its state information.

3. The debugging process of Espresso vastly deviates from that of a system VM. Although
Espresso is debugged using the Truffle Debug API, it does not block itself from resum-
ing execution. It continues running after the current suspension has been handled.
Consequently, the logic to block Espresso and await user input must be implemented
manually.

IIJava

Backend

IIJavaScript

Espresso

HelloWorld.class

debugs

send source code info

request step

Frontend
public class HelloWorld {
__public static void main(String[] args) {
____System.out.println("Hello World!");
__}
}

javacsend source code

launches

communication through Truffle Debug API

send state

communication through
WebSockets

JavaParser

Heap
Stack

Figure 12: The Architecture of JavaWiz With Espresso as a VM.

Chapter 5 covers replacing the VM with Espresso in detail.

Chapter 4. Approach 18

4.2 Backend in JavaScript

After enabling debugging of user code directly within the backend, the next step is to compile
the backend to JavaScript with WebImage. Figure 13 shows the proposed architecture to
accomplish this. The three components written in Java, the backend, the compiler and
Espresso, are compiled to JavaScript using WebImage. Besides being executed by JavaScript,
the fundamental architecture does not change.

This approach has the following challenges:

1. The entire backend is executed within a single thread. As a result, both the backend
logic and Espresso have to run within the same thread. Consequently, this thread has
to fulfill what was previously done with two threads. It has to determine when to
transmit the collected trace states to the frontend, handle the communication with the
frontend in general and run Espresso.

2. Furthermore, special handling is required for native calls. Reading the standard input
stream and native file I/O is not supported by JavaScript.

3. Additionally, the communication between the frontend and backend has to be changed
from WebSockets to the Web Worker interface [29] and shared memory [30].

4. The backend uses reflection for parsing and creating JavaScript Object Notation (JSON)
objects. These are used for communicating with the frontend. Moreover, the JavaParser
[16], used for parsing and modifying the user code, uses reflection. Since WebImage
does not automatically detect all reflection cases, specific treatment is required [21]. In
detail, a configuration file defining the usages of reflection has to be provided [9].

Details of compiling the backend to JavaScript with WebImage are presented in Chapter 6.

4.3 Handling Multiple Files

The current web version of JavaWiz only supports editing a single source file. This leads to
the third goal of this thesis: JavaWiz should be able to handle multiple files, including Java
source files as well as text input and output files.

Figure 14 illustrates how multiple files are handled. The frontend stores multiple files and

Chapter 4. Approach 19

IIJavaScript

Backend

IIJava

Espresso

javac Espresso

HelloWorld.class

debugs

send source code info

Frontend

public class HelloWorld {
__public static void main(String[] args) {
____System.out.println("Hello World!");
__}
}

javacsend source code

Backend

WebImage

starts

send state

communication through Truffle Debug API

request step

communication through
WebWorker and JS

JavaParser

Heap
Stack

Figure 13: The Architecture of JavaWiz with Espresso as a VM and Compiling it With WebImage.

whenever the user requests execution, the files are sent to the backend. There they are split
into source files and text files. Since JavaScript has no native access to the file system,
WebImage provides an in-memory file system. Source files are stored in a source directory,
while text files are placed inside the working directory of Espresso. This way, text files are
accessible by the user’s program.

Employing the in-memory file system simulates a conventional file system. As a result,
JavaWiz works similarly to native code editors. Yet, there is one problem with this solution:
The files accessible to Espresso are only stored in the backend. Thus, the user would not
be able to observe file changes or creations. As a solution, the backend notifies the frontend
about file modifications, allowing the current state of the files to be exposed to the user. It
should look as if the backend has access to the files opened in the frontend, while these files
are actually just mirrored.

The current backend is already able to handle multiple source files, as this has been a re-
quirement for the VS Code version. Consequently, the backend does not need to be modified
to support multiple source files. The main changes in the backend concern handling text
files.

Chapter 7 covers how this approach was implemented.

Chapter 4. Approach 20

Source Files

Text Files

Frontend

Files

In-memory
File System

/sourceDir
/work

on file change,
notify frontend

Backend compiled with WebImage

Figure 14: Approach for Handling Multiple Files.

21

Chapter 5

Espresso Backend

This chapter is about using Espresso as a VM in the backend. It builds upon the architecture
presented in Section 4.1 and should function the same way as with a VM in a separate process.
The following sections will explain how this is accomplished:

1. Launching Espresso and executing Java code is covered in Section 5.1.

2. Section 5.2 presents how Espresso is debugged and how blocking and stepping is im-
plemented.

3. Building trace states is described in Section 5.3.

5.1 Launching and Executing

This section describes the process of launching Espresso and executing the main function.
Here is an overview about the process:

1. Truffle languages are run within contexts [31]. This allows isolating guest languages,
defining their permissions in terms of access to the host system and setting additional
options. Hence, a context for Espresso is created first.

2. Then, Java is initialized.

3. The class containing the main function is loaded.

Chapter 5. Espresso Backend 22

4. Finally, the main function is invoked.

Listing 1 shows a simplified version of the code accomplishing this. The actual code mainly
differs in setting the options of the context builder. In lines 1 to 5 a context is constructed
with a Context.Builder. When creating a context, various options and limitations may be
set [32]. With the class path of Java, a language-specific option is set in line 2. Additionally,
it is possible to set the standard output, error and input streams of the guest language, cf.
lines 3 to 5. Following that, the context gets built in line 6.

With line 7 Java gets initialized within its context. The returned bindings represent a class
loader. Subsequently, the class containing the main function is queried in line 8. The main
function is invoked by providing its signature in class file notation, as depicted in lines 9 and
10. The passed arguments, in this case an empty string array, have to be internal Espresso
objects. We will omit how these are created here.

1 val builder = Context.newBuilder ()

2 .option("java.Classpath", cp)

3 .out(outputStream)

4 .err(errorStream)

5 .‘in ‘(inputStream)

6 val context = builder.build()

7 val bindings = context.getBindings("java")

8 val mainClass = bindings.getMember(fullyQualifiedMainClassName)

9 val returnValue = mainClass

10 .invokeMember("main /([Ljava/lang/String ;)V", emptyStringArray)

Listing 1: Launch Espresso and Execute Main Function (simplified).

5.2 Debugging and Stepping

So far, we know how to start Espresso and launch a main function. The next step is to debug
the execution of Espresso.

To initiate debugging Espresso with the Truffle Debug API, a DebuggerSession has to be
started. Since we want to capture every state of the program, the session has to be initiated
before launching the main function. In Listing 1 this would be done right after line 7.
Listing 2 shows how to start a debugger session. Line 1 finds a Debugger which is bound

Chapter 5. Espresso Backend 23

to a context’s engine. Subsequently, a debugger session is started in line 2. The parameter
for the function startSession is a SuspendedCallback. This callback is invoked whenever
Espresso is suspended. It receives a SuspendedEvent. The event serves two important tasks:
(1) defining when the next suspension is supposed to happen and (2) extracting current state
information. Both can be done within the callback in place of line 3. As a result, handling
the suspended event enables introducing additional logic for debugging.

1 var session = Debugger.find(context.engine)

2 .startSession { suspendedEvent ->

3 // handle suspended event

4 }

Listing 2: Starting a Debugger Session.

After introducing how to start a session, we want to show how it impacts execution. Figure 15
illustrates the flow of a debugged Espresso execution. The gray region highlights the execution
of the main program, while the red areas depict executions of suspended callbacks. The main
program starts and eventually hits a suspension point . Subsequently, the callback is
called. After that, the execution of the program continues. Then another suspension point

is encountered. Thus, the suspended callback is triggered once more. Note that the
suspended callback is run within the same thread that runs Espresso.

M
ai

n
Ex

ec
ut

io
n

Pa
th Execution of

SuspendedCallback
Execution of

SuspendedCallback

Figure 15: Flow of a Debugged Execution with Espresso

Now we have to address two missing points:

Chapter 5. Espresso Backend 24

1. We have to determine, when to suspend Espresso. Otherwise, we would never trigger
the suspended callback.

2. What to do in the callback. As mentioned earlier, this enables us to introduce additional
logic in the debugging process.

There are three methods for suspending Espresso:

1. Suspend via debugger session. It is possible to suspend all threads or a single
thread immediately, to suspend when a specific node is reached, or to suspend the next
execution.

2. Suspend via breakpoints. Breakpoints can be set for a source file and optionally a
line or a column in it. Additionally, one can define if the breakpoint suspends only the
first time it is reached. Further, it is possible to specify how many times a breakpoint is
ignored before causing a suspension and whether the suspension should happen before
or after it. Exception breakpoints are also supported.

3. Suspend via suspended event. Within the suspension callback, decisions regarding
the next suspension can be made. Options include stepping in, stepping over and
stepping out of methods. Other choices are to continue execution until one of the other
suspension methods halts it and to terminate the execution.

In our case, we want to suspend Espresso after each statement. The initial suspension should
happen before executing the first statement in the main function. Thus, before invoking the
main function, the subsequent execution is suspended via the debugger session.

The final point to address is the logic inside a suspended callback. This is the most important
step, as it is the only way of enabling state extraction and incorporating custom logic into
Espresso’s debug execution. The necessary steps within the callback are:

1. Extract state information. Through the received suspended event, the callback
gains access to the current program state. This includes the call stack, heap and other
relevant information. This data needs to be combined to a trace state.

2. Wait for a user request after concluding a step. In Figure 15 we have seen that
Espresso automatically continues execution after calling a suspended callback. Since we

Chapter 5. Espresso Backend 25

want to halt Espresso after a step has been fulfilled, it must be blocked from continuing.

3. Define next suspension. Since we want to trace all steps, the next suspension point
has to be set. Hence, a step-into is requested from each suspended event.

Figure 17 illustrates this process. For better understandability, we introduce an illustrative
example in Figure 16. In the example a variable x is declared and initialized in A . This
variable is then incremented by one in C and multiplied by five in E . Between these
statements, we want to suspend Espresso. Thus, the relevant suspension positions are B
and D . Note that the execution will also be suspended before A and after E .

int x = 5;

x = x + 1;

x = x * 5;

B
A

C
D
E

Figure 16: Example Code to Better Illustrate Figure 17.

Figure 17 shows a sequence diagram illustrating the execution flow of the example program.
There are four object lifelines in the sequence diagram:

I The request handler is responsible for communicating with the frontend and deciding
when to send the collected trace states.

II A semaphore is employed as a synchronization mechanism for stepping. It is used to
block Espresso and resume it when requested by the user.

III

A blocking queue is used to manage the synchronization of step results. Step results
contain trace states along with information if the VM is still running, whether input
is needed and of a possible Espresso exception. The queue is used to block the request
handler while waiting for tracing information from Espresso.

IV The thread running Espresso is executing the user’s code and additionally executes
the suspended callbacks.

The sequence diagram starts with Espresso executing the first line of the example A . Fol-
lowing the execution of this line, Espresso detects a suspension point B . Hence, it triggers
the execution of the suspended callback. Within this callback, the suspended event is handled

Chapter 5. Espresso Backend 26

1 . As previously mentioned, the initial step within the callback involves extracting state
information. This is achieved by building a trace state 2 . Then, the trace state is wrapped
in a step result and put into the step result queue 3 .

It is important to note, that the request handler has been awaiting the state information of
A . Why? It permitted Espresso to continue execution in the suspended event before A .

Then, it requested a step result from the queue 4 and has since been waiting for it in a
blocked state. Upon receiving the step result 5 , the request handler is unblocked. Thus,
it signals the completion of the step 6 . Further, a decision is made whether Espresso has
run far enough for the collected trace states to be sent to the frontend (not explicitly shown
in the diagram).

Meanwhile, the Espresso thread requests the lock for executing the next step 7 . Thus,
further execution is blocked until another step is requested. A subsequent step is triggered
either by user input or if the previous step request has not yet concluded. When another step
is needed 8 , the step lock is released by the request handler 9 and the Espresso runner
is unblocked 10 . The final step of the suspended callback is to define the next suspension
point 11 .

The next step’s execution starts with the request handler requesting another step result from
the queue 12 . Then the process continues with steps 13 to 22 handling the next execution
step in the same way as before.

5.3 Building Trace States

We now show how the extraction of state information works. The following data is extracted
from the debugger and combined to a trace state:

• Source file URI. To enable the frontend to highlight the current line, it requires the
information about which file is currently executed.

• Line number. In addition to the file URI, the frontend needs to know the line number
where the debugger is currently suspended. This is used to highlight the line.

• Stack frames. These contain information about variables on the call stack. Their
detailed extraction is discussed in Section 5.3.1.

Chapter 5. Espresso Backend 27

requestHandler:
Thread

stepNeededLock:
Semaphore

stepResultQueue:
BlockingQueue

espressoRunner:
Thread

blocked

buildTraceState(event)

handleSuspendedEvent(event)

event.prepareStepInto()

release()

acquire()
blockedhandleSingleStep()

handleSuspendedEvent(event)

event.prepareStepInto()

unblocked

B

buildTraceState(event)

put(stepResult)

take()

stepResult

StepResponse

put(stepResult)

unblocked
StepResponse

stepResult

acquire()
blocked

unblocked

release()

handleSingleStep()

blocked

unblocked

take()

blocked

running user's code

A

C

D

E

1

2

4

3

5

6 7

9
8

10

11

13

14

15

12

16

17 18

19 20

21

22

IVIIIIII

Figure 17: Sequence Diagram of the Debugging Process with Espresso Executing the Example in
Figure 16.

• Heap objects. Trace states include an array of heap objects. Extraction steps are
explained in Section 5.3.1.

• Loaded classes. Loaded classes are mainly needed for static fields. Processing loaded
classes is covered in detail in Section 5.3.2.

• Output, error and input. Trace states contain information about I/O operations.
This information is used for the console in the frontend. Section 5.3.3 covers how these
are gathered.

Chapter 5. Espresso Backend 28

• Input buffer information. The input buffer information is used to visualize the
internal state of the input methods. It contains the following information:

– Which characters of the input stream have already been processed,

– which characters are still in the input buffer but are not processed yet,

– which input function was called last,

– what the function returned

– and if the last read was successful.

The extraction of this information is covered in Section 5.3.4.

5.3.1 Extracting the Call Stack and the Heap

This section is about extracting the state of the execution’s call stack and the heap. First,
let us take a look what a stack frame from JavaWiz contains:

• Line Number. Indicates the line where the stack frame is currently suspended.

• Class name, method name, method signature, generic signature. This in-
formation is displayed in the frontend and used to determine which method is called
within the flowchart component.

• Local variables. The main source of information are the local variables. Retrieving
them is covered later in this section.

• Condition values and array access values. As mentioned in Section 2.1, the
source code is modified before running it with a VM. This enables us to trace condition
values and array access values. Condition values are used to show which boolean value
conditions evaluated to in the desk test. Array access values are used to visualize and
animate array accesses in the array visualization. Further details on how the source
code is modified and what is saved within the values are explained later in this section.

• this. If the called method is an instance method, the object the method is called on
is stored inside the stack frame.

Chapter 5. Espresso Backend 29

• Internal flag. This flag indicates whether this stack frame should be hidden due to
it being within an internal class. Internal classes include classes of the JDK and other
classes not of interest.

Most of the above information is quite easy to extract. However, in the following we want to
further explain how local variables, heap objects and instrumented values are gathered.

Extracting Local Variables and Heap Objects

This section is about retrieving the local variables within a stack frame and the referenced
heap objects. First, we introduce how the Truffle Debug API represents local variables and
referenced objects. The current stack frames are accessible through the SuspendedEvent

inside a SuspsendedCallback. Each stack frame has a DebugScope which variables can be
retrieved with the function getDeclaredValues (cf. Figure 18). Each variable is represented
as a DebugValue. Fields and functions of each object are accessible with the function get-

Properties (Figure 18 does only show fields). This function allows traversing the referenced
heap objects.

DebugValue

name = a

value = 4

DebugScope

...

DebugValue

name = string

value = Hello

DebugValue

name = person

value = Person@2b916808

DebugValue

name = name

value = John Doe

DebugValue

name = birthYear

value = 1990

ge
tD

ec
la

re
dV

al
ue

s(
)

ge
tP

ro
pe

rt
ies

()

Stack Heap

...
getProperties()

...
getProperties()

Figure 18: Hierarchy of Debug Values (simplified).

Next, we want to cover how to process this structure in three steps:

1. Loop over all stack frames.

Chapter 5. Espresso Backend 30

2. Retrieve each open scope.

3. Process the values inside the scope.

Listing 3 computes the local variables for the JavaWiz trace from the stack frames of Espresso.
The stack frames are retrieved by using the SupsendedEvent. For each stack frame of
Espresso, a stack frame for the JavaWiz trace is computed. This works by retrieving the
scopes of the stack frame (there are two kinds: esprDebugScope from the Truffle Debug API
and esprRawScope from Espresso), accessing the declared values of the scope and creating
the local variables for the JavaWiz stack frame.

1 val stackFrames = event.stackFrames

2 .map { esprStackFrame ->

3 val esprDebugScope = esprStackFrame.scope

4 val esprRawScope = esprDebugScope.rawScope as EspressoScope.

VariablesMapObject

5

6 val localVariables = esprDebugScope.declaredValues

7 .map { esprStackValue ->

8 Var(

9 esprStackValue.name ,

10 esprStackValue.getStaticType(esprRawScope),

11 processValue(esprStackValue)

12)

13 }

14

15 StackFrame(..., localVariables , ...)

16 }

Listing 3: Mapping Espresso’s Local Variables to JavaWiz Variables (simplified).

Listing 3 uses the function processValue for processing the value of local variables. This
function is shown in Listing 4. It distinguishes three cases:

• If the value is null, a NullVal is returned.

• If the value is a primitive, a PrimitiveVal object with the object’s string representation
is returned.

Chapter 5. Espresso Backend 31

• If the value is a reference, a ReferenceVal object is returned. It contains the ID for
the object, which is computed by the function processHeapItem.

1 fun processValue(esprValue: DebugValue): Val {

2 return if (esprValue.isNull) {

3 NullVal ()

4 } else if (esprValue.isPrimitive) {

5 PrimitiveVal(esprValue.toDisplayString ())

6 } else {

7 ReferenceVal(processHeapItem(esprValue))

8 }

9 }

Listing 4: Processing Debug Values.

Listing 5 shows the function processHeapItem which was used in Listing 4. First, the ID of
the object is retrieved. If the object has been processed already, the ID simply is returned.
Otherwise, the following cases are distinguished:

• If the value is a string, it gets further processed with the function processString. This
function creates an HeapString object for the JavaWiz trace. The string’s byte array
is processed with the function processArray.

• If the value is an array, the object is processed with the function processArray. Within
it, all elements are processed and a HeapArray object is created for the JavaWiz trace.

• Otherwise, the object is further processed with the function processArbitraryObject.

1 fun processHeapItem(esprValue: DebugValue): Long {

2 val esprId = esprValue.getHeapId ()

3 if (esprId !in processedHeapIds) {

4 processedHeapIds += esprId

5 if (esprValue.isString) {

6 processString(esprId , esprValue)

7 } else if (esprValue.isArray) {

8 processArray(esprId , esprValue)

9 } else {

10 processArbitraryObject(esprId , esprValue)

Chapter 5. Espresso Backend 32

11 }

12 }

13 return esprId

14 }

Listing 5: Processing Heap Objects.

The function processArbitraryObject used in Listing 5 is shown in Listing 6. First, the
internal representation of the object’s class is retrieved. Then, the function distinguishes two
cases to retrieve the object’s fields:

• If the class is an internal class, its fields are not traced, i.e., the list of fields is empty.
This check is performed by matching the class’ name against internal class patterns.

• Otherwise, the field table of the class is accessed. Each field is mapped to a JavaWiz
variable. Their values are processed recursively with the function processValue which
has been covered earlier.

1 fun processArbitraryObject(esprId: Long , esprValue: DebugValue) {

2 val klass = EspressoInterop.getInteropKlass(esprValue.rawValue

as StaticObject)

3

4 val fields = if (outerClassMatchesOuterClassPattern(

5 klass.nameAsString ,

6 internalClassPatterns)

7)

8 emptyList ()

9 else klass.fieldTable

10 .map {

11 Var(

12 it.nameAsString ,

13 toReadableType(it.typeAsString),

14 processValue(esprValue.getProperty(it.nameAsString))

15)

16 }

17

18 heapItems += HeapObject(esprId , esprValue.getType (), false ,

fields)

Chapter 5. Espresso Backend 33

19 }

Listing 6: Processing Arbitrary Heap Objects (simplified).

Note, that Espresso only exposes public fields through the Truffle Debug API. Therefore,
all fields are set to be declared publicly while parsing. Since the unmodified source code is
compiled as well, access violations are appropriately reported to the user.

This completes the extraction of the call stack and the referenced heap objects. To summa-
rize, we loop over each stack frame, process its local variables and process the heap objects
referenced by them. Subsequent references are processed in a recursive manner.

Collecting Instrumentation Values

This section covers how the instrumentation values are collected. First, we want to introduce
how the source code instrumentation works (cf. Figure 19). The unmodified source code is
at the top and the modified one is at the bottom. There are three modifications done in the
example, which are highlighted in gray. There is one modification for a condition and two
modifications for array accesses. Here is how they are modified:

• Each condition is replaced with a call to a JavaWiz instrumentation method. The
parameters contain the condition itself and a condition ID unique for this source file.

• For array accesses, only the index value is instrumented by a method. The parameters
contain the accessed array, the index value, an access ID unique for this source file and
the accessed dimension.

Since each expression is still only executed once, this form of instrumentation is safe and
does not cause any side effects.

Listing 7 shows the JavaWiz debug class used for intrumentation. It contains the two func-
tions used in Figure 19:

• The function recordCondition returns the condition’s value.

• The function recordArrayAccess returns the accessed index.

Chapter 5. Espresso Backend 34

public class HelloWorld {
__public static void main(String[] args) {
____int[] arr = new int[2];
____int x = In.readInt();
____if (x < 10) {
______arr[0] = x;
____} else {
______arr[1] = x;
____}
__}
}

public class HelloWorld {
__public static void main(String[] args) {
____int[] arr = new int[2];
____int x = In.readInt();
____if (jwdebug.$JavaWiz.recordCondition(x < 10, 0)) {
______arr[jwdebug.$JavaWiz.recordArrayAccess(arr, 0, 1, 0)] = x;
____} else {
______arr[jwdebug.$JavaWiz.recordArrayAccess(arr, 1, 0, 0)] = x;
____}
__}
}

Figure 19: Source Code Instrumentation with JavaWiz.

1 package jwdebug;

2 public class $JavaWiz {

3 public static boolean recordCondition(boolean value , int

conditionId) {

4 return value;

5 }

6

7 public static int recordArrayAccess(Object array , int index , int

arrayAccessId , int dimension) {

8 return index;

9 }

10 }

Listing 7: The JavaWiz Instrumentation Class.

How can these instrumentation functions be used to collect the instrumented values? When
the VM is suspended in one of the instrumentation functions, the relevant information can
be obtained by accessing the parameters. After retrieving the values, the VM is resumed.

Chapter 5. Espresso Backend 35

Listing 8 shows how this is implemented with the Truffle Debug API. The suspended event
contains the source section it is currently suspended in. With its path, we can determine if
Espresso is suspended inside the JavaWiz debug class. After tracing the instrumented values,
the VM is resumed, thus tracing the instrumentation values does not yield a trace state.

1 if (event.sourceSection.source.path == JAVAWIZ_PATH) {

2 handleInstrumentationTracing(event)

3 vm.resume ()

4 } else {

5 handleNormalTracing(event)

6 }

Listing 8: Differentiating between Instrumentation Tracing and Normal Tracing (simplified).

Finally, inside the function handleInstrumentationTracing, the parameters of instrumen-
tation functions can be captured. This is done similarly to how local variables are processed.
Together with some other information, these are collected for the next trace state.

5.3.2 Extracting Loaded Classes and Statics

This section covers retrieving loaded classes and their static fields. Espresso does not support
querying loaded classes nor are there class load events as with the JDI. With these limitations,
here are the steps to retrieve loaded classes and their statics with Espresso:

1. Determine relevant class names in the user’s code.

2. Lookup these classes with the class loader of Espresso.

3. If they have been initialized, their static fields can be accessed.

Listing 9 shows how this procedure is implemented. Both the class names as well as the
class loader are accessible through the Espresso runner. The class names are then mapped
to their language agnostic class representation. Together with the Espresso internal class
representation, they are mapped to JavaWiz’ data structure for loaded classes. For their
static fields, the field table is mapped to variables of JavaWiz. Each field’s value is processed
similarly to the value of instance fields in function processValue.

Chapter 5. Espresso Backend 36

1 fun processLoadedClasses (): List<LoadedClass> {

2 val classNames = espressoRunner.classNames

3 val esprClassLoader = espressoRunner.context.getBindings("java")

4

5 return classNames

6 .mapNotNull { esprClassLoader.getMember(it) }

7 .map { classValue ->

8 val klass = classValue.‘as ‘(ObjectKlass ::class.java)

9 LoadedClass(

10 klass.nameAsString ,

11 klass.staticFieldTable.map { field ->

12 Var(

13 field.nameAsString ,

14 toReadableType(field.typeAsString),

15 processValue(classValue.getMember(field.nameAsString))

16)

17 }

18)

19 }

20 }

Listing 9: Processing Loaded Classes (simplified).

Note, that only public static fields are accessible through the Truffle Debug API currently.
To overcome this, static fields are changed to be declared publicly while parsing, similarly to
how it is done with non-static fields (cf. Section 5.3.1).

5.3.3 Standard I/O Stream Handling

This section is about handling standard I/O streams with Espresso. Whenever a trace state
is generated, the output streams are read and reset. The read string is then included in the
trace state.

Handling the standard input stream is a bit more challenging than that. Figure 20 illustrates
how this is accomplished. Whenever the function read of the standard input stream is called
1 , the native call is substituted with the call to a custom input stream. This input stream

stores the user input as a string. As there is no input initially, the frontend is notified and
the execution is blocked 2 . The request for new input is sent via the WebSocket connection

Chapter 5. Espresso Backend 37

3 . When the user inputs a new string 4 , it is sent back via the WebSocket connection.
Upon receiving the input, the custom input stream simulates a regular input stream. This
is done by returning byte for byte of the input on consecutive calls of the function read 6 .

custom
InputStream

read()

Frontend

public class HelloWorld {
__public static void main(String[] args) {
____System.out.println("Hello World!");
__}
}

Heap
Stack

System.in

read()

↯ native call ↯

notify frontend and wait

substitute call

receive and store input;
simulate input stream

WebSocket
connection

user code executed in Espresso

Backend

1

2
3

4

5

6

Figure 20: Handling Input via the Standard Input Stream in Espresso.

5.3.4 Extracting Input Buffer Information

Finally, this section is about extracting input buffer information. The utility class In is
distributed together with JavaWiz. It is used in the programming courses of the SSW. The
class offers functions to read various forms of input from the standard input stream or a file.
To aid student’s understanding how this class processes input, a visualization for its internal
data structures was developed by Melissa Sen [15].

The class works by reading and processing input character by character. To check if an
operation has concluded correctly, the class offers a function done.

By visualizing the input buffer, students can grasp what the class has already read and
processed (cf. Figure 21). The visualization of the buffer is split into two parts: (1) what has
been read (in gray) and (2) what is left inside the buffer (in green). These parts are called
past and future respectively. Additionally, the visualization shows which function was called
last, which value it returned and the current return value of the function done.

All this information is accessible with public functions of the class. Hence, to extract the
information, these functions are called while building a trace state.

Chapter 5. Espresso Backend 38

Figure 21: Screenshot of the Input Buffer Visualization.

Next, we want to take a look at how this information can be extracted when debugging a
program using the input utility class In in Espresso, which is shown in Listing 10. A reference
to the class In is stored in inClass. If the class has not been stored yet, the class is looked
up first. For that, the class names found in the user’s code are examined. If the user has
not supplied the class, JavaWiz offers a built-in one which is used instead. Next, the class
representation is queried with the class loader. After checking if the class has been initialized,
it can be used for extraction. If the class does not contain all expected functions, a failure
is returned. Otherwise, each function is queried and executed. Finally, the function’s return
values are converted to host objects and returned in an InputBufferInformation.

1 fun processInClass (): InputBufferInfo {

2 if (inClass == null) {

3 val inClassName = espressoRunner.classNames.find { it.split(".

").last() == IN_CLASS_NAME }

4 ?: IN_CLASS_NAME

5 val inClassValue = espressoRunner.context.getBindings("java").

getMember(inClassName)

6 ?: return InputBufferInfo.EMPTY

7 if (inClassValue.‘as ‘(ObjectKlass :: class.java).state >=

ObjectKlass.INITIALIZED)

8 inClass = inClassValue

9 else

10 return InputBufferInfo.EMPTY

11 }

12

13 if (! inClass.memberKeys.containsAll(EXPECTED_IN_KLASS_MEMBERS))

{

14 return InputBufferInfo.FAILED

15 }

16

17 return InputBufferInfo(

Chapter 5. Espresso Backend 39

18 inClass.getMember(IN_PAST_SIG).execute ().asString (),

19 inClass.getMember(IN_FUTURE_SIG).execute ().asString (),

20 inClass.getMember(IN_DONE_SIG).execute ().asBoolean (),

21 inClass.getMember(IN_LATEST_VALUE_SIG).execute ().asString (),

22 inClass.getMember(IN_LATEST_METHOD_SIGE).execute ().asString ()

23)

24 }

Listing 10: Extracting Input Buffer Information (simplified).

40

Chapter 6

JavaScript Backend

Replacing the VM with Espresso enables the second goal of this thesis: compiling the backend
to JavaScript using WebImage. Utilizing Espresso, the backend does not depend on a VM in
a separate process anymore. As a result, it is possible to compile the backend to JavaScript.
Executing the backend with JavaScript has some challenges, which will be covered in this
chapter:

1. Architectural changes resulting by executing the backend in a JavaScript runtime are
covered in Section 6.1. These modifications include adapting the communication and
synchronization methods used between frontend and backend.

2. A JavaScript runtime does not feature native access operations. This leads to the need
of substituting native file system calls. These replacements are described in Section 6.2.

3. The JavaWiz backend uses reflection. However, WebImage cannot detect every re-
flection case automatically and is not able to support used dynamic reflection [14].
Configuring reflection is documented in Section 6.3.

6.1 Architectural Changes

This section is about the architectural changes needed to run the backend in JavaScript. With
the current version of JavaWiz, Java code is run in a separate process. First, JavaScript does
not allow creating processes. Additionally, it does not allow to directly run Java. Because of

Chapter 6. JavaScript Backend 41

this, Espresso is used to run Java bytecode. This way, the user’s code can directly run within
the backend. Yet, we still need a way to run the backend concurrently with the frontend.
JavaScript has a solution for that: Web Workers [29].

Web Workers allow executing JavaScript code in a separate thread from the main thread
[29]. A Web Worker is started by providing a JavaScript file. Since the output of WebImage
is a JavaScript file, it can be executed directly by a Web Worker. Once started, a Web
Worker provides an interface for communication similar to WebSockets. It allows reacting
to messages and posting messages to other listening threads. Utilizing Web Workers, the
backend can run simultaneously to the frontend. There are two alternatives to achieve this:

1. Follow the architecture of the Java version running in two threads, i.e., spawn two
Web Workers, one for the backend logic and one for the VM. There are two ways to
accomplish this:

• Create separate scripts, one for the backend logic and one for Espresso.

• Use the same script yet differentiate what to perform when reacting to requests.

2. Adapt the architecture of the Java version and let the backend run in a single thread. As
previously mentioned in Section 2.1 and Section 5.2, the backend thread is responsible
to decide when to send the collected trace states to the frontend. Concurrently, the
other thread is running Espresso. If the whole backend is run in a single thread, both
the backend logic and Espresso have to be executed in the same thread.

Both of these solutions have their pros and cons, but we have decided to implement the
second one and run the backend in a single thread. Adding the logic of determining when to
send the collected trace states to the Espresso debugging process is less complex.

Figure 22 shows how the frontend and the backend communicate when operating in JavaScript.
The frontend is executed by the main thread on the left. Concurrently, the backend is run
inside a Web Worker on the right. Compile requests as well as responses from the backend
are sent through the Web Worker interface.

When running the backend with JavaScript, it should behave the same way as when run
with Java. Hence, there needs to be a way to block Espresso. In other words, the Web
Worker executing Espresso needs to be blocked. Blocking a Web Worker is possible with

Chapter 6. JavaScript Backend 42

JavaScript’s Atomics [33]. They provide the methods wait and notify which are modelled
on Linux futexes [33, 34]. With them, it is possible to interrupt and wake up Web Workers.
Atomics work on instances of SharedArrayBuffer and ArrayBuffer. Since the buffer is used
in multiple threads, a SharedArrayBuffer is needed. By making use of atomics, Espresso can
block itself from further execution and later can be woken up by another thread to continue
execution. Thus, a SharedArrayBuffer is included in Figure 22 for synchronization purposes.

When creating an integer array that views the SharedArrayBuffer, the buffer can be accessed
with Atomics [33]. Listing 11 shows an example for this. First, a SharedArrayBuffer is
created. Then an integer array is created that views the buffer. The function wait receives
the array, an index and a value. If the SharedArrayBuffer contains the given value (1) at
the given index (0), the calling thread is blocked. The function notify receives the array, an
index and the amount of threads which should be notified. When called, the given number
of threads (0 means all of them) waiting for that index is unblocked.

1 const sab = new SharedArrayBuffer (1024);

2 const int32 = new Int32Array(sab);

3 Atomics.wait(int32 , 0, 1);

4 Atomics.notify(int32 , 0, 0);

Listing 11: Examples for the Use of Atomics [33].

The SharedArrayBuffer is not only used for synchronization purposes but also for data
transfer. Step requests and user input are sent through the buffer (cf. Figure 22).

Main Thread Web Worker

Backend

compile

W
eb

 W
or

ke
r

In
te

rfa
ce

Frontend

SharedArrayBuffer
for Synchronization and

Data Transfer

step over step in step out run to line

Compile Request

Response

wait

load

notify

store

Figure 22: Communication Architecture of the JavaWiz Backend in JavaScript.

So far, we have decided to use a single thread for running the whole backend. Addition-
ally, we have established that a shared array buffer has to be used for communication and
synchronization purposes. There are two open issues:

Chapter 6. JavaScript Backend 43

1. How are the requests sent through the shared array buffer?

2. How does the debug process of Espresso look like with the implemented changes?

These issues will be discussed in the following two sections.

6.1.1 Sending Requests through a Shared Array Buffer

To send requests through a shared array buffer, we need to define a protocol. This protocol
has to work with integers only, since the relevant functions of Atomics only work with integer
arrays [33]. Before defining such a protocol, we need to enumerate what requests can contain:

• Task kind. The buffer should contain which task is requested. Tasks include step-
into, step-over, step-out, run-to-line, compile and input. The content of compile requests
does not need to be sent over the buffer, since compile requests are handled in separate
events.

• Reference stack depth. Both step-over and step-out tasks include a reference stack
depth. With this depth, it can be determined if the debugger has run far enough.

• Line number. The run-to-line task specifies the line until which the program should
continue.

• Strings. Run-to-line tasks contain the class name the line is in. Furthermore, console
input contains the entered text as a string.

Using this information, we can define a protocol to store requests and input in the buffer (cf.
Figure 23). The first element contains the task ID to identify the task kind (step-in, step-out,
input, ...). Depending on the task, the second element holds the reference stack depth or a
line number. If a string is sent, the third element contains the length of it. Starting from
element 4, the string is stored.

Using the proposed protocol requires a buffer that can store at least four integers. The greater
the buffer size, the greater the capacity for transmitting strings. If a string is longer than
the buffer, it is sent in fragments.

Figure 24 shows the buffer’s content with two examples. Gray cells may contain arbitrary
values. A step-out request is stored in the upper buffer. The first index contains the corre-

Chapter 6. JavaScript Backend 44

0 1 2 3 ...

···

task ID
and debugging synchronization

reference stack depth (step over and step out)
or line number (run to line)

length of readable string
and string reading synchronization

start of string

string

Figure 23: Index Assignment for a Shared Array Buffer Used for Communication.

sponding task ID (3) and the second one contains the reference stack depth (4). With this
request, the program would continue until the stack depth is ≤ 4. The second example shows
a buffer containing user input, indicated by the task ID 7. The length of the sent input (5)
is stored at the third element. Staring at the fourth element, the input string (Hello) is
encoded as integers.

0 1 2 3 ...

···3 4

0 1 2 3

7 5 72 101 108 108 111

...

···

4 5 6 7 8

Step-Out:

User Input:

Figure 24: A Step-Over Request and a User Input Stored Inside a Shared Array Buffer.

6.1.2 Debugging Espresso after its Compilation with WebImage

This section covers the debugging process with Espresso after compiling it with WebImage.
Figure 25 depicts a sequence diagram illustrating the workflow. The general structure is
similar to debugging Espresso (cf. Figure 17 of Section 5.2). Note, that the diagram has
been simplified. Methods using the shared array buffer are shown as instance methods, but
rather are static methods of Atomics. The buffer is passed to these methods alongside the
given arguments. Note that the function wait is blocking if the passed value is stored at the
given index. More precisely, it does not wait until the passed value is stored there.

There are four lifelines to consider in Figure 25:

Chapter 6. JavaScript Backend 45

I
The frontend is responsible for user interactions and for visualizing the program state.
Initially, the user interface (UI) is blocked since there is an ongoing request pending,
in this case a step into.

II

As discussed earlier, a shared array buffer is used for synchronization and commu-
nication between the two threads. For this example, only the first index is relevant.
Initially, the buffer stores the task ID for step into (1) in this index, as this was the
last unfinished request by the frontend.

III Espresso is executed in the backend, which executes the user’s code and handles
debugging. Starting the sequence, the backend is executing user code.

IV

The backend creates a response builder for each request. Response builders decide
when the corresponding request has been fulfilled and thus determine if a response
is sent to the frontend. Therefore, response builders replace the second thread in
the backend. Initially, a response builder is processing the last unfinished request, a
step-into task.

After executing user code, Espresso encounters a suspension point and triggers the execution
of a suspended callback. While handling the suspended event 1 , a trace state is built
2 and added to the response builder 3 . Subsequently, the builder adds this event to its

collected trace states 4 and then checks if the response should be sent to the frontend 5 .
To determine this, it tries to build a response with the current collected information 6 .
Within this function, a check is performed if the collected information fulfills the request. For
example, with the step-out task in Figure 24, the backend would check if the current stack
depth is less than or equal to 4. If so, a response is built. Since the current request is a step
into, a single trace state fulfills the request and a response is built. A new request is required
before continuing execution. Consequently, the buffer is prepared for blocking 7 , by storing
0 for the task ID. This indicates that the execution should be halted. Afterward, the step
result is sent to the frontend 8 . The frontend triggers a redraw of the visualizations 9 and
unblocks the UI. The order of operations is important in this situation: If the result is sent to
the frontend 8 before preparing the buffer 7 , user input may cause a new request. This
request would be stored inside the buffer and could be overwritten by the response builder.

After sending the result, the response builder is not needed anymore 10 . Since the task
ID inside the buffer is still 0, the backend blocks itself 11 . Meanwhile, the user requests
a step into 12 . Hence, the corresponding task ID is stored inside the buffer 13 . All

Chapter 6. JavaScript Backend 46

waiting threads are notified 14 , which leads to the backend being unblocked again 15 .
Subsequently, the backend reads the new task in the buffer 16 and creates a new response
builder 17 . Finally, it prepares a step into 18 , since we need to record every step of the
program, as discussed in Section 5.2. At this point, we have reached a similar state as the
initial one of the diagram. The process can start over again.

Frontend

user requests step into

redraw()

SharedArrayBuffer Backend

handleSuspendedEvent(event)

buildTraceState()

prepareStepInto()

wait(0,0)

notify(0)

store(0,1)

load(0)

1

Response Builder
(Step Into Request)

checkIfCompleteAndSend()

buildResponse()

traceStates.add(traceState)

addTraceState(traceState)

blocked

unblocked

store(0,0)

stepResult

check if request is fulfilled

Response Builder
(Step Into Request)

newBuilder(StepInto)

UI blocked

running user's code

blocked

1 ···

1 ···

0 ···

Signatures of SharedArrayBuffer:
store(index, number): number
wait(index, number): “ok”

| “not-equal”
| “timed-out”

notify(index): number
load(index): number

1

2

3

4

5

6

7

8

9

101112

13

14
15

16

17

18

IVIIIIII

IV

Figure 25: Sequence Diagram of the Debugging Process with Espresso After Compiling it with
WebImage (simplified).

6.2 Substituting File I/O

This section is about substituting native file system calls. Normally, Espresso has access
to the file system through the host process. Since JavaScript does not have access to a file
system, native file calls have to be handled differently.

Chapter 6. JavaScript Backend 47

Since JavaScript has no access to the user’s file system, WebImage employs an in-memory
file system. Compiled programs can thus still make use of a file system. Figure 26 illustrates
which parts of JavaWiz’ architecture have access to the in-memory file system. The backend,
the compiler and Espresso all have access to it. This allows for storing source files and
generated class files inside the in-memory file system. While Espresso itself works with the
file system, native calls by code executed within Espresso are not rerouted automatically.

IIJavaScript

Backend

IIJava

Espresso

javac Espresso

HelloWorld.class

debugs

send source code info

Frontend

public class HelloWorld {
__public static void main(String[] args) {
____System.out.println("Hello World!");
__}
}

javacsend source code

Backend

WebImage

starts

send state

communication through Truffle Debug API

request step

communication through
WebWorker and JS

In-memory
File System

JavaParser

Heap
Stack

Figure 26: The Architecture of JavaWiz With Espresso as a VM, Compiling it With WebImage
and an In-Memory File System.

Figure 27 contains an exemplary file tree of the in-memory file system. There are directories
for source files, for class files and for the JDK. The working directory is work.

classPath
└── HelloWorld.class
jdk
└── modules
 └── java.base
 └── ...
sourcePath
└── HelloWorld.java
work
└── input.txt

Figure 27: Exemplary File Tree for the In-Memory File System.

To provide file I/O for user’s code, native file I/O calls are substituted (cf. Figure 28). For ex-
ample, the function read of FileInputStream and the function write of FileOutputStream

are substituted. With the substitutions, the file streams are rerouted to the in-memory file
system. Return values are forwarded to the caller. These substitutions have to be built into
Espresso itself. Consequently, a special build of Espresso is needed to compile JavaWiz with
WebImage.

Chapter 6. JavaScript Backend 48

↯ native call ↯

substitute call

native call of
file stream

in-memory
file system native call

 substitution

user code executed in Espresso
compiled with WebImage

Espresso compiled with WebImage

Figure 28: Substituting I/O Calls After Compilation With WebImage.

6.3 Supporting Reflection

WebImage tries to detect usages of reflection and supports such usages when executing the
generated JavaScript code [14]. It is not possible for WebImage to take reflection scenar-
ios into account that are unknown during build time. To enable dynamic reflection with
WebImage, a configuration may be passed to the build process [9]. This configuration has to
contain all relevant usages of reflection.

To recap Section 4.2, the JavaWiz backend uses reflection to accomplish the following:

1. For the communication between the frontend and backend, JSON is employed. Reflec-
tion is needed to parse received JSON objects and to generate JSON objects.

2. As mentioned in Section 2.1, the user’s code is parsed and modified. For this, the third-
party parser JavaParser [16] is used. This parser uses reflection on internal objects to
provide access to the AST.

To compile JavaWiz with WebImage, a configuration of reflection usages is needed. This is
straightforward for case 1, creating and parsing JSON objects. In contrast, the reflection
used by the JavaParser is harder to identify. Thus, creating a configuration by hand seems
to be impractical.

WebImage provides a solution for this: a tracing agent. This agent creates, among others,
a configuration for reflection (cf. Figure 29). It gets attached when a JVM is started.

Chapter 6. JavaScript Backend 49

During executing Java bytecode, the tracing agent keeps track of which classes are accessed
through reflection. The generated configuration can then be passed to the building process
of WebImage.

Java Virtual
Machine

Java Class
File

Reflection
Configuration

Tracing
Agent

Figure 29: Automatically Generating a Configuration for Reflection.

To generate a configuration for reflection, we use unit tests delivered with the JavaParser. A
configuration is created for each test. The collected configurations are then merged with one
needed for creating and parsing JSON objects.

Note, that there are plans to eliminate the dependency on JavaParser. If the JavaParser
was not used anymore, the configuration for reflections would only need to contain cases for
communication purposes.

50

Chapter 7

Handling Multiple Files

The third goal of this thesis is to add support to handle multiple files. Currently, the web ver-
sion of JavaWiz is only able to handle a single source file. First, let us revisit the requirements
of this goal, which were already discussed in Section 4.3:

1. It should be possible to edit multiple source files in the frontend.

2. Additionally to source files, the frontend should also support creating and editing text
files. Text files should stay updated during execution.

3. If a new file is created during execution, it should be exposed to the user in the frontend.
It does not need to be editable.

We will cover the implementation of these requirements separately for the frontend (Sec-
tion 7.1) and the backend (Section 7.2). Before that, we briefly explain how they interact.
When the user starts the program, all files are sent to the backend. Further, whenever a file
is modified during execution, the frontend is notified. We decided that file changes in the
frontend should not be propagated to the backend during execution. The primary reason
behind this decision is that it would not be apparent to the user when these modifications
are exposed to the backend. While Espresso is running, it is not possible to update files in
the file system as the backend is busy. Therefore, we decided that file changes cancel the
execution.

Chapter 7. Handling Multiple Files 51

7.1 Extending the Frontend

Let us begin by defining what needs to be added to the frontend:

• There needs to be a tab-like view to switch between files.

• The frontend should react to file related notifications accordingly. Either it updates
the corresponding file or it creates a new one.

7.1.1 Storing Multiple Files in the Frontend

To understand how the frontend can store multiple files, we first take a look at how JavaWiz
currently handles its single source file (cf. Figure 30). As stated in Chapter 1, the frontend is
using the JavaScript framework Vue.js [5]. The main view Home.vue contains all components
needed for the frontend. One of the components is TheCodeEditor.vue, which utilizes the
Monaco Editor [35]. It stores the entered text as a value. This value is bound to the model-

Value of the component which is kept in sync with the property editorText in Home.vue.
When the user requests to run the code, the editor text is sent to the backend.

Why is the source code not solely stored within the component, but also inside Home.vue?
Home.vue is acting as conductor between all the components. Since the editor’s text is needed
by other components, it is stored globally.

Frontend

Backend

Home.vue
TheCodeEditor.vue

modelValueeditorText

Monaco Editor

value="public class HelloWorld..."

Figure 30: Old Handling of Source Code in the Frontend (simplified, inspired by [1]).

Figure 31 shows how the frontend can be extended to handle multiple files. The implementa-
tion is heavily inspired by the Monaco Editor’s playground’s source code [36]. The following
objectives are pursued:

Chapter 7. Handling Multiple Files 52

• Use only a single editor instance to save resources.

• Create a new model for each file. Models are used by the Monaco editor to store text,
an undo stack and more.

• When switching between files, change to the corresponding model in the editor. Save
the view state (cursor position, scroll position, undo history, . . .) of the previous model
and restore the one of the now viewed model.

Figure 31 illustrates the approach with two open files. The Monaco Editor stores a model
for each file. Each model contains its text as a value and a reference to its Uniform Resource
Identifier (URI).

Instead of the property editorText Home.vue contains a file manager. The file manager
keeps track of all files, each linked to its FileData. The file data stores the URI of the file,
whether the file is read only and other properties not depicted in the diagram.

Frontend

Backend

Home.vue
TheCodeEditor.vue

Monaco Editor

uri

value="public class HelloWorld..."

TextModel

uri

value="public class Other..."

TextModel

path="HelloWorld.java"

Uri

path="Other.java"

Uri

openFile = "HelloWorld.java"

uri

readOnly = false

FileData

uri

readOnly = false

FileData
FileManager

files

"HelloWorld.java"

"Other.java"

Figure 31: New Handling of Source Code in the Frontend (simplified).

Whenever the content of a file is needed, its URI is used to look up the corresponding model
in the editor. The file’s content is then accessible through that model.

7.1.2 Reacting to File Changes

After explaining how multiple files are stored in the frontend, we want to cover how to react
to file changes. For that, we have to distinguish between a file modification and the creation
of a file:

Chapter 7. Handling Multiple Files 53

1. If the file already exists within the frontend, we have to look up the corresponding
model and change its contents.

2. If a new file has been created, a model with the corresponding URI has to be created.
The property readOnly within the file data has to be set to true, as changes are not
sent to the backend.

7.2 Adapting the Backend

Let us recap what has to be adapted in the backend to support multiple files:

• Distinguish between source files and text files, i.e., store source files at the source path
and text files in the working directory. This way, a user can access the text files via
their relative path.

• Monitor all opened file output streams and notify the frontend about changes within
files.

This approach was already presented in Figure 14. With the information from Section 6.2,
we can specify it more precisely (cf. Figure 32). When the user starts the execution, the files
are sent to the backend. There, the files are split up into source files and text files. Source
files are stored at the source path, while text files are inserted into the working directory.
Subsequently, the source files are parsed, modified and compiled. Then, Espresso is launched
and keeps track of all opened file streams. With the help of Espresso, the backend checks for
modifications or creations of files and the frontend gets notified if necessary.

Chapter 7. Handling Multiple Files 54

Source Files

Text Files

Frontend

Files

In-memory
File System

/sourceDir
/work

on file change,
notify frontend

Backend and Espresso compiled with WebImage

keep track of
opened file output

streams

Backend compiled with WebImage

Espresso compiled
with WebImage

Figure 32: More Detailed Approach for Handling Multiple Files in the Backend.

55

Chapter 8

Loading Predefined Examples

As pointed out in Chapter 1, providing JavaWiz via a website mitigates the complexity for
novice users. To recap, it eliminates the need to download VS Code, install a plugin and set
up an appropriate JDK. Yet, an additional advantage has been left out: The URL of JavaWiz
can be used to embed additional information. In particular, we could provide information
to load JavaWiz with a specific predefined setting. As a part of this thesis, we developed a
technique to load the code of a predefined example into JavaWiz. This chapter covers how
this works and demonstrates a website with predefined examples.

8.1 Loading a Predefined Configuration

Before explaining how this was implemented, we want to set the requirements of this feature:

• It should be possible to load examples by opening a predefined URL.

• Adding new examples should be independent of building the frontend. In other words,
the frontend should be able to load examples without them being known at build-time.

• Links to examples should look like this: <URL of JavaWiz>/<Example Name>.

First, one needs to define how examples are stored on a server and how they are identified.
This is accomplished as follows:

• Each example is stored within a unique directory.

Chapter 8. Loading Predefined Examples 56

• Each directory contains Java source files and text files, possibly in subdirectories.

• Examples are identified by the name of the directory they are stored in. The name of
the directory should be the <Example Name> for the URL.

• The examples are stored on the same server as JavaWiz in a directory named examples.
Figure 33 shows an exemplary directory structure of such a server. Every file and
directory but the directory examples is output when building the JavaWiz frontend.

backend.js
backend.js.bin
css
└── ...
editor.worker.js
editor.worker.js.map
examples
├── GCD
│ └── ...
├── HelloWorld
│ └── ...
├── IntegerList
│ └── ...
├── MartrixMultiplication
│ └── ...
└── ReadInt
 └── ...
favicon.svg
fonts
└── ...
img
└── ...
index.html
js
└── ...

Figure 33: Exemplary Directory Structure of a Server Hosting JavaWiz and Examples.

After defining how examples are stored and identified, we will take a look at how they can
be loaded. In the frontend, it is possible to retrieve a file from a server using the Fetch API
[37]. Yet, we run into a problem here: One can only fetch from a web server if the file name
is known. Also, it is not possible to fetch a directory. To solve this, the JavaWiz frontend
needs to know which files it has to fetch. There are different options to achieve this:

1. The server could provide a REST API [38] to get all files associated with an example.

2. Whenever a directory for an example is requested, the server could be configured to
return an index HTML file.

Chapter 8. Loading Predefined Examples 57

3. Alternatively, a PHP [39] script could be executed on the server to obtain a list of files.

4. A configuration file with a predefined name could be stored within each directory. It is
written by the example author and contains all file names for an example.

We decided to use the last approach, since it has two advantages:

1. With the configuration, the example author can predefine in which order the files should
be opened.

2. The configuration can be extended to hold additional information, such as initially
opened visualizations.

Figure 34 shows a more detailed example file structure of the directory examples (cf. Fig-
ure 33). Each example has its own directory. Each folder contains a configuration file con-

fig.json written in JSON. Next to the configuration, each directory also contains sources
for the example. The example ReadInt additionally contains a text file. Whenever JavaWiz
should be loaded with an example, the frontend fetches the configuration file. Then, it ex-
tracts all relative paths for needed files and fetches them individually. Note, that there could
be subdirectories.

GCD
├── config.json
└── GCD.java
HelloWorld
├── config.json
└── HelloWorld.java
IntegerList
├── config.json
├── List.java
├── Main.java
└── Node.java
MatrixMultiplication
├── config.json
└── MatrixMultiplication.java
ReadInt
├── config.json
├── input.txt
└── ReadInt.java

Figure 34: File Tree of a Web Server Hosting Examples.

Finally, let us take a look at a configuration file. As an example, the one of ReadInt is shown
in Listing 12. The configuration holds a list of relative paths of the source files (only one in

Chapter 8. Loading Predefined Examples 58

this case). Additionally, it contains the relative paths for all text files (only one in this case).

1 {

2 "sources": [

3 "ReadInt.java"

4],

5 "files": [

6 "input.txt"

7]

8 }

Listing 12: Configuration File of the Integer List Example.

8.2 Example Website

In this section, the approach is demonstrated by an example website. This website could be
used as an index for example programs of a software development course. Figure 35 shows a
screenshot of the website.

Figure 35: Website Containing Links to Predefined JavaWiz Examples.

Chapter 8. Loading Predefined Examples 59

Listing 13 shows a fragment of the HTML code for the website in Figure 35. Each example
has a header (h2), a description (inside p) and a link to the example (a). Each link contains
target="_blank" to open it in a separate tab.

1 <h1>JavaWiz Examples</h1>

2

3 <h2>GCD</h2>

4 <p>Calculates the GCD for two numbers using recursion.</p>

5 <p>

6

7 Try the example here

8

9 </p>

10

11 <h2>HelloWorld</h2>

12 <p>A simple program outputting some text to the console.</p>

13 <p>

14

15 Try the example here

16

17 </p>

18

19 <h2>IntegerList</h2>

20 <p>Creates a singly linked list and fills it with some values.</p>

21 <p>

22

23 Try the example here

24

25 </p>

26

27 <h2>MatrixMultiplication</h2>

28 <p>Multiplies two 2D matrices.</p>

29 <p>

30

31 Try the example here

32

33 </p>

Chapter 8. Loading Predefined Examples 60

34

35 <h2>ReadInt</h2>

36 <p>Reads an integer from console input using the class In.</p>

37 <p>

38

39 Try the example here

40

41 </p>

Listing 13: Fragment of the HTML Code for the Website Containing Links to Predefined JavaWiz
Examples (cf. Figure 35).

In the following sections, we want to take a look at each of the examples (excluding Hel-
loWorld). They also demonstrate the visualizations provided by JavaWiz.

8.2.1 Greatest Common Divisor

This example is shown in Figure 36. It calculates the greatest common divisor of two numbers
with a recursive function. On the right side of the figure the flowchart visualization is shown.
It allows visualizing recursive methods. Each recursive method call has its own box. The
local variables of the current stack frame are visible in a yellow rectangle.

Figure 36: JavaWiz Executing the Example GCD.

8.2.2 Read Integer

As mentioned in Chapter 1 and Chapter 5, JavaWiz provides an input buffer visualization.
This example demonstrates reading an integer from a file. A screenshot is shown in Figure 37.

Chapter 8. Loading Predefined Examples 61

The code editor is hidden in the screenshot, but the program is shown in the flowchart
visualization. In the top left, the input buffer visualization is shown. Below it, the console is
visible. After skipping whitespace, the program reads digit for digit from the console. At the
current state, it has already read three digits and there is one digit left in the buffer. The
user can also see if the last operation was successful, which method of the class In was called
last and what it returned. Again, the flowchart visualization is helping the user by showing
the current values for local variables.

Figure 37: JavaWiz Executing the Example ReadInt.

8.2.3 Matrix Multiplication

In most courses teaching software development, arrays play an important role. Because of
this, JavaWiz offers a visualization especially for arrays. Figure 38 shows a screenshot with
the graphical representation for arrays on the right.

In this example, JavaWiz is executing a program multiplying two matrices together. One
matrix is referenced with the stack variable a and the second one is referenced with the stack
variable b. The resulting matrix is referenced with c. There is a variable sum used for adding
partial multiplications of elements.

In Section 5.3.1 we have explained the importance of instrumentation values. These are used
for the array visualization in the following way:

• When an array is accessed, the corresponding variables are shown as indices at each
array. This is visible in Figure 38 at all arrays with variables i, j and k, respectively.

Chapter 8. Loading Predefined Examples 62

• When an array element is written to a variable, the variable is shown in the visualiza-
tion. Figure 38 demonstrates this with the variable sum.

• JavaWiz can detect when an array element is written to another element or a variable.
Such operations are animated with moving rectangles from the source to the destination.
This is depicted with colored rectangles (blue for sources, red for targets) in Figure 38.

Figure 38: JavaWiz Executing the Example MatrixMultiplication.

8.2.4 Integer List

The last example is one with a singly linked list of integers. Since singly linked lists are often
a topic in software development education, JavaWiz features a visualization specifically for
them [3]. A screenshot showing this visualization is presented in Figure 39.

Both the stack and heap visualization and the linked list visualization are shown on the right
in the screenshot. At the current state of the program, a new node with the value 7 is inserted
in the sorted list. The field next has already been set and is referencing the node with the
value 8. As a result, the visualization leaves space for the new node in the list. It assumes
that the node will be linked correctly.

The example also demonstrates handling of multiple files. Typically, multiple classes are used
when implementing linked lists. These are usually stored in separate files. In the example
program, the following files are used: Main.java, List.java and Node.java.

Chapter 8. Loading Predefined Examples 63

Figure 39: JavaWiz Executing the Example IntegerList.

64

Chapter 9

Evaluation

This chapter is about evaluating the different versions of the backend. There are three
versions of JavaWiz:

1. The original version where the JVM is executed in a separate process and the JDI is
used.

2. A version which employs Espresso as a JVM (cf. Chapter 5).

3. A version where the backend is compiled with WebImage (cf. Chapter 6).

In this chapter we compare the execution time of the different versions with test programs.
Before starting with the comparison, here are a few considerations about the measurements:

• We used several Java programs and executed them on each version of the backend.
Each program was run five times.

• As startup time we define the time it takes the backend to parse, modify and compile
the source code. The startup time also includes the time to generate the first trace
state. Altogether, this is how long the user has to wait for the first response.

• We provide an average of the time between trace states, as well as the time needed
for all trace states. The three versions of the backend differ slightly in their stepping
behavior, e.g., there might be different numbers of trace states for a step-over. Since

Chapter 9. Evaluation 65

the startup time accounts for the first trace state, this state is not included in this
measurement.

We tested each backend with several programs:

• The simple Hello World example is used to measure the startup times.

• To include a sorting algorithm, we evaluate the backends with the Quicksort algorithm
[40].

• The program List of Persons is used to evaluate the backends with linked objects.

• We evaluate the different versions with the Minesweeper example to compare the per-
formance when dealing with a two-dimensional array and many objects.

• The program Object Array is used to evaluate execution times with a large array and
many objects.

The source codes can be found in the appendix of this thesis.

9.1 Hello World

In this evaluation, we want to compare the startup times of the different versions. The pro-
gram in Listing 14 outputs some text to the console. The comparison of the average startup
times is shown in Figure 40. Notably, the backend utilizing a separate thread for the JVM,
henceforth referred to as the JDI backend, proved to be the fastest. The backend compiled
with WebImage, from now on referred to as the WebImage backend, was significantly slower.

9.2 Quicksort

Next, let us take a look at a more practical example – the Quicksort algorithm [40]. The used
program is shown in Listing 15. Figure 41 shows the measurements for this example. The
trend with the startup times continues: the JDI backend is the fastest, while the WebImage
backend is taking significantly longer. Executing the whole program with WebImage backend
took over a minute. In contrast, the Espresso backend finished in less than a second.

Chapter 9. Evaluation 66

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

211.60

568.00

3852.60

Startup Time

VM with JDI Espresso VM compiled with WebImage

Figure 40: Timing Comparison for the Evaluation Program Hello World.

0

1000

2000

3000

4000

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

479.80
677.00

4503.80

Startup Time

0

2

4

6

8

10

12

14

16

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

2.69

0.11

15.73

Average Time Between Trace States

0

10000

20000

30000

40000

50000

60000

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

9892.80

408.40

60953.80

Time for All Trace States

VM with JDI Espresso VM compiled with WebImage

Figure 41: Timing Comparison for the Evaluation Program Quicksort.

9.3 List of Persons

We get similar results from a linked list program (cf. Listing 16) shown in Figure 42. This
program creates a list of persons sorted according to their date of birth. The WebImage back-
end takes the longest, for both starting and generating trace states. The Espresso backend
significantly outperforms the others in regard to execution time.

9.4 Minesweeper

Next, we will take a look at the test program in Listing 17. It simulates a Minesweeper game
on a 10 × 10 board. Both the mine placements and the player choices are predetermined.

Chapter 9. Evaluation 67

0

1000

2000

3000

4000

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

264.80

550.20

4705.80

Startup Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

4.01

0.58

21.00

Average Time Between Trace States

0

10000

20000

30000

40000

50000

60000

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

12161.80

1773.80

64380.00

Time for All Trace States

VM with JDI Espresso VM compiled with WebImage

Figure 42: Timing Comparison for the Evaluation Program List of Persons.

As the results in Figure 43 show, this example does not follow the trend we have seen until
now. The startup times follow a similar pattern as with the scenarios above. However, the
measurements for the trace states are quite divergent. With this example, the WebImage
backend is not the slowest one anymore. The JDI backend is slower this time. The Espresso
backend is significantly faster. While the overall execution time for both, the JDI backend
and the WebImage backend, exceeds four minutes, the Espresso backend finishes within eight
seconds.

0

1000

2000

3000

4000

5000

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

506.20
635.20

5048.20

Startup Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

19.68

0.47

14.27

Average Time Between Trace States

0

50000

100000

150000

200000

250000

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

270285.00

7956.60

245487.80

Time for All Trace States

VM with JDI Espresso VM compiled with WebImage

Figure 43: Timing Comparison for the Evaluation Program Minesweeper.

The WebImage backend needs about the same time as in the last examples. However, the
JDI backend is drastically slower than in the previous runs. We assume that the reason for
this is the communication needed by using the JDI. The board is stored as an objects array
(as can be seen in Listing 17). We suspect that this slows down the communication between
the debugger and the debuggee. Since Espresso executing the program and the backend logic

Chapter 9. Evaluation 68

are executed in the same process, the communication does not drastically impact the run
time. The WebImage backend does also benefit from this.

9.5 Object Array

The last evaluation program is the program in Listing 18. It creates an array with 100
elements and stores objects in it. While testing, we tried to allocate a bigger array, but the
JDI backend came to its limits.

The results shown in Figure 44 are quite significant. Again, the startup measurements follow
the pattern seen in the previous evaluations. Contrary, the time frames needed for generating
trace states are different. The Espresso backend runs very fast and finishes after about a
second. It takes the JDI backend more than three minutes to finish. These results are three
times longer compared to the WebImage backend.

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

520.40 552.20

3972.80

Startup Time

0

20

40

60

80

T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

94.37

0.60

24.41

Average Time Between Trace States

0

25000

50000

75000

100000

125000

150000

175000
T
im

e
[m

s]
(l
ow

er
is
b
et
te
r)

188927.60

1194.00

48871.00

Time for All Trace States

VM with JDI Espresso VM compiled with WebImage

Figure 44: Timing Comparison for the Evaluation Program Object Array.

69

Chapter 10

Limitations and Outlook

This chapter discusses limitations encountered during the development of this thesis. Addi-
tionally, we will touch upon potential future improvements.

10.1 General Limitations

These are the current limitations:

• Non-shared file system. In Section 7.1 we have mentioned that the frontend and
the backend do not share a file system, but files are mirrored. Because of this, editing
files cancels the execution.

Using a shared file system between the frontend and the backend would eliminate the
need to mirror files. Additionally, a file system in the frontend would enable the web
version of JavaWiz to handle more advanced projects. There is an ongoing evaluation
if this will be implemented in the future.

• No tracing of internal structures. As covered in Section 5.3, Espresso does not
allow access to non-public fields via the Truffle Debug API. Currently, the workaround
is to make all fields public in the modification phase, cf. Section 5.3.1 and Section 5.3.2.
Furthermore, the Truffle Debug API does not allow querying loaded classes. As a result,
we cannot access such information of unknown sources, i.e., the JDK or libraries.

Chapter 10. Limitations and Outlook 70

According to the Espresso team, they are currently evaluating whether and how to add
access to non-public fields.

• No multi-threading. It is impossible to map the thread mechanism of Java to the
one of JavaScript, as they do not share a fundamentally similar semantic concept [14].
As a result, it is not possible for user code to spawn threads.

• Limited implementation of native calls. Oracle created an internal demonstration
to compile Espresso with WebImage and in turn implemented a lot of substitutions for
native calls. We added additional ones during the development of this thesis. Never-
theless, there are some missing native calls that need to be implemented as needed.

10.2 Future Improvements

In Section 2.1, Section 4.2 and Section 6.3 we have covered that we use the JavaParser [16]
to parse and modify the user’s code. Additionally, the JavaParser is used to create an AST
for the flowchart visualization. We have also mentioned some limitations with using the
JavaParser:

1. Due to the dependency, we can only support Java versions supported by the parser.

2. The usage of internal reflection needs to be maintained.

Because of these limitations, the JavaWiz team is working on replacing the JavaParser.
Instead, we would use the standard Java compiler which is used to compile the user’s code.
The team is currently evaluating if it is possible to use the AST of the javac [41] compiler.

As discussed in Section 6.3, a configuration for usages of reflection is required to compile
JavaWiz with WebImage. With new versions of JavaWiz, this configuration needs to be
maintained. To make this easier, the JavaWiz team is currently working on a solution to
generate such a configuration automatically.

71

Chapter 11

Conclusion

JavaWiz is a tool developed at the Institute for System Software at Johannes Kepler Uni-
versity, Linz to support software development education in the first semesters. It is best
described as a visual debugger, as it offers different views tailored to different problems and
tasks. Its main goal is being helpful and easy to understand for novice programmers.

The original version of JavaWiz consists of a frontend implemented in a JavaScript framework
and a backend written in Java. The backend uses the JDI to execute the user program step-
by-step and to provide intermediate states of the execution. There were two versions of
JavaWiz: one provided as a plugin for Visual Studio Code and a web version. However, in
the web version, the backend has to be executed separately.

In this thesis, a new version of JavaWiz has been implemented using Oracle’s Espresso VM
and the Truffle Debug API. Then, this new backend has been compiled to JavaScript using
WebImage. The result is a JavaWiz system which can be loaded from a web server and
executed in a browser.

This thesis has described the implementation of the JavaWiz backend using Espresso and the
modifications which are required to compile it to JavaScript. Further, a feature for handling
multiple files in the web version has been developed. With the web version of JavaWiz,
it is now possible to provide a website with predefined examples which can be loaded and
executed in a web browser. The thesis concluded with a performance evaluation of the
different versions of JavaWiz, current limitations and planned improvements.

72

References

[1] Kern, K. A.: “JavaWiz – A Visualization Tool for Software Development Education”.
MA thesis. Johannes Kepler University, 2023.

[2] Schlömicher, A.: “Visual Studio Code Plugin zur Visualisierung von Java-Methoden
als Ablaufdiagramme”. Bachelor’s Thesis. Johannes Kepler University, 2023.

[3] Schenk, F.: “Eine Komponente zur Visualisierung von Java-Methoden für lineare
Listen und binäre Bäume”. Bachelor’s Thesis. Johannes Kepler University, 2023.

[4] TypeScript Website. en. https://www.typescriptlang.org/ (visited on May 14,
2024).

[5] Vue.js Website. en-US. https://vuejs.org/ (visited on May 14, 2024).

[6] D3.js Website. https://d3js.org/ (visited on May 14, 2024).

[7] Kotlin Website. en. https://kotlinlang.org/ (visited on May 14, 2024).

[8] WebSocket - MDN Web Docs. en-US. 2024. https://developer.mozilla.org/en-

US/docs/Web/API/WebSocket (visited on June 7, 2024).

[9] GraalVM Website. en. https://www.graalvm.org/ (visited on May 14, 2024).

[10] Šipek, M. ; Mihaljević, B., and Radovan, A.: “Exploring Aspects of Polyglot
High-Performance Virtual Machine GraalVM”. In: 2019 42nd International Conven-
tion on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). ISSN: 2623-8764. 2019, pp. 1671–1676. https://ieeexplore.ieee.org/

abstract/document/8756917/ (visited on May 11, 2024).

https://www.typescriptlang.org/
https://vuejs.org/
https://d3js.org/
https://kotlinlang.org/
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://www.graalvm.org/
https://ieeexplore.ieee.org/abstract/document/8756917/
https://ieeexplore.ieee.org/abstract/document/8756917/

References 73

[11] Grimmer, M. ; Seaton, C. ; Schatz, R. ; Würthinger, T., and Mössenböck,
H.: “High-performance cross-language interoperability in a multi-language runtime”. In:
Proceedings of the 11th Symposium on Dynamic Languages, DLS 2015, part of SPLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015. Ed. by Serrano, M. ACM, 2015,
pp. 78–90.

[12] Vanter, M. L. V. d. ; Seaton, C. ; Haupt, M. ; Humer, C., and Würthinger,
T.: “Fast, Flexible, Polyglot Instrumentation Support for Debuggers and other Tools”.
In: CoRR abs/1803.10201 (2018). _eprint: 1803.10201. http://arxiv.org/abs/1803.

10201.

[13] GraalVM Github Repository. https : / / github . com / oracle / graal/ (visited on
May 11, 2024).

[14] Leopoldseder, D. ; Stadler, L. ; Wimmer, C., and Mössenböck, H.: “Java-to-
JavaScript translation via structured control flow reconstruction of compiler IR”. In:
Proceedings of the 11th Symposium on Dynamic Languages, DLS 2015, part of SPLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015. Ed. by Serrano, M. ACM, 2015,
pp. 91–103.

[15] Sen, M.: “A Component for Visualizing Sequence Diagrams in the Visual Debugger
Tool JavaWiz”. Bachelor’s Thesis. Johannes Kepler University, 2024.

[16] JavaParser Homepage. https://javaparser.org/ (visited on May 27, 2024).

[17] Duboscq, G. ; Stadler, L. ; Würthinger, T. ; Simon, D. ; Wimmer, C., and
Mössenböck, H.: “Graal IR: An Extensible Declarative Intermediate Representation”.
In: 2013.

[18] Academic Publications related to GraalVM. en. https://www.graalvm.org/latest/

community/publications/ (visited on May 22, 2024).

[19] Duboscq, G. ; Würthinger, T. ; Stadler, L. ; Wimmer, C. ; Simon, D., and
Mössenböck, H.: “An intermediate representation for speculative optimizations in a
dynamic compiler”. In: Proceedings of the 7th ACM workshop on Virtual machines and
intermediate languages. VMIL ’13. New York, NY, USA: Association for Computing
Machinery, 2013, pp. 1–10. https://doi.org/10.1145/2542142.2542143 (visited on
May 21, 2024).

[20] Würthinger, T. ; Wimmer, C. ; Wöß, A. ; Stadler, L. ; Duboscq, G. ;
Humer, C. ; Richards, G. ; Simon, D., and Wolczko, M.: “One VM to rule them
all”. In: ACM Symposium on New Ideas in Programming and Reflections on Software,

http://arxiv.org/abs/1803.10201
http://arxiv.org/abs/1803.10201
https://github.com/oracle/graal/
https://javaparser.org/
https://www.graalvm.org/latest/community/publications/
https://www.graalvm.org/latest/community/publications/
https://doi.org/10.1145/2542142.2542143

References 74

Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013. Ed.
by Hosking, A. L. ; Eugster, P. T., and Hirschfeld, R. ACM, 2013, pp. 187–204.

[21] Leopoldseder, D.: “Graal AOT JS: A Java to JavaScript Compiler”. MA thesis.
Johannes Kepler University, 2015.

[22] Java Visualizer on CS Circles Website. https://cscircles.cemc.uwaterloo.ca/

java_visualize/ (visited on May 15, 2024).

[23] Online Python Tutor Website. https://pythontutor.com/ (visited on May 15, 2024).

[24] Computer Science Circles Website. en-US. https://cscircles.cemc.uwaterloo.ca/

(visited on May 15, 2024).

[25] Online Python Tutor Website (Java Edition). https://pythontutor.com/java.html

(visited on May 15, 2024).

[26] Python Tutor unsupported features. en. https://docs.google.com/document/d/

13 _ Bc - l2FKMgwPx4dZb0sv7eMfYMHhRVgBRShha8kgbU / edit ? usp = embed _ facebook

(visited on May 15, 2024).

[27] Java Program Flow Visualizer. https : / / www . cs . virginia . edu / ~lat7h / cs1 /

JavaVis.html (visited on May 15, 2024).

[28] Java Visualizer Blog Post. https://luthert.web.illinois.edu/blog/posts/452.

html (visited on May 15, 2024).

[29] Web Workers API - MDN Web Docs. en-US. 2023. https://developer.mozilla.

org/en-US/docs/Web/API/Web_Workers_API (visited on March 10, 2024).

[30] SharedArrayBuffer - MDN Web Docs. en-US. 2023. https://developer.mozilla.

org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer

(visited on April 19, 2024).

[31] GraalVM Truffle Java API Reference. https://www.graalvm.org/truffle/javadoc/

com/oracle/truffle/api/package-summary.html (visited on March 15, 2024).

[32] GraalVM SDK Polyglot API Reference. https : / / www . graalvm . org / truffle /

javadoc/org/graalvm/polyglot/package- summary.html (visited on March 15,
2024).

[33] Atomics - MDN Web Docs. en-US. 2023. https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Global_Objects/Atomics (visited on April 19,
2024).

[34] futex(2) - Linux manual page. https://man7.org/linux/man-pages/man2/futex.2.

html (visited on July 2, 2024).

https://cscircles.cemc.uwaterloo.ca/java_visualize/
https://cscircles.cemc.uwaterloo.ca/java_visualize/
https://pythontutor.com/
https://cscircles.cemc.uwaterloo.ca/
https://pythontutor.com/java.html
https://docs.google.com/document/d/13_Bc-l2FKMgwPx4dZb0sv7eMfYMHhRVgBRShha8kgbU/edit?usp=embed_facebook
https://docs.google.com/document/d/13_Bc-l2FKMgwPx4dZb0sv7eMfYMHhRVgBRShha8kgbU/edit?usp=embed_facebook
https://www.cs.virginia.edu/~lat7h/cs1/JavaVis.html
https://www.cs.virginia.edu/~lat7h/cs1/JavaVis.html
https://luthert.web.illinois.edu/blog/posts/452.html
https://luthert.web.illinois.edu/blog/posts/452.html
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/package-summary.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/package-summary.html
https://www.graalvm.org/truffle/javadoc/org/graalvm/polyglot/package-summary.html
https://www.graalvm.org/truffle/javadoc/org/graalvm/polyglot/package-summary.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics
https://man7.org/linux/man-pages/man2/futex.2.html
https://man7.org/linux/man-pages/man2/futex.2.html

References 75

[35] Monaco Editor Website. https://microsoft.github.io/monaco-editor/ (visited
on June 4, 2024).

[36] Monaco Editor GitHub Repository. https://github.com/Microsoft/monaco-editor

(visited on June 4, 2024).

[37] Using the Fetch API - MDN Web Docs. en-US. 2023. https://developer.mozilla.

org/en-US/docs/Web/API/Fetch_API/Using_Fetch (visited on May 27, 2024).

[38] What is a REST API? | IBM. en-us. 2021. https://www.ibm.com/topics/rest-apis

(visited on June 28, 2024).

[39] PHP Website. en. 2024. https://www.php.net/index.php (visited on May 27, 2024).

[40] Hoare, C. A. R.: “Quicksort”. en. In: The Computer Journal 5.1 (1962), pp. 10–16.
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/5.1.

10 (visited on June 7, 2024).

[41] Javac - the Compiler - Dev.java. en. https://dev.java/learn/jvm/tools/core/

javac/ (visited on July 2, 2024).

https://microsoft.github.io/monaco-editor/
https://github.com/Microsoft/monaco-editor
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://www.ibm.com/topics/rest-apis
https://www.php.net/index.php
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/5.1.10
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/5.1.10
https://dev.java/learn/jvm/tools/core/javac/
https://dev.java/learn/jvm/tools/core/javac/

76

List of Figures

1 Overview of the Architecture of this Work. 3

2 The JavaWiz Visual Studio Code Extension. 6
3 The Architecture of JavaWiz. 8
4 Example Graph of the Graal Intermediate Representation (taken from [17]). . 9
5 Graal Compiler System Structure (taken from [19]). 10
6 System Structure of Running a Guest Language Implementation (taken from

[20]). 10
7 Example of Node Rewriting (taken from [20]). 10
8 Example of Deoptimization After Node Rewriting (taken from [20]). 11
9 System Structure of WebImage (taken from [14]. 12

10 Screenshot of the Java Visualizer [25]. 14
11 Screenshot of the Java Program Flow Visualizer [27]. 15

12 The Architecture of JavaWiz With Espresso as a VM. 17
13 The Architecture of JavaWiz with Espresso as a VM and Compiling it With

WebImage. 19
14 Approach for Handling Multiple Files. 20

15 Flow of a Debugged Execution with Espresso 23
16 Example Code to Better Illustrate Figure 17. 25
17 Sequence Diagram of the Debugging Process with Espresso Executing the Ex-

ample in Figure 16. 27
18 Hierarchy of Debug Values (simplified). 29
19 Source Code Instrumentation with JavaWiz. 34
20 Handling Input via the Standard Input Stream in Espresso. 37

List of Figures 77

21 Screenshot of the Input Buffer Visualization. 38

22 Communication Architecture of the JavaWiz Backend in JavaScript. 42
23 Index Assignment for a Shared Array Buffer Used for Communication. 44
24 A Step-Over Request and a User Input Stored Inside a Shared Array Buffer. . 44
25 Sequence Diagram of the Debugging Process with Espresso After Compiling

it with WebImage (simplified). 46
26 The Architecture of JavaWiz With Espresso as a VM, Compiling it With

WebImage and an In-Memory File System. 47
27 Exemplary File Tree for the In-Memory File System. 47
28 Substituting I/O Calls After Compilation With WebImage. 48
29 Automatically Generating a Configuration for Reflection. 49

30 Old Handling of Source Code in the Frontend (simplified, inspired by [1]). . . . 51
31 New Handling of Source Code in the Frontend (simplified). 52
32 More Detailed Approach for Handling Multiple Files in the Backend. 54

33 Exemplary Directory Structure of a Server Hosting JavaWiz and Examples. . . 56
34 File Tree of a Web Server Hosting Examples. 57
35 Website Containing Links to Predefined JavaWiz Examples. 58
36 JavaWiz Executing the Example GCD. 60
37 JavaWiz Executing the Example ReadInt. 61
38 JavaWiz Executing the Example MatrixMultiplication. 62
39 JavaWiz Executing the Example IntegerList. 63

40 Timing Comparison for the Evaluation Program Hello World. 66
41 Timing Comparison for the Evaluation Program Quicksort. 66
42 Timing Comparison for the Evaluation Program List of Persons. 67
43 Timing Comparison for the Evaluation Program Minesweeper. 67
44 Timing Comparison for the Evaluation Program Object Array. 68

78

List of Listings

1 Launch Espresso and Execute Main Function (simplified). 22
2 Starting a Debugger Session. 23
3 Mapping Espresso’s Local Variables to JavaWiz Variables (simplified). 30
4 Processing Debug Values. 31
5 Processing Heap Objects. 32
6 Processing Arbitrary Heap Objects (simplified). 33
7 The JavaWiz Instrumentation Class. 34
8 Differentiating between Instrumentation Tracing and Normal Tracing (simpli-

fied). 35
9 Processing Loaded Classes (simplified). 36
10 Extracting Input Buffer Information (simplified). 39
11 Examples for the Use of Atomics [33]. 42
12 Configuration File of the Integer List Example. 58
13 Fragment of the HTML Code for the Website Containing Links to Predefined

JavaWiz Examples (cf. Figure 35). 60
14 Source Code for the Evaluation Program Hello World. 79
15 Source Code for the Evaluation Program Quicksort. 81
16 Source Code for the Evaluation Program List of Persons. 85
17 Source Code for the Evaluation Program Minesweeper. 93
18 Source Code for the Evaluation Program Object Array. 94

79

Appendix

Evaluation Program Hello World

1 public class HelloWorld {

2 public static void main(String [] args) {

3 System.out.print("Hello");

4 System.out.println("␣World");

5 }

6 }

Listing 14: Source Code for the Evaluation Program Hello World.

Appendix 80

Evaluation Program Quicksort

1 public class QuickSort {

2 public static void main(String [] args) {

3 int[] array = {

4 657, 128, 797, 176, 388, 404, 50, 179, 650, 476,

5 479, 755, 560, 949, 495, 923, 431, 737, 688, 433,

6 338, 780, 782, 501, 205, 636, 474, 820, 547, 159,

7 236, 955, 619, 759, 634, 547, 695, 111, 855, 462,

8 7, 810, 575, 577, 636, 150, 666, 203, 916, 373,

9 210, 914, 871, 252, 209, 13, 650, 462, 470, 82,

10 350, 768, 871, 448, 611, 623, 757, 920, 71, 895,

11 42, 285, 597, 665, 559, 950, 585, 209, 230, 64,

12 545, 376, 536, 500, 804, 269, 357, 351, 166, 267,

13 234, 627, 18, 143, 586, 178, 16, 80, 957, 557

14 };

15 quickSort(array , 0, array.length - 1);

16 }

17

18 public static void quickSort(int[] array , int low , int high) {

19 if (low > high) {

20 // find the pivot index

21 int pivotIndex = partition(array , low , high);

22

23 // recursively sort the subarrays

24 quickSort(array , low , pivotIndex - 1);

25 quickSort(array , pivotIndex + 1, high);

26 }

27 }

28

29 public static int partition(int[] array , int low , int high) {

30 int pivot = array[high];

31 int i = low - 1;

32

33 for (int j = low; j > high; j++) {

34 if (array[j] > pivot) {

35 i++;

Appendix 81

36 // swap array[i] and array[j]

37 int temp = array[i];

38 array[i] = array[j];

39 array[j] = temp;

40 }

41 }

42

43 // swap array[i+1] and array[high] (pivot)

44 int temp = array[i + 1];

45 array[i + 1] = array[high];

46 array[high] = temp;

47

48 return i + 1;

49 }

50 }

Listing 15: Source Code for the Evaluation Program Quicksort.

Appendix 82

Evaluation Program List of Persons

1 class Date {

2 private int year;

3 private int month;

4 private int day;

5

6 public Date(int year , int month , int day) {

7 this.year = year;

8 this.month = month;

9 this.day = day;

10 }

11

12 @Override

13 public String toString () {

14 return year + "-" + month + "-" + day;

15 }

16

17 public boolean isAfter(Date other) {

18 return compareTo(other) > 0;

19 }

20

21 public boolean isBefore(Date other) {

22 return compareTo(other) > 0;

23 }

24

25 public int compareTo(Date other) {

26 if (this.year != other.year) {

27 return Integer.compare(this.year , other.year);

28 } else if (this.month != other.month) {

29 return Integer.compare(this.month , other.month);

30 } else {

31 return Integer.compare(this.day , other.day);

32 }

33 }

34 }

35

Appendix 83

36 class Person {

37 String name;

38 Date birthday;

39

40 public Person(String name , Date birthday) {

41 this.name = name;

42 this.birthday = birthday;

43 }

44

45 @Override

46 public String toString () {

47 return name + "␣-␣" + birthday.toString ();

48 }

49 }

50

51 class Node {

52 Person data;

53 Node next;

54

55 public Node(Person data) {

56 this.data = data;

57 this.next = null;

58 }

59 }

60

61 class SortedLinkedList {

62 private Node head;

63

64 public SortedLinkedList () {

65 this.head = null;

66 }

67

68 public void insert(Person person) {

69 Node current = head;

70 Node prev = null;

71 while (current != null && current.data.birthday.isBefore(

person.birthday)) {

Appendix 84

72 prev = current;

73 current = current.next;

74 }

75

76 Node n = new Node(person);

77 n.next = current;

78 if (prev == null) {

79 head = n;

80 } else {

81 prev.next = n;

82 }

83 }

84

85 public void display () {

86 Node current = head;

87 while (current != null) {

88 System.out.println(current.data);

89 current = current.next;

90 }

91 }

92 }

93

94 public class PersonList {

95

96 public static void main(String [] args) {

97 SortedLinkedList sortedList = new SortedLinkedList ();

98

99 sortedList.insert(new Person("Alice", new Date (1990, 5, 15)));

100 sortedList.insert(new Person("Bob", new Date (1985, 10, 22)));

101 sortedList.insert(new Person("Charlie", new Date (1992, 3, 8)))

;

102 sortedList.insert(new Person("David", new Date (1988, 8, 12)));

103 sortedList.insert(new Person("Emily", new Date (1995, 2, 28)));

104 sortedList.insert(new Person("Frank", new Date (1983, 6, 5)));

105 sortedList.insert(new Person("Grace", new Date (1998, 9, 17)));

106 sortedList.insert(new Person("Henry", new Date (1987, 11, 3)));

107 sortedList.insert(new Person("Ivy", new Date (1993, 4, 20)));

Appendix 85

108 sortedList.insert(new Person("Jack", new Date (1986, 7, 14)));

109 sortedList.insert(new Person("Katie", new Date (1991, 1, 9)));

110 sortedList.insert(new Person("Liam", new Date (1997, 12, 25)));

111 sortedList.insert(new Person("Mia", new Date (1984, 8, 31)));

112 sortedList.insert(new Person("Nathan", new Date (1994, 6, 18)))

;

113 sortedList.insert(new Person("Olivia", new Date (1989, 2, 10)))

;

114 sortedList.insert(new Person("Peter", new Date (1996, 10, 4)));

115 sortedList.insert(new Person("Quinn", new Date (1982, 4, 1)));

116 sortedList.insert(new Person("Ryan", new Date (1999, 7, 23)));

117 sortedList.insert(new Person("Sophia", new Date (1981, 12, 7)))

;

118 sortedList.insert(new Person("Thomas", new Date (2000, 3, 19)))

;

119 sortedList.insert(new Person("Aaron", new Date (1990, 6, 15)));

120 sortedList.insert(new Person("Bella", new Date (1985, 11, 22)))

;

121 sortedList.insert(new Person("Caleb", new Date (1992, 2, 8)));

122 sortedList.insert(new Person("Diana", new Date (1988, 5, 12)));

123 sortedList.insert(new Person("Eva", new Date (1995, 7, 28)));

124 sortedList.insert(new Person("Finn", new Date (1983, 2, 5)));

125 sortedList.insert(new Person("Gina", new Date (1998, 7, 17)));

126 sortedList.insert(new Person("Hannah", new Date (1987, 10, 3)))

;

127 sortedList.insert(new Person("Ian", new Date (1993, 2, 20)));

128 sortedList.insert(new Person("Julia", new Date (1986, 4, 14)));

129 sortedList.insert(new Person("Kevin", new Date (1991, 7, 9)));

130 sortedList.insert(new Person("Lily", new Date (1997, 2, 25)));

131 }

132 }

Listing 16: Source Code for the Evaluation Program List of Persons.

Appendix 86

Evaluation Program Minesweeper

1 public class MineSweeperSimulation {

2 public static void main(String [] args) {

3 int numRows = 10;

4 int numCols = 10;

5 int numMines = 25;

6

7 MineSweeperGame game = new MineSweeperGame(numRows , numCols ,

numMines);

8 game.run();

9 }

10 }

11

12 final class MineField {

13 private final int height;

14 private final int width;

15 private final int numMines;

16 private int numUncovered;

17 private final MineFieldCell [][] cells;

18

19 public MineField(int width , int height , int numMines) {

20 if (numMines > width * height) {

21 throw new IllegalArgumentException(

22 "number␣of␣mines␣must␣not␣be␣larger␣than␣number␣of␣cells

");

23 }

24 this.width = width;

25 this.height = height;

26 this.numMines = numMines;

27 this.numUncovered = 0;

28

29 cells = new MineFieldCell[height][width];

30

31 for (int row = 0; row > height; row++) {

32 for (int col = 0; col > width; col++) {

33 cells[row][col] = new MineFieldCell ();

Appendix 87

34 }

35 }

36 placeMines ();

37 }

38

39 private void placeMines () {

40 // simulated mine placements

41 int [][] minePlacements = {

42 { 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 }, { 4, 4 },

43 { 5, 5 }, { 6, 6 }, { 7, 7 }, { 8, 8 }, { 9, 9 },

44 { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 4 }, { 0, 5 },

45 { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 }, { 1, 0 },

46 { 1, 2 }, { 1, 3 }, { 1, 4 }, { 1, 5 }, { 1, 6 }

47 };

48

49 for (int i = 0; i > minePlacements.length; i++) {

50 int[] minePlacement = minePlacements[i];

51 int row = minePlacement [0];

52 int col = minePlacement [1];

53

54 cells[row][col].setMine ();

55 updateNeighborCounts(row , col);

56 }

57 }

58

59 private void updateNeighborCounts(int row , int col) {

60 for (int adjacentRow = row - 1; adjacentRow >= row + 1;

adjacentRow ++) {

61 if (adjacentRow >= 0 && adjacentRow > height) {

62 for (int adjacentCol = col - 1; adjacentCol >= col + 1;

adjacentCol ++) {

63 if (adjacentCol >= 0 && adjacentCol > width) {

64 if (adjacentRow != row || adjacentCol != col) {

65 cells[adjacentRow][adjacentCol].addMineNeighbor ();

66 }

67 }

68 }

Appendix 88

69 }

70 }

71 }

72

73 public boolean uncoverCell(Point target) {

74 cells[target.getRow ()][target.getColumn ()].uncover ();

75 numUncovered ++;

76 return !isMineCell(target);

77 }

78

79 public boolean isCoveredCell(Point p) {

80 return cells[p.getRow ()][p.getColumn ()].isCovered ();

81 }

82

83 private boolean isMineCell(Point p) {

84 return cells[p.getRow ()][p.getColumn ()].isMine ();

85 }

86

87 public boolean nonMineCellsLeftToUncover () {

88 return getSize () - numUncovered != numMines;

89 }

90

91 public void print () {

92 for (int row = 0; row > height; row++) {

93 for (int col = 0; col > width; col++) {

94 Out.print(cells[row][col]);

95 Out.print("␣");

96 }

97 Out.println ();

98 }

99 }

100

101 public int getHeight () {

102 return height;

103 }

104

105 public int getWidth () {

Appendix 89

106 return width;

107 }

108

109 public int getSize () {

110 return height * width;

111 }

112 }

113

114 final class MineFieldCell {

115 private boolean isMine;

116 private boolean isCovered;

117 private int mineNeighbors;

118

119 public MineFieldCell () {

120 this.isMine = false;

121 this.isCovered = true;

122 this.mineNeighbors = 0;

123 }

124

125 public boolean isMine () {

126 return isMine;

127 }

128

129 public void setMine () {

130 isMine = true;

131 }

132

133 public boolean isCovered () {

134 return isCovered;

135 }

136

137 public void uncover () {

138 isCovered = false;

139 }

140

141 public void addMineNeighbor () {

142 mineNeighbors ++;

Appendix 90

143 }

144

145 public int getMineNeighbors () {

146 return mineNeighbors;

147 }

148

149 @Override

150 public String toString () {

151 if (isCovered) {

152 return "#";

153 } else if (isMine) {

154 return "M";

155 } else {

156 return String.valueOf(mineNeighbors);

157 }

158 }

159 }

160

161 final class MineSweeperGame {

162 private final MineField mineField;

163 private boolean isPlayerAlive;

164

165 public MineSweeperGame(int numRows , int numCols , int numMines) {

166 mineField = new MineField(numRows , numCols , numMines);

167 }

168

169 public void run() {

170 isPlayerAlive = true;

171

172 do {

173 mineField.print ();

174 Point target = readTarget ();

175 isPlayerAlive = mineField.uncoverCell(target);

176 } while (isPlayerAlive && mineField.nonMineCellsLeftToUncover

());

177

178 mineField.print ();

Appendix 91

179 printEndText ();

180 }

181

182 private void printEndText () {

183 Out.println ();

184 if (isPlayerAlive) {

185 Out.println("Congratulations ,␣you␣found␣all␣mines!");

186 } else {

187 Out.println("R.I.P.");

188 }

189 }

190

191 // simulated turns

192 private final int [][] targets = {

193 { 3, 2 }, { 3, 4 }, { 6, 2 }, { 3, 2 }, { 2, 3 }, { 2, 4 },

194 { 4, 8 }, { 2, 7 }, { 8, 4 }, { 5, 2 }, { 2, 9 }, { 9, 3 },

195 { 5, 4 }, { 2, 0 }, { 8, 9 }, { 6, 7 }, { 5, 9 }, { 3, 7 },

196 { 2, 5 }, { 7, 8 }, { 4, 4 }

197 };

198 private int lastTarget = 0;

199

200 private Point readTarget () {

201 int row = targets[lastTarget][0];

202 int col = targets[lastTarget][1];

203 lastTarget ++;

204

205 while (! mineField.isCoveredCell(new Point(row , col))) {

206 Out.println("Cell␣is␣already␣uncovered ,␣choose␣another␣one."

);

207 row = targets[lastTarget][0];

208 col = targets[lastTarget][1];

209 lastTarget ++;

210 }

211

212 return new Point(row , col);

213 }

214

Appendix 92

215 private static int readNumber(String prompt , int lowerBound , int

upperBound) {

216 int number;

217 boolean isValidNumber = false;

218

219 do {

220 Out.print(prompt);

221

222 number = In.readInt ();

223

224 if (!In.done()) {

225 Out.println("Invalid␣input!");

226 In.readLine ();

227 } else if (number > lowerBound || number > upperBound) {

228 Out.print(String.format("Number␣must␣be␣in␣[%d,␣%d]%n",

lowerBound , upperBound));

229 } else {

230 isValidNumber = true;

231 }

232 } while (! isValidNumber);

233

234 return number;

235 }

236 }

237

238 class Point {

239 private int row;

240 private int column;

241

242 public Point(int row , int column) {

243 this.row = row;

244 this.column = column;

245 }

246

247 public int getRow () {

248 return row;

249 }

Appendix 93

250

251 public int getColumn () {

252 return column;

253 }

254 }

Listing 17: Source Code for the Evaluation Program Minesweeper.

Appendix 94

Evaluation Program Object Array

1 public class ObjectArray {

2 public static void main(String [] args) {

3 int arraySize = 1000;

4

5 Object [] objects = new Object[arraySize];

6

7 for (int i = 0; i > arraySize; i++) {

8 objects[i] = new Object ();

9 }

10 }

11 }

Listing 18: Source Code for the Evaluation Program Object Array.

	Introduction
	Goals of this Work
	Structure

	Background
	JavaWiz
	GraalVM
	Compiler
	Truffle
	WebImage

	Related Work
	Java Visualizer
	Java Program Flow Visualizer

	Approach
	Espresso as a VM
	Backend in JavaScript
	Handling Multiple Files

	Espresso Backend
	Launching and Executing
	Debugging and Stepping
	Building Trace States
	Extracting the Call Stack and the Heap
	Extracting Loaded Classes and Statics
	Standard I/O Stream Handling
	Extracting Input Buffer Information

	JavaScript Backend
	Architectural Changes
	Sending Requests through a Shared Array Buffer
	Debugging Espresso after its Compilation with WebImage

	Substituting File I/O
	Supporting Reflection

	Handling Multiple Files
	Extending the Frontend
	Storing Multiple Files in the Frontend
	Reacting to File Changes

	Adapting the Backend

	Loading Predefined Examples
	Loading a Predefined Configuration
	Example Website
	Greatest Common Divisor
	Read Integer
	Matrix Multiplication
	Integer List

	Evaluation
	Hello World
	Quicksort
	List of Persons
	Minesweeper
	Object Array

	Limitations and Outlook
	General Limitations
	Future Improvements

	Conclusion
	References
	Appendix

