
1

FP for DB λ − calculus 1June 2009

Model of Computation
based on λ−calculus

Alonzo Church
1903 - 1995

FP for DB λ − calculus 2June 2009

Represent numbers
by symbols - digits Manipulate symbols Interpret symbols

twenty three

eighteen
plus

+(23, 18)

23
18
31
10
41

forty one

reason
manipulation of symbols can be mechanized - it does not require thinking

2

FP for DB λ − calculus 3June 2009

1. Zero recognition
2. Every has one and only one successor
3. Every except zero has one and only one predecessor

zero one two three four five six

succ(zero)

succ(one)

succ(two)

pred(one)
pred(three)

NN - natural numbers [0, 1, 2, …)

FP for DB λ − calculus 4June 2009

+ (x, y) ::= x | y=o, + (succ (x), pred (y)) + 5 7
 6 6
 7 5
 8 4
 9 3
 10 2
 11 1
 12 0

- (x, y) ::= x | y=o, - (pred (x), pred (y)) - 5 2
 4 1
 3 0

* (x, y) ::= 0 | y=o, + (x, * (x, pred (y)))

< (x, y) iff ∃ k ε NN: + (x, k) = y < (3, 5) since 2 ε NN and + (3, 2) = 5

3

FP for DB λ − calculus 5June 2009

NN - representation & interpretation

SYNTAX

numeral ::= digit | numeral digit
digit ::= { 0, 1, 2, 3, …, r-1}

SEMANTICS
0 → zero
1 → one
2 → two
…

… d3d2d1d0

 d0 * r0

+ d1 * r1

+ d2 * r2

+ d3 * r3
..

single digit
numerals

multi digit
numerals

the meaning of the composite numeral is inferred
 from the meaning of its constituent parts

meaning is a function that maps a string of d’s into a unique number

FP for DB λ − calculus 6June 2009

+ 4 2
 5 1
 6 0

OPERATIONS

Great, but what about + 13137 29251 ?

Answer Part 1: automate

12137 = 1*104 + 3*103 + 1*102 + 3*101 + 7*100

29251 = 2*104 + 9*103 + 2*102 + 5*101 + 1*100

since (a + b) + (x + y) = (a +x) + (b + y) and (ax + bx = (a +b)x

1 3 1 3 7
2 9 2 5 1
3 2 3 8 8
1 0 0 0 0
4 2 3 8 8

sum

carry

4

FP for DB λ − calculus 7June 2009

Answer Part 2: automate further 1 0 1 1 1
0 1 0 1 1
1 1 1 0 0 sum

carry

32 16 8 4 2 1

23
11

0 0 1 1
1 1 0 1 0

0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0
1 0 0 0 1 0
0 0 0 0 0
32 16 8 4 2 1

34

FP for DB λ − calculus 8June 2009

sum

carry
0

1

0 1x
y

0
0

1
0

1
0

0
1

sum

carry

carry

0 0
0 1

0
1

0 1sum

0 1
1 0

0
1

0 1

x_or and

1 0 1 1 1
0 1 0 1 1
1 1 1 0 0
0 0 1 1
1 1 0 1 0

0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0
1 0 0 0 1 0
0 0 0 0 0

a
b
a := a x_or b
b := l_shift (a and b)
.
.
.

Answer Part 3: automate further still

5

FP for DB λ − calculus 9June 2009

Integers

on Cartesian Product NN × NN = {(m, n): m, n ε NN)

define a relation ≈ (m1, n1) ≈ (m2, n2) iff (m1 + n2) = (m2 + n1)

≈ is relation of equivalence since it is reflexive, symmetric and transitive

FP for DB λ − calculus 10June 2009

Reflexive (m, n) ≈ (n, m) since m + n = n + m

Symmetric
if (m1, n1) ≈ (m2, n2) then m1 + n2 = m2 + n1 by definition

and m2 + n1 = m1 + n2
hence (m2, n2) ≈ (m1, n1)

Transitive
suppose we have (m1, n1) ≈ (m2, n2) and (m2, n2) ≈ (m3, n3)
by definition

m1 + n2 = m2 + n1
m2 + n3 = m3 + n2

adding sides
m1 + n2 + m2 + n3 = m2 + n1 + m3 + n2

hence m1 + n3 = n1 + m3
and so (m1, n1) ≈ (m3, n3)

6

FP for DB λ − calculus 11June 2009

relation of equivalence in a non-empty set X divides this set
into disjoint, non-empty subsets (classes of equivalence) in
the following way:

two elements x, y ε X belong to the same class iff x ≈ y
x = {y ε X : x ≈ y}

integer may thus be defined as an equivalence class:

(m, n) = {(p, q) ε (NN × NN) : (m, n) ≈ (p, q)}

(1, 1) = {(0, 0), (1, 1), (2, 2) …}
(1, 0) = {(1, 0), (2, 1), (3, 2) …}
(0, 1) = {(0, 1), (1, 2), (2, 3) …}

integer zero
integer +1
integer -1

FP for DB λ − calculus 12June 2009

 0 1 2 3 4 5 NN
0

1

2

3

4

5

NN

1, 1 1, 2 1, 3 1, 4

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 4, 4

4, 1 4, 2 4, 3 4, 4

-2
-1

0
+1

+2

eq
uiva

len
ce

 cl
as

se
s

7

FP for DB λ − calculus 13June 2009

(m1, n1)⊕ (m2, n2) = (m1 + m2), (n1 + n2)
Integer addition

(m1, n1)⊗ (m2, n2) = (m1 × m2 + n1 × n2) , (m1 × n2 + n1 × m2)

Integer multiplication

NN-arithmetic is isomorphic to IN-arithmetics

Rational numbers can be defined similarly where

relation ≈ (p1, q1) ≈ (p2, q2) iff (p1 ⊗ q2) = (p2 ⊗ q1)
p, q ε IN

FP for DB λ − calculus 14June 2009

We can
• represent
• reason about
• process

the numbers through numerals i.e. in detachment from their meaning

Can we do the same with even more abstract symbols ?

It took us around 7000 years

8

FP for DB λ − calculus 15June 2009

Suppose we need to evaluate the expression

(7 + x) * (8 + 5 * x) for x = 4

→ (7 + 4) * (8 + 5 * 4)
→ (7 + 4) * (8 + 20)
→ (7 + 4) * 28
→ 11 * 28
→ 308

→ (7 + 4) * (8 + 5 * 4)
→ 11 * (8 + 5 * 4)
→ 11 * (8 + 20)
→ 11 * 28
→ 308

Church-Rosser property - the order of evaluations is immaterial

FP for DB λ − calculus 16June 2009

first (sort (append (BANANA, LEMMON) (sort (GRAPE, APPLE, KIWI))))

first (sort (append (BANANA, LEMMON) (APPLE, GRAPE, KIWI)))

first (sort (BANANA, LEMMON, APPLE, GRAPE, KIWI))

first (APPLE , BANANA, GRAPE, LEMMON, KIWI)

APPLE

evaluation may be applied to non-numerical symbols

9

FP for DB λ − calculus 17June 2009

Do variable names matter?

∫ x dx ∫ y dy

not (A or B) ≡ (not A) and (not B) not (X or Y) ≡ (not X) and (not Y)

but

∫ x sin y dx ∫ y sin y dy

FP for DB λ − calculus 18June 2009

What are the rules for?

 a(b + c)2 - (ab2 + ac2 + abc)
→ a(b2 + 2bc + c2) - (ab2 + ac2 + abc)

→ (ab2 + 2abc + ac2) - (ab2 + ac2 + abc)

→ ab2 + 2abc + ac2 - ab2 - ac2 - abc

→ 2abc - abc

→ abc

complex expression

simple(r) expression

10

FP for DB λ − calculus 19June 2009

 λx. salt-cover (x) cover-with
salt

peanuts salted peanuts

 λx. salt-cover (x) (peanuts) → salt-cover_peanuts
 λx. salt-cover (x) (meat) → salt-cover_meat
 λx. salt-cover (x) (banana) → salt-cover_banana

f(x) = x + 5 + (x, 5) or plus (x, 5)
the meaning
(function abstraction)

f = λx. x + 5lambda
expression

FP for DB λ − calculus 20June 2009

λy. (λx. y-cover (x)) (sugar) → λx. sugar-cover (x)

λz. (λy. (λx. y-z (x))) (cover) → λy. (λx. y-cover (x))

λz. (λy. (λx. y-z (x))) (free) → λy. (λx. y-free (x))

11

FP for DB λ − calculus 21June 2009

currying
(Haskell Curry)

functions of n arguments can be represented by n-fold iteration of application

instead of applying the function
to two arguments f(X, Y) plus (3, 5)

apply it to the first argument and then
apply the result to the second argument

(f(X))Y ((plus3) 5)

more formally (λ.(xy) F = λx. λy. F

FP for DB λ − calculus 22June 2009

 λ-expression ::= constant
| variable
| <λ-expression> < λ-expression > application
| λ-expression. < λ-expression > abstraction
| (λ-expression)

Notation
complex λ-expression M, N, P, Q, ...

variables x, y, z, ...

constants 300000

application +5, add (5)
+ 2 3 ≡ ((+2) 3)

MNPQ means (((MN)P)) (association to the left)

built-in functions e.g. add , neither constants nor λ-functions,
defined for convenience, can be evaluated

abstraction λx. + 1 x
 (λx. (λy. * 5 y) (+ x 3))12

12

FP for DB λ − calculus 23June 2009

 λx. x y

free
bound

variable
must know its value (from outside)
argument of the function

variable declaration

body

 +x (λx. + x 3) 4

free bound

FP for DB λ − calculus 24June 2009

 (λx. xy (λy. y))

 (λx. λ y. z ((λz. z (λx. y)))

 (λx. λ y. xz (y z)) (λx. y (λy. y)))

free variables

13

FP for DB λ − calculus 25June 2009

MANIPULATING EXPRESSIONS

 λx. (λ y. yx) →α λx. (λ x. xx)

λx. + x 1 →α λy. + y 1

λx. E →α λz. [z ← x] E

variable names are arbitrary

 λx. (λ y. yx) →α λx. (λ z. zx)
but

E

replace any bound x by z in E
provided that z doesn’t occur in E

α -conversion rule

FP for DB λ − calculus 26June 2009

λy. x →α λy. y x is free in

λx. (λ y. + x y) →α λx. (λ x. + xx) x is free in

λx. f x →α λx. g y f is free in

λx. (λ y. x y) →α λf. (λ y. f y)

14

FP for DB λ − calculus 27June 2009

(λx. (λ y. * x y)) 4 5 →β (λ y. * 4 y) 5 →β * 4 5

(λa. a 2) (λ b. + b1) →β (λ b. + b 1) 2 →β + 2 1

(λx. P) Q →β [x ← Q] Pβ -conversion rule provided that bound variables of P
are distinct from free variables of Q

all (free in P) x’s in P get replaced by Q

(λx. 16) y →β 16 whatever 16

(λx. + x 5) 4 →β + 4 5

(λx. * x x) 5 →β * 5 5

FP for DB λ − calculus 28June 2009

(λx. (λ y. x y)) y →β λ y. y y ?! WRONG

freebound

(λx. (λ y. x y) y →α (λx. (λ z. x z) y

 →β (λ z. y z)

 →α λx. yx

15

FP for DB λ − calculus 29June 2009

λx. (λ y. div x y) 6 3
→β (λy. div 6 y) 3
→β div 6 3
→δ 2

δ -conversion rule

evaluation of the built-in functions

λx.λ y. + x ((λx. - x 4) y) 5 6
→β λx. λy. + x (- y 4) 5 6
→β λx. + x (- 5 4) 6
→β + 6 (- 5 4)
*→δ + 7 multiple application of δ-conversion

FP for DB λ − calculus 30June 2009

(λx. + 5 x) 4 →β + 5 4 →δ 9

(λx. + 5 x) →η + 5

(λx. F x) →η F η -conversion rule
provided x does not occur free in F

16

FP for DB λ − calculus 31June 2009

λ-expression that contains no reducible sub-expression is said to be in normal form

not every expression has a normal form, for instance
(λx. x x) (λx. x x) → (λx. x x) (λx. x x) → (λx. x x) (λx. x x) → ...

some reduction orders are more efficient than others:

(λx. 1) (λx. x x) (λx. x x)
whatever 1

(λx. 1) (whatever) → 1
(1)

but

(λx. 1)(λx. x x) (λx. x x) → (λx. 1)(λx. x x) (λx. x x) →...(2)

FP for DB λ − calculus 32June 2009

(λy. (λ x. (λz. (+ z x)) 4) y) 5
→(λ x. (λz. (+ z x)) 4) 5
→(λz. (+ z 5)) 4

→(+ 4 5)
→ 9

NORMAL ORDER

λy. (λ x. (λz. (+ z x)) 4) y) 5
→ λy. (λ x. (+ 4 x) y) 5
→ λy. (+ 4 y) 5

→ (+ 4 5)
→ 9

APPLICATIVE ORDER

17

FP for DB λ − calculus 33June 2009

Church-Rosser Theorem

If λ-exp1 ↔ λ-exp2 then there exists λ-exp such that
λ-exp1 ↔ λ-exp

 λ-exp2 ↔ λ-exp

If λ-exp1 ↔ λ-exp2 and λ-exp2 is in normal form then
there exist a normal form reduction λ-exp1 → λ-exp2

FP for DB λ − calculus 34June 2009

how does it work for numbers?

λf. λx. x
λf. λx. f x
λf. λx. f (f x)
λf. λx. f (f (f x))

zero
one
two
three

Church numerals

successor succ ≡ λn.λf.λx.(f ((n f) x))

succ zero ≡ λn.λf.λx. (f ((n f) x)) (λf.λx. x)

→ λf.λx. (f (λf.λx. x f) x)

how many times f is applied to x

→ λf.λx. (f (λg.λy. y g) x)
→ λf.λx. (f (λy. y) x)
→ λf.λx. (f x) → one

18

FP for DB λ − calculus 35June 2009

add ≡ λm.λn.λf.λx.(((m succ) n) f) x) f ((n f) x))
 ≡ λm.λn.λf.λx.m f (n f x)

mult ≡ λm.λn.λf.m f (n f)

exp ≡ λm.λn. (m n)

FP for DB λ − calculus 36June 2009

... and for booleans?

True λx. λy. x

λx. λy. yFalse

NOT λx. (x F) T

AND λx. λy ((x y)F)

OR λx. λy ((x T) y)

IDENTITY λx. x

19

FP for DB λ − calculus 37June 2009

 if then ... else?

if True B C → B
if False B C → C

suppose we take λx. x for if

then (1) becomes
(λx. x) (λx. λy. x) B C → (λx. λy. x) B C → (λy. B) C → B

(1)
(2)

and (2) becomes
(λx. x) (λx. λy. y) B C → (λx. λy. y) B C → (λy. C) → C

FP for DB λ − calculus 38June 2009

... recursion?

let
 Y≡ λf. (λx. f (x x)) ((λx. f (x x))

→ (λx. R (x x)) ((λx. R (x x))
→ R (λx. R (x x)) ((λx. R (x x))
→ ...

recursion combinator

 YR ≡ λf. (λx. f (x x)) ((λx. f (x x)) R

keeps generating R’s

YR ≡ R (YR)

a function that calls
(a function) f and
 regenerates itself

20

FP for DB λ − calculus 39June 2009

λ-calculus

processing functions by manipulating their abstractions
using application and formal conversion rules

everything in the computation process is represented by
functions; there are no other objects or types
(bool, int, chars, ...) ; if they are needed they must be
represented via functions

analysis of functions
• without having to name them
• seeing their abstractions at all times
• being free from their intuitive properties

every intuitively computable function is λ-definableChurch Thesis

FP for DB λ − calculus 40June 2009

• Turing machine

• µ-recursive functions (Gödel)

• λ-calculus (Church)

• formal grammars (Post)

• combinatory logic (Schönfinkel, Curry)

are computationally
equivalent

normal order β-reduction models lazy evaluation for functional languages

