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Coalgebraic structural operational
semantics

• Coalgebra allows to model behavior of program systems.
• Coalgebra defines structural operational semantics of programs written

in some programming language.
• Coalgebra is constructed over category of state space by polynomial

endofunctor.
• Every application of functor models one step of computation so as

structural operational semantics.
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Language Jane

• We briefly show the structural operational semantics of Jane.
• The following syntactic domains are introduced:

n ∈ Num — strings of digits,
x ∈ Var — names of variables,
e ∈ Expr — arithmetic expressions,
b ∈ Bexpr — Boolean expressions,
S ∈ Statm — statements,
D ∈ Decl — declarations of variables.

Syntactic domains Num and Var do not have internal structure from the
semantic point of view.
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Language Jane: Syntax

Syntactic domain Expr contains well-formed arithmetic expressions
according the following syntactic rule:

e ::= n | x | e + e | e − e | e ∗ e.

Well-formed Boolean expressions from Bexpr can be of the following forms:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

Statements S ∈ Statm are standard (basic) Dijkstra’s constructs (also called
D-diagrams) – variable assignment, empty statement, sequence of
statements, conditional statement and loop statement:

S ::= x := e | skip | S; S | if b then S else S | while b do S.
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State

• The main semantic domain in structural operational semantics is State
which contains particular memory states.

• State s ∈ State is an abstraction of computer memory.
• Each state is considered as function:

s : Var × Level → Z.

A change of memory content (cell) is represented as an actualization of a
state:

s′ = s[((x, l), v) 7→ ((x, l), n)].
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Semantics of expressions
Semantic functions for arithmetic and Boolean expressions, resp., are

[[e]] : Expr → State → Value [[b]] : Bexpr → State → Bool

[[n]]s = n

[[x]]s = [[get]](x, s)

[[e1 + e2]]s = [[e1]]s ⊕ [[e2]]s

[[e1 − e2]]s = [[e1]]s ⊖ [[e2]]s

[[e1 ∗ e2]]s = [[e1]]s ⊗ [[e2]]s

[[true]]s = true

[[false]]s = false

[[e1 = e2]]s =
{

true, if [[e1]]s=[[e2]]s,
false, otherwise,

[[e1 ≤ e2]]s =
{

true, if [[e1]]s≤[[e2]]s,
false, otherwise,

[[¬b]]s =
{

true, if [[¬b]]s=false,
false, otherwise,

[[b1 ∧ b2]]s =
{

true, if [[b1]]s≤[[b2]]s=true,
false, otherwise.
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Semantics of statements
Semantic function is defined as follows:

[[S]] : Statm → State → State

⟨x := e, s⟩ ⇒ s[x 7→ JeKs] (1os) ⟨skip, s⟩ ⇒ s (2os)

⟨S1, s⟩ ⇒ ⟨S′
1, s′⟩

⟨S1; S2, s⟩ ⇒ ⟨S′
1; S2, s′⟩

(31
os)

⟨S1, s⟩ ⇒ s′

⟨S1; S2, s⟩ ⇒ ⟨S2, s′⟩
(32

os)

JbKs = true
⟨if b then S1 else S2, s⟩ ⇒ ⟨S1, s⟩ (4true

os )

JbKs = false
⟨if b then S1 else S2, s⟩ ⇒ ⟨S2, s⟩ (4false

os )

⟨while b do S, s⟩ ⇒ ⟨if b then (S; while b do S) else skip, s⟩ (5os)
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Basic notions
• Coalgebra is mathematical structure, that is constructed over a base category by

polynomial endofunctor.
• Category C is a structure, that consists of objects and morphisms between them.
• Functor is a kind of morphism between categories. Functor defined on one

category is called endofunctor:

F : C → C .

The name polynomial is used for functor which has a form of polynomial:

F X = A0 + A1 × XB1 + A2 × XB2 + . . . + An × XBn,

where Ai, Bi are sets, and X stands for a state space, a class of objects in base
category.

• Then, a coalgebra is a mapping

c : X → F X,

where c is n-tuple of morphisms of category that causes change of state.
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Language E-Jane

We extend the base language with new constructs.
• Declarations of variables (without initializations):

D ::= var x | ε,

where ε is an empty declaration.
• Block statement, user input and output statements:

S ::= . . . | begin D; S end | input x | print e.

• A source program in E-Jane has a form

D1; . . . ; Dm; S1; . . . ; Sn,

so it consists of a list of declarations and a list of statements.
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Signatures for lists of declarations and
statements

First, we specify signatures for the lists of declarations and statements:

ΣDecl List = Listfin [Decl]
types : Decl List, Decl
opns :

initd :→ Decl List
headd : Decl List → Decl
taild : Decl List → Decl List

ΣStatm List = Listfin [Statm]
types : Statm List, Statm
opns :

init :→ Statm List
head : Statm List → Statm
tail : Statm List → Statm List
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Signature for memory

An abstraction of a memory we specify as a signature Memory:

ΣMemory =
types : Memory, Var , Value
opns : init :→ Memory

alloc : Var , Memory → Memory
get : Var , Memory → Value
del : Memory → Memory

• init establishes an initial memory of a program,
• alloc reserves a memory cell for declared variable,
• get returns (gets) an actual values of a variable,
• del deallocates (forgets) all memory cells defined on the highest nesting

level.
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Signature for configuration

In our approach, we will use configuration as a kind of state (snapshot of a
memory) which we specify as follows:

ΣConfig = ΣDecl List + ΣStatm List + ΣMemory+
types : Config
opns : next : Config → Config

input : Config, Value → Config
print : Config → Value, Config

• next provides the next configuration,
• input takes an input value and stores it into the given (concrete)

memory cell,
• print evaluates the value of an argument and returns it as an

observable value.
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Representation of types

We assign to particular specifications of types their representations as
follows:

Type Representation

Value Value = Z ∪ {⊥}
Var Var
Decl List Decl List JD∗K = JD1; . . . ; DnK
Statm List Statm List JS∗K = JS1; . . . ; SnK
Memory Memory
Config Config = Program × Memory

Representation of a program is :

Program = [[D∗; S∗]]
and an initial configuration of a program is:

config0 = ([[D∗; S∗]], m0, i∗, o∗).
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Representation of memory

We must to consider a level of nesting for a block statement:

l ∈ Level, where Level ⊆ N.

An actual memory m ∈ Memory we represent as a function:

m : Var × Level → Value.

This function can be defined also by graph of a function:

graph(m) = {((x, l), v) | m(x, l) = v} .

We need an auxiliary function which returns the highest nesting level:

maxlevel : Memory → Level,
maxlevel(m) = L, where ∀lj .L ≥ lj ,

for
graph(m) = {((x1, 1), v1), . . . , ((xi, lj), vk)}.
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Operations on a memory

An operation for initialization of memory we define as follows:

[[init]] = m0 = {((⊥, 1) , ⊥)}

variable level value

x1 1 v1

xn l vn

...

variable level value

⊥ 1 ⊥

actual memory initial memory
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Operations on a memory

The other operations in memory we define as follows:

[[alloc]](x, m) = graph(m) ∪ {((x, maxlevel(m)) , ⊥)}
[[get]](x, m) = v, if ((x, maxlevel(m)), v) ∈ m
[[del]]m = graph(m) \ {((xi, maxlevel(m)), vi) | i ∈ N}

variable level value

x l ⊥
... ... ...

variable level value

x lj−1 v

... ... ...

xi lj vk
... ... ...

xn lj vm

allocation of memory forgetting of local variables
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Representation of configurations

The last step is to define the representation of configurations. Configurations
config are elements of the set Config:

Config = Program × Memory.

An initial configuration before the execution of a program has a form:

config0 = ([[D1; D2; . . . ; Dm; S1; S2; . . . ; Sn]], m0, i∗, o∗).
After each step of program execution:

• a configuration is changed, an operation [[tail]] is applied on a list of
declarations and statements;

• memory can be changed, this depends on an elaborated declaration or
executed statement.

Set Config is considered as a state space of coalgebra.
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Semantics of declarations

Semantics of declarations is defined as a function on a memory:

[[var x]] : Memory → Memory

as
[[var x]]m = [[alloc]](x, m).

We extend set of variables Var with special (dummy) variables begin and
end to ensure that we can identify the beginning and the end of a block
statement. Such declaration increments level of nesting and we define its
elaboration as follows:

[[begin]]m = graph(m) ∪ {((begin, l + 1), ⊥)},
[[end]]m = [[del]]m.
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Extending the semantics of
declarations for configurations

Because a state space of coalgebra is a set of configurations, we extend the
definition for elaboration of declarations for configurations. We define a
morphism:

[[next]] : Config → Config,

and we define elaboration of declarations by the following functions:

[[next]]([[var x; D∗; S∗]], m, i∗, o∗) = ([[D∗; S∗]], [[var x]] m, i∗, o∗),
[[next]]([[begin D∗; S′ end; S∗]], m, i∗, o∗) = ([[D∗; S′ end; S∗]], [[begin]]m, i∗, o∗)
[[next]]([[end; S∗]], m, i∗, o∗) = ([[S∗]], [[end]]m, i∗, o∗).

This definition corresponds with the traditional definition for elaboration of
declarations, where the declaration of a variable actualizes an environment of
variables.

A new approach to operational semantics by coalgebras 19/31



Semantics of statements

An execution of one step we define with the morphism [[next]]:

[[next]] : Config → Config.

For an assignment statement and for the statement skip, this morphism is
defined as follows:

[[next]]([[x := e, S∗]], m, i∗, o∗) = ([[S∗]], m[x 7→ [[e]]m], i∗, o∗),
[[next]]([[skip; S∗]], m, i∗, o∗) = ([[S∗]], m, i∗, o∗).

In the sequence of statements, any statement can be executed in one or
more steps. Hence we must to consider the following situations:

[[next]]([[Si; Si+1; . . . ; Sn]], m, i∗, o∗) =


([[Si+1; . . . ; Sn]], m′, i∗, o∗),

if ⟨Si, m⟩ ⇒ m′,

([[S′
i; Si+1; . . . ; Sn]], m′, i∗, o∗),
if ⟨Si, m⟩ ⇒ ⟨S′

i, m′⟩.
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Semantics of statements

An execution of conditional statement depends on a value of Boolean
condition. Hence we define the first step of execution as follows:

[[next]]([[if b then S′
i else S′′

i ; Si+1; . . . ; Sn]], m, i∗, o∗) ={
([[S′

i; Si+1; . . . ; Sn]], m, i∗, o∗), if [[b]]m = true,
([[S′′

i ; Si+1; . . . ; Sn]], m, i∗, o∗), if [[b]]m = false.

The first step of execution of a loop is a transformation to the semantically
equivalent conditional statement, and we define this step as follows:

[[next]][[ (while b do S′
i; Si+1; . . . ; Sn, m, i∗, o∗) ]]

= [[next]] ([[if b then S′
i; while b do S′

i else skip; Si+1; . . . ; Sn]], m) , i∗, o∗)
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Semantics of statements

For the statements of user input and output, we define appropriate
representations of the operations in signature for configurations:

[[input]]([[input x; Si+1; . . . ; Sn]], m, i∗, o∗) = λv′.([[Si+1; . . . ; Sn]], m′, tail(i∗), o∗), if Defined(m, x),
([[Si+1; . . . ; Sn]], m⊥, tail(i∗), o∗), otherwise,

where m′ is an actualized memory

m′ = m[((x, Highest(m, x)), v) 7→ ((x, Highest(m, x)), v′)],
where an input value v is stored into a memory cell allocated for the variable
x on the highest nesting level.

The output statement does not change a memory, but it changes a
configuration (output statement is removed from the sequence of statements):

[[print]](print e; Si+1; . . . ; Sn]], m, i∗, o∗) = ([[e]]m, ([[Si+1; . . . ; Sn]], m, i∗, [[e]]m; o∗))
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Semantics of statements

During the execution of a block statement, an elaboration of a special
variable begin is elaborated:

[[next]]([[begin D∗; S′
i end; Si+1; . . . ; Sn]], m, i∗, o∗) =

([[D∗; S′
i end; Si+1; . . . ; Sn]], [[begin]]m, i∗, o∗)

and an execution of a block statement continues by elaboration of real local
variables (if present) and by execution of statements inside a block.

For an interruption of program execution we define a function

[[abort]] : Config → Config,

which immediately terminates running program which ends in an undefined
configuration config⊥:

[[abort]](config) = (ε, m⊥, ε, ε).
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Base category for coalgebra

We construct a category Config where:
• configurations config = ([[D∗, S∗]], m, i∗, o∗) are category objects,
• mappings [[next]], [[input]], [[output]] and [[abort]] are category

morphisms,
• we define an identity morphism for each configuration,
• composition of morphisms and associativity of composition holds.

An undefined configuration is also a terminal (final) object of a category:

config⊥ = (ε, m⊥, ε, ε)

because there exists a possibility to abrupt the program execution from any
configuration.
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Colimit in base category

In case of infinite loop we must to guarantee that an execution of such a
statement cannot be defined in category. Hence we require that each infinite
path in category must to have a colimit:

• Let config1 → config2 → config3 → . . . be an infinite path (diagram D) in
category;

• object config⊥ is a colimit of diagram D

colimit D = ⃝i∈N [[next]]([[while b do S; S∗]], m, i∗, o∗)

if from every object exists a morphism into this object.

config1 config2 config3 . . .

config⊥

. . .

ab
or
t
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Coalgebra
• We have constructed base category Config, which objects are

configurations config and morphisms are [[next]], [[input]], [[output]].
• We construct an appropriate form of polynomial endofunctor which will

characterize this kind of systems:

Q : Config → Config,
Q(Config) = 1 + Config + O × Config + ConfigI .

• Coalgebra is defined as c : X → F X in general, we assign our state
space and morphisms, then a coalgebra for programs in language
E-Jane has a form:

⟨[[abort]], [[print]], [[next]], [[input]]⟩ : Config → Q(Config).
Coalgebra models the behavior of a program such that in each step one of
the following alternatives occurs:

• Q(Config) = 1 – program aborts,
• Q(Config) = Config elaborates a declaration/executes a statement,
• Q(Config) = O × Config provides an output value,
• Q(Config) = ConfigI takes an input value.
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Example

We consider a program in language E-Jane:

var x; var y;
input x; input y;
if x <= y then

begin
var z;
z := x; x := y; y := z;

end
else skip;

print x

For simplicity we introduce the following substitutions:

D1 = var x; D2 = var y;
S1 = input x; S2 = input y;
S3 = if x <= y then begin var z;

z := x; x := y; y := z end else skip
S4 = print x

and we consider values 3 and 5 for variables x and y, resp.
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Example

An initial configuration is config0 = ([[D1; D2; S1; S2; S3; S4]], m0).
Every application of functor Q represents one step of program execution:

Q(config0) = JnextK(config0) = config1 =
= (JD2; S1; S2; S3; S4K, Jvar xKm0, (3, 5), ε),

Q(config1) = JnextK(config1) = config2 =
= (JS1; S2; S3; S4K, Jvar yKm1, (3, 5), ε),

Q(config2) = JreadK(config2) = config3 =
= (JS2; S3; S4K, m3, (5), ε),

Q(config3) = JreadK(config3) = config4 =
= (JS3; S4K, m4, ε, ε),
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Example

Q(config4) = JnextK(config4) = config5 =
= (Jbegin var z; z := x; x := y; y := z end; S4K, m4, ε, ε),

Q(config5) = JnextK(config5) = config6 =
= (Jvar z; z := x; x := y; y := z end; S4K, m5,

Q(config6) = JnextK(config6) = config7 =
= (Jz := x; x := y; y := z end; S4K, m6, ε, ε),

Q(config7) = JnextK(config7) = config8 =
= (Jx := y; y := z end; S4K, m7, ε, ε),
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Example

Q(config8) = JnextK(config8) = config9 =
= (Jy := z end; S4K, m8, ε, ε),

Q(config9) = JnextK(config9) = config10 =
= (Jend; S4K, m9, ε, ε),

Q(config10) = JnextK(config10) = config11 =
= (JS4K, JendKm9, ε, ε),

Q(config11) = JprintK(config11) = config12 =
= (5, (ε, m10, ε, (5))).
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Example

config0

config1

config2

config3

JnextK

JnextK

JinputK
config4

config5

JinputK JnextK

3 5

config6

JnextK

config7

config8

config9

config10

config11

JnextKJnextK

JnextK

JnextK

JprintK
5

Config

Q
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