
A new approach to denotational semantics by
categories

William Steingartner
william.steingartner@tuke.sk

Technical University of Košice
Faculty of Electrical Engineering and Informatics

Department of Computers and Informatics

A new approach to denotational semantics by categories 1/24

Formal semantics

provides unambiguous meaning of programs written in programming language,
helps designers to prepare good and useful programming languages,
serves for designers to write correct compilers,
encourages users/programmers how to use language constructions properly.

Semantic methods
denotational semantics,
operational semantics,
natural semantics,
axiomatic semantics,
action semantics,
game semantics,
. . .

A new approach to denotational semantics by categories 2/24

Categories

mathematical structures consisting of objects and morphisms between them,
objects can be various mathematical structures, data structures, types,
categories have become useful for modeling computations, processes, programs,
program systems,
are basic structures for coalgebraic behavioral models.

Categories in teaching
quite simple mathematical structures,
graphical representations useful for illustration of examples,
understandable for our students.

A new approach to denotational semantics by categories 3/24

Basic Concepts: Category theory

Category
Ob(C), objects of category C , e.g. A, B, . . .,
Morph(C), morphisms of category C , e.g. f : A→ B,
identity morphism for each object of C , idA : A→ A,
composition of morphisms: for f : A→ B and g : B → C is g ◦ f : A→ C.

Functor
is a morphism between categories, F : C → D ,
maps objects of C to objects of D ,

maps morphism C1 → C2 in C to morphism F C1 → F C2 in D ,
1 F (f : A→ B) = F (f) : F (A)→ F (B),
2 F (idA) = idF (A),
3 F (g ◦ f) = F (g) ◦ F (f).

A new approach to denotational semantics by categories 4/24

Categorical semantics

denotational semantics uses category of types where objects are types and
morphisms are functions,
algebraic semantics uses institutions as complex structures based on categories of
signatures,
game semantics uses category of arenas.

A new approach to denotational semantics by categories 5/24

Why categorical operational semantics

provides illustrative view of dynamics of states,
provides simply understandable mathematical model of programs,
appropriate for designers writing compilers,
serves for creating skills to work with formal methods.

A new approach to denotational semantics by categories 6/24

Basic ideas of our approach

Construction of category of states
we consider simple imperative language,
our language has only two implicit types,
we do not consider exception, jumps and recursion,
we construct category of states for every program as categorical model
(representation),
so simplified model is understandable without losing exactness.

A new approach to denotational semantics by categories 7/24

Language Jane

consists of traditional syntactic constructions of imperative languages,
for defining formal syntax of Jane the following syntactic domains are introduced:

n ∈ Num — for digit strings,
x ∈ Var — for variable names,
e ∈ Expr — for arithmetic expressions,
b ∈ Bexpr — for Boolean expressions,
S ∈ Statm — for statements,
D ∈ Decl — for sequences of variable declarations.

A new approach to denotational semantics by categories 8/24

Language Jane – Syntax

The elements n ∈ Num and x ∈ Var have no internal structure from semantic point of
view.

The syntactic domain Expr consists of all well-formed arithmetic expressions created by
the following production rule

e ::= n | x | e + e | e− e | e ∗ e.

Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

The variables used in programs have to be declared. We consider D ∈ Decl as a
sequence of declarations:

D ::= var x; D | ε.

As the statements S ∈ Statm we consider five Dijkstra’s statements together with
block statement and input statement:

S ::= x := e|skip|S; S|if b then S else S|while b do S|begin D; S end|input x.

A new approach to denotational semantics by categories 9/24

Specification of states

State
can be considered as some abstraction of computer memory,
change of state means change of value in memory,
because of block structure of Jane, we have to consider also a level of block
nesting,
every variable occurring in a program has to be allocated.

The signature ΣState for states

ΣState =
types : State, Var , Value
opns : init :→ State

alloc : Var , State→ State
get : Var , State→ Value
del : State→ State

A new approach to denotational semantics by categories 10/24

Denotational semantics

Categorical model
we construct operational model of Jane as the category CState of states,
we assign to states their representation,
because of block structure of Jane, we have to consider also a level of block
nesting (l ∈ Level, Level ⊆ N),
representation of type State has to express variable, its value with respect to the
actual nesting level,

A new approach to denotational semantics by categories 11/24

State representation

Sequence
s : Var × Level→ Value

Each state s can be expressed as a sequence of ordered pairs ((x, l) , v):

s = 〈((x, 1) , v1) , . . . , ((z, l) , vn)〉

Table
variable level value

x 1 v1

z l vn

...

A new approach to denotational semantics by categories 12/24

Representation of operations

The operation JinitK
JinitK = s0 = 〈((⊥, 1) ,⊥)〉

creates the initial state of a program with no declared variable.

variable level value

⊥ 1 ⊥

The operation JallocK
JallocK(x, s) = s � ((x, l) ,⊥) ,

sets actual nesting level to declared variable. Because of undefined value of declared
variable, the operation JallocK does not change the state.

variable level value

x l ⊥
...

A new approach to denotational semantics by categories 13/24

Representation of operations

The operation JgetK returns a value of a variable declared on the highest nesting level,

JgetK(x, 〈. . . , ((x, li) , vi) , . . . , ((x, lk) , vk) , . . .〉) = vk,

where li < lk, i<k for all i, from the definition of state.

The operation JdelK deallocates (forgets) all variables declared on the highest nesting
level lj :

JdelK(s � 〈((xi, lj) , vk) , . . . , ((xn, lj) , vm)〉) = s.

variable level value

x li v

...

xi lj vk
...

xn lj vm

A new approach to denotational semantics by categories 14/24

Declarations

Declarations
A declaration

var x

is represented as an endomorphism:

[[var x]]D : s→ s

for a given state s and defined by

[[var x]]s = [[alloc]](x, s).

A sequence of declarations

[[var x; D]]s = [[D]] ◦ [[alloc(x, s)]].

A declaration creates a new entry for declared variable with the actual level of nesting
and an undefined value

((x, l) ,⊥) .

A new approach to denotational semantics by categories 15/24

Statements

JSK : s→ s

[[x := e]]s =
{

s [((x, l) , v) 7→ ((x, l) , JeKs)] , for ((x, l) , v) ∈ s,
s⊥, otherwise.

[[skip]] = ids, [[skip]]s = s

s s′

Jx := eK
s

JskipK

A new approach to denotational semantics by categories 16/24

Statements

[[S1, S2]] = [[S2]] ◦ [[S1]], [[S1, S2]]s = [[S2]] ([[S1]]) s

[[if b then S1 else S2]]s =
{

[[S1]]s, if[[b]]s = true,
[[S2]]s, otherwise.

s

s′

s′′

JS1K

JS2K

JS1;S2K

s s1

JS1K

s

JS2K
s2

JbKs = true JbKs = false

(a) (b)

A new approach to denotational semantics by categories 17/24

Statements

[[while b do S]]s =
[[if b then (S; while b do S) else skip]]

[[input x]]s =
{

s′ = s [v/x] , for ((x, max l) , v′) ∈ s,
⊥, otherwise.

s0 s1 s2 sn−1 sn

JSK JSK JSK JSK

Jwhile b do SK

A new approach to denotational semantics by categories 18/24

Block statement

begin D, S end

The following is a summary of the four steps used to execute of unnamed blocks:
nesting level l is incremented. We represent this step by fictive entry in state table

((begin, l + 1) ,⊥)

i.e. endomorphism State→ State,
local declarations are elaborated on nesting level l + 1,
the body S of block is executed,
locally declared variables are forgotten at the end of block. We model this
situation using operation [[del]].

The semantics:

[[begin D, S end]]s = [[del]] ◦ [[S]] ◦ [[D]](s � 〈((begin, l + 1),⊥)〉)

A new approach to denotational semantics by categories 19/24

Constructing the category

Now we can define the category CState of states as follows:
category objects are states as sequences of tuples for variables together with
special state s⊥,
category morphisms are functions JSK : s→ s′.

The category CState has the following properties:
the special object s⊥ = 〈((⊥,⊥),⊥)〉, undefined state, is a terminal object of our
category, from any object there is a unique morphism to this state,
the initial state s0 = 〈((⊥, 1),⊥)〉 is the initial object of our category,
the category CState has no products, because a program written in Jane cannot be
simultaneously in more than one state.

We can state that CState is a category without products and with initial and terminal
objects.

A new approach to denotational semantics by categories 20/24

Example

var x; var y;
input x;
input y;
if x <= y then

begin
z := x;
x := y;
y := z;

end
else

skip;

A new approach to denotational semantics by categories 21/24

Categorical representation of program

s0

Jvar xK

Jvar yK

Jinp
ut

xK

Jinpu
t yK

Jvar zK

s1

s2
s3

s4

s5s6

Jz := xK

Jx := yK

Jy := zK
JdelK

CState

A new approach to denotational semantics by categories 22/24

States during program execution

s0
x 1 ⊥
y 1 ⊥

s1
1 3

1 ⊥

s2
1 3

1 5

s3
1 3

1 5

s4
1 5

1 5

x

y

x

y

x

y

x

y

2 ⊥z

2 3z 2 3z

s5
1 5

1 3

x

y

2 3z

s6
1 5

1 3

x

y

2 ⊥z

A new approach to denotational semantics by categories 23/24

Conclusion

we presented a new approach to operational semantics by categories,
we constructed category of states CState where states of memory are objects and
state changes (computations) are morphisms,
the semantics of program is defined as composition of morphisms from initial state
into final state and is represented in category as a path of all morphisms that
represent each program step,

Future
In our future research we want to extend our approach by types possibly extending
states by new columns and we want to define the semantics of recursive
procedures by appropriate endofunctors that ensure saving of particular states
within the expansion of recursive calls.

A new approach to denotational semantics by categories 24/24

	Main Part
	Formal semantics
	Categories
	Category theory, Functor
	Categorical semantics
	Why categorical operational semantics
	Basic ideas of our approach
	Language Jane
	Language Jane – Syntax
	Specification of states
	Denotational semantics
	State representation
	Representation of operations
	Representation of operations
	Declarations
	Statements
	Statements
	Statements
	Block statement
	Constructing the category
	Example
	Semantics of a program
	States during program execution
	Conclusion

