

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at
DVR 0093696

Linz, October 1, 2019

GraalVM1 is a Java virtual machine that supports the execution of dynamic
languages such as JavaScript, Python, Ruby etc. as well as static lan-
guages like LLVM bitcode. It allows the programmer to express guest-lan-
guage semantics in Java AST implementations via the Truffle framework.
The Graal compiler—GraalVM's core component—is a dynamic JIT com-
piler that generates highly optimized code using speculative optimizations
and the concepts of deoptimization [1].
To do so, the GraalVM compiler transforms a program's bytecode to an
intermediate representation—the Graal IR—organized as a graph. This
representation simplifies subsequent optimizations such as Constant Fold-
ing, Partial Escape Analysis and Method Inlining. Still, those optimizations
are mostly limited to the information gained from profiling as well as static
analysis methods [2, 3].
In order to further optimize the IR, the concept of symbolic execution should
be applied to guide compiler optimizations. This thesis should combine
symbolic execution with compiler optimizations in GraalVM by building a
Graal IR model that is mapped to logic formulas for constraint solvers. This
model can then be used by the compiler to explore different program paths
and check for optimization potentials such as algebraic reductions, redun-
dant operations or infeasible branches and modify the graph accordingly.
Symbolic execution is a prominent technique in software verification and
analysis to identify program flaws and generate test cases. The general
idea of symbolic execution is to simulate the execution of a program and to
form path conditions that describe the possible paths through the control
flow [4]. Inputs are treated as so-called "symbolic" values which represent
unknown variables that are used for building formulas to model the seman-
tics of the program. Modifications and constraints on symbolic variables are
stored in a symbolic memory. Typically, these structures are then passed
on to a SAT / SMT solver to determine whether a path (under the given
conditions and with the given memory contents) is feasible and—if so—to
generate a satisfiable assignment (i.e. input values for a method that lead
to the target result) [5, 6, 7].
While logic systems are already used to formally verify certain compiler
techniques [8, 9], the application of symbolic execution in the context of
compiler optimizations is rare: There are publications on partial evaluators

1 https://www.graalvm.org/

o.Univ.-Prof. Dr. Dr.h.c.
Hanspeter Mössenböck
Institute for System Software

P +43 732 2468 4340
F +43 732 2468 4345
hanspeter.moessenboeck@jku.at

Secretary:
Birgit Kranzl
Ext. 4341
birgit.kranzl@jku.at

Master’s Thesis

Symbolic Execution for Compiler Optimizations on the GraalVM

Student: Sebastian Kloibhofer (01555702)
Advisor: Prof. Mössenböck, Dr. Leopoldseder
Start date: 01.10.2019

2/3

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Str. 69
4040 Linz, Austria
jku.at
DVR 0093696

for JavaScript—namely Prepack2—and other approaches that propose the
use of symbolic execution to improve C preprocessors [10, 11, 12]. How-
ever, to our knowledge there is no approach utilizing symbolic execution to
guide optimizations in dynamic compilers.
The goals of this thesis are as follows:
1. Implementation of a framework in order to support compiler optimiza-

tions via symbolic execution of the low-tier Graal IR
2. Implementation of algebraic simplifications on the graph using symbolic

execution
3. Evaluation of the applied optimizations with respect to compilation over-

head and runtime benefits on the SpecJVM20083, Scalabench4,
DaCapo5 and Renaissance6 benchmarks

Non-goals are:

1. Implementation of symbolic simplifications for common low-tier Graal
IR nodes

2. Implementation of a (low-tier) memory model to enable reasoning about
memory operations which is required for memory based optimizations

3. Development of an API and test suite to simplify the creation of custom
optimizations

References
[1] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,

Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to Rule
Them All. In Proceedings of the 2013 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software, Onward! 2013, pp.187-
204, New York, NY, USA, 2013. ACM. event-place: Indianapolis, Indiana, USA.

[2] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon,
and Hanspeter Mössenböck. An Intermediate Representation for Speculative Optimi-
zations in a Dynamic Compiler. In Proceedings of the 7th ACM Workshop on Virtual
Machines and Intermediate Languages, VMIL '13, pp.1-10, New York, NY, USA, 2013.
ACM. event-place: Indianapolis, Indiana, USA.

[3] Gilles Marie Duboscq. Combining speculative optimizations with flexible scheduling of
side-effects. PhD thesis, Linz, April 2016, 2016.

[4] James C. King. Symbolic Execution and Program Testing. CACM, 19(7):385-394, July
1976.

[5] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In C. R. Rama-
krishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science, pp.337-340. Springer Berlin
Heidelberg, 2008.

[6] Robert Brummayer and Armin Biere. Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays. In Stefan Kowalewski and Anna Philippou, editors, Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer Science,
pp.174-177. Springer Berlin Heidelberg, 2009.

[7] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Tillmann, and W.
Visser. Symbolic execution for software testing in practice: preliminary assessment. In
2011 33rd International Conference on Software Engineering (ICSE), pp.1066-1071,
May 2011.

2 https://prepack.io/
3 https://www.spec.org/jvm2008/
4 http://www.scalabench.org/
5 http://dacapobench.org/
6 https://renaissance.dev/

3/3

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Str. 69
4040 Linz, Austria
jku.at
DVR 0093696

[8] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Frederiksen. Compiler
Optimization Correctness by Temporal Logic. Higher-Order and Symbolic Computa-
tion, 17(3):173-206, September 2004.

[9] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: Bounded Model Checking of
C and C++ Programs Using a Compiler IR. In Rajeev Joshi, Peter Müller, and Andreas
Podelski, editors, Verified Software: Theories, Tools, Experiments, Lecture Notes in
Computer Science, pp.146-161. Springer Berlin Heidelberg, 2012.

[10] Sumeyye Suslu. JSSpe: A Symbolic Partial Evaluator for JavaScript. Thesis, The
University of Texas at Arlington, April 2018.

[11] Sümeyye Süslü and Christoph Csallner. SPEjs: A Symbolic Partial Evaluator for Ja-
vaScript. In Proceedings of the 1st International Workshop on Advances in Mobile
App Analysis, A-Mobile 2018, pp.7-12, New York, NY, USA, 2018. ACM. event-place:
Montpellier, France.

[12] Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno Lagüe. C/C++ Conditional Com-
pilation Analysis Using Symbolic Execution. In Proceedings of the International Con-
ference on Software Maintenance (ICSM'00), ICSM '00, pp.196-, Washington, DC,
USA, 2000. IEEE Computer Society.

