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Model of Computation
based on λ−calculus 

Alonzo Church
1903 - 1995
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Represent numbers 
by symbols - digits Manipulate symbols Interpret symbols 

twenty three

eighteen
plus

+( 23, 18)

23
18
31
10
41

forty one

reason
manipulation of symbols can be mechanized - it does not require thinking
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1. Zero recognition
2. Every       has one and only one successor
3. Every       except zero has one and only one predecessor

zero        one        two      three      four         five        six

succ(zero)

succ(one)

succ(two)

pred(one)
pred(three)

NN  - natural numbers    [ 0, 1, 2, …) 
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+ (x, y) ::=  x | y=o,     + (succ (x), pred (y)) +    5    7
      6    6
      7    5
      8    4
      9    3
    10    2
    11    1
    12    0

- (x, y) ::=  x | y=o,     - (pred (x), pred (y))  -    5    2
      4    1
      3    0

* (x, y) ::=  0 | y=o,     + (x,  * (x, pred (y)))

< (x, y)  iff ∃ k ε NN:  + (x, k) = y < (3, 5) since 2 ε NN and  + (3, 2) = 5
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NN  - representation & interpretation

SYNTAX

numeral ::= digit  |  numeral digit
digit ::= { 0, 1, 2, 3, …, r-1}

SEMANTICS
0  → zero
1  → one
2  → two
… 

… d3d2d1d0

               d0 * r0

+          d1 * r1

+       d2 * r2

+  d3 * r3
..

single digit
numerals

multi digit
numerals

the meaning of the composite numeral is inferred 
    from the meaning of its constituent parts

meaning is a function that maps a string of d’s into a unique number 
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+    4    2
      5    1
      6    0

OPERATIONS

Great, but what about  + 13137  29251 ?

Answer Part 1: automate

12137 = 1*104 + 3*103 + 1*102 + 3*101 + 7*100

29251 = 2*104 + 9*103 + 2*102 + 5*101 + 1*100

since (a + b) + (x + y) = (a +x) + (b + y)  and (ax + bx = (a +b)x

1    3   1    3   7
2    9   2    5   1
3    2   3    8   8
1    0   0    0   0
4    2   3    8   8

sum

carry
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Answer Part 2: automate further 1    0   1    1   1
0    1   0    1   1
1    1   1    0   0 sum

carry

32  16     8     4      2    1

23
11

0    0   1    1   
1    1   0    1   0

0    0   1   0    0  
0   1    0   0    1   0
0   1    0   0    0  
0   0    0   0    1   0
1   0    0   0    0  
1   0    0   0    1   0
0   0    0   0    0  
32  16     8     4      2    1

34
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sum

carry
0

1

0 1x
y

0
0

1
0

1
0

0
1

sum

carry

carry

0 0
0 1

0
1

0 1sum

0 1
1 0

0
1

0 1

x_or and

1    0   1    1   1
0    1   0    1   1
1    1   1    0   0
0    0   1    1   
1    1   0    1   0

0    0   1   0    0  
0   1    0   0    1   0
0   1    0   0    0  
0   0    0   0    1   0
1   0    0   0    0  
1   0    0   0    1   0
0   0    0   0    0  

a
b
a := a x_or b
b := l_shift (a and b)
.
.
.

Answer Part 3: automate further still
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Integers

on Cartesian Product      NN × NN = {(m, n):   m, n ε NN)

define a relation ≈ (m1, n1) ≈ (m2, n2)   iff ( m1 + n2 ) = ( m2 + n1 ) 

≈ is relation of equivalence since it is  reflexive, symmetric and transitive
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Reflexive (m, n) ≈ (n, m) since m + n = n + m                                                 

Symmetric
if (m1, n1) ≈ (m2, n2)  then  m1 + n2 = m2 + n1 by definition         

and m2 + n1 = m1 + n2
hence (m2, n2) ≈ (m1, n1)

Transitive
suppose  we have (m1, n1) ≈ (m2, n2) and (m2, n2) ≈ (m3, n3)            
by definition

m1 + n2 = m2 + n1 
m2 + n3 = m3 + n2

adding sides
m1 + n2  + m2 + n3 = m2 + n1 + m3 + n2

hence m1 + n3 = n1 + m3
and so (m1, n1) ≈ (m3, n3)
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relation of equivalence in a non-empty set X divides this set
into disjoint, non-empty subsets (classes of equivalence) in 
the following way:

two elements x, y ε X belong to the same class iff x ≈ y
x =  {y ε X : x ≈ y}

integer may thus be defined as an equivalence class:

(m, n) =  {(p, q) ε (NN × NN) : (m, n) ≈ (p, q)} 

(1, 1) =  {(0, 0), (1, 1), (2, 2) …}
(1, 0) =  {(1, 0), (2, 1), (3, 2) …}
(0, 1) =  {(0, 1), (1, 2), (2, 3) …}

integer zero
integer    +1
integer    -1
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 0            1            2            3             4            5 NN
0

1

2

3

4

5

NN

1, 1 1, 2 1, 3 1, 4

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 4, 4

4, 1 4, 2 4, 3 4, 4

-2
-1

0
+1

+2

eq
uiva

len
ce

 cl
as

se
s
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(m1, n1)⊕ (m2, n2) = (m1 + m2), (n1 + n2)                                     
Integer addition

(m1, n1)⊗ (m2, n2) =  ( m1 × m2 + n1 × n2 ) , ( m1 × n2 + n1 × m2 ) 

Integer multiplication

NN-arithmetic is isomorphic to IN-arithmetics

Rational numbers can be defined similarly where

relation ≈ (p1, q1) ≈ (p2, q2)   iff ( p1 ⊗ q2 ) = ( p2 ⊗ q1 ) 
p, q ε IN 

FP for DB λ − calculus 14June 2009

We can
• represent 
• reason about 
• process 

the numbers through numerals i.e. in detachment from their meaning

Can we do the same with even more abstract symbols ?

It took us around 7000 years
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Suppose we need to evaluate the expression

(7 + x) * (8 + 5 * x)      for x = 4

→ (7 + 4) * (8 + 5 * 4)
→ (7 + 4) * (8 + 20)
→ (7 + 4) * 28
→ 11 * 28 
→ 308

→ (7 + 4) * (8 + 5 * 4)
→ 11 * (8 + 5 * 4)
→ 11 * (8 + 20)
→ 11 * 28 
→ 308

Church-Rosser property - the order of evaluations is immaterial
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first (sort (append (BANANA, LEMMON) (sort (GRAPE, APPLE, KIWI))))

first (sort (append (BANANA, LEMMON) (APPLE, GRAPE, KIWI)))

first (sort (BANANA, LEMMON, APPLE, GRAPE, KIWI))

first (APPLE , BANANA, GRAPE, LEMMON, KIWI)

APPLE

evaluation may be applied to non-numerical symbols
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Do variable names matter?

∫ x dx ∫ y dy

not (A or B) ≡ (not A) and (not B) not (X or Y) ≡ (not X) and (not Y)

but

∫ x sin y dx ∫ y sin y dy
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What are the rules for?

 a(b + c)2 - (ab2 + ac2 + abc)
→ a(b2 + 2bc + c2) - (ab2 + ac2 + abc)

→ (ab2 + 2abc + ac2) - (ab2 + ac2 + abc)

→ ab2 + 2abc + ac2 - ab2 - ac2 - abc

→ 2abc - abc

→ abc

complex expression

simple(r) expression
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 λx. salt-cover (x) cover-with
salt

peanuts salted peanuts

 λx. salt-cover (x) (peanuts) → salt-cover_peanuts
 λx. salt-cover (x) (meat) → salt-cover_meat
 λx. salt-cover (x) (banana) → salt-cover_banana

f(x) = x + 5 + (x, 5)    or     plus (x, 5)
the meaning
(function abstraction)

f = λx. x + 5lambda
expression
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λy. ( λx. y-cover (x)) (sugar) → λx. sugar-cover (x)  

λz. (λy. ( λx. y-z (x))) (cover) → λy. ( λx. y-cover (x))

λz. (λy. ( λx. y-z (x))) (free) → λy. ( λx. y-free (x))      
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currying
(Haskell Curry)

functions of n arguments can be represented by n-fold iteration of application

instead of applying the function 
to two arguments f(X, Y)  plus (3, 5)

apply it to the first argument and then
apply the result to the second argument

(f(X))Y ((plus3) 5)

more formally  (λ.(xy) F  = λx. λy. F
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 λ-expression ::= constant
| variable
|  <λ-expression> < λ-expression > application
|  λ-expression. < λ-expression > abstraction
| (λ-expression)

Notation
complex   λ-expression M, N, P, Q, ...

variables x, y, z, ...

constants 300000

application +5,   add (5)
+ 2 3  ≡ ((+2) 3)

MNPQ means (((MN)P))             (association to the left)

built-in functions e.g. add , neither constants nor λ-functions,
defined for convenience, can be evaluated

abstraction  λx. + 1 x
 (λx. (λy. * 5 y) (+ x 3))12
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 λx. x y

free
bound

variable
must know its value (from outside)
argument of the function

variable declaration

body

 +x (λx. + x 3) 4

free bound
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 (λx. xy (λy. y))

 (λx. λ y. z ( (λz. z (λx. y)))

 (λx. λ y. xz (y z)) (λx. y (λy. y)))

free variables
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MANIPULATING  EXPRESSIONS

 λx. (λ y. yx) →α  λx. (λ x. xx)

λx. + x 1  →α  λy. + y 1

λx. E  →α  λz. [z ← x] E

variable names are arbitrary

 λx. (λ y. yx) →α  λx. (λ z. zx)
but

E

replace any bound x by z in E
provided that z doesn’t occur in E 

α -conversion rule
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λy. x  →α  λy. y x  is free in

λx. (λ y. + x y) →α  λx. (λ x. + xx) x  is free in

λx. f x  →α  λx. g y f  is free in

λx. (λ y. x y) →α  λf. (λ y. f y)
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(λx. (λ y. * x y)) 4 5 →β (λ y. * 4 y) 5  →β * 4  5

(λa. a 2)  (λ b. + b1) →β   (λ b. + b 1) 2 →β   + 2 1

(λx. P ) Q →β  [ x ← Q] Pβ -conversion rule provided that bound variables of P
are distinct from free variables of Q

all (free in P) x’s in P get replaced by Q

(λx. 16) y →β  16 whatever 16

(λx. + x 5) 4 →β  + 4 5

(λx. * x x) 5 →β  * 5 5
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(λx. (λ y. x y)) y →β λ y. y y ?! WRONG

freebound

(λx. (λ y. x y) y →α (λx. (λ z. x z) y 

         →β  (λ z. y z) 

         →α λx. yx
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λx. (λ y. div x y) 6 3
→β  (λy. div 6 y) 3
→β  div 6 3 
→δ  2

δ -conversion rule

evaluation of the built-in functions

λx.λ y. + x ((λx. - x 4) y) 5 6 
→β  λx. λy. + x ( - y 4) 5 6
→β  λx.  + x ( - 5 4) 6
→β  + 6 ( - 5 4) 
*→δ  + 7 multiple application of δ-conversion
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(λx. + 5 x) 4 →β  + 5  4  →δ  9

(λx. + 5  x)  →η  + 5 

(λx. F x)  →η  F η -conversion rule
provided x does not occur free in F
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λ-expression that contains no reducible sub-expression is said to be in normal form

not every expression has a normal form, for instance
(λx. x x) (λx. x x) →   (λx. x x) (λx. x x) →  (λx. x x) (λx. x x) → ...

some reduction orders are more efficient than others:

(λx. 1) (λx. x x) (λx. x x)
whatever 1

(λx. 1) (whatever) →   1
(1)

but

(λx. 1)(λx. x x) (λx. x x) → (λx. 1)(λx. x x) (λx. x x) →...(2)
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(λy. (λ x. (λz. (+ z x) ) 4) y) 5 
→(λ x. (λz. (+ z x) ) 4) 5
→(λz. (+ z 5) ) 4 

→(+ 4 5)
→ 9

NORMAL ORDER

λy. (λ x. (λz. (+ z x)) 4) y) 5
→ λy. (λ x. (+ 4 x) y) 5
→ λy. (+ 4 y) 5

→ (+ 4 5) 
→ 9

APPLICATIVE ORDER
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Church-Rosser Theorem

If λ-exp1 ↔ λ-exp2  then there exists  λ-exp such that 
λ-exp1 ↔ λ-exp

 λ-exp2 ↔ λ-exp

If λ-exp1 ↔ λ-exp2  and λ-exp2  is in normal form then
there exist a normal form reduction λ-exp1 → λ-exp2
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how does it work for numbers?

λf. λx. x
λf. λx. f x
λf. λx. f (f x)
λf. λx. f (f (f x))

zero
one
two
three

Church numerals

successor succ ≡ λn.λf.λx.( f ((n f) x))

succ zero ≡ λn.λf.λx. (f ( (n f) x) ) (λf.λx. x)

→ λf.λx. (f (λf.λx. x f) x)

how many times f is applied to x

→ λf.λx. (f (λg.λy. y g) x)
→ λf.λx. (f (λy. y) x)
→ λf.λx. (f x) → one
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add ≡ λm.λn.λf.λx.(((m succ) n) f) x) f ((n f) x))
       ≡ λm.λn.λf.λx.m f (n f x)

mult ≡ λm.λn.λf.m f (n f)

exp ≡ λm.λn.  (m n )
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... and for booleans?

True λx. λy. x

λx. λy. yFalse 

NOT λx. (x F) T

AND λx. λy ((x y )F)

OR λx. λy ((x T) y )

IDENTITY λx. x
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 if .... then ... else?

if True  B C → B 
if False B C → C 

suppose we take λx. x  for if

then (1) becomes
(λx. x) ( λx. λy. x) B C → ( λx. λy. x) B C → (λy. B ) C → B

(1)
(2)

and (2) becomes
(λx. x) ( λx. λy. y) B C → ( λx. λy. y) B C → (λy. C ) → C
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... recursion?

let
      Y≡ λf. (λx. f (x x)) ((λx. f (x x))

→ (λx. R (x x)) ((λx. R (x x))
→ R (λx. R (x x)) ((λx. R (x x))
→  ...

recursion combinator

 YR ≡ λf. (λx. f (x x)) ((λx. f (x x)) R

keeps generating R’s

YR ≡ R (YR)

a function that calls 
(a function) f and
 regenerates itself
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λ-calculus

processing functions by manipulating their abstractions 
using application and formal conversion rules 

everything in the computation process is represented by 
functions; there are no other objects or  types 
(bool, int, chars, ...) ; if they are needed they must be 
represented via functions

analysis of functions 
• without having to name them 
• seeing their abstractions at all times 
• being free from their intuitive properties

every intuitively computable function is λ-definableChurch Thesis
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• Turing machine

•  µ-recursive functions (Gödel) 

•  λ-calculus (Church)

•  formal grammars (Post)

•  combinatory logic (Schönfinkel, Curry)

are computationally 
equivalent

normal order β-reduction models lazy evaluation for functional languages


