
A new approach to operational semantics by
coalgebras

William Steingartner
william.steingartner@tuke.sk

Faculty of Electrical Engineering and Informatics
Department of Computers and Informatics

A new approach to operational semantics by coalgebras 1/31

Coalgebraic structural operational
semantics

• Coalgebra allows to model behavior of program systems.
• Coalgebra defines structural operational semantics of programs written

in some programming language.
• Coalgebra is constructed over category of state space by polynomial

endofunctor.
• Every application of functor models one step of computation so as

structural operational semantics.

A new approach to operational semantics by coalgebras 2/31

Language Jane

• We briefly show the structural operational semantics of Jane.
• The following syntactic domains are introduced:

n ∈ Num — strings of digits,
x ∈ Var — names of variables,
e ∈ Expr — arithmetic expressions,
b ∈ Bexpr — Boolean expressions,
S ∈ Statm — statements,
D ∈ Decl — declarations of variables.

Syntactic domains Num and Var do not have internal structure from the
semantic point of view.

A new approach to operational semantics by coalgebras 3/31

Language Jane: Syntax

Syntactic domain Expr contains well-formed arithmetic expressions
according the following syntactic rule:

e ::= n | x | e + e | e − e | e ∗ e.

Well-formed Boolean expressions from Bexpr can be of the following forms:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

Statements S ∈ Statm are standard (basic) Dijkstra’s constructs (also called
D-diagrams) – variable assignment, empty statement, sequence of
statements, conditional statement and loop statement:

S ::= x := e | skip | S; S | if b then S else S | while b do S.

A new approach to operational semantics by coalgebras 4/31

State

• The main semantic domain in structural operational semantics is State
which contains particular memory states.

• State s ∈ State is an abstraction of computer memory.
• Each state is considered as function:

s : Var × Level → Z.

A change of memory content (cell) is represented as an actualization of a
state:

s′ = s[((x, l), v) 7→ ((x, l), n)].

A new approach to operational semantics by coalgebras 5/31

Semantics of expressions
Semantic functions for arithmetic and Boolean expressions, resp., are

[[e]] : Expr → State → Value [[b]] : Bexpr → State → Bool

[[n]]s = n

[[x]]s = [[get]](x, s)

[[e1 + e2]]s = [[e1]]s ⊕ [[e2]]s

[[e1 − e2]]s = [[e1]]s ⊖ [[e2]]s

[[e1 ∗ e2]]s = [[e1]]s ⊗ [[e2]]s

[[true]]s = true

[[false]]s = false

[[e1 = e2]]s =
{

true, if [[e1]]s=[[e2]]s,
false, otherwise,

[[e1 ≤ e2]]s =
{

true, if [[e1]]s≤[[e2]]s,
false, otherwise,

[[¬b]]s =
{

true, if [[¬b]]s=false,
false, otherwise,

[[b1 ∧ b2]]s =
{

true, if [[b1]]s≤[[b2]]s=true,
false, otherwise.

A new approach to operational semantics by coalgebras 6/31

Semantics of statements
Semantic function is defined as follows:

[[S]] : Statm → State → State

⟨x := e, s⟩ ⇒ s[x 7→ JeKs] (1os) ⟨skip, s⟩ ⇒ s (2os)

⟨S1, s⟩ ⇒ ⟨S′
1, s′⟩

⟨S1; S2, s⟩ ⇒ ⟨S′
1; S2, s′⟩

(31
os)

⟨S1, s⟩ ⇒ s′

⟨S1; S2, s⟩ ⇒ ⟨S2, s′⟩
(32

os)

JbKs = true
⟨if b then S1 else S2, s⟩ ⇒ ⟨S1, s⟩ (4true

os)

JbKs = false
⟨if b then S1 else S2, s⟩ ⇒ ⟨S2, s⟩ (4false

os)

⟨while b do S, s⟩ ⇒ ⟨if b then (S; while b do S) else skip, s⟩ (5os)

A new approach to operational semantics by coalgebras 7/31

Basic notions
• Coalgebra is mathematical structure, that is constructed over a base category by

polynomial endofunctor.
• Category C is a structure, that consists of objects and morphisms between them.
• Functor is a kind of morphism between categories. Functor defined on one

category is called endofunctor:

F : C → C .

The name polynomial is used for functor which has a form of polynomial:

F X = A0 + A1 × XB1 + A2 × XB2 + . . . + An × XBn,

where Ai, Bi are sets, and X stands for a state space, a class of objects in base
category.

• Then, a coalgebra is a mapping

c : X → F X,

where c is n-tuple of morphisms of category that causes change of state.

A new approach to operational semantics by coalgebras 8/31

Language E-Jane

We extend the base language with new constructs.
• Declarations of variables (without initializations):

D ::= var x | ε,

where ε is an empty declaration.
• Block statement, user input and output statements:

S ::= . . . | begin D; S end | input x | print e.

• A source program in E-Jane has a form

D1; . . . ; Dm; S1; . . . ; Sn,

so it consists of a list of declarations and a list of statements.

A new approach to operational semantics by coalgebras 9/31

Signatures for lists of declarations and
statements

First, we specify signatures for the lists of declarations and statements:

ΣDecl List = Listfin [Decl]
types : Decl List, Decl
opns :

initd :→ Decl List
headd : Decl List → Decl
taild : Decl List → Decl List

ΣStatm List = Listfin [Statm]
types : Statm List, Statm
opns :

init :→ Statm List
head : Statm List → Statm
tail : Statm List → Statm List

A new approach to operational semantics by coalgebras 10/31

Signature for memory

An abstraction of a memory we specify as a signature Memory:

ΣMemory =
types : Memory, Var , Value
opns : init :→ Memory

alloc : Var , Memory → Memory
get : Var , Memory → Value
del : Memory → Memory

• init establishes an initial memory of a program,
• alloc reserves a memory cell for declared variable,
• get returns (gets) an actual values of a variable,
• del deallocates (forgets) all memory cells defined on the highest nesting

level.

A new approach to operational semantics by coalgebras 11/31

Signature for configuration

In our approach, we will use configuration as a kind of state (snapshot of a
memory) which we specify as follows:

ΣConfig = ΣDecl List + ΣStatm List + ΣMemory+
types : Config
opns : next : Config → Config

input : Config, Value → Config
print : Config → Value, Config

• next provides the next configuration,
• input takes an input value and stores it into the given (concrete)

memory cell,
• print evaluates the value of an argument and returns it as an

observable value.

A new approach to operational semantics by coalgebras 12/31

Representation of types

We assign to particular specifications of types their representations as
follows:

Type Representation

Value Value = Z ∪ {⊥}
Var Var
Decl List Decl List JD∗K = JD1; . . . ; DnK
Statm List Statm List JS∗K = JS1; . . . ; SnK
Memory Memory
Config Config = Program × Memory

Representation of a program is :

Program = [[D∗; S∗]]
and an initial configuration of a program is:

config0 = ([[D∗; S∗]], m0, i∗, o∗).

A new approach to operational semantics by coalgebras 13/31

Representation of memory

We must to consider a level of nesting for a block statement:

l ∈ Level, where Level ⊆ N.

An actual memory m ∈ Memory we represent as a function:

m : Var × Level → Value.

This function can be defined also by graph of a function:

graph(m) = {((x, l), v) | m(x, l) = v} .

We need an auxiliary function which returns the highest nesting level:

maxlevel : Memory → Level,
maxlevel(m) = L, where ∀lj .L ≥ lj ,

for
graph(m) = {((x1, 1), v1), . . . , ((xi, lj), vk)}.

A new approach to operational semantics by coalgebras 14/31

Operations on a memory

An operation for initialization of memory we define as follows:

[[init]] = m0 = {((⊥, 1) , ⊥)}

variable level value

x1 1 v1

xn l vn

...

variable level value

⊥ 1 ⊥

actual memory initial memory

A new approach to operational semantics by coalgebras 15/31

Operations on a memory

The other operations in memory we define as follows:

[[alloc]](x, m) = graph(m) ∪ {((x, maxlevel(m)) , ⊥)}
[[get]](x, m) = v, if ((x, maxlevel(m)), v) ∈ m
[[del]]m = graph(m) \ {((xi, maxlevel(m)), vi) | i ∈ N}

variable level value

x l ⊥
...

variable level value

x lj−1 v

...

xi lj vk
...

xn lj vm

allocation of memory forgetting of local variables

A new approach to operational semantics by coalgebras 16/31

Representation of configurations

The last step is to define the representation of configurations. Configurations
config are elements of the set Config:

Config = Program × Memory.

An initial configuration before the execution of a program has a form:

config0 = ([[D1; D2; . . . ; Dm; S1; S2; . . . ; Sn]], m0, i∗, o∗).
After each step of program execution:

• a configuration is changed, an operation [[tail]] is applied on a list of
declarations and statements;

• memory can be changed, this depends on an elaborated declaration or
executed statement.

Set Config is considered as a state space of coalgebra.

A new approach to operational semantics by coalgebras 17/31

Semantics of declarations

Semantics of declarations is defined as a function on a memory:

[[var x]] : Memory → Memory

as
[[var x]]m = [[alloc]](x, m).

We extend set of variables Var with special (dummy) variables begin and
end to ensure that we can identify the beginning and the end of a block
statement. Such declaration increments level of nesting and we define its
elaboration as follows:

[[begin]]m = graph(m) ∪ {((begin, l + 1), ⊥)},
[[end]]m = [[del]]m.

A new approach to operational semantics by coalgebras 18/31

Extending the semantics of
declarations for configurations

Because a state space of coalgebra is a set of configurations, we extend the
definition for elaboration of declarations for configurations. We define a
morphism:

[[next]] : Config → Config,

and we define elaboration of declarations by the following functions:

[[next]]([[var x; D∗; S∗]], m, i∗, o∗) = ([[D∗; S∗]], [[var x]] m, i∗, o∗),
[[next]]([[begin D∗; S′ end; S∗]], m, i∗, o∗) = ([[D∗; S′ end; S∗]], [[begin]]m, i∗, o∗)
[[next]]([[end; S∗]], m, i∗, o∗) = ([[S∗]], [[end]]m, i∗, o∗).

This definition corresponds with the traditional definition for elaboration of
declarations, where the declaration of a variable actualizes an environment of
variables.

A new approach to operational semantics by coalgebras 19/31

Semantics of statements

An execution of one step we define with the morphism [[next]]:

[[next]] : Config → Config.

For an assignment statement and for the statement skip, this morphism is
defined as follows:

[[next]]([[x := e, S∗]], m, i∗, o∗) = ([[S∗]], m[x 7→ [[e]]m], i∗, o∗),
[[next]]([[skip; S∗]], m, i∗, o∗) = ([[S∗]], m, i∗, o∗).

In the sequence of statements, any statement can be executed in one or
more steps. Hence we must to consider the following situations:

[[next]]([[Si; Si+1; . . . ; Sn]], m, i∗, o∗) =


([[Si+1; . . . ; Sn]], m′, i∗, o∗),

if ⟨Si, m⟩ ⇒ m′,

([[S′
i; Si+1; . . . ; Sn]], m′, i∗, o∗),
if ⟨Si, m⟩ ⇒ ⟨S′

i, m′⟩.

A new approach to operational semantics by coalgebras 20/31

Semantics of statements

An execution of conditional statement depends on a value of Boolean
condition. Hence we define the first step of execution as follows:

[[next]]([[if b then S′
i else S′′

i ; Si+1; . . . ; Sn]], m, i∗, o∗) ={
([[S′

i; Si+1; . . . ; Sn]], m, i∗, o∗), if [[b]]m = true,
([[S′′

i ; Si+1; . . . ; Sn]], m, i∗, o∗), if [[b]]m = false.

The first step of execution of a loop is a transformation to the semantically
equivalent conditional statement, and we define this step as follows:

[[next]][[(while b do S′
i; Si+1; . . . ; Sn, m, i∗, o∗)]]

= [[next]] ([[if b then S′
i; while b do S′

i else skip; Si+1; . . . ; Sn]], m) , i∗, o∗)

A new approach to operational semantics by coalgebras 21/31

Semantics of statements

For the statements of user input and output, we define appropriate
representations of the operations in signature for configurations:

[[input]]([[input x; Si+1; . . . ; Sn]], m, i∗, o∗) = λv′.([[Si+1; . . . ; Sn]], m′, tail(i∗), o∗), if Defined(m, x),
([[Si+1; . . . ; Sn]], m⊥, tail(i∗), o∗), otherwise,

where m′ is an actualized memory

m′ = m[((x, Highest(m, x)), v) 7→ ((x, Highest(m, x)), v′)],
where an input value v is stored into a memory cell allocated for the variable
x on the highest nesting level.

The output statement does not change a memory, but it changes a
configuration (output statement is removed from the sequence of statements):

[[print]](print e; Si+1; . . . ; Sn]], m, i∗, o∗) = ([[e]]m, ([[Si+1; . . . ; Sn]], m, i∗, [[e]]m; o∗))

A new approach to operational semantics by coalgebras 22/31

Semantics of statements

During the execution of a block statement, an elaboration of a special
variable begin is elaborated:

[[next]]([[begin D∗; S′
i end; Si+1; . . . ; Sn]], m, i∗, o∗) =

([[D∗; S′
i end; Si+1; . . . ; Sn]], [[begin]]m, i∗, o∗)

and an execution of a block statement continues by elaboration of real local
variables (if present) and by execution of statements inside a block.

For an interruption of program execution we define a function

[[abort]] : Config → Config,

which immediately terminates running program which ends in an undefined
configuration config⊥:

[[abort]](config) = (ε, m⊥, ε, ε).

A new approach to operational semantics by coalgebras 23/31

Base category for coalgebra

We construct a category Config where:
• configurations config = ([[D∗, S∗]], m, i∗, o∗) are category objects,
• mappings [[next]], [[input]], [[output]] and [[abort]] are category

morphisms,
• we define an identity morphism for each configuration,
• composition of morphisms and associativity of composition holds.

An undefined configuration is also a terminal (final) object of a category:

config⊥ = (ε, m⊥, ε, ε)

because there exists a possibility to abrupt the program execution from any
configuration.

A new approach to operational semantics by coalgebras 24/31

Colimit in base category

In case of infinite loop we must to guarantee that an execution of such a
statement cannot be defined in category. Hence we require that each infinite
path in category must to have a colimit:

• Let config1 → config2 → config3 → . . . be an infinite path (diagram D) in
category;

• object config⊥ is a colimit of diagram D

colimit D = ⃝i∈N [[next]]([[while b do S; S∗]], m, i∗, o∗)

if from every object exists a morphism into this object.

config1 config2 config3 . . .

config⊥

. . .

ab
or
t

A new approach to operational semantics by coalgebras 25/31

Coalgebra
• We have constructed base category Config, which objects are

configurations config and morphisms are [[next]], [[input]], [[output]].
• We construct an appropriate form of polynomial endofunctor which will

characterize this kind of systems:

Q : Config → Config,
Q(Config) = 1 + Config + O × Config + ConfigI .

• Coalgebra is defined as c : X → F X in general, we assign our state
space and morphisms, then a coalgebra for programs in language
E-Jane has a form:

⟨[[abort]], [[print]], [[next]], [[input]]⟩ : Config → Q(Config).
Coalgebra models the behavior of a program such that in each step one of
the following alternatives occurs:

• Q(Config) = 1 – program aborts,
• Q(Config) = Config elaborates a declaration/executes a statement,
• Q(Config) = O × Config provides an output value,
• Q(Config) = ConfigI takes an input value.

A new approach to operational semantics by coalgebras 26/31

Example

We consider a program in language E-Jane:

var x; var y;
input x; input y;
if x <= y then

begin
var z;
z := x; x := y; y := z;

end
else skip;

print x

For simplicity we introduce the following substitutions:

D1 = var x; D2 = var y;
S1 = input x; S2 = input y;
S3 = if x <= y then begin var z;

z := x; x := y; y := z end else skip
S4 = print x

and we consider values 3 and 5 for variables x and y, resp.
A new approach to operational semantics by coalgebras 27/31

Example

An initial configuration is config0 = ([[D1; D2; S1; S2; S3; S4]], m0).
Every application of functor Q represents one step of program execution:

Q(config0) = JnextK(config0) = config1 =
= (JD2; S1; S2; S3; S4K, Jvar xKm0, (3, 5), ε),

Q(config1) = JnextK(config1) = config2 =
= (JS1; S2; S3; S4K, Jvar yKm1, (3, 5), ε),

Q(config2) = JreadK(config2) = config3 =
= (JS2; S3; S4K, m3, (5), ε),

Q(config3) = JreadK(config3) = config4 =
= (JS3; S4K, m4, ε, ε),

A new approach to operational semantics by coalgebras 28/31

Example

Q(config4) = JnextK(config4) = config5 =
= (Jbegin var z; z := x; x := y; y := z end; S4K, m4, ε, ε),

Q(config5) = JnextK(config5) = config6 =
= (Jvar z; z := x; x := y; y := z end; S4K, m5,

Q(config6) = JnextK(config6) = config7 =
= (Jz := x; x := y; y := z end; S4K, m6, ε, ε),

Q(config7) = JnextK(config7) = config8 =
= (Jx := y; y := z end; S4K, m7, ε, ε),

A new approach to operational semantics by coalgebras 29/31

Example

Q(config8) = JnextK(config8) = config9 =
= (Jy := z end; S4K, m8, ε, ε),

Q(config9) = JnextK(config9) = config10 =
= (Jend; S4K, m9, ε, ε),

Q(config10) = JnextK(config10) = config11 =
= (JS4K, JendKm9, ε, ε),

Q(config11) = JprintK(config11) = config12 =
= (5, (ε, m10, ε, (5))).

A new approach to operational semantics by coalgebras 30/31

Example

config0

config1

config2

config3

JnextK

JnextK

JinputK
config4

config5

JinputK JnextK

3 5

config6

JnextK

config7

config8

config9

config10

config11

JnextKJnextK

JnextK

JnextK

JprintK
5

Config

Q

A new approach to operational semantics by coalgebras 31/31

	Coalgebraic SOS
	Language Jane
	Language Jane: Syntax
	State
	Semantics of expressions
	Semantics of statements
	Coalgebra
	Language E-Jane
	Signatures
	Signature Memory
	Signature Config
	Representation of types
	Representation of memory
	Operations on a memory
	Operations on a memory
	Representation of configurations
	Semantics of declarations
	Semantics of declarations
	Semantics of statements (1)
	Semantics of statements (2)
	Semantics of statements (3)
	Semantics of statements (4)
	Category Config
	Colimit
	Coalgebra and polynomial endofunctor
	Example
	Example
	Example
	Example
	Example

