
1

FP for DB   Case studies 1June 2009

Airline DB

FP for DB   Case studies 2June 2009

JFK

LHR

AKL

LAX

DEN

airports & flight connections



2

FP for DB   Case studies 3June 2009

-- airlines as abstract entities

data Airline = BA | UA  |  NZ  deriving ( Eq, Show)

allAirlines  ::  [Airline]

allAirlines = [BA, UA, NZ]

type AirlineName  =  String

airlineName  ::  Airline -> AirlineName

airlineName  BA  =  “British Airways”

airlineName  UA  =  “United Airlines”

airlineName  NZ  =   “Air New Zealand”

FP for DB   Case studies 4June 2009

-- airports as abstract entities

data  Aiport  = LHR | JFK  | DEN  | LAX |  AKL  

                      deriving ( Eq, Show)

allAirports  :: [Airport]

allAirports = [LHR,  JFK,   DEN,   LAX,   AKL]                  

type AirportName  =  String

type Country  =  String

type AirportInfo  =  ( AirportName, Country )                   

airportInfo  ::  Airport -> AirportInfo

airportInfo  LHR  =  (“London Heathrow”, “England”)

airportInfo  JFK  =  (“J F Kennedy”, “United States”)

airportInfo  DEN  =  (“Denver”, “United States”)

airportInfo  LAX  =  (“Los Angeles Int”, “United States”)

airportInfo  AKL  =  (“Auckland”, “New Zealand”)

airportName  ::  Airport -> AirportName

airportName   x  =  firstOf2 (airportInfo  x)                        

airportCountry  ::  Airport -> Country

airportCountry  x  = secondOf2  (airportInfo  x)



3

FP for DB   Case studies 5June 2009

-- flights as abstract entities (airline, source, destination)

data  Flight  = BA1 | UA1 | UA123 | UA987 | UA234 | UA842 | NZ2

    deriving ( Eq, Show)

allFlights  :: [ Flight ]

allFlights = [BA1,  UA1,  UA123,  UA987,  UA234,  UA842,  NZ2 ]

flightInfo  ::  Flight -> (Airline, Airport, Airport)                              
flightInfo   BA1       =  (BA, LHR, JFK)
flightInfo   UA1       =  (UA, LHR, JFK)
flightInfo   UA123   =  (UA, JFK, DEN)
flightInfo   UA987   =  (UA, LHR, LAX)
flightInfo   UA234   =  (UA, DEN , LAX)
flightInfo   UA842   =  (UA, LAX, AKL)
flightInfo   NZ2       =  (NZ, LAX, AKL)

flightAirline   ::  Flight  -> Airline

flightAirline  f  =  firstOf3 (flightInfo  f)                                             

flightSource   ::  Flight  -> Airport

flightSource  f  =  secondOf3 (flightInfo  f)                                      

flightDest   ::  Flight  -> Airport

flightDest  f  =  thirdOf3 (flightInfo  f)                                               

FP for DB   Case studies 6June 2009

-- codes of the airports located in the United States

allAirports = [LHR,  JFK,   DEN,   LAX,   AKL]

airportInfo  LHR  =  (“London Heathrow”, “England”)

airportInfo  JFK  =  (“J F Kennedy”, “United States”)

airportInfo  DEN  =  (“Denver”, “United States”)

airportInfo  LAX  =  (“Los Angeles Int”, “United States”)

airportInfo  AKL  =  (“Auckland”, “New Zealand”)

airportCountry  x  = secondOf2  (airportInfo  x)

[ p | p <- allAirports, airportCountry p = “United States”]



4

FP for DB   Case studies 7June 2009

serves  :: Airline  ->  [ Airport ]

serves   x =

[flightSource  f  |  f <- allFlights, flightAirline  f == x]  ++

[flightDest  f  |  f <- allFlights, flightAirline  f == x]

flightInfo  ::  Flight -> (Airline, Airport, Airport)
flightInfo   BA1       =  (BA, LHR, JFK)
flightInfo   UA1       =  (UA, LHR, JFK)
flightInfo   UA123   =  (UA, JFK, DEN)
flightInfo   UA987   =  (UA, LHR, LAX)
flightInfo   UA234   =  (UA, DEN , LAX)
flightInfo   UA842   =  (UA, LAX, AKL)
flightInfo   NZ2       =  (NZ, LAX, AKL)

flightSource  f  =  secondOf3 (flightInfo  f)

flightDest  f  =  thirdOf3 (flightInfo  f)

allFlights = [BA1,  UA1,  UA123,  UA987,  UA234,  UA842,  NZ2]

-- all airports flown to/from by a given airline

FP for DB   Case studies 8June 2009

-- all airports from where an airline flies to more than one destination

hubs  :: Airline  ->  [ Airport ]

hubs   x =

[p  | p <-  allAirports,  

 f1 <- allFlights, flightAirline  f1 == x, flightSource f1 == p,

 f2 <- allFlights, flightAirline  f2 == x,  flightSource  f2 == p,

 flightDest  f1 /= flightDest  f2]

LHR



5

FP for DB   Case studies 9June 2009

-- all airports reachable from a given airport on a given airline

getthere  :: Airline  ->  Airport  -> [Airport]

getthere  x  y =

dests  ++  [y’  | d <-  dests,  y’ <- getthere  x  d]

  where dests = [ flightDest  f | f <- allFlights, 

        flightAirline  f == x,  flightSource  f == y]

DEN

BlueLine -> AKL -> [ LHR | JFK | LAX ]

JFK

LHR

AKL

LAX

FP for DB   Case studies 10June 2009

Relational Airline DB

ID    NAME          CODE     NAME      COUNTRY

BA     British Airways LHR         Heathrow      England

No     L-ID      ORIG     DEST

704      BA           LHR         VIE

LINE PORT

CONNECT



6

FP for DB   Case studies 11June 2009

-- airports located in the United States

[ p | p <- allAirports, 
       airportCountry p = “United States”]             

select ID from PORT
where COUNTRY = “United States”

Π (σ PORT (COUNTRY =‘ United States”)) ID

FP for DB   Case studies 12June 2009

-- airports served by a given airline

serves   x =

   [flightSource  f  |  f <- allFlights, flightAirline  f == x]  

   ++ [flightDest  f  |  f <- allFlights, flightAirline  f == x]

select distinct  PORT.NAME

from    LINE, PORT, CONNECT

where  ID = L-ID

and     (CODE = ORIG  or CODE = DEST)               

and     LINE.NAME = x

 Π (σ ((LINE   PORT)  CONNECT)                    

      (CODE = ORIG  or CODE = DEST ))   

     NAME



7

FP for DB   Case studies 13June 2009

-- airports from where an airline flies to more than one destination

hubs  :: Airline  ->  [ Airport ]

hubs   x =[p  | p <-  allAirports,  

    f1 <- allFlights, flightAirline  f1 == x, flightSource f1 == p,

    f2 <- allFlights, flightAirline  f2 == x, flightSource  f2 == p,

    flightDest  f1 /= flightDest  f2]

Α ::= Π ( σ (CONNECT (L-ID = x))) (ORIG, DEST)
  returns all connection pairs for x - but R/Algebra              
  does not provide tools for grouping or counting

select ORIG from CONNECT

where L-ID = x

group by ORIG having count (*) > 1

FP for DB   Case studies 14June 2009

-- all airports reachable from a given airport on a given airline

select DEST from CONNECT 

where L-ID = x

and ORIG = y (Blue, AKL) -> LHR

JFK

LHR

AKL

LAX

DEN



8

FP for DB   Case studies 15June 2009

getthere  x  y =

     dests  ++  [y’  | d <-  dests,  y’ <- getthere  x  d]

     where dests = [ flightDest  f | f <- allFlights,

                              flightAirline  f == x,  flightSource  f == y]

SQL> select * from GRAPH;

ORIG     DEST
-------  ------
AKL      LHR
LHR      JFK
LHR      LAX
JFK      VIE
VIE      WAW

SQL> select level, dest
  2  from graph
  3  connect by prior dest = orig
  4* start with orig = 'AKL’;

 LEVEL         DEST
 ------       ----
 1            LHR
   2          JFK
    3         VIE
     4        WAW
   2          LAX

JFK

LHR

LAX

AKL

VIE

WAV

1

2
2

3
4

FP for DB   Case studies 16June 2009

3 examples 
mastered by your predecessors



9

FP for DB   Case studies 17June 2009

Employees, managers, projects

FP for DB   Case studies 18June 2009

-- employees
data Employee = E1 | E2 | E3 | E4 deriving (Eq, Show)
allEmployees :: [Employee]
allEmployees = [E1, E2, E3, E4]

type EmployeeName = String
type EmployeeSalary = Int
type EmployeeInfo = (EmployeeName, EmployeeSalary)

employeeInfo E1 = ("Karin", 30000)
employeeInfo E2 = (”John", 25000)
employeeInfo E3 = ("Mary", 22000)
employeeInfo E4 = ("Peter", 20000)



10

FP for DB   Case studies 19June 2009

-- employees report to their supervisors
reportsto :: Employee -> [Employee]
reportsto E1 = []
reportsto E2 = [E1]
reportsto E3 = [E2]
reportsto E4 = [E1]

-- employees work on projects
data Project = Red | Blue deriving (Eq, Show)
allProjects :: [Project]
allProjects = [Red, Blue]

-- an employee may work on one or more project
workson :: Employee -> [Project]
workson E1 = [Red, Blue]
workson E2 = [Red]
workson E3 = [Red]
workson E4 = [Blue]

FP for DB   Case studies 20June 2009

-- find all managers
-- (i.e. employees reported to = the whole tree except leaves)

managers :: [Employee]
managers = [x | emp <- allEmployees, x <- reportsto emp]

-- for a given employee find his manager, his manager’s manager, and so on

manages :: Employee -> [Employee]
manages x = reportsto x ++ [man|m <- reportsto x, man <- manages m]



11

FP for DB   Case studies 21June 2009

-- find all the employees who work on a given project 

team :: Project -> [Employee] 
team x = [emp | emp <- allEmployees, project <- workson emp, project == x] 

-- find the names of all the managers whose employees work on a given project

names :: Project -> [EmployeeName]
names x = [getFirst (employeeInfo manager) | manager <- managers,
teammember <- team x, manager == teammember]
where getFirst (x, _) = x

FP for DB   Case studies 22June 2009

Modules, prerequisites, teachers



12

FP for DB   Case studies 23June 2009

data Prof = WS | HL | SP | AT deriving (Eq, Show)
allProfs :: [Prof]
allProfs = [WS, HL, SP, AT]

type ProfName   = String
type ProfRoom   = String
type ProfInfo      = (ProfName, ProfRoom)

profInfo :: Prof -> ProfInfo
profInfo WS = ("Wayne Smith", "WHE110")
profInfo HL  = ("Henry Long", "WHE115")
profInfo SP  = ("Steve Pirx", "WHE 101")
profInfo AT  = ("Andy Thue", "WHE 300")

profName :: Prof -> ProfName
profName a = firstOf2 (profInfo a)

profRoom :: Prof -> ProfRoom
profRoom a = secondOf2 (profInfo a)

FP for DB   Case studies 24June 2009

data Subject = ADT | DM | EBUS | FP | IM deriving (Eq, Show)
allSubjects :: [Subject]
allSubjects = [ADT, DM, EBUS, FP, IM]

type ID = String
type Title = String

subjectInfo :: Subject -> (ID, Title, ProfName)
subjectInfo ADT = ("103020", "Abstract Data Types", "Wayne Smith")
subjectInfo DM = ("345730", "Data Management", "Wayne Smith")
subjectInfo EBUS = ("195640", "eBusiness", "Henry Long")
subjectInfo FP = ("338313", "Functional Programming", "Steve Pirx")
subjectInfo IM = ("672943", "Information Management", "Andy Thue")

idNr :: Subject -> ID
idNr b = firstOf3 (subjectInfo b)

title :: Subject -> Title
title b = secondOf3 (subjectInfo b)

subProf :: Subject -> ProfName
subProf b = thirdOf3 (subjectInfo b)



13

FP for DB   Case studies 25June 2009

data PreSubject = ADT1 | FP1 | DM1 | FP2 | IM1 deriving (Eq, Show)
allPreSubjects :: [PreSubject]
allPreSubjects = [ADT1, DM1, FP1, FP2, IM1]

preInfo :: PreSubject -> (ID, ID)
preInfo ADT1 = ("103020", "672943")
preInfo FP1 = ("338313", "345730")
preInfo FP2 = ("338313", "103020")
preInfo DM1 = ("345730", "672943")
preInfo IM1 = ("672943", "195640")

subId :: PreSubject -> ID
subId c = firstOf2 (preInfo c)

reqSubId :: PreSubject -> ID
reqSubId c = secondOf2 (preInfo c)

firstOf2, secondOf2 :: (String, String) -> String
firstOf2 (x, y) = x
secondOf2 (x, y) = y

firstOf3, secondOf3, thirdOf3 :: (String, String, String) -> String
firstOf3 (x, y, z) = x
secondOf3 (x, y, z) = y
thirdOf3 (x, y, z) = z

FP for DB   Case studies 26June 2009

--all subjects taught by a given professor

allSubProf :: Prof -> [Title]
allSubProf p = [title b | b <- allSubjects, subProf b == profName p]

--prerequisite for a subject

reqSub :: ID -> [ID]
reqSub p = [reqSubId c | c <- allPreSubjects, subId c == p]

--subjects with no pre-requisites

noReqSub :: [ID]
noReqSub = [idNr b | b <- allSubjects, reqSub (idNr b) == []]



14

FP for DB   Case studies 27June 2009

--subjects that have more than one pre-requisite

moreOne :: [ID]
moreOne = [idNr b | b <- allSubjects,

 c1 <- allPreSubjects, idNr b == subId c1,
 c2 <- allPreSubjects, idNr b == subId c2,
 reqSubId c1 /= reqSubId c2]

FP for DB   Case studies 28June 2009

Parents, Education & Employment



15

FP for DB   Case studies 29June 2009

PERS-ID DEGREE DISCIPLINE UNIVERSITY AWARD-YEAR
210578123 MSc Mathematics JKU 1998
210578123 PhD Computing JKU 2001
210578123 MBA Business Harvard 2003
………….. ……. …………….. ……….. ……

ID SURNAME BIRTH-PLACE SEX FATHER-ID MOTHER-ID
210578123 Schmidt Linz Female 1112583456 0203605678
…………… ……….. …... ………. ……………. ……………..

PERS-ID COMPANY FROM TO POSITION SALARY
210578123 ABC Software 2001 2002 Analyst 45K
…………… ………………. …… ……. ………. …..

FP for DB   Case studies 30June 2009

data Person =A|B|C|D|E|F|G deriving (Eq,Ord,Enum,Show) 
allPersons::[Person] 
allPersons=[A,B,C,D,E,F,G] 
 
type ID = Int 
type SURNAME = String 
type BIRTHPLACE = String 
type SEX = String 
type FATHERID = ID 
type MOTHERID = ID 
 
type PersonInfo = (ID,SURNAME,BIRTHPLACE,SEX,FATHERID,MOTHERID) 



16

FP for DB   Case studies 31June 2009

personInfo :: Person->PersonInfo 
personInfo A = (1,"Schmidt","Linz","Female",2,3) 
personInfo B = (2,"Huber","Linz","Male",4,5) 
personInfo C = (3,"Huber","Wien","Female",6,7) 
personInfo D = (4,"Grossvater vaeterlichseits","Traun","Male",0,0) 
………..………..……..………..………..………..………..………..…..…..

id :: Person->ID 
id x = firstOf6(personInfo x) 
 
surname :: Person->SURNAME 
surname x = secondOf6(personInfo x) 
 
birthplace :: Person->BIRTHPLACE 
birthplace x = thirdOf6(personInfo x) 
 
sex :: Person->SEX 
sex x = fourthOf6(personInfo x) 
 
fatherid :: Person->FATHERID 
fatherid x = fifthOf6(personInfo x) 
 
motherid :: Person->MOTHERID 
motherid x = sixthOf6(personInfo x)

FP for DB   Case studies 32June 2009

data Education = Ed1|Ed2|Ed3|Ed4|Ed5 deriving (Eq,Ord,Enum,Show) 
allEducations::[Education] 
allEducations=[Ed1,Ed2,Ed3,Ed4,Ed5] 
 
type DEGREE = String 
type DISCIPLINE = String 
type UNIVERSITY = String 
type AWARDYEAR = Int 
 
type EducationInfo = (Person,DEGREE,DISCIPLINE,UNIVERSITY,AWARDYEAR) 
 



17

FP for DB   Case studies 33June 2009

educationInfo :: Education->EducationInfo 
educationInfo Ed1 = (A,"Msc","Mathematics","JKU",1998) 
educationInfo Ed2 = (A,"PhD","Computing","JKU",2001) 
educationInfo Ed3 = (A,"MBA","Business","Harvard",2003) 
educationInfo Ed4 = (B,"DI","Informatics","TU Wien",1980) 
educationInfo Ed5 = (C,"BSc","Informatics","TU Wien",1982)
………..………..……..………..………..………..………..………..….
 
personeducation :: Education->Person 
personeducation x = firstOf5(educationInfo x) 
 
degree :: Education->DEGREE 
degree x = secondOf5(educationInfo x) 
 
discipline :: Education->DISCIPLINE 
discipline x = thirdOf5(educationInfo x) 
 
university :: Education->UNIVERSITY 
university x = fourthOf5(educationInfo x) 
 
awardyear :: Education->AWARDYEAR 
awardyear x = fifthOf5(educationInfo x) 

FP for DB   Case studies 34June 2009

data Employment = Em1|Em2|Em3|Em4|Em5|Em6 deriving (Eq,Ord,Enum,Show) 
allEmployments::[Employment] 
allEmployments=[Em1,Em2,Em3,Em4,Em5,Em6] 
 
type COMPANY = String 
type FROM = Int 
type TO = Int 
type POSITION = String 
type SALARY = Int 
 
type EmploymentInfo = (Person,COMPANY,FROM,TO,POSITION,SALARY) 
 
employmentInfo :: Employment->EmploymentInfo 
employmentInfo Em1 = (A,"ABCSoftware",2001,2002,"Analyst",45000) 
employmentInfo Em2 = (A,"Harvard",2002,2003,"Assistant",30000) 
employmentInfo Em3 = (B,"ABCSoftware",1990,1995,"Administrator",20000) 
employmentInfo Em4 = (B,"Siemens",1995,2006,"Developer",60000) 
………..………..……..………..………..………..………..………..…..….............



18

FP for DB   Case studies 35June 2009

personemployment :: Employment->Person 
personemployment x = firstOf6(employmentInfo x) 
 
company :: Employment->COMPANY 
company x = secondOf6(employmentInfo x) 
 
from :: Employment->FROM 
from x = thirdOf6(employmentInfo x) 
 
to :: Employment->TO 
to x = fourthOf6(employmentInfo x) 
 
position :: Employment->POSITION 
position x = fifthOf6(employmentInfo x) 
 
salary :: Employment->SALARY 
salary x = sixthOf6(employmentInfo x) 

FP for DB   Case studies 36June 2009

ins::Person->[Person]->[Person] 
ins x[]=[x] 
ins x(y:ys) 
  |x<=y = x:y:ys 
  |otherwise = y:ins x ys 
 
member::[Person]->Person->Bool 
member[] y = False 
member(x:xs)y=(x==y)||member xs y 
 
distinct::[Person]->[Person] 
distinct[]=[] 
distinct(x:xs) 
  |member (distinct xs)x = (distinct xs)  
  |otherwise = ins x(distinct xs) 
 
namesOf::[Person]->[SURNAME] 
namesOf [] = [] 
namesOf (x:xs) = surname x : namesOf xs 

firstOf5 (a,b,c,d,e) = a 
secondOf5 (a,b,c,d,e) = b 
thirdOf5 (a,b,c,d,e) = c 
fourthOf5 (a,b,c,d,e) = d 
fifthOf5 (a,b,c,d,e) = e 
 
firstOf6 (a,b,c,d,e,f) = a 
secondOf6 (a,b,c,d,e,f) = b 
thirdOf6 (a,b,c,d,e,f) = c 
fourthOf6 (a,b,c,d,e,f) = d 
fifthOf6 (a,b,c,d,e,f) = e 
sixthOf6 (a,b,c,d,e,f) = f 



19

FP for DB   Case studies 37June 2009

-- Persons at a specific University after a specific AwardYear 
 
personsAtUniversityWithAwardYearAfter::UNIVERSITY->AWARDYEAR->[Person] 
personsAtUniversityWithAwardYearAfter u a = distinct[personeducation 
ed|ed<-allEducations, university ed == u, awardyear ed >= a] 

-- Grandparents of a specific person

personWithID::Database.ID->Person
personWithID i = head[p|p<-allPersons, i == Database.id p]

parentsOf::Person->[Person]
parentsOf p = [personWithID(fatherid p), personWithID(motherid p)]

grandParentsOf::Person->[Person]
grandParentsOf p = parentsOf(head[q|q<-allPersons, Database.id q ==
fatherid p]) ++ parentsOf(head[r|r<-allPersons, Database.id r == motherid p])

FP for DB   Case studies 38June 2009

-- Colleagues of a specific person

employmentsOfPerson::Person->[Employment]
employmentsOfPerson p = [em|em<-allEmployments, personemployment em == p]

employmentsWithOfCompanyWithinTime::COMPANY->FROM->TO->[Employment]
employmentsWithOfCompanyWithinTime c f t = [em|em<-allEmployments, company
em == c, (((f<=from em)&&(from em<=t))||((f<=to em)&&(to em <=t)))]

colleaguesOfPersonEmployment::[Employment]->[Person]
colleaguesOfPersonEmployment[] = []
colleaguesOfPersonEmployment(x:xs)=[personemployment em|em<-
employmentsWithOfCompanyWithinTime (company(x)) (from(x)) (to(x)),
personemployment em /= personemployment x] ++ colleaguesOfPersonEmployment xs

colleaguesOfPerson::Person->[Person]
colleaguesOfPerson p = colleaguesOfPersonEmployment(employmentsOfPerson p)



20

FP for DB   Case studies 39June 2009

KNOWLEDGE ::=

ELEMENTARY FACTS
• John Doe was born in London on 19 Nov 1962

• The car with a number plate B1 BYE is a Ferrari

SIMPLE RULES
• Every man has necessarily two parents of whom he is the child

• A person has sometimes a spouse and if X 
  is the spouse of Y then Y is the spouse of X

• A car has (if any) only one owner. Conversely, 
  an owner may have zero, one or several cars

COMPLEX RULES
• The sex of a person is not subject to any change

• A single person who marries may not be single again in the future

• A person may not be, at a given time, in two different places

DEDUCTIVE RULES
• if x > y then BIG:= x else BIG:= y

• square() = twice (twice ())

Abrial’s Binary Model

FP for DB   Case studies 40June 2009

WHEN THE MODEL DOES NOT KNOW A FACT OR A LAW ABOUT REALITY 
THIS DOES NOT MEAN THAT THIS FACT OR LAW DOES NOT EXISTS,

CONSEQUENCE:

IF 
THE MODEL HAS EXACTLY THE SAME KNOWLEDGE OF TWO OBJECTS 
IT DOES NOT FOLLOW THEY ARE ONE AND THE SAME OBJECT.

THEREFORE 

AN OBJECT ENTERING THE 'PERCEPTION FIELD' OF THE MODEL MUST 
IDENTIFY ITSELF AS either NEW OBJECT or ALREADY KNOWN OBJECT

THE DESCRIPTION OF AN OBJECT INSIDE THE MODEL IS GIVEN VIA THE 
CONNECTIONS (access functions) IT HAS WITH OTHER OBJECTS



21

FP for DB   Case studies 41June 2009

person_of_sex (MALE) = {JOHN, PETER}

person_of_sex (FEMALE) = {JANE, MARY}

age (JOHN) = {27}

person_of_age (50) = {PETER, MARY}

child (PETER) = {JANE}

parent (JANE) = {PETER, MARY}

. . .

JOHN

JANE

FEMALE

20

PETER

MARY

MALE

27

50

spouse

spouse
person_of_sex

child parent

FP for DB   Case studies 42June 2009

CATEGORIES

JOHN, JANE, PETER, MARYare PERSONs
27, 50, 20 are NUMBERs
MALE, FEMALE are SEXes

THUS, THE STRUCTURE OF THE EXAMPLE
CAN BE ABSTRACTED INTO

NUMBER PERSON SEX

sp
ou

s
e

child

pa
re

nt

sp
ou

s
e

AND FURTHER STILL INTO

CATEGORY

Ac
ce

ss
 fu

nc
tio

m

Ac
ce

ss
 fu

nc
tio

m



22

FP for DB   Case studies 43June 2009

CONNECTIONS MAY THEMSELVES REQUIRE SOME INFORMATION

EXAMPLE:   PETER was_invited_by (PAUL and JANE) to PARIS on 15Jul1993

THIS CAN BE DESCRIBED BY BUILDING A NEW CATEGORY-  INVITATION 
AND THE FOLLOWING STRUCTURE

INVITATION

PERSON
PLACE DATE

invitation# 1257

PAUL Paris
15 July 1993

JANEPETER

invit
ing

inv
ite

d

FP for DB   Case studies 44June 2009

defn CATEGORIES

PERSON  = cat there is new category

JOHN = generate PERSON create new object of category

x ←  generate PERSON

kill JOHN, kill x



23

FP for DB   Case studies 45June 2009

NUMBER PERSON SEX

sp
ou

s
e

child

pa
re

nt

sp
ou

s
e

age sex
of-sexof-age

r1 = rel (PERSON, SEX, sex = fun(1, 1), of_sex = fun (0,       ))

r2 = rel (PERSON, NUMBER, age = fun(1, 1), of_age = fun (0,     ))

r3 = rel (PERSON, PERSON, spouse = fun(0, 1), spouse)

r4 = rel (PERSON, PERSON, parent = fun(2, 2), child = fun (0,       ))

8

8

8
a person has exactly one 
sex, one age, two parents, 
zero or one spouse and 
any number of children

min max

FP for DB   Case studies 46June 2009

 structures

      function (aruments)                            results

      base function                stored data

      derived function              algorithm

      f ( )                defines new entity type

      f (a1, a2, ...)                defines attributes & relationships

 entity diagram

 operations

 constraints

 user views

 metadata

→

⇒

single-valued

multi-valued

Extended Functional Model



24

FP for DB   Case studies 47June 2009

subtype - supertype      

base functions

derived functions

string

member

student integer staff

course string

lecture event

tutorial

field qual
fn

teacher
tutor

mark

phone

sn sex

course

tutorial

staff
course

title

staff

day room slot

FP for DB   Case studies 48June 2009

declare
       { member ()  ⇒   entity

student ()  ⇒   member
staff()   ⇒   member
course()  ⇒   entity
event ()  ⇒   entity
tutorial()  ⇒   event
lecture()  ⇒   event

fn (member)      →   string
sn (member)     →   string
sex (member)   →   string

course (student)   ⇒   course
tutorial (student)   →   tutorial
mark (student, course) →   integer
field (student)   →   string

title (course)       → string
lecture (course)  ⇒ lecture

day (event)          → string
slot (event)          → string
room (event)       → string

course (staff)      ⇒ course
phone (staff)       → integer
qual (staf)           → string
staff (tutorial)     → staff

      }

base functions



25

FP for DB   Case studies 49June 2009

define
       { staff(course) ⇒   staff such that

 some c in course (staff)
 has c = course                 -- inverse of

teacher (student)   ⇒   staff (course (student))

tutor (student)   →   staff (tutorial (student))

      }     -- combinations of inverse, composition, recursion, transitivity

derived functions

derived functions are represented by algorithms accepting arguments to compute results

FP for DB   Case studies 50June 2009

retrievals

-- get the names of all members          

for each m in member
get fn(m), sn(m)

-- get surnames of all female students

for each s in student
such that sex(s) = ‘F’
get sn(s)



26

FP for DB   Case studies 51June 2009

retrievals

-- get the names of those students that take a course on FDB

for each s in student
such that 

some c in course (s)
has title (c) = ‘FDB’

get sn(s)

FP for DB   Case studies 52June 2009

retrievals

-- get the titles of courses taught by Stefan

for the s in staff
such that  fn (s) = ‘Stefan’
for each c in course (s) get title(c)

-- error handling procedure is called if more than one Stefan exists



27

FP for DB   Case studies 53June 2009

updating - insertion

a new m in member

-- creates a new member entity,  adds it to the extent of 
              member type, associates it with the variable m

a new s in student

-- creates a new entity, which is included in the extents 
                         of both student and member entity types

FP for DB   Case studies 54June 2009

updating - new record

for a new s in student                                                          

  let fn(s) = ‘Mary’

  let sn(s) = ‘Jones’

  let sex(s) = ‘F’

  let field(s) = ‘Comp’



28

FP for DB   Case studies 55June 2009

updating - change values

for the s in student  such that

fn(s) = ‘Mary’ and sn(s) = ‘Jones’                                                         

  let tutorial(s) = the t in tutorial such that

  day(t) = ‘Mon’ and slot(t) = ‘09,10’ and room(t) = ‘m101’

  

FP for DB   Case studies 56June 2009

updating - adding rules

for the s in student  such that

fn(s) = ‘Mary’ and sn(s) = ‘Jones’                                                         

  include course(s) = {

  the c1 in course such that title(c1) = ‘Haskell’

the c2 in course such that title(c2) = ‘Prolog’ }

-- similarly exclude



29

FP for DB   Case studies 57June 2009

constraints
constraint unique-id  on

fn(member), sn(member) → unique

constraint must-be-supplied  on

sex(member) → total -- i.e. not partial

constraint must-differ  on

student, staff → disjoint

constraint non-upd-sex  on

sex(member) → fixed 

constraint ris  on

mark (student, course) → 

some c in course(student)

has c = course 

FP for DB   Case studies 58June 2009

thank youthank you


