
Cross-platform IL code manipulation library for
runtime instrumentation of .NET applications

master thesis subject for
Markus Gaisbauer (0256634)

in cooperation with
dynaTrace software GmbH

July 5, 2007

Abstract
The .NET Runtime is based on a virtual machine that executes an inter-

mediate language (IL) which is independent of a specific platform or source
language. IL code manipulation is a well known technique for instrumenting
existing applications in order to enable debugging, profiling or aspect ori-
ented programming. Objective of this master thesis is to develop a library
that allows easy-to-use manipulation of .NET IL code at runtime.

Motivation

Code instrumentation of binaries has been around for more than a decade and be-
came very popular with the introduction of Java. The small and easy-to-understand
instruction-set of the Java Virtual Machine (Java Bytecode) considerably simplified
the manipulation of binaries. Java technologies such as custom class loaders and
HotSwap further increased the popularity of the technique as they made it possible
to delay instrumentation until load or even runtime.
.NET is based on the same principles as Java and uses a very similar intermediate
instruction set, called Common Intermediate Language (CIL) [1]. .NET binaries
conform to the open ECMA standard 335 [2] and therefore can be read and ma-
nipulated by third party applications. The .NET Runtime supports runtime instru-
mentation via the so called Profiling API. Similar to Java, classes and methods can
be instrumented while loading them into memory.
There are a number of existing libraries for .NET IL code instrumentation, but
none of them can currently be considered satisfactory for runtime instrumentation.
Among the problems with existing libraries are:

• No support for runtime instrumentation via the Profiling API: At
runtime, metadata can only be manipulated incrementally, and identities for
existing parts of an assembly (tokens) must not be recalculated after an as-
sembly has been loaded into memory.

1



• Lacking support for .NET features: Different libraries support different
things, but none of them fully supports all the features defined in ECMA 335.
Among the features missing from current libraries are: reading and writing of
assemblies containing unmanaged code (mixed-mode) or multiple modules as
well as support for CLR 2.0 features such as generics.

• Running on top of .NET: Not all tools that analyze or manipulate .NET
assemblies are necessarily based on .NET themselves or are running on oper-
ating systems where a .NET framework is available. This is especially true for
tools supporting binaries of multiple platforms such as Java and .NET.

• Performance: Runtime instrumentation is often part of interactive tools such
as monitoring or diagnosis tools. Speed and memory consumption is especially
important in this context.

Objective

The objective of this master thesis is the development of a cross-platform library,
that enables load time manipulation of .NET IL with low overhead and a simple,
high level API. The library should especially satisfy all of the following requirements:

Functional Requirements

1. Reading, manipulating and writing of .NET Assemblies in-memory and on
hard disk.

2. Support of all .NET Framework versions (1.1, 2.0, 3.0), including features like:

• Multi-Module Assemblies

• Mixed-Mode Assemblies

• x64 Assemblies

3. Support .NET Metadata parsing and manipulations

• High-performance metadata extraction

• Adding, deleting, replacing of .NET Metadata, like Local Variables, Meth-
ods, Fields, Attributes

4. Support .NET IL Code parsing and manipulations

• Adding, deleting, replacing of arbitrary IL Instructions

• Reordering of IL instructions

• Exception Handling

5. Integration with .NET Profiling API

• No modification of unaffected metadata of the original assembly (espe-
cially tokens)

• Support IL Code and .NET Metadata as used in .NET Profiling API

2



6. Different granularity of manipulations:

• Method

• Class

• Module

• Assembly

Non-functional requirements

Performance is critical because the library will be used by software that is interacting
with human users. The library should achieve a good trade-off between speed,
memory consumption and ease of use.

Approach

To achieve the objectives mentioned above, I will proceed in the following order:

1. Research: Before designing and implementing the library I will have to do
research about the following topics:

• IL Code and existing instrumentation libraries: What information
is stored inside .NET assemblies and how is it encoded in binary files?
How do existing libraries approach manipulation of assemblies?

• .NET Profiling API: How can the API be used to instrument code at
runtime? What is required from an instrumentation library to simplify
this task?

• dynaTrace Diagnostics [10]: What are typical use cases for IL ma-
nipulation? What are the major drawbacks of existing instrumentation
libraries in this context?

2. Develop a set of test cases: To ensure the quality of the instrumentation
library, I will develop an extensive automated test suite that will cover:

• Processing different assembly formats (multi-module, x64...)

• Processing assembly content (unmanaged code, embedded resources...)

• Processing metadata

• Processing IL code

3. Implement assembly and metadata processing: Determine which ap-
proach promises to deliver the best trade-off between speed, memory con-
sumption and ease of use.

4. Implement IL code processing: This is the core of any code manipulation
library. For the user of the library it should both be easy to manipulate IL
code directly as well as build additional, higher level layers on top of the library
for common usage patterns.

3



5. Functional, performance and integration testing: Finally I will have to
ensure that the library fulfills all its functional and non-functional requirements
and is ready to be used in production.

Related Work

1. Mono Cecil (C#): Cecil [3] is an existing open-source IL code manipulation
library for .NET and is currently used by dynaTrace Diagnostics for all .NET
related instrumentation and metadata extraction. It was designed for offline
instrumentation (at compile or link time) of assemblies. Assemblies are rep-
resented internally using an abstract and unfortunately quite memory hungry
object model.

2. PostSharp (C#) : PostSharp [4] is a very recent open-source project that
enables aspect oriented programming in .NET. All IL code transformations
are based on its own transformation library. Assemblies are represented in
memory using lightweight data structures on top of the original binary.

3. RAIL - Runtime Assembly Instrumentation Library (C#) : RAIL
[5] was one of the first public code manipulation libraries for .NET and was
developed as a research project part of Microsoft ROTOR. It is based on Mono
code for reading assemblies and Reflection.Emit for writing assemblies. It is
now old and unsupported.

4. .NET Profiling API and SSCLI (COM, C++) : The Profiling API [6] can
be used to exchange IL code and modify metadata at load time [7]. It works
directly on internal data structures of the runtime. Shared Sources Common
Language Infrastructure (SSCLI) [8] is an implementation of the CLR and is
available with source code from Microsoft.

5. BCEL - Byte Code Engineering Library (Java) : BCEL [9] is a powerful
and currently also the most popular instrumentation library for Java. It is
used in a wide range of applications, including dynaTrace Diagnostics. It can
be used as a reference for a library that is both easy-to-use and performant.

References

[1] Serge Lidin. Expert .NET 2.0 IL Assembler, APress, 2006

[2] Ecma 335 Common Language Infrastructure (CLI)
http://www.ecma-international.org/publications/standards/Ecma-335.htm

[3] Mono Cecil
http://www.mono-project.com/Cecil

[4] PostSharp, a .NET post-compiler: AOP and more
http://www.postsharp.org/

4



[5] RAIL: a Runtime Assembly Instrumentation Library
http://rail.dei.uc.pt/

[6] Under the Hood - The .NET Profiling API and the DNProfiler Tool
http://msdn.microsoft.com/msdnmag/issues/01/12/hood/

[7] Rewrite MSIL Code on the Fly with the .NET Framework Profiling API
http://msdn.microsoft.com/msdnmag/issues/03/09/NETProfilingAPI/default.aspx

[8] Microsoft Shared Source Common Language Infrastructure
http://research.microsoft.com/sscli/

[9] BCEL - Byte Code Engineering Library (BCEL)
http://jakarta.apache.org/bcel/

[10] dynaTrace Diagnostics
http://www.dynatrace.com

5


