Prof. Dr. H. Mössenböck

Übung 1

Zuname		Vorname	MatrNr
Übungsgruppe			Punkte korr
1	(Kotzmann)	Do 10 ¹⁵ -11 ⁴⁵	
2	(Kotzmann)	Do 13 ⁴⁵ -15 ¹⁵	Letzter Abgabetermin
□ 3	(Wimmer)	Do 10 ¹⁵ -11 ⁴⁵	Mittwoch, 12.10.2005, 2015 Uhr

Grammatiken

1. Grundbegriffe

(2+3+3+6 Punkte)

Die Grammatik der Sprache MicroJava finden Sie im VO-Skriptum im Kapitel 5.2 auf Seite 8.

- a) Geben Sie den Satz mit der minimalen Anzahl von Terminalsymbolen an, den man mit dieser Grammatik erzeugen kann und der mindestens das Terminalsymbol "*break*" enthält. Aus wie vielen Terminalsymbolen besteht er?
- b) Betrachten Sie die Nonterminalsymbole *Factor*, *MethodDecl* und *Statement*. Geben Sie für jedes dieser Nonterminalsymbole an, ob es links-, zentral- oder rechtsrekursiv ist, und ob es direkt oder indirekt rekursiv ist.
- c) Zeichnen Sie den Syntaxbaum für folgenden Satz: program Test int x, y; { int area() { return x * y; } } Gibt es mehrere Syntaxbäume für diesen Satz?
- d) Bestimmen Sie alle terminalen Anfänge und Nachfolger für die Regeln *Expr, Statement, Term* und *Relop*.

2. Konstruktion einer Grammatik

(5 Punkte)

Geben Sie eine Grammatik (in EBNF) für die Zahlen einer fiktiven Programmiersprache gemäß den folgenden Bedingungen an:

- Eine Zahl ist entweder eine Dezimalzahl oder eine Hexadezimalzahl.
- Dezimalzahlen bestehen aus Ziffern (Terminalklasse z). Wenn eine Dezimalzahl aus mehr als drei Ziffern besteht, muss nach jeder dritten Ziffer (gerechnet von rechts) ein Punkt (".") stehen (Tausender-Punkte).
- Hexadezimalzahlen müssen mit "0x" beginnen und bestehen aus Ziffern (Terminalklasse z) oder Buchstaben von "A" bis "F" (Terminalklasse b).

Beispiele für gültige Zahlen: 0, 123, 45.678, 0x8, 0x6B53

Beispiele für ungültige Zahlen: 1234, 567.8, 8B, 0x12.345, 0x6G53

3. Beseitigung von Linksrekursionen

(5 Punkte)

Gegeben sei folgender Auszug aus einer fiktiven Grammatik, der Arrayzugriffe beschreibt:

```
ArrayAccess = Array "[" Index "]".
Index = { number "," } number.
Array = ident | ArrayAccess.
```

Beseitigen Sie alle Linksrekursionen und geben Sie die transformierte Grammatik in EBNF an. *ident* und *number* sind Terminalklassen, die einen Namen (Buchstabe gefolgt von Ziffern und Buchstaben) bzw. eine Zahl (bestehend aus Ziffern) definieren.