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" JE
Represent numbers N f
by symbols - digits Manipulate symbols Interpret symbols
twenty three 23
plus 18
eighteen 31 forty one
10
+(23,18) | a1

reason
manipulation of symbols can be mechanized - it does not require thinking
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NN - natural numbers [0,1,2,..))

1. Zero recognition
2. Every @ has one and only one successor
3. Every[@ except zero has one and only one predecessor

pred(three)
pred(one) i
| I i — e e e e >
zero one two three four five six
succ(zero) |
succ(one)
suéc(two)
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+(X,y) = X1y, +(succ(x),pred(y)) L 5 7
6 6
7 5
8 4
9 3
10 2
1 1
12 0
-(X,y) 1= Xlyo - (pred (x), pred (y)) -5 2
4 1
30
(6 Y) =01y, + (X " (x, pred (y))
<(x,y) iff I ke NN: +(x, k) =y <(3,5)since2eNNand +(3,2)=5
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"
NN - representation & interpretation
SYNTAX

numeral ::= digit | numeral digit
digit ::={0,1,2,3, ..., r-1}

SEMANTICS
0 — zero
1 —one
2 —two multi digit
) numerals

single digit
numerals

meaning is a function that maps a string of d’s into a unique number
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"

OPERATIONS
+ 4 2
5 1 Great, but what about + 13137 29251 ?
6 0

Answer Part 1: automate
12137 = 1*10% + 3*10% + 1*102 + 3*10 + 7*10°

29251 = 2*10% + 9*10% + 2*10% + 5*10" + 1*10°

since (a+b) + (x +y) = (a+x) + (b +y) and (ax + bx = (a +b)x

1 31 8387

2 92 51

3 23 838 sum

1 00 0O carry
4 23 88
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3216 8 4 2
Answer Part 2: automate further 101 1 23
0 10 1 11
1 11 0 sum
0O 01 1 carry
1 10 1
0 010 O
01 00 1
01 00 O
00 0O 1
10 00 O
10 00 1 34
00 00 O
3216 8 4 2
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Answer Part 3: automate further still
101 1 a
y 0 10 1 b
X 0 1 111 0 a=axorb
0 0 1 sum 0O 01 1 b :=1 shift (a and b)
0 0 carry 1 10 1 .
1 1 0 sum 0 010 O
0 1 carry 01 00 1
01 00 O
sum 0 1 carry 0 1 00 0O 1
00 1 0(0:0 10 00 O
1(1:0 1/(0:1 10 00 1
4 4 00 00 O
X_or and
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Integers

on Cartesian Product NN x NN ={(m, n): m, n ¢ NN)

define arelation=  (my, ny) = (mMy, ny) iff (Mg +ny)=(my +ny)

= is relation of equivalence since it is reflexive, symmetric and transitive
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Reflexive (m, n) = (n, m)sincem+n=n+m
Symmetric
if (M, Ny) = (My, Ny) then My + Ny =My + Ny
and m, + N;=my + Ny
hence (mj, ny) = (M4, Ny)

Transitive

suppose we have (m4, n,) = (My, N,) and (M,, N,) =

by definition
my + Ny =My + Ny
M, + Ng= Mg + N,
adding sides
My + N5 + M, + Ny =M + Ny + Mg + Ny
hence my + Ng =Ny + Mg
and so (m1| n1) = (m3| n3)
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by definition

(mg, n3)
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relation of equivalence in a non-empty set X divides this set
into disjoint, non-empty subsets (classes of equivalence) in
the following way:

two elements X, y ¢ X belong to the same class iff x = y
x| = {y e X:x=y}

integer may thus be defined as an equivalence class:
[(m,n)| = {(p, @) £ (NN x NN) : (m, n) = (p, @)}

[(1, )] = {(0,0), (1,1),(2,2) ...} integer zero
[(1,0)] = {(1,0),(2,1),(3,2) ...} integer +1
[(0,1)] = {(0,1),(1,2),(23) ...} integer -1
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Integer addition
[(Mmy, n) [@ [(Mg, np) | = [(My +my), (ny+ny)]

Integer multiplication
[(my, n) [® [(My, n)| = | (Myxmy+nyxny) (Myxny+nyxmy) |

NN-arithmetic is isomorphic to IN-arithmetics

Rational numbers can be defined similarly where

relation = (py, G4) = (Pp, A2) Iff (P ® Q) =(p.® qy)
p,qelIN
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It took us around 7000 years

We can
* represent
* reason about
* process
the numbers through numerals i.e. in detachment from their meaning

Can we do the same with even more abstract symbols ?
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Suppose we need to evaluate the expression
(7+x)*(8+5*x) forx=4

> (7+4)* (8+5*4) — (7+4)*(8+5*4)
— (7+4)* (8 +20) - 11*(@8+5*4)

— (7+4)*28 — 11 * (8 + 20)
—11*28 —11*28

— 308 — 308

Church-Rosser property - the order of evaluations is immaterial
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evaluation may be applied to non-numerical symbols

first (sort (append (BANANA, LEMMON) (sort (GRAPE, APPLE, KIWI))))

first (sort (append (BANANA, LEMMON) (APPLE, GRAPE, KIWI)))

first (sort (BANANA, LEMMON, APPLE, GRAPE, KIWI))
first (APPLE , BANANA, GRAPE, LEMMON, KIWI)
APPLE
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Do variable names matter?
[xdx <«—> [ydy
not (A or B) = (not A) and (not B) «— not (X or Y) = (not X) and (not Y)

but

[ x siny dx ‘7§4 [y sinydy
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What are the rules for?

a(b + c)? - (ab? + ac? + abc) complex expression
— a(b?+ 2bc + c?) - (ab? + ac? + abc) E
— (ab? + 2abc + ac?) - (ab? + ac? + abc)
— ab? + 2abc + ac? - ab? - ac? - abc

— 2abc - abc v

—> abe simple(r) expression
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f(x)=x+5 +(x,5) or plus(x,5)

the meaning
(function abstraction)

lambda
expression » f=hx.x+5

Ax. salt-cover (x) peanuts | cover-with | salteqpeanuts

salt

Ax. salt-cover (x) (peanuts) — salt-cover_peanuts
Ax. salt-cover (x) (meat) — salt-cover_meat
Ax. salt-cover (x) (banana) — salt-cover_banana
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Ay. (Ax. y-cover (x)) (sugar) — AX. sugar-cover (X)

Az. (Ay. ( Ax. y-z (x))) (cover) — Ay. ( AX. y-cover (x))

Az. (Ay. (Ax. y-z (x))) (free) — Ay. ( Ax. y-free (X))
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(Haskell Curry)

currying

functions of n arguments can be represented by n-fold iteration of application

instead of applying the function
to two arguments f(X,Y) plus (3, 5)

apply it to the first argument and then
apply the result to the second argument
(fX)Y  ((plus3) 5)

more formally (A-(xy) F =Ax.Ay. F
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A-expression ::= constant

| variable
| <A-expression> < A-expression >  application
| A-expression. < A-expression > abstraction

| (\-expression)

Notation

complex A-expression M, N, P, Q, ...

variables X, Y, Z, ...

constants 300000

application +5, add (5)
+23 =((+2) 3)

MNPQ means (((MN)P)) (association to the left)

built-in functions e.g. add , neither constants nor A-functions,
defined for convenience, can be evaluated

abstraction AX.+1x
(AX. (Ay. *5y) (+ x 3))12
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+X (AX. + x 3) 4
4 4

frée bodnd
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must know its value (from outside)
argument of the function
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(Ax. xy (Ay. y))
4
(Ax. A y. z ((Az. z (Ax. y)))

(Ax. \y. Xz (v 2)) (Ax. y (y-y))
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free variables
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"
MANIPULATING EXPRESSIONS
A.+x1 —, Ay.+y1
AX. (M Y. yx) ~, AX. (A X. XX)

AX. (Ay. yx) =, AX. (A z. 2x)
A

E

variable names are arbitrary

but

OL -conversion rule

M.E —, Az.[z<X] E

June 2009

replace any bound x by z in E
provided that z doesn’t occur in E
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o )\y.g( #, Ay. Y x is free in

o AX. (Ay. +xy) 2, AX. (A X.

+ XX)

® x x5, Mgy f

is free in

o M.Ay.xy)—, M. (Ay.fy)

June 2009
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° (AX. + X 5) 4 —>; +45
v ................
o (Ax.*xx)5—=>;*55
S (Ax. 16) y —, 16 watever— >
v ................ v .......
o (Ax.(Ay.*xy))45—>,(Ay.*4y)5 —;*4 5
° (Aa.22) (Ab.+b1)—; (A\b.+b1)2—>; +21
_ : provided that bound variables of P
B “EITIFEE PO (KX'L) Q b [x— QP are distinct from free variables of Q
A
all (free iﬁ P) x’s in P get replaced by Q
June 2009 FP for DB A= calculus 27

° (X (Y. XY) Y= Ay.yy 2] WRONG
A 4
bouna f:ree

M. Ay.xy)y =, (Ax. (hz.x2) Yy
=3 (A2.y2)

-, AX. yx

June 2009 FP for DB A= calculus 28

14



o AX.(Ay.divxy)63
—; (Ay.divéy)3
—;div63
-, 2 P — 6 -conversion rule
evaluation of the built-in functions
° AXAY. + X (AX. - X 4) y) 56

=3 A AY. +x(-y4)56
—p M. +x(-54)6
-, +6(-54)

* 7 multiple application of 3-conversion
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o (Ax.+5x)4—,+5 4 =, 9

(xx. X) =, +5

(Ax.Fx) —, F 1] -conversion rule

provided x does not occur free in F
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A-expression that contains no reducible sub-expression is said to be in normal form

o not every expression has a normal form, for instance
(AX. x x) (AX. X X) = (AX. X X) (AX. X X) = (AX. X X) (AX. X X) — ...

o some reduction orders are more efficient than others:

(Ax. 1) (Ax. x x) (Ax. X x)
H 7 whateverp R
(1) (x. 1) (whatever) —» 1 whatever - »1

but

(2) (A 1)(Ax. x x) (AX. X X) = (Ax. 1)(AX. X X) (AX. X X) —...
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NORMAL ORDER APPLICATIVE ORDER
(Ay. (Ax.(Az. (+zx))4)y)5 AY. (A X. (Az. (+zXx))4)y)5
—(Ax.(AMz.(+2x))4)5 —AYy.(Ax.(+4x)y)5
—(\z. (+25)) 4 —Ay. (+4y)5
—(+45) — (+45)
-9 -9
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Church-Rosser Theorem
If A-exp, <> A-exp, then there exists A-exp such that
A-exp, <> A-exp

A-exp, <> A-exp

If A-exp, <> A-exp, and A-exp, is in normal form then
there exist a normal form reduction A-exp, — A-exp,
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how does it work for numbers?

M. Ax. x zero
M. Ax. f x one
M. Ax. f (f X) two how many times f is applied to x
M. Ax. f (f (f x)) three
A

Churcl'é numerals
successor succ = AnAfAX( f ((n f) X))
succ zero = )»_n.)»f.kx. (fF( (Ef) x) ) (AMf.AX. x)

— MAX. (f (M. Ax. x f) x)
— MAX. (f (Ag.Ay. Y 9) X)
— M.AX. (f (Ay. y) x)

— M.AX. (f X) — one
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add = Am.An.Af.AX.(((m succ) n) f) x) f ((n f) x))
= Am.AnAfAX.m f (n f x)

mult = Am.AnAf.m f (n f)

exp=AmAn. (mn)
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... and for booleans?
o IDENTITY AX. X
o True AX. Ay. X
o False AX. AY. ¥
o NOT M. (xF)T
® A Ax. Ay ((x y )F)
® OR MY (XT)y)
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if .... then ... else?

o if True BC — B (1
if False BC — C (2)

suppose we take Ax. x for if

then (1) becomes
(Ax.x) (Ax.Ay.x) BC — (Ax.Ay.x)BC—(Ay.B)C =B

and (2) becomes
(Ax.x) (Mx.Ay.y)BC —» (Ax.Ay.y) BC - (Ay.C)—>C
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... recursion?
® et
Y=Af. (Ax. f (x x)) ((Ax. f (x x)) recursion combinator

June 2009

YR = M. (Ax. f (x X)) ((Ax. f (x X)) R

a function that calls
— (Ax. R (x x)) ((Ax. R (x X)) (a function) f and

— R (Ax. R (x x)) ((Ax. R (x x)) regenerates itself

keeps generating R’s

YR =R (YR)
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A-calculus

|- processing functions by manipulating their abstractions
using application and formal conversion rules

everything in the computation process is represented by
|- functions; there are no other objects or types

(bool, int, chars, ...) ; if they are needed they must be
represented via functions

analysis of functions
I- * without having to name them
* seeing their abstractions at all times
¢ being free from their intuitive properties

Church Thesis every intuitively computable function is A-definable
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Turing machine
u-recursive functions (Godel)

A-calculus (Church) are comp_utatlonally
equivalent
formal grammars (Post)

combinatory logic (Schonfinkel, Curry)

normal order B-reduction models lazy evaluation for functional languages
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