Model of Computation
‘ based on A—calculus
Alonzo Church
1903 - 1995
June 2009 FP for DB A=calculus 1
" JE
Represent numbers N f
by symbols - digits Manipulate symbols Interpret symbols
twenty three 23
plus 18
eighteen 31 forty one
10
+(23,18) | a1

reason
manipulation of symbols can be mechanized - it does not require thinking

June 2009 FP for DB A= calculus 2

NN - natural numbers [0,1,2,..))

1. Zero recognition
2. Every @ has one and only one successor
3. Every[@ except zero has one and only one predecessor

pred(three)
pred(one) i
| I i — e e e e >
zero one two three four five six
succ(zero) |
succ(one)
suéc(two)
June 2009 FP for DB A=calculus 3

+(X,y) = X1y, +(succ(x),pred(y)) L 5 7
6 6
7 5
8 4
9 3
10 2
1 1
12 0
-(X,y) 1= Xlyo - (pred (x), pred (y)) -5 2
4 1
30
(6 Y) =01y, + (X " (x, pred (y))
<(x,y) iff I ke NN: +(x, k) =y <(3,5)since2eNNand +(3,2)=5

June 2009 FP for DB A= calculus 4

"
NN - representation & interpretation
SYNTAX

numeral ::= digit | numeral digit
digit ::={0,1,2,3, ..., r-1}

SEMANTICS
0 — zero
1 —one
2 —two multi digit
) numerals

single digit
numerals

meaning is a function that maps a string of d’s into a unique number

June 2009 FP for DB A= calculus 5

"

OPERATIONS
+ 4 2
5 1 Great, but what about + 13137 29251 ?
6 0

Answer Part 1: automate
12137 = 1*10% + 3*10% + 1*102 + 3*10 + 7*10°

29251 = 2*10% + 9*10% + 2*10% + 5*10" + 1*10°

since (a+b) + (x +y) = (a+x) + (b +y) and (ax + bx = (a +b)x

1 31 8387

2 92 51

3 23 838 sum

1 00 0O carry
4 23 88

June 2009 FP for DB A= calculus 6

3216 8 4 2
Answer Part 2: automate further 101 1 23
0 10 1 11
1 11 0 sum
0O 01 1 carry
1 10 1
0 010 O
01 00 1
01 00 O
00 0O 1
10 00 O
10 00 1 34
00 00 O
3216 8 4 2
June 2009 FP for DB A=calculus T
" JEE
Answer Part 3: automate further still
101 1 a
y 0 10 1 b
X 0 1 111 0 a=axorb
0 0 1 sum 0O 01 1 b :=1 shift (a and b)
0 0 carry 1 10 1 .
1 1 0 sum 0 010 O
0 1 carry 01 00 1
01 00 O
sum 0 1 carry 0 1 00 0O 1
00 1 0(0:0 10 00 O
1(1:0 1/(0:1 10 00 1
4 4 00 00 O
X_or and

June 2009 FP for DB

A= calculus 8

Integers

on Cartesian Product NN x NN ={(m, n): m, n ¢ NN)

define arelation= (my, ny) = (mMy, ny) iff (Mg +ny)=(my +ny)

= is relation of equivalence since it is reflexive, symmetric and transitive

June 2009 FP for DB

A= calculus 9

Reflexive (m, n) = (n, m)sincem+n=n+m
Symmetric
if (M, Ny) = (My, Ny) then My + Ny =My + Ny
and m, + N;=my + Ny
hence (mj, ny) = (M4, Ny)

Transitive

suppose we have (m4, n,) = (My, N,) and (M,, N,) =

by definition
my + Ny =My + Ny
M, + Ng= Mg + N,
adding sides
My + N5 + M, + Ny =M + Ny + Mg + Ny
hence my + Ng =Ny + Mg
and so (m1| n1) = (m3| n3)

June 2009 FP for DB

by definition

(mg, n3)

A= calculus 10

relation of equivalence in a non-empty set X divides this set
into disjoint, non-empty subsets (classes of equivalence) in
the following way:

two elements X, y ¢ X belong to the same class iff x = y
x| = {y e X:x=y}

integer may thus be defined as an equivalence class:
[(m,n)| = {(p, @) £ (NN x NN) : (m, n) = (p, @)}

[(1,)] = {(0,0), (1,1),(2,2) ...} integer zero
[(1,0)] = {(1,0),(2,1),(3,2) ...} integer +1
[(0,1)] = {(0,1),(1,2),(23) ...} integer -1

FP for DB A =calculus 11

June 2009

FP for DB A= calculus 12

June 2009

Integer addition
[(Mmy, n) [@ [(Mg, np) | = [(My +my), (ny+ny)]

Integer multiplication
[(my, n) [® [(My, n)| = | (Myxmy+nyxny) (Myxny+nyxmy) |

NN-arithmetic is isomorphic to IN-arithmetics

Rational numbers can be defined similarly where

relation = (py, G4) = (Pp, A2) Iff (P ® Q) =(p.® qy)
p,qelIN

June 2009 FP for DB A= calculus 13

It took us around 7000 years

We can
* represent
* reason about
* process
the numbers through numerals i.e. in detachment from their meaning

Can we do the same with even more abstract symbols ?

June 2009 FP for DB A= calculus 14

Suppose we need to evaluate the expression
(7+x)*(8+5*x) forx=4

> (7+4)* (8+5*4) — (7+4)*(8+5*4)
— (7+4)* (8 +20) - 11*(@8+5*4)

— (7+4)*28 — 11 * (8 + 20)
—11*28 —11*28

— 308 — 308

Church-Rosser property - the order of evaluations is immaterial

June 2009 FP for DB

A= calculus 15

evaluation may be applied to non-numerical symbols

first (sort (append (BANANA, LEMMON) (sort (GRAPE, APPLE, KIWI))))

first (sort (append (BANANA, LEMMON) (APPLE, GRAPE, KIWI)))

first (sort (BANANA, LEMMON, APPLE, GRAPE, KIWI))
first (APPLE , BANANA, GRAPE, LEMMON, KIWI)
APPLE

June 2009 FP for DB

A= calculus 16

Do variable names matter?
[xdx <«—> [ydy
not (A or B) = (not A) and (not B) «— not (X or Y) = (not X) and (not Y)

but

[x siny dx ‘7§4 [y sinydy

June 2009 FP for DB A= calculus 17

What are the rules for?

a(b + c)? - (ab? + ac? + abc) complex expression
— a(b?+ 2bc + c?) - (ab? + ac? + abc) E
— (ab? + 2abc + ac?) - (ab? + ac? + abc)
— ab? + 2abc + ac? - ab? - ac? - abc

— 2abc - abc v

—> abe simple(r) expression

June 2009 FP for DB A= calculus 18

f(x)=x+5 +(x,5) or plus(x,5)

the meaning
(function abstraction)

lambda
expression » f=hx.x+5

Ax. salt-cover (x) peanuts | cover-with | salteqpeanuts

salt

Ax. salt-cover (x) (peanuts) — salt-cover_peanuts
Ax. salt-cover (x) (meat) — salt-cover_meat
Ax. salt-cover (x) (banana) — salt-cover_banana

June 2009 FP for DB

A= calculus 19

Ay. (Ax. y-cover (x)) (sugar) — AX. sugar-cover (X)

Az. (Ay. (Ax. y-z (x))) (cover) — Ay. (AX. y-cover (x))

Az. (Ay. (Ax. y-z (x))) (free) — Ay. (Ax. y-free (X))

June 2009 FP for DB

A = calculus 20

10

(Haskell Curry)

currying

functions of n arguments can be represented by n-fold iteration of application

instead of applying the function
to two arguments f(X,Y) plus (3, 5)

apply it to the first argument and then
apply the result to the second argument
(fX)Y ((plus3) 5)

more formally (A-(xy) F =Ax.Ay. F

June 2009 FP for DB A= calculus 21

A-expression ::= constant

| variable
| <A-expression> < A-expression > application
| A-expression. < A-expression > abstraction

| (\-expression)

Notation

complex A-expression M, N, P, Q, ...

variables X, Y, Z, ...

constants 300000

application +5, add (5)
+23 =((+2) 3)

MNPQ means (((MN)P)) (association to the left)

built-in functions e.g. add , neither constants nor A-functions,
defined for convenience, can be evaluated

abstraction AX.+1x
(AX. (Ay. *5y) (+ x 3))12

June 2009 FP for DB A = caleulus 22

11

+X (AX. + x 3) 4
4 4

frée bodnd

June 2009 FP for DB

must know its value (from outside)
argument of the function

A= calculus 23

(Ax. xy (Ay. y))
4
(Ax. A y. z ((Az. z (Ax. y)))

(Ax. \y. Xz (v 2)) (Ax. y (y-y))

June 2009 FP for DB

free variables

A= calculus 24

12

"
MANIPULATING EXPRESSIONS
A.+x1 —, Ay.+y1
AX. (M Y. yx) ~, AX. (A X. XX)

AX. (Ay. yx) =, AX. (A z. 2x)
A

E

variable names are arbitrary

but

OL -conversion rule

M.E —, Az.[z<X] E

June 2009

replace any bound x by z in E
provided that z doesn’t occur in E

FP for DB

A = calculus 25

o)\y.g(#, Ay. Y x is free in

o AX. (Ay. +xy) 2, AX. (A X.

+ XX)

® x x5, Mgy f

is free in

o M.Ay.xy)—, M. (Ay.fy)

June 2009

FP for DB

A = calculus 26

13

° (AX. + X 5) 4 —>; +45
v
o (Ax.*xx)5—=>;*55
S (Ax. 16) y —, 16 watever— >
v v
o (Ax.(Ay.*xy))45—>,(Ay.*4y)5 —;*4 5
° (Aa.22) (Ab.+b1)—; (A\b.+b1)2—>; +21
_ : provided that bound variables of P
B “EITIFEE PO (KX'L) Q b [x— QP are distinct from free variables of Q
A
all (free iﬁ P) x’s in P get replaced by Q
June 2009 FP for DB A= calculus 27

° (X (Y. XY) Y= Ay.yy 2] WRONG
A 4
bouna f:ree

M. Ay.xy)y =, (Ax. (hz.x2) Yy
=3 (A2.y2)

-, AX. yx

June 2009 FP for DB A= calculus 28

14

o AX.(Ay.divxy)63
—; (Ay.divéy)3
—;div63
-, 2 P — 6 -conversion rule
evaluation of the built-in functions
° AXAY. + X (AX. - X 4) y) 56

=3 A AY. +x(-y4)56
—p M. +x(-54)6
-, +6(-54)

* 7 multiple application of 3-conversion

June 2009 FP for DB A = calculus 29

o (Ax.+5x)4—,+5 4 =, 9

(xx. X) =, +5

(Ax.Fx) —, F 1] -conversion rule

provided x does not occur free in F

June 2009 FP for DB A = calculus 30

15

A-expression that contains no reducible sub-expression is said to be in normal form

o not every expression has a normal form, for instance
(AX. x x) (AX. X X) = (AX. X X) (AX. X X) = (AX. X X) (AX. X X) — ...

o some reduction orders are more efficient than others:

(Ax. 1) (Ax. x x) (Ax. X x)
H 7 whateverp R
(1) (x. 1) (whatever) —» 1 whatever - »1

but

(2) (A 1)(Ax. x x) (AX. X X) = (Ax. 1)(AX. X X) (AX. X X) —...

June 2009 FP for DB A = calculus 31

NORMAL ORDER APPLICATIVE ORDER
(Ay. (Ax.(Az. (+zx))4)y)5 AY. (A X. (Az. (+zXx))4)y)5
—(Ax.(AMz.(+2x))4)5 —AYy.(Ax.(+4x)y)5
—(\z. (+25)) 4 —Ay. (+4y)5
—(+45) — (+45)
-9 -9
June 2009 FP for DB A= calculus 32

16

Church-Rosser Theorem
If A-exp, <> A-exp, then there exists A-exp such that
A-exp, <> A-exp

A-exp, <> A-exp

If A-exp, <> A-exp, and A-exp, is in normal form then
there exist a normal form reduction A-exp, — A-exp,

June 2009 FP for DB A = calculus 33

how does it work for numbers?

M. Ax. x zero
M. Ax. f x one
M. Ax. f (f X) two how many times f is applied to x
M. Ax. f (f (f x)) three
A

Churcl'é numerals
successor succ = AnAfAX(f ((n f) X))
succ zero =)»_n.)»f.kx. (fF((Ef) x)) (AMf.AX. x)

— MAX. (f (M. Ax. x f) x)
— MAX. (f (Ag.Ay. Y 9) X)
— M.AX. (f (Ay. y) x)

— M.AX. (f X) — one

June 2009 FP for DB A= calculus 34

add = Am.An.Af.AX.(((m succ) n) f) x) f ((n f) x))
= Am.AnAfAX.m f (n f x)

mult = Am.AnAf.m f (n f)

exp=AmAn. (mn)

June 2009 FP for DB A = calculus 35
" J
... and for booleans?
o IDENTITY AX. X
o True AX. Ay. X
o False AX. AY. ¥
o NOT M. (xF)T
® A Ax. Ay ((x y)F)
® OR MY (XT)y)
June 2009 FP for DB A = calculus 36

18

if then ... else?

o if True BC — B (1
if False BC — C (2)

suppose we take Ax. x for if

then (1) becomes
(Ax.x) (Ax.Ay.x) BC — (Ax.Ay.x)BC—(Ay.B)C =B

and (2) becomes
(Ax.x) (Mx.Ay.y)BC —» (Ax.Ay.y) BC - (Ay.C)—>C

June 2009 FP for DB A= calculus 37
" J
... recursion?
® et
Y=Af. (Ax. f (x x)) ((Ax. f (x x)) recursion combinator

June 2009

YR = M. (Ax. f (x X)) ((Ax. f (x X)) R

a function that calls
— (Ax. R (x x)) ((Ax. R (x X)) (a function) f and

— R (Ax. R (x x)) ((Ax. R (x x)) regenerates itself

keeps generating R’s

YR =R (YR)

FP for DB A = calculus 38

19

A-calculus

|- processing functions by manipulating their abstractions
using application and formal conversion rules

everything in the computation process is represented by
|- functions; there are no other objects or types

(bool, int, chars, ...) ; if they are needed they must be
represented via functions

analysis of functions
I- * without having to name them
* seeing their abstractions at all times
¢ being free from their intuitive properties

Church Thesis every intuitively computable function is A-definable

June 2009 FP for DB A = calculus 39

Turing machine
u-recursive functions (Godel)

A-calculus (Church) are comp_utatlonally
equivalent
formal grammars (Post)

combinatory logic (Schonfinkel, Curry)

normal order B-reduction models lazy evaluation for functional languages

June 2009 FP for DB A = calculus 40

20

