
Design of the GUI Library for the
Mokka Framework and Its

Implementation for Windows
Master Thesis Task Specification

Author: Ralf Reiterer

1 Introduction

Nowadays, a developer that wants to use the CLI/.NET platform has the choice between two API 
stacks: the Microsoft® .NET Framework stack and the Mono® stack. Both are primarily targeted 
for a specific platform. The first one targets Windows®, while the second one is mostly of interest 
for developing UNIX®-based applications, for example, applications running under GNOME.

1.1 The Mokka Framework

The Mokka Framework is an idea of the author and aims to ease the development of cross-platform 
CLI/.NET applications and libraries by providing a third, cross-platform API stack, in addition to 
the .NET Framework and Mono API stacks mentioned above, as well as cross-platform tools.

However, the term “Mokka Framework” does not refer to a single product but is intended to be an 
umbrella term which involves a set of .NET Framework, third party and own libraries and tools that 
are suitable for cross-platform software development.

The .NET Base Library (which involves all base libraries that are part of the .NET Framework such 
as BCL, Extended Numerics, Reflection) is almost fully portable. Only a small subset of types and 
members is Windows-specific. The author refers to the portable subset as the Portable Base Library 
(PBL) which serves as the base for the Mokka Framework libraries and tools that in turn fall into 
one of the following categories:

1. Portable higher-level .NET Framework libraries: The .NET Framework also contains some 
higher-level portable libraries that can be seen as part of the Mokka Framework. Two such 
examples are ADO.NET and ASP.NET.

2. Cross-platform  open  source  libraries  and  tools:  Examples  are  the  SharpZip  library, 
NHibernate, NSpring, NUnit and NAnt. These libraries and tools are cross-platform in general 
but may require  modifications in  some areas to fully achieve this  goal.  For example,  the 
NUnit GUI frontend is based on Windows Forms. A port to the Mokka.Gui library might 
allow cross-platform use.

3. Mokka Framework libraries  and tools:  This  category contains  functionality that  is  not 
covered by libraries and tools of the previous two categories because they either simply do not 
exist or are not cross-platform.

Page 1 of 4



An example is the Mokka.Gui library that should allow GUI applications to run unchanged on 
a variety of platforms. These applications will have the native look and feel of the respective 
GUI platform the user is already familiar with.

As one can see, the Mokka Framework does not fully replace the .NET Framework but actually 
reuse the portable part  of its  base library and higher-level  libraries.  This also gives  application 
developers the flexibility to mix Mokka Framework libraries with unportable  .NET Framework 
and/or platform-specific Mono libraries, instead of having to decide which of the three API stacks 
an application should be based on.

In other  words,  the Mokka Framework is  not  only of  interest  for  developers  of  cross-platform 
applications but also for developers of platform-specific applications. For example, a Windows-
specific  .NET application  may  use  the  Mokka  Framework  Interop  Layer  for  Windows  to  get 
convenient access to native Windows API functions.

Moreover, already familiar tools, such as Microsoft Visual Studio® or SharpDevelop, can also be 
used for developing cross-platform applications that should be based on the  Mokka Framework.

One reason the name “Mokka” has been chosen was to underline the goal to bring the Java™ 
principles “write once, run anywhere” and “a portable and open API for (almost) every need” to 
the .NET world.

2 The Mokka.Gui Library

The  Mokka  GUI  library,  named  Mokka.Gui,  is  the  first  own  high-level  part  of  the  Mokka 
Framework that  should be  realized.  The idea  is  to  have a  single API that  is  used by the  GUI 
applications and implemented for various GUI platforms, e.g. the native Windows UI, Qt®, GTK+. 
These implementations should (ideally) be replaceable without causing a GUI application to behave 
differently.  For example,  a Linux® user may choose to use the Mokka.Gui implementation for 
GTK+ if he works under GNOME and the Mokka.Gui implementation for Qt if he works under 
KDE®. Regardless which implementation is used, the GUI applications should work as expected 
and adapt their look and feel accordingly because that is provided by the underlying GUI platform.

In other words, Mokka.Gui applications always have the native look and feel of the GUI platform 
they run on and therefore integrate themselves perfectly into the corresponding GUI environment.

2.1 The Master Thesis Task

The result of this master thesis should be a proof of concept for a GUI library that involves the 
design  of  a  platform-independent  API  and  its  implementation  for  Windows  and  allows  the 
development of standard GUI applications, i.e. applications that have a menu bar and content pane 
showing a text or graphics document or containing some GUI elements, which are called widgets in 
Mokka.Gui.

Page 2 of 4



The concrete milestones are listed in the following:

1. Design and implementation of a graphics library: The library should provide basic drawing 
and filling operations for graphics primitives, bitmap and text drawing operations as well as 
abstractions for resources such as pens, brushes, fonts and bitmaps.

2. Design of the widget class hierarchy and implementation of the widget classes: Controls, 
containers and top-level windows should be represented in a way that allows to test whether a 
specific widget is a top-level window or a control or container by using a normal runtime type 
test. That of course implies that controls, containers and top-level windows have a common 
base class.

Beside  the  top-level  window,  the  following  controls  and  containers  should  be  at  least 
provided: label, command button, check box, radio button, single-line and multiline text box, 
list box, panel and group box.

3. Design  and  implementation  of  layout  management:  In  addition  to  adding  the  layout 
management feature to widgets, the following layouts should be provided:

➢ RowLayout: arranges the children of a container in one row whose height is determined 
by the tallest child. The children are arranged horizontally based on their desired width. 
This is similar to a Qt QHBoxLayout.

➢ ColumnLayout:  arranges the children of a container in one column whose width is 
determined by the  widest  child.  The  children  are  arranged  vertically  based  on their 
desired height. This is similar to a Qt QVBoxLayout.

➢ DockLayout: Five children can be positioned. The top and bottom children get the full 
width of the container and their desired height. The left and right children and the central 
child get the height of the container minus the height of the top and bottom children. 
Finally, the central child gets the width of the container minus the desired width of the 
left and right children. This is similar to the BorderLayout in Java AWT.

4. Design and implementation of the menu classes: It should be possible to create a menu bar 
with menus that in turn have various kinds of menu items such as simple text-only menu 
items, check menu items, radio menu items, separator menu items and submenu menu items.

In addition, it should be possible to create and assign a context menu to a widget.

5. Design and implementation of command classes: The general idea is to separate application 
commands, e.g.  FileOpen,  FileSave,  EditCut,  EditCopy,  EditPaste, from their representation 
through GUI elements, such as menu items, toolbar buttons and command buttons, to achieve 
a consistent representation. In other words, all GUI elements that have the same command 
associated should represent it using the same label text, bitmap, tooltip text and enabled state.

The Command class should represent an action that is being executed when the user clicks on 
a GUI element a  Command instance is associated to and define properties such as the label 
text, description, tooltip text, bitmap and enabled state.

When  a  command  is  associated  to  a  GUI  element,  the  GUI  element  should  adapt  its 
appearance and behavior by binding its respective properties (e.g. its label text and enabled 

Page 3 of 4



state properties) to the corresponding command properties.

The ToggleCommand subclass should represent commands that also have a Boolean selected 
state,  in  addition  to  the  Boolean  enabled  state.  Examples  are  ViewToolbarVisible, 
ViewStatusBarVisible,  ViewFontBold. The natural GUI elements for such commands would 
be the check box and check menu item. In addition, this class should also be used for mutually 
exclusive commands, i.e. a group of commands where only one of them can be selected at the 
same  time.  Examples  are  ViewFontSize8pt,  ViewFontSize10pt,  ViewFontSize12pt.  The 
natural GUI elements for this kind of commands are the radio button and radio menu item 
which also have to ensure that the associated command is indeed mutually exclusive.

The command classes feature allows an application to conveniently manage the properties and 
state of a command at a central location and not have to worry about updating the appearance 
and behavior of the respective GUI elements accordingly.

In the future, this feature could be extended by adding further command properties, such as 
the shortcut key, adding support for commands in additional controls, such as toolbar buttons 
(once toolbars are included in the library), as well as providing a GUI customization feature 
that presents all application commands to the user and lets him decide which one he wants to 
have represented through menu items, toolbar buttons or other means, e.g. shortcut keys only.

Page 4 of 4


