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Haskell through HUGS
THE BASICS
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• variables

• assignment

• if condition then  action1  else  action2

• loop while condition do action
   repeat action until condition
   for i = start to finish do action

  
• block begin  program end

• data types (extendible)

• record 

• data structures (for algorithms)
predefined | user defined
ordered sets od data

• abstract data types 
data structure + basic operations 
forming a conceptual machine

• procedures
extend the language expressive power
increase transparency of the program

• recursion

Algorithmic Imperative Languages
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• declarativeness 
encoding rules of tranformation 
rather than prescribing execution

• every object 
is a function - which itself can be an object

• application as the main operation

• evaluation (β-reduction)

• referential transparency - 
replace names by their values at any
time (substituting equals by equals) 

• higher order functions 
function(function) → function

• polymorphism 
same algorithm works on many kinds of inputs

• recursion

Functional Programming Languages
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HUGS

PRELUDEScript

import

import

Standard libraries

input of 
expressions

output of 
results

a program in Haskell (script) is a list of function definitions 
it  is recorded in a file loaded into the system by :load 

the programme can be changed and reloaded by :reload

programs may import other programs
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__   __ __  __  ____   ___      _________________________________________
||   || ||  || ||  || ||__      Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__||  __||     Copyright (c) 1994-2001
||---||         ___||           World Wide Web: http://haskell.org/hugs
||   ||                         Report bugs to: hugs-bugs@haskell.org
||   || Version: December 2001  _________________________________________

Haskell 98 mode: Restart with command line option -98 to enable extensions

Reading file "Macintosh HD:Desktop Folder:LinzFPDB:hugs98:lib:Prelude.hs":

Hugs session for:
Macintosh HD:Desktop Folder:LinzFPDB:hugs98:lib:Prelude.hs
Type :? for help
 
Prelude> 
Prelude> 1 + 2
3
Prelude> (+1) 2
3
Prelude> + 1 2
ERROR - Syntax error in expression (unexpected token) 
Prelude> 5*6
30
Prelude> 5*6/2
15.0
Prelude> (((1 + 3) * 5 - 2 * 3 + 17/2) * (3 + 8) - 17/2) * 2.5
597.5
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Prelude> pi

3.14159

Prelude> sin pi

-8.74228e-08

Prelude> log pi

1.14473

Prelude> sqrt 5

2.23607

Prelude> sqrt 100

10.0

Prelude> sin 0

0.0

Prelude> log (sin (pi/4))

-0.346574
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Prelude> False
False
Prelude> True
True
Prelude> not False
True
Prelude> not True
False
Prelude> not (not True)
True
Prelude> not (not False)
False
Prelude> not False && True
True
Prelude> True || False
True
Prelude> not (True && False)
True

Prelude> 5 == 4

False

Prelude> 5 /= 5

False

Prelude> 5 == 5

True
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Prelude> reverse "Stefan"

"nafetS"

Prelude> reverse (reverse "Stefan")

"Stefan"

Prelude> even 3

False

Prelude> even 4

True

Prelude> sum [1..10]

55

Prelude> filter even [1..10]

[2,4,6,8,10]

Prelude> odd  2

False

Prelude> odd  3

True
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Prelude> filter odd [1..10]

[1,3,5,7,9]

Prelude> sum (filter even [1..10])

30

Prelude> sum (filter odd [1..10])

25

Prelude> reverse (filter odd [1..10])

[9,7,5,3,1]

Prelude> map (1+) [1..10]

[2,3,4,5,6,7,8,9,10,11]

Prelude> map (1+) (map (1+) [1..10])

[3,4,5,6,7,8,9,10,11,12]

Prelude> filter even $$

[4,6,8,10,12]

Prelude> putStr "hello"

hello

Prelude> print "hello"

"hello"

Prelude> > putStr "How " >> putStr "are " >> putStr "you"

How are you

Prelude>:q
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Prelude> :?

LIST OF COMMANDS:  Any command may be abbreviated to :c

                                 where c is the first character in the full name.

:load <filenames>  load modules from specified files

:load              clear all files except prelude

:also <filenames>  read additional modules

:reload            repeat last load command

:project <filename> use project file

:edit <filename>    edit file

:edit              edit last module

:module <module>   set module for evaluating expressions

<expr>             evaluate expression

:type <expr>       print type of expression

:?                 display this list of commands

:set <options>     set command line options

:set               help on command line options

:names [pat]        list names currently in scope

:info <names>      describe named objects

:browse <modules> browse names defined in <modules>

:find <name>       edit module containing definition of name

:!command          shell escape

:cd dir            change directory

:gc                force garbage collection

:version           print Hugs version

:quit              exit Hugs interpreter
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Prelude> :l First
Reading file "First.hs":

Hugs session for:
Macintosh HD:Desktop
Folder:LinzFPDB:hugs98:lib:Prelude.hs
First.hs
Main> size
30
Main> square 3
9
Main> double 5
10
Main> example
28
Main> plus 5 7
12
Main> plus 3 5
8
Main> power4 2
16
Main> power3 2
8
Main>

-- content of First.hs

size :: Int
size = 10 + 20

square :: Int -> Int
square n = n*n

double :: Int -> Int
double  n = 2*n

example :: Int
example = double (size - square (2+2))

plus5 :: Int -> Int
plus5 a = a + 5

plus :: Int -> Int  -> Int
plus a  b = a + b

power4 :: Int -> Int
power4 n = square (square(n))

power3 n = square(n) * n

-- end of file
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Main> power3 (plus5 example)

35937

Main> double (plus 5 4)

18

Main> (plus 5 4) * (5 - 4)

9

Main> double (square ((plus 5 4) * (5 - 4) - example))

722

Main> $$

722

Main> div 13 5

2

Main> mod 13 5

3

Main> 13 / 5

2.6

Main> :t square

square :: Int -> Int

Main>:q
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filename.hs

-- this is a definition of my plus

plus :: Int -> Int  -> Int
plus a  b = a + b

this is a definition of my plus

> plus :: Int -> Int  -> Int
> plus a  b = a + b

conventional style literate style

filename.lhs

every value and function has a type

every script is checked before the execution, 
hence type errors are not possible at run time

function definitions are equations and should be preceeded 
by type declarations (which can be omitted)

style
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functions of multiple arguments are usually curried

plus ::  (Int, Int) -> Int
plus (x, y) =  x + y

plusC ::  Int -> Int -> Int
plusC x y =  x + y

conventional curried

function plusC can be applied to one argument - 

(plusC 3)  takes a number and adds 3 to it

currying
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left associativity

function application has the highest priority

plusC x y   means (plusC x) y rather than plus (x y)

square square 3 means  (square square) 3 Main> square square 3
ERROR - Type error in application
*** Expression     : square square 3
*** Term           : square
*** Type           : Int -> Int
*** Does not match : a -> b -> c

Main> :type square
square :: Int -> Int

Main> 
Main> square (square 3)                
81
Main>
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function composition

if   f: A → B and g:  B → C

 then  (f . g) :  A → C  (f . g)x ≡  f (g x)

Main> (square . square) 3                
81
Main>

Main> square . square 3
ERROR - Type error in application
*** Expression     : square . square 3
*** Term           : square 3
*** Type           : Int
*** Does not match : a -> b
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Boolean

Constants True, False                

Logical operators &&       ||      not          
and      or     not

Relational operators ==     /=   >  >=   <   <=

Main> (1==2) && (1/0 > 5)
False

Main>  1/0
Program error: {primDivDouble 1.0 0.0}
Main > 

evaluated as 
(1 == 2) && whatever
False && whatever
False

lazy evaluation

== and   /=   are used for both integers 
and booleans; the operators 
are termed overloaded
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xOR :: Bool -> Bool -> Bool                                      
xOR x y = (x || y) && not (x && y)

nAND :: Bool -> Bool -> Bool                                      
nAND x y = not (x && y)

same3 :: Int -> Int -> Int -> Bool                 
same3 m n p = (m == n) && (n == p)

same4 :: Int -> Int -> Int -> Int -> Bool
same4 m n p q = (m == n) && (n == p) && (p == q)

same4 :: Int -> Int -> Int -> Int -> Bool       
same4 m n p q = same3 m n p && (p == q)

same3  1  1  7
→(m == n) && (n == p)
→(1 == 1) && (1 == 7)
→True && False
→False
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bigger :: Int -> Int -> Int                

bigger  x y

         | x >= y = x

         | otherwise = y                     

biggest3 :: Int -> Int -> Int -> Int

biggest3  x y z

        | x >= y && x >= z = x  

        | y >= z = y

        | otherwise = z

guards and conditionals

bigif ::  Int -> Int -> Int                

bigif  x y

= if x >y then x else y
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Prelude> :type ord
ord :: Char -> Int

Prelude> ord 'a'
97
Prelude> ord 'b'
98
Prelude> ord 'z'
122
Prelude> ord 'A'
65
Prelude> ord 'B'
66
Prelude> ord 'Z'
90
Prelude> ord '\t'
9
Prelude> ord '\n'
10
Prelude> 

Prelude> :type chr
chr :: Int -> Char

Prelude> chr  97
'a'
Prelude> chr  98
'b'
Prelude> chr  122
'z'
Prelude> chr  65
'A'
Prelude> chr  66
'B'
Prelude> chr  90
'Z'
Prelude> chr  9
'\t'
Prelude> chr  10
'\n'
Prelude> 

ASCII codes
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Prelude> a

ERROR - Undefined variable "a"

Prelude> 'a'

'a'

Prelude> 3

3

Prelude> 3 == 3

True

Prelude> '3' == 3

ERROR - Illegal Haskell 98 class constraint in inferred type

*** Expression : '3' == 3

*** Type       : Num Char => Bool

Prelude> 'a' == 3

ERROR - Illegal Haskell 98 class constraint in inferred type

*** Expression : 'a' == 3

*** Type       : Num Char => Bool

Prelude> 'a' == '3'

False

Prelude> 
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Main> digitTOnum '2'

2

Main> digitTOnum '9'

9

Main> digitTOnum '0'

0

Main> digitTOnum 'a'

0

Main>

-- digit to its value; zero for non-digits

digitTOnum :: Char -> Int
digitTOnum c 
          | 1 < n && n <= 9       = n
          | otherwise                = 0
               where n = ord c - ord '0'
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Main> howmany 1 (-2) 1
1
Main> howmany 5 4 3
0
Main> howmany 1 0 (-4)
2
Main> 

-- how many roots in  ax^2 + bx + c = 0

howmany :: Float -> Float -> Float -> Int

howmany a b c

          | discriminant > 0       = 2

          | discriminant  == 0    = 1

          | discriminant < 0        = 0

                 where discriminant = b^2 - 4 * a * c

x^2 -2x +1 = (x-1)^2

5x^2 + 4x 3

x^2 - 4 = (x-2)(x+2)

local definition
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layout rule (blocks show the structure)

funct1  arg1  arg2  arg3  ...  argn

     | guard1 = expr1

     | guard2 for example might extend over several lines

if circumstances dictate

= expr2 may also be very long

   and several lines may be needed

     | guard3 = expr3

      | .......... = .......

     | otherwise = exprn

funct2  arg1  arg2  arg3  ...  argm

     | guard1 = expr1

     | guard2 = expr2

     | guard3 = expr3

      | .......... = .......

     | otherwise = exprm

end of this
and beginning 
of that
definition



13

FP for DB Basic HUGS 25June 2009

simple recursion

Main> fac 0
1
Main> fac 1
1
Main> fac 2
2
Main> fac 5
120
Main> fac 9
362880
Main> fac (-1)

Program error: {fac (-1)}

Main> 

-- factorial

fac  :: Int -> Int
fac n
  | n == 0        = 1
  | n > 0          = fac (n - 1) * n
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Main> power 2  4

16

Main> power 2  5

32

Main> power 2  10

1024

Main> power 3  2

9

Main> power 3  4

81

Main> power 5  4

625

Main> power 10  10

1410065408

Main> power 0  0

1

Main> power 0  1

0

Main> power 1  0

1

Main> 

-- multiplication

times :: Int -> Int -> Int
times m n
       | n == 0       = 0
       | n > 0         = times m (n-1) + m

-- exponentiation

power :: Int -> Int -> Int
power  m n
         | n == 0          = 1
        | n > 0            =  times (power m (n - 1)) m
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0    1    1    2    3    5    8    13   21

0     1     2     3     4     5     6      7     8

-- nth Fibonacci number

fib :: Int -> Int
fib n
  |  n == 0     = 0
  |  n == 1     = 1
  |  n > 1       = fib (n - 2) + fib (n -1)

Main> fib  0
0
Main> fib  1
1
Main> fib  2
1
Main> fib  7
13
Main> fib  8
21
Main> 
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names

identifiers - alphanumeric strings, starting with a letter

functions & variables must start with a lower-case letter

types, type constructors, type classes start with a capital letter

reserved words
case class data default deriving do
else if infix infix1 infixr instance
let module newtype of then type
where



15

FP for DB Basic HUGS 29June 2009

tuples  (records)

(“Hans”, “s887655”, 92) :: (String, String, Int)

type Student = (String, String, Int)

hans :: Student

hans = (“Hans”, “s887655”, 92)

student-record

name         id             mark

belongs to the tuple type

type Cohort = [Student]

[(“Hans”, “s887655”, 92), (“Mary”, “s887123”, 65), (“Anne”, s8870091”, 94)]

list of students, each elemrnt of the list is of the same type
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projection

first, second :: (Int, Int) -> Int   

first (x, y) = x

second (x, y) = y

Prelude> fst ("john", "mary")  

"john"

Prelude> snd ("john", "mary")

"mary"

Prelude> fst (18, 20)

18

Prelude> snd (18, 20)

20

functions over tuples - pattern matching
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Main> getID ("Mary", "s887123", 65)

"s887123"

Main> 

type Student = (String, String, Int)   

getID :: Student -> String      

getID (name, id, mark) = id

FP for DB Basic HUGS 32June 2009

addPair :: (Int, Int) -> Int            

addPair (x, y) = x+y

min3, max3 :: Int -> Int -> Int -> Int
min3 x y z
    | x <= y && x <= z     = x
    | y <= z                     = y
    | otherwise               = z

max3 x y z
    | x >= y && x >= z     = x
    | y >= z                     = y
    | otherwise               = z

middle :: Int -> Int -> Int -> Int
middle x y z
    | between x y z        = x
    | between y x z        = y
    | otherwise              = z

between :: Int -> Int -> Int -> Bool
between x y z = (x >= y &&  x<=z) || (x >=z &&  x <= y)

orderTriple :: (Int, Int, Int) -> (Int, Int, Int)
orderTriple (x, y, z) = (min3 x y z, middle x y z,  max3 x y z)

Main> orderTriple (18, 12, 30)

(12,18,30)

Main> orderTriple (1,2,3)

(1,2,3)

Main> orderTriple (3,2,1)

(1,2,3)

Main> orderTriple (2,1,3)

(1,2,3)

Main> orderTriple (18, 120, 34)

(18,34,120)
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list manipulation

list - a collection of items of the same type

[1, 2, 3, 4] :: [Int]

[‘a’, ‘b’, ‘c’] :: String ≡ [Char]

[ [1, 2],  [2,  3] ] :: [ [Int] ]

[ ]  empty list

[1 .. 10] ≡ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[1, 3 .. 10] ≡ [1, 3, 5, 7, 9]

['s', 't', 'e', 'f', 'a', 'n'] ≡ "stefan"

++                     concatenation operator         
show [list]         display list

Prelude> [1, 2, 3] ++ [8, 5]

[1,2,3,8,5]

Prelude> show [1, 2, 3]

"[1,2,3]"

Prelude> show ['a', 'b', 'c']

"\"abc\""

Prelude> show ["a", "b", "c"]

"[\"a\",\"b\",\"c\"]"

Prelude> 
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produce a list

[ expression | generator,  qualifiers]

Prelude> [2*n | n <- [2,4,7] ]

[4,8,14]

Prelude> [2*n | n <- [1..10] ]

[2,4,6,8,10,12,14,16,18,20]

Prelude> [x + y | x <- [1,2], y<- [3,4] ]               

[4,5,5,6]  

Prelude> 

evaluate
item generated
that conforms 
to conditions

Prelude> [even a | a <- [2, 5, 1]]

[True,False,False]

Prelude> [even a | a <- [2, 5, 1], a < 5]

[True,False]

Prelude> [ 2 * a | a <- [1 .. 10], even a, a > 5]    

[12,16,20]

Prelude> 

Prelude> [ (a, 2*4) | a <- [5 .. 9]]

[(5,8),(6,8),(7,8),(8,8),(9,8)]

Prelude> [ (a, 2*a) | a <- [5 .. 9]]

[(5,10),(6,12),(7,14),(8,16),(9,18)]

Prelude> [(a, b) | a <- [1 .. 3], b <- [5 .. 7]]

[(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7)]

Prelude> 

list comprehension
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double :: [Int] -> [Int]

double  x = [2 * a | a <- x]                                 

Main> double [3]
[6]
Main> double [1 .. 5]
[2,4,6,8,10]
Main> double [5, 9, 3, 4]
[10,18,6,8]
Main> 

getDigits :: [Char] -> [Char]

getDigits s = [c | c <-s, isDigit c]

-- isDigit c :: Char -> Bool is a Prelude function

Main> getDigits "a12b3"

"123"

Main>

FP for DB Basic HUGS 36June 2009

divisors :: Int  -> [Int]

divisors n = [d | d <- [1 .. n],  mod n d == 0]

Main> divisors 1

[1]

Main> divisors 4

[1,2,4]

Main> divisors 6

[1,2,3,6]

Main> divisors 9

[1,3,9]

Main> divisors 13

[1,13]

Main> 
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is_prime :: Int -> Bool
is_prime n  
     | n == 1      = True
     |otherwise  = ( divisors n == [1, n])

Main> is_prime 0

False

Main> is_prime 1

True

Main> is_prime 2

True

Main> is_prime 3

True

Main> is_prime 4

False

Main> is_prime 5

True

Main> 
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Main> addPairs [ (1, 2), (3, 4), (5, 6)]

[3,7,11]

Main> 

addPairs :: [ (Int, Int) ] -> [Int]

addPairs pairs = [ a + b | (a, b) <- pairs]

matches :: Int -> [Int] -> [Int]

matches e x = [a | a <- x, a == e]

is_there :: Int  -> [Int] -> Bool

is_there e x = length (matches e x) > 0 

Main> matches 1  [2, 1, 3, 1, 1, 5]

[1,1,1]
Main> matches 5  [1,2,3]
[]
Main> 
Main> is_there 1  [2, 1, 3, 1, 1, 5]

True

Main> is_there 1  [5, 6]

False

Main> 
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pattern matching on lists

every finite list is 
   either empty                                 [ ]
   or contains head and tail       x : xs

3 : [6, 9, 12, 15, 18] ≡ [3, 6, 9, 12, 15, 18]

head tail

a function is polymorphic if it has many types

length  ::  [ Bool ] -> Int
length  ::  [ Int ]    -> Int
..................................

length  :: [ a ] ->  Int

stands for an
arbitrary value

type variable -
stands for an 
arbitrary type
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Prelude> 1: [2, 3, 4]

[1,2,3,4]
Prelude> 1 : 2 : 3 : 4 : [ ]
[1,2,3,4] 

Prelude> [3, 6, 9] ++ [12, 15, 18]

[3,6,9,12,15,18]

Prelude> concat [[3, 6, 9], [12, 15, 18]]

[3,6,9,12,15,18]

Prelude> reverse [12, 15, 18]

[18,15,12]

Prelude> zip [2, 3, 4] [4, 6, 8]

[(2,4),(3,6),(4,8)]

Prelude> zip [2, 3, 4] [1, 2, 3, 4, 5, 6]

[(2,1),(3,2),(4,3)]

Prelude> unzip [(2,1),(3,2),(4,3)]

([2,3,4],[1,2,3])

Prelude> zip [1, 2] [True, False]
[(1,True),(2,False)]
Prelude> zip ["a", "b", "c"] [1, 2, 3]
[("a",1),("b",2),("c",3)]

some standard functions

: a -> [a] -> a
add a single element to the front of the list

++ a -> [a] -> [a]
join two lists together

concat [ [ a] ] -> [a] 
concatenate a list of lists into a single list

zip [ a]  -> [a] -> [ (a, b) ] 
two lists turned into a list of pairs

unzip [ (a, b) ] -> ( [ a], [b] )
two lists turned into a list of pairs
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Prelude> head [12, 15, 18]

12

Prelude> tail [12, 15, 18]

[15,18]

Prelude> head "Linz"

'L'

Prelude> tail "Linz"

"inz"
Prelude> head [1]
1
Prelude> length "Linz"
4
Prelude> length "123"
3
Prelude> length [1, 2, 3]
3
Prelude> length [(1,2), (2, 3)]
2
Prelude> length [ ]
0
Prelude> 

head  [a] -> a
the first element of a list

tail  [a] -> [a]
the remainder of the list

length [ a] -> Int
the number of elements in the list
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!!  [a] -> Int -> a
the ‘Intth’ element of a list

reverse  [a] -> [a]
treverse order of a elements

take Int -> [a] -> [a]
‘Int’ elements from the beginning of a list

drop Int -> [a] -> [a]
remove ‘Int’ elements from the beginning of a list

splitAt Int -> [a] -> ( [a], [a] )
split a list at a given position

Prelude> [14, 7, 3] !! 1
7
Prelude> [4, 7, 3, 5, 6] !! 0
4
Prelude> "Linz University" !! 5
'U'
Prelude> reverse [128, 15, 33,73]
[73,33,15,128]
Prelude> reverse "Kepler"
"relpeK"
Prelude> take 5 [1, 3, 5, 2, 4, 6, 7]
[1,3,5,2,4]
Prelude> take 2 "Linz"
"Li"
Prelude> drop 3 [1, 3, 5, 2, 4, 6, 7]
[2,4,6,7]
Prelude> drop 2 "Linz"
"nz"
Prelude> splitAt 8 "JohannesKepler"
("Johannes","Kepler")
Prelude> splitAt 2 [12, 14, 4, 18, 3]
([12,14],[4,18,3])
Prelude> 
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recursion over lists

 -- add up elements of a list

sumLint :: [Int] -> Int

sumLint [ ]         = 0

sumLint (x : xs)  = x + sumLint xs

Main> sumLint [2 .. 5]
14
Main> sumLint [1 .. 100]
5050
Main> sumLint [22, 35, 68]
125
Main> 

sumLint [2,3,4,5]

→ 2 + sumLint [3,4,5]

→ 2 + (3 + sumLint [4,5])

→ 2 + (3 + (4 + sumLint [5]))

→ 2 + (3 + (4 + (5 + sumLint [ ])))

→ 2 + (3 + (4 + (5 + 0)))

→ 14
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 -- length of the list

length :: [a] -> Int

length [ ]            = 0

length (x : xs)  = 1 + length xs        

 -- reverse list

reverse :: [a] -> [a]

reverse [ ]          = [ ]

reverse (x : xs)  = reverse xs ++ [x]

 -- concatenate

conc :: [ [a] ] -> [a] 

conc [ ]          = [ ]

conc (x : xs)  = x ++ conc xs           
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-- conjunction of elements within list

andL :: [Bool] -> Bool

andL [ ]       = True

andL (x : xs) = x && andL xs

Main> andL [True, False]

False

Main> andL [True, True]

True

Main> andL [True, True, False]

False

Main> andL [5==4,  25/2 >= 10]

False

Main> andL [5==5,  25/2 >= 10]

True

Main> 
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-- product of elements

timesL :: [Int] -> Int

timesL [ ]          = 1

timesL (x : xs) = x * timesL xs

Main> timesL [1,3,5]

15

Main> timesL [2,5,7]

70

Main> timesL [1 .. 5]

120

Main> 
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-- add pairs of numbers in a list of tuples

addP :: [(Int, Int)] -> [Int]

addP [ ]    = [ ]

addP ((c, d) : xs) = [(c +  d)] ++ addP xs

Main> addP [(1,2), (2,3), (3,4)]

[3,5,7]

Main> addP [head [(1,2),(2,3),(3,4)]]

[3]

Main> addP (tail [(1,2),(2,3),(3,4)])

[5,7]

Main> 
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-- membership of a list of integers

member :: [Int] -> Int -> Bool

member [ ]   y          = False

member (x : xs)  y  = (x == y) || member  xs y 

Main> member [1,2,3,4]  1

True

Main> member [10, 12, 3]  12

True

Main> member [1, 3, 5, 7, 11]  4

False

Main>
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-- how many times element  x occurs in the list xs

elemN :: Int -> [Int] -> Int

elemN s xs = length [a | a <- xs, a == s]

-- alternatively 

elemN1 :: Int -> [Int] -> Int

elemN1 s  [ ] = 0

elemN1 s  (x : xs)

        | s == x        = 1 + elemN1 s xs

        | otherwise  =  elemN1 s  xs

Main> elemN  1 [1,2,1,1,4,5,1]
4
Main> elemN1  1 [1,2,1,1,4,5,1]
4
Main> elemN  9 [1,2,1,1,4,5,1]
0
Main> elemN1 9 [1,2,1,1,4,5,1]
0
Main> 

FP for DB Basic HUGS 50June 2009

-- list of numbers that occur exactly once in a given list

uniqueIN :: [Int] -> [Int]

uniqueIN xs = [a | a <- xs, elemN a xs == 1]

Main> uniqueIN [2,4,2,1,4,3,2]

[1,3]

Main> uniqueIN [2,4,2,1,4,3,2]

[1,3]

Main> uniqueIN [1,1,2,2,3,3]

[ ]

Main> uniqueIN [1,3,4,3,2,9,4,2,1]

[9]

Main> uniqueIN [1,2,3]

[1,2,3]

Main> 
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7 3 9 2

7 3 9 2

3 9 2

9 2

2

sortLIST

insHEAD sortTAIL

insHEAD sortTAIL

2

29 ≡ 92

2 9

:

2 93 ≡ 32 : 9

2 3 9

7 2 3 9 ≡ 2 : 7 3 9

2 3 7 9

-- where ins = insert into correct place

insertion sort
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iSort :: [Int] -> [Int]

iSort  [ ]   =   [ ]

iSort (x : xs) = ins x (iSort xs)  

ins :: Int -> [Int] -> [Int]

ins  x [ ]          = [x]

ins x (y : ys)

   | x <= y       =  x : y : ys

   | otherwise   =  y : ins x ys    Main> iSort [1,2,3]

[1,2,3]

Main> iSort [7,3,9,2]

[2,3,7,9]

Main> iSort [1,1,2,3,5,2]

[1,1,2,2,3,5]

Main> 
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4 2 7 1

quick sort

4 5 6

4

2 1 4 7 5 6

p

left <= p right > p

1 2 4 5 6 7

1 2 4 5 6 74

4
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qSort :: [Int] -> [Int]

qSort [ ]          = [ ]

qSort (x : xs)   = qSort [ y | y <- xs, y <= x] ++ [x] ++ qSort [ y | y <- xs, y > x]

Main> qSort [1,2,3]
[1,2,3]
Main> qSort [7,3,9,2]
[2,3,7,9]
Main> qSort [ ]
[ ]
Main> qSort [1]
[1]
Main> qSort [4,2,7,1,4,5,6]
[1,2,4,4,5,6,7]
Main> 


