
1

FP for DB More HUGS 1June 2009

MORE
Haskell through HUGS

FP for DB More HUGS 2June 2009

higher order functions

doubleL :: [Int] -> [Int]

double xs = [2 * x | x <- xs]

doubleL :: [Int] -> [Int]

doubleL [] = []

doubleL [x : xs] = [2 * x : doubleL xs]

•take functions as arguments
•return functions as results
•or both

trebleL :: [Int] -> [Int]

trebleL xs = [3 * x | x <- xs]

trebleL :: [Int] -> [Int]

trebleL [] = []

trebleL [x : xs] = [3 * x : trebleL xs]

sin x
ord x
......

2

FP for DB More HUGS 3June 2009

map f xs = [f x | x <- xs] map f [] = []

map f [x : xs] = [f x : map f xs]

doubleL xs = map twice xs
 where twice x = 2 * x

FP for DB More HUGS 4June 2009

map :: (a b) [a] [b]

function IN OUT

values for which
the function can

be applied

the type of values
after applying
the function

map - apply some function to
every element of a list
thus yielding another list

7 3 9 2

14 6 18 4

doubleL xs = map twice xs
 where twice x = 2 * x

3

FP for DB More HUGS 5June 2009

cnvrtC :: [Char] -> [Int]

cnvrtC xs = map ord xs

Main> cnvrtC "Stefan"

[83,116,101,102,97,110]

Main> cnvrtC ['a', 'b', 'c', 'd']

[97,98,99,100]

-- lambda notation for local function defn

doubleLambda xs = map (\x -> 2 * x) xs

Main> doubleLambda [2, 7, 3, 12]
[4,14,6,24]
Main> doubleLambda []
[]
Main> doubleLambda [1]
[2]
Main>

FP for DB More HUGS 6June 2009

properties as functions

getDigits “a 1 2 b 3 c d 7 x y” → 1 2 3 7

isDigit?

getDigits :: [Char] -> [Char]

getDigits s = [c | c <- s, isDigit c]

True

False

x has a property f if (f x) = True property f over type t t → Bool

isEven :: Int → Bool
isEven n = (mod n 2 == 0)

isSorted :: [Int] → Bool
isSorted xs = (xs == qSort xs)

4

FP for DB More HUGS 7June 2009

filtering

filter f [] = []

filter f (x : xs)

 | f x = x filter f xs

 | otherwise = filter f xs

filter f xs = [x | x <- xs, f x]

filter isSorted [[2,3,4,5], [], [7,3,6]] → [[2,3,4,5], []]

FP for DB More HUGS 8June 2009

folding

foldr1 ξ [e1, e2, e3, ..., en] =

=[e1 ξ (e2 ξ (... ξ en ...)

 = [e1 ξ (foldr1 ξ [e1, e2, e3, ..., en])

foldr1 (+) [e1, e2, e3]

= e1 (+) (foldr1 (+) [e2, e3])

= e1 (+) e2 (+) e3

5

FP for DB More HUGS 9June 2009

foldr1 :: (a -> a ->a) -> [a] -> a

foldr1 f [x] = x

foldr1 f (x : xs) = f x (foldr1 f xs)

-- at least one element in the list x

Main> foldr1 (+) [1,2,3,4]

10

Main> foldr1 (+) [1]

1

Main> foldr1 (+) []

Program error: {foldr1 (instNum_v30 Num_+) []}

Main> foldr1 (||) [True, False, False]

True

Main> foldr1 (++) ["Dark", "side", " ", "of”]

"Darkside of"

Main> foldr1 (*) [1 .. 7]

5040

binary function
over type a result

FP for DB More HUGS 10June 2009

higher order functions

unx > date
Tue Apr 07 05:37:22 BST 2009
unx > f | grep p00 | cut -c48-58
 Mon 10:18
 Mon 16:23
 Sat 14:32
 Tue 14:38
 Mon 10:30
unx >

sequence of processes:

for every processi∈ P , OUT-processi → IN-processi+1

process1

process2

process3

IN

OUT

P

•take functions as arguments
•return functions as results
•or both

6

FP for DB More HUGS 11June 2009

g f

Prelude> and [(5 == 5), (3 > 5)]
False
Prelude> (not . and) [(5 == 5), (3 > 5)]
True
Prelude>cos (sin pi)
1.0
Prelude> (cos . sin) pi
1.0
Prelude>

f . g

a b c (.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

type of f type of g type of f . g

function composition

FP for DB More HUGS 12June 2009

f f

twice f = (f . f)

a a a

(twice) :: (a -> a) -> (a -> a)

must be of the same type

twice :: (a -> a) -> (a -> a)

twice = (\f -> f . f)

Main> succ 110

111

Main> succ (succ 110)

112

Main> (twice succ) 110

112

Main>

twice -- function on function

7

FP for DB More HUGS 13June 2009

ntimes :: Int -> (a -> a) -> (a -> a)
ntimes n f
 | n > 0 = f . ntimes (n-1) f
 | otherwise = id

Main> twice succ 110

112

Main> ntimes 2 succ 110

112

Main> ntimes 1 succ 110

111

Main> ntimes 0 succ 110

110

Main> ntimes 5 succ 110

115

Main>

... thrice, four-times, ..., n-times

identity

FP for DB More HUGS 14June 2009

type classes

isinBList :: Bool -> [Bool] -> Bool

isinBList x [] = False

isinBList x (y : ys] = (x == Bool y) || isinBList x ys

is this an element of this list (of type, say, Bool) ?

8

FP for DB More HUGS 15June 2009

isinList :: a -> [a] -> Bool

generically

and restrict a to only those types that have equality defined over them

isinIList :: Int -> [Int] -> Bool

isinIList x [] = False

isinIList x (y : ys] = (x == Int y) || isinIList x ys

if the list was of type [Int]

FP for DB More HUGS 16June 2009

overloading

there are two kinds of functions that work over more than one class

• polymorphic - single definition which works over all its types

length :: [a] -> Int

length [] = 0
length (x : xs) = 1 + length xs

• overloaded - (e.g. equality, +, show) that can be used for many types but have
 different definitions for different types

9

FP for DB More HUGS 17June 2009

type

typetypetype

type classes - collection of types

Int Float Bool

Char

type

[Int, Bool] [[Char]]

type

equality type class (Eq)

instance of Eq

== == ==

== == ==

class Eq where
 (==) :: a -> a -> Bool

FP for DB More HUGS 18June 2009

same3 :: Int -> Int -> Int -> Bool

same3 m n p = (m == n) && (n == p)

same3 :: Eq a => a -> a -> a -> Bool

same3 m n p = (m == n) && (n == p)

in the context of

thus restricting a to types
such as:
 • Char,
 • Int,
 • (Int, Bool),
 • Float,
etc.

isinList :: Eq a => a -> [a] -> Bool

isinList x [] = False

isinList x (y : ys] = (x ==y) || isinList x ys

a - • Bool
 • Char
 • Int
 • (Int, Int)

10

FP for DB More HUGS 19June 2009

class Eq a where

 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)

 x == y = not (x /= y)

signature

definition of Eq

class Eq a => Ord where

 (<), (<=), (>) , (>=) :: a -> a -> Bool

 max, min :: a -> a -> a

 compare :: Ordering

derived class Ord

compare x y
 | x == y = EQ
 | x <= y = LT
 | otherwise = GT

class Ord inherits the operations of Eq

FP for DB More HUGS 20June 2009

class Ord a => Enum a where

 toEnum :: Int -> a

 fromEnum :: a -> Int

 enumFrom :: a -> [a]

 enumFromThen :: a -> a -> [a]

 enumFromTo :: a -> a -> [a]

 enumFromThenTo :: a -> a -> a -> [a]

class Enum

 [n ..]

 [n, m ..]

 [n .. m]

 [n, n’ .. m]

11

FP for DB More HUGS 21June 2009

class Bounded a where

 minBound, maxBound :: a
Int, Char, Bool, Ordering

types

type ShowS = String -> String

class Show a where

 showPrec :: Int -> a -> ShowS

 show :: a -> String

 showList :: [a] -> ShowS

most types belong to Show

FP for DB More HUGS 22June 2009

numeric types in Haskel

Int fixed precision integers

Integer all integers represented accurately

Float floating point numbers

Double Float in double precision

Rational

the basic class to which all numeric types belong is Num

12

FP for DB More HUGS 23June 2009

class (Eq a Show a) a => Num a where

 (+), (-), (*) :: a -> a -> a

 negate :: a -> a

 abs, signum :: a -> a

 fromInteger :: Integer -> a

 fromInt :: Int -> a

 x - y = x + negate y

 fromInt = fromIntegral

integer types belong to the class Integral
whose signature include:

quot, rem :: a -> a -> a
div, mod :: a -> a -> a

FP for DB More HUGS 24June 2009

base types

 Int

 Float

 Bool

 Char

algebraic types
 • type of months January, ..., December
 • alternative e.g. elements can be either strings or numbers
 • trees

composite types

 tuples

 lists

 function

algebraic types

13

FP for DB More HUGS 25June 2009

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

enumerated types

defines 7 new constants called constructors

dayval :: Day -> Int

dayval Sun = 0
dayval Mon = 1
...........
dayval Sat = 6

FP for DB More HUGS 26June 2009

data People = Student Id Grade

product types

type Id = String
type Grade = Int

type name

constructor name

Student “BS02143” 86

Student “MS02187” 67

showStdnt :: People -> String

showStdnt (Student x y) = show x ++ “ “ ++ show y

14

FP for DB More HUGS 27June 2009

product versus tuple types

type Student = (Id, Grade)

type error will be identified in the
compiler/interpreter diagnostics

many Prelude polymorphic functions
exist (and thus can be ‘inherited’).

especially for pairs

each object must be explicitly
constructed by using the predefined

constructors

shorter definitions, more familiar
notation

each object of the type has an explicit
label of the purpose of the object

(meaning)

product types tuple types

the previous example could be defined as

FP for DB More HUGS 28June 2009

alternative types

data GeomS = Circle Float |

 Square Float |

Rect Float Float

area :: GeomS -> Float

area (Circle r) = pi * r ^ 2

area (Square a) = a ^ 2

area (Rect a b) = a * b

15

FP for DB More HUGS 29June 2009

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

deriving (Eq, Ord, Enum, Show)

deriving instances of classes

built-in classess

Eq equality, inequality

Ord ordering of elements

Enum allows the type to be enumerated [n .. m] style

Show elements of the type to be turned into text form

Read values can be read from strings

which let us do
comparisons Mon == Mon, Mon /= Tue
represent via [Mon ... Fri]

FP for DB More HUGS 30June 2009

data Tree a

 = Nil |

 Node a (Tree a) (Tree a)

 deriving (Eq, Ord, Show, Read)

binary trees

depth :: Tree a -> Int

depth Nil = 0

depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)

traverse :: Tree a -> [a]

traverse Nil = []

traverse (Node x t1 t2) = traverse t1 ++ [x] ++ traverse t2

10

14 20

17

12

... (Node 17 (Node 14 Nil Nil) (Node 20 Nil Nil)) ...

16

FP for DB More HUGS 31June 2009

binary trees

left, right :: Tree a -> Tree a

left (Node x ys zs) = ys

right (Node x ys zs) = zs

isinT :: Eq a => a -> Tree a -> Bool

isinT p Nil = false

isinT p (Node x ys zs) = (p == x) || isinT p ys || isinT p zs

10

14 20

17

12

mirrorT :: Tree a -> Tree a

mirror T Nil = Nil

mirrorT (Node x ys zs) = (Node x zs ys)

FP for DB More HUGS 32June 2009

evaluation

square (4 + 2)

 = square 6

 = 6 * 6

 = 36

applicative-order evaluation

reduce func expr

 • reduce expr as far as possible

 • expand definition of func
 and continue reducing

simple but may not terminate

fst (42, inf) where inf = 1 + inf

17

FP for DB More HUGS 33June 2009

evaluation

square (4 + 2)

 = (4 + 2) * (4 + 2)

 = 6 * (4 + 2)

 = 6 * 6

 = 36

normal-order evaluation

reduce func expr

 • expand definition of func,
 substituting expr as necessary

 • reduce result

avoids non termination fst (42, inf) = 42

may involve repeating work as in (4 + 2) * (4 + 2)

FP for DB More HUGS 34June 2009

lazy evaluation

square (4 + 2)

 = square x where x = (4 + 2)

 = x * x where x = (4 + 2)

 = x * x where x = 6

 = 36

as normal-order evaluation ...

reduce func expr

 • expand definition of func,
 substituting expr as necessary

 • reduce result

does not

• evaluate argument unless it is needed (normal order)

• evaluate argument more than once (applicative order)

but instead of copying arguments,
make pointers and share them

lazy evaluation wait with all computation for as long as possible

18

FP for DB More HUGS 35June 2009

an example

sumSq n = sum (map (^2) [1 .. n])

 = sumSq 100

 = sum (map (^2) [1 .. 100])

 = sum (map (^2) (1: [2 .. 100]))

 = sum (1^2 : map (^2) [2 .. 100])

 = 1^2 + sum (map (^2) [2 .. 100])

 = 1 + sum (map (^2) [2 .. 100])

 = ...

 = 1 + (4 + sum (map (^2) [3 .. 100])

 = ...

in this evaluation never

the whole list [1 ..100]

is in existence

FP for DB More HUGS 36June 2009

infinite lists

head ones → 1

take 4 (map (^2) [1 ..]) → [1, 4, 9, 16]

if they were to be evaluated fully an infinite amount of time
 would have been needed - but we can compute with a part of
rather than the whole object

ones = 1 : ones

would generate [1, 1, 1, 1, 1, 1^C{Interrupted}

19

FP for DB More HUGS 37June 2009

some infinite lists

 [n ..] = [n, n+1, n+2, ...]

 [n, m ..] = [n, n + (m - n), n + 2 * (m - n), ...]

 repeat n = n : repeat n

 fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

 iterate :: (a -> a) -> a -> [a]

 iterate f x = x : iterate f (f x)

 primes = [n | n <- [2 ..], divisors n == [1, n]

 where divisors n = [d | d <- [1 .. n], (mod d n) == 0]

 getNprimes n = takeWhile (<= n) primes

FP for DB More HUGS 38June 2009

more infinite lists

repeat :: a -> [a]
repeat n = n : repeat n

twos :: [Int]
twos = repeat 2

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

Main> take 20 twos

[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

Main>

Main> take 10 (iterate (+2) 0)

[0,2,4,6,8,10,12,14,16,18]

Main> take 10 (iterate (+2) 1)

[1,3,5,7,9,11,13,15,17,19]

Main> take 10 (iterate (+3) 1)

[1,4,7,10,13,16,19,22,25,28]

Main> take 10 (iterate (+3) 5)
[5,8,11,14,17,20,23,26,29,32]
Main>

20

FP for DB More HUGS 39June 2009

modules

module Abcd where

 types
 functions

 calculateA =

Abcd.hs

module Bxyz where

 import Abcd
 types
 functions

 computeB =

Bxyz.hs

visible definitions of Abcd
are visible now in Bxyz

module Cpqr where
 import Bxyz

Cpqr.hs

definitions of Abcd
not visible in Cpqr

FP for DB More HUGS 40June 2009

modules - EXPORT CONTROL

module Bxyz (computeSum, Abcd (..), calculateA) where ...

names of defined objects

constructors of the type are
 exported with the type itself

• stating explicitly which definitions are exported

• all visible definitions of the specified modules are exported

module Bxyz (module Bxyz, module Abcd) where ...

21

FP for DB More HUGS 41June 2009

modules - IMPORT CONTROL

import Abcd (specificaltion of what is to be imported)

• stating explicitly which definitions are to be imported

import Abcd hiding (specificaltion what is to be concealed)

• stating explicitly which definitions are to be hidden

import qualified Abcd

• stating explicitly the need for qualification of names from Abcd

means that objects defined in Abcd
must be used as Abcd.object-name

FP for DB More HUGS 42June 2009

ADTs as modules

module Queue (Queue, emptyQ, isEmptyQ, addQ, delQ) where

 emptyQ :: Queue a

 isEmptyQ :: Queue a -> Bool

 addQ :: a -> Queue a -> Queue a

 delQ :: Queue a -> Queue a

 newtype Queue a = Q [a]

 emptyQ = Q []

 isEmptyQ (Q []) = True

 isEmptyQ _ = False

addQ x (Q xs) = Q (xs ++ [x])

delQ (Q (_ :xs) = Q xs

delQ (Q []) = error “cannot remove from empty Q”

as data but will not
permit the use of the
Prelude list functions

signature

implementation

22

FP for DB More HUGS 43June 2009

queue via two lists

module Queue (Queue, emptyQ, isEmptyQ, addQ, delQ) where

 emptyQ :: Queue a

 isEmptyQ :: Queue a -> Bool

 addQ :: a -> Queue a -> Queue a

 delQ :: Queue a -> Queue a

 newtype Queue a = Q ([a], [a])

 emptyQ = Q ([], [])

 isEmptyQ (Q ([], []) = True
 isEmptyQ _ = False

addQ x (Q ([], [])) = Q ([x], [])
addQ y (Q (xs, ys)) = Q (xs, y:ys)

delQ (Q ([], [])) = error “cannot remove from empty Q”
delQ (Q ([], ys)) = Q (tail (reverse ys), [])
delQ (Q (x : xs, ys)) = Q (xs, ys)

same
 signature

different
implementation

first part second part

FP for DB More HUGS 44June 2009

addQ x (Q ([], [])) = Q ([x], [])

addQ y (Q (xs, ys)) = Q (xs, y:ys)

most recent addition

23

FP for DB More HUGS 45June 2009

delQ (Q ([], ys)) = Q (tail (reverse ys), [])

delQ (Q (x : xs, ys)) = Q (xs, ys)

first in the second
 part of the queue

FP for DB More HUGS 46June 2009

queue via two lists

module Queue (Queue, emptyQ, isEmptyQ, addQ, delQ) where

 emptyQ :: Queue a

 isEmptyQ :: Queue a -> Bool

 addQ :: a -> Queue a -> Queue a

 delQ :: Queue a -> Queue a

 newtype Queue a = Q ([a], [a])

 emptyQ = Q ([], [])

 isEmptyQ (Q ([], []) = True
 isEmptyQ _ = False

addQ x (Q ([], [])) = Q ([x], [])
addQ y (Q (xs, ys)) = Q (xs, y:ys)

delQ (Q ([], [])) = error “cannot remove from empty Q”
delQ (Q ([], ys)) = Q (tail (reverse ys), [])
delQ (Q (x : xs, ys)) = Q (xs, ys)

same
 signature

different
implementation

first part second part

24

FP for DB More HUGS 47June 2009

set as unordered list with duplicates

module Set (Set, emptyS, isEmptyQ, inS, addS, delS) where

 emptyS :: Set a

 isEmptyS :: Set a -> Bool

 inS :: (Eq a) => a -> Set a -> Bool

 addS :: (Eq a) => a -> Set a -> Set a

 delQ :: (Eq a) => a -> Set a -> Set a

 newtype Set a = S [a]

 emptyS = S []

 isEmptyS (S []) = True

 isEmptyS _ = False

inS x (S xs) = elem x xs

addS x (S a) = S (x : a)

delS x (S xs) = S (filter (/= x) xs)

elem x [] = False
elem x (y : ys)

| x == y = True
| otherwise = elem x ys

