
1

FP for DB Basic HUGS 1June 2009

Haskell through HUGS
THE BASICS

FP for DB Basic HUGS 2June 2009

• variables

• assignment

• if condition then action1 else action2

• loop while condition do action
 repeat action until condition
 for i = start to finish do action

• block begin program end

• data types (extendible)

• record

• data structures (for algorithms)
predefined | user defined
ordered sets od data

• abstract data types
data structure + basic operations
forming a conceptual machine

• procedures
extend the language expressive power
increase transparency of the program

• recursion

Algorithmic Imperative Languages

2

FP for DB Basic HUGS 3June 2009

• declarativeness
encoding rules of tranformation
rather than prescribing execution

• every object
is a function - which itself can be an object

• application as the main operation

• evaluation (β-reduction)

• referential transparency -
replace names by their values at any
time (substituting equals by equals)

• higher order functions
function(function) → function

• polymorphism
same algorithm works on many kinds of inputs

• recursion

Functional Programming Languages

FP for DB Basic HUGS 4June 2009

HUGS

PRELUDEScript

import

import

Standard libraries

input of
expressions

output of
results

a program in Haskell (script) is a list of function definitions
it is recorded in a file loaded into the system by :load

the programme can be changed and reloaded by :reload

programs may import other programs

3

FP for DB Basic HUGS 5June 2009

__ __ __ __ ____ ___ ___
|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__|| __|| Copyright (c) 1994-2001
||---|| ___|| World Wide Web: http://haskell.org/hugs
|| || Report bugs to: hugs-bugs@haskell.org
|| || Version: December 2001 ___

Haskell 98 mode: Restart with command line option -98 to enable extensions

Reading file "Macintosh HD:Desktop Folder:LinzFPDB:hugs98:lib:Prelude.hs":

Hugs session for:
Macintosh HD:Desktop Folder:LinzFPDB:hugs98:lib:Prelude.hs
Type :? for help

Prelude>
Prelude> 1 + 2
3
Prelude> (+1) 2
3
Prelude> + 1 2
ERROR - Syntax error in expression (unexpected token)
Prelude> 5*6
30
Prelude> 5*6/2
15.0
Prelude> (((1 + 3) * 5 - 2 * 3 + 17/2) * (3 + 8) - 17/2) * 2.5
597.5

FP for DB Basic HUGS 6June 2009

Prelude> pi

3.14159

Prelude> sin pi

-8.74228e-08

Prelude> log pi

1.14473

Prelude> sqrt 5

2.23607

Prelude> sqrt 100

10.0

Prelude> sin 0

0.0

Prelude> log (sin (pi/4))

-0.346574

4

FP for DB Basic HUGS 7June 2009

Prelude> False
False
Prelude> True
True
Prelude> not False
True
Prelude> not True
False
Prelude> not (not True)
True
Prelude> not (not False)
False
Prelude> not False && True
True
Prelude> True || False
True
Prelude> not (True && False)
True

Prelude> 5 == 4

False

Prelude> 5 /= 5

False

Prelude> 5 == 5

True

FP for DB Basic HUGS 8June 2009

Prelude> reverse "Stefan"

"nafetS"

Prelude> reverse (reverse "Stefan")

"Stefan"

Prelude> even 3

False

Prelude> even 4

True

Prelude> sum [1..10]

55

Prelude> filter even [1..10]

[2,4,6,8,10]

Prelude> odd 2

False

Prelude> odd 3

True

5

FP for DB Basic HUGS 9June 2009

Prelude> filter odd [1..10]

[1,3,5,7,9]

Prelude> sum (filter even [1..10])

30

Prelude> sum (filter odd [1..10])

25

Prelude> reverse (filter odd [1..10])

[9,7,5,3,1]

Prelude> map (1+) [1..10]

[2,3,4,5,6,7,8,9,10,11]

Prelude> map (1+) (map (1+) [1..10])

[3,4,5,6,7,8,9,10,11,12]

Prelude> filter even $$

[4,6,8,10,12]

Prelude> putStr "hello"

hello

Prelude> print "hello"

"hello"

Prelude> > putStr "How " >> putStr "are " >> putStr "you"

How are you

Prelude>:q

FP for DB Basic HUGS 10June 2009

Prelude> :?

LIST OF COMMANDS: Any command may be abbreviated to :c

 where c is the first character in the full name.

:load <filenames> load modules from specified files

:load clear all files except prelude

:also <filenames> read additional modules

:reload repeat last load command

:project <filename> use project file

:edit <filename> edit file

:edit edit last module

:module <module> set module for evaluating expressions

<expr> evaluate expression

:type <expr> print type of expression

:? display this list of commands

:set <options> set command line options

:set help on command line options

:names [pat] list names currently in scope

:info <names> describe named objects

:browse <modules> browse names defined in <modules>

:find <name> edit module containing definition of name

:!command shell escape

:cd dir change directory

:gc force garbage collection

:version print Hugs version

:quit exit Hugs interpreter

6

FP for DB Basic HUGS 11June 2009

Prelude> :l First
Reading file "First.hs":

Hugs session for:
Macintosh HD:Desktop
Folder:LinzFPDB:hugs98:lib:Prelude.hs
First.hs
Main> size
30
Main> square 3
9
Main> double 5
10
Main> example
28
Main> plus 5 7
12
Main> plus 3 5
8
Main> power4 2
16
Main> power3 2
8
Main>

-- content of First.hs

size :: Int
size = 10 + 20

square :: Int -> Int
square n = n*n

double :: Int -> Int
double n = 2*n

example :: Int
example = double (size - square (2+2))

plus5 :: Int -> Int
plus5 a = a + 5

plus :: Int -> Int -> Int
plus a b = a + b

power4 :: Int -> Int
power4 n = square (square(n))

power3 n = square(n) * n

-- end of file

FP for DB Basic HUGS 12June 2009

Main> power3 (plus5 example)

35937

Main> double (plus 5 4)

18

Main> (plus 5 4) * (5 - 4)

9

Main> double (square ((plus 5 4) * (5 - 4) - example))

722

Main> $$

722

Main> div 13 5

2

Main> mod 13 5

3

Main> 13 / 5

2.6

Main> :t square

square :: Int -> Int

Main>:q

7

FP for DB Basic HUGS 13June 2009

filename.hs

-- this is a definition of my plus

plus :: Int -> Int -> Int
plus a b = a + b

this is a definition of my plus

> plus :: Int -> Int -> Int
> plus a b = a + b

conventional style literate style

filename.lhs

every value and function has a type

every script is checked before the execution,
hence type errors are not possible at run time

function definitions are equations and should be preceeded
by type declarations (which can be omitted)

style

FP for DB Basic HUGS 14June 2009

functions of multiple arguments are usually curried

plus :: (Int, Int) -> Int
plus (x, y) = x + y

plusC :: Int -> Int -> Int
plusC x y = x + y

conventional curried

function plusC can be applied to one argument -

(plusC 3) takes a number and adds 3 to it

currying

8

FP for DB Basic HUGS 15June 2009

left associativity

function application has the highest priority

plusC x y means (plusC x) y rather than plus (x y)

square square 3 means (square square) 3 Main> square square 3
ERROR - Type error in application
*** Expression : square square 3
*** Term : square
*** Type : Int -> Int
*** Does not match : a -> b -> c

Main> :type square
square :: Int -> Int

Main>
Main> square (square 3)
81
Main>

FP for DB Basic HUGS 16June 2009

function composition

if f: A → B and g: B → C

 then (f . g) : A → C (f . g)x ≡ f (g x)

Main> (square . square) 3
81
Main>

Main> square . square 3
ERROR - Type error in application
*** Expression : square . square 3
*** Term : square 3
*** Type : Int
*** Does not match : a -> b

9

FP for DB Basic HUGS 17June 2009

Boolean

Constants True, False

Logical operators && || not
and or not

Relational operators == /= > >= < <=

Main> (1==2) && (1/0 > 5)
False

Main> 1/0
Program error: {primDivDouble 1.0 0.0}
Main >

evaluated as
(1 == 2) && whatever
False && whatever
False

lazy evaluation

== and /= are used for both integers
and booleans; the operators
are termed overloaded

FP for DB Basic HUGS 18June 2009

xOR :: Bool -> Bool -> Bool
xOR x y = (x || y) && not (x && y)

nAND :: Bool -> Bool -> Bool
nAND x y = not (x && y)

same3 :: Int -> Int -> Int -> Bool
same3 m n p = (m == n) && (n == p)

same4 :: Int -> Int -> Int -> Int -> Bool
same4 m n p q = (m == n) && (n == p) && (p == q)

same4 :: Int -> Int -> Int -> Int -> Bool
same4 m n p q = same3 m n p && (p == q)

same3 1 1 7
→(m == n) && (n == p)
→(1 == 1) && (1 == 7)
→True && False
→False

10

FP for DB Basic HUGS 19June 2009

bigger :: Int -> Int -> Int

bigger x y

 | x >= y = x

 | otherwise = y

biggest3 :: Int -> Int -> Int -> Int

biggest3 x y z

 | x >= y && x >= z = x

 | y >= z = y

 | otherwise = z

guards and conditionals

bigif :: Int -> Int -> Int

bigif x y

= if x >y then x else y

FP for DB Basic HUGS 20June 2009

Prelude> :type ord
ord :: Char -> Int

Prelude> ord 'a'
97
Prelude> ord 'b'
98
Prelude> ord 'z'
122
Prelude> ord 'A'
65
Prelude> ord 'B'
66
Prelude> ord 'Z'
90
Prelude> ord '\t'
9
Prelude> ord '\n'
10
Prelude>

Prelude> :type chr
chr :: Int -> Char

Prelude> chr 97
'a'
Prelude> chr 98
'b'
Prelude> chr 122
'z'
Prelude> chr 65
'A'
Prelude> chr 66
'B'
Prelude> chr 90
'Z'
Prelude> chr 9
'\t'
Prelude> chr 10
'\n'
Prelude>

ASCII codes

11

FP for DB Basic HUGS 21June 2009

Prelude> a

ERROR - Undefined variable "a"

Prelude> 'a'

'a'

Prelude> 3

3

Prelude> 3 == 3

True

Prelude> '3' == 3

ERROR - Illegal Haskell 98 class constraint in inferred type

*** Expression : '3' == 3

*** Type : Num Char => Bool

Prelude> 'a' == 3

ERROR - Illegal Haskell 98 class constraint in inferred type

*** Expression : 'a' == 3

*** Type : Num Char => Bool

Prelude> 'a' == '3'

False

Prelude>

FP for DB Basic HUGS 22June 2009

Main> digitTOnum '2'

2

Main> digitTOnum '9'

9

Main> digitTOnum '0'

0

Main> digitTOnum 'a'

0

Main>

-- digit to its value; zero for non-digits

digitTOnum :: Char -> Int
digitTOnum c
 | 1 < n && n <= 9 = n
 | otherwise = 0
 where n = ord c - ord '0'

12

FP for DB Basic HUGS 23June 2009

Main> howmany 1 (-2) 1
1
Main> howmany 5 4 3
0
Main> howmany 1 0 (-4)
2
Main>

-- how many roots in ax^2 + bx + c = 0

howmany :: Float -> Float -> Float -> Int

howmany a b c

 | discriminant > 0 = 2

 | discriminant == 0 = 1

 | discriminant < 0 = 0

 where discriminant = b^2 - 4 * a * c

x^2 -2x +1 = (x-1)^2

5x^2 + 4x 3

x^2 - 4 = (x-2)(x+2)

local definition

FP for DB Basic HUGS 24June 2009

layout rule (blocks show the structure)

funct1 arg1 arg2 arg3 ... argn

 | guard1 = expr1

 | guard2 for example might extend over several lines

if circumstances dictate

= expr2 may also be very long

 and several lines may be needed

 | guard3 = expr3

 | =

 | otherwise = exprn

funct2 arg1 arg2 arg3 ... argm

 | guard1 = expr1

 | guard2 = expr2

 | guard3 = expr3

 | =

 | otherwise = exprm

end of this
and beginning
of that
definition

13

FP for DB Basic HUGS 25June 2009

simple recursion

Main> fac 0
1
Main> fac 1
1
Main> fac 2
2
Main> fac 5
120
Main> fac 9
362880
Main> fac (-1)

Program error: {fac (-1)}

Main>

-- factorial

fac :: Int -> Int
fac n
 | n == 0 = 1
 | n > 0 = fac (n - 1) * n

FP for DB Basic HUGS 26June 2009

Main> power 2 4

16

Main> power 2 5

32

Main> power 2 10

1024

Main> power 3 2

9

Main> power 3 4

81

Main> power 5 4

625

Main> power 10 10

1410065408

Main> power 0 0

1

Main> power 0 1

0

Main> power 1 0

1

Main>

-- multiplication

times :: Int -> Int -> Int
times m n
 | n == 0 = 0
 | n > 0 = times m (n-1) + m

-- exponentiation

power :: Int -> Int -> Int
power m n
 | n == 0 = 1
 | n > 0 = times (power m (n - 1)) m

14

FP for DB Basic HUGS 27June 2009

0 1 1 2 3 5 8 13 21

0 1 2 3 4 5 6 7 8

-- nth Fibonacci number

fib :: Int -> Int
fib n
 | n == 0 = 0
 | n == 1 = 1
 | n > 1 = fib (n - 2) + fib (n -1)

Main> fib 0
0
Main> fib 1
1
Main> fib 2
1
Main> fib 7
13
Main> fib 8
21
Main>

FP for DB Basic HUGS 28June 2009

names

identifiers - alphanumeric strings, starting with a letter

functions & variables must start with a lower-case letter

types, type constructors, type classes start with a capital letter

reserved words
case class data default deriving do
else if infix infix1 infixr instance
let module newtype of then type
where

15

FP for DB Basic HUGS 29June 2009

tuples (records)

(“Hans”, “s887655”, 92) :: (String, String, Int)

type Student = (String, String, Int)

hans :: Student

hans = (“Hans”, “s887655”, 92)

student-record

name id mark

belongs to the tuple type

type Cohort = [Student]

[(“Hans”, “s887655”, 92), (“Mary”, “s887123”, 65), (“Anne”, s8870091”, 94)]

list of students, each elemrnt of the list is of the same type

FP for DB Basic HUGS 30June 2009

projection

first, second :: (Int, Int) -> Int

first (x, y) = x

second (x, y) = y

Prelude> fst ("john", "mary")

"john"

Prelude> snd ("john", "mary")

"mary"

Prelude> fst (18, 20)

18

Prelude> snd (18, 20)

20

functions over tuples - pattern matching

16

FP for DB Basic HUGS 31June 2009

Main> getID ("Mary", "s887123", 65)

"s887123"

Main>

type Student = (String, String, Int)

getID :: Student -> String

getID (name, id, mark) = id

FP for DB Basic HUGS 32June 2009

addPair :: (Int, Int) -> Int

addPair (x, y) = x+y

min3, max3 :: Int -> Int -> Int -> Int
min3 x y z
 | x <= y && x <= z = x
 | y <= z = y
 | otherwise = z

max3 x y z
 | x >= y && x >= z = x
 | y >= z = y
 | otherwise = z

middle :: Int -> Int -> Int -> Int
middle x y z
 | between x y z = x
 | between y x z = y
 | otherwise = z

between :: Int -> Int -> Int -> Bool
between x y z = (x >= y && x<=z) || (x >=z && x <= y)

orderTriple :: (Int, Int, Int) -> (Int, Int, Int)
orderTriple (x, y, z) = (min3 x y z, middle x y z, max3 x y z)

Main> orderTriple (18, 12, 30)

(12,18,30)

Main> orderTriple (1,2,3)

(1,2,3)

Main> orderTriple (3,2,1)

(1,2,3)

Main> orderTriple (2,1,3)

(1,2,3)

Main> orderTriple (18, 120, 34)

(18,34,120)

17

FP for DB Basic HUGS 33June 2009

list manipulation

list - a collection of items of the same type

[1, 2, 3, 4] :: [Int]

[‘a’, ‘b’, ‘c’] :: String ≡ [Char]

[[1, 2], [2, 3]] :: [[Int]]

[] empty list

[1 .. 10] ≡ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[1, 3 .. 10] ≡ [1, 3, 5, 7, 9]

['s', 't', 'e', 'f', 'a', 'n'] ≡ "stefan"

++ concatenation operator
show [list] display list

Prelude> [1, 2, 3] ++ [8, 5]

[1,2,3,8,5]

Prelude> show [1, 2, 3]

"[1,2,3]"

Prelude> show ['a', 'b', 'c']

"\"abc\""

Prelude> show ["a", "b", "c"]

"[\"a\",\"b\",\"c\"]"

Prelude>

FP for DB Basic HUGS 34June 2009

produce a list

[expression | generator, qualifiers]

Prelude> [2*n | n <- [2,4,7]]

[4,8,14]

Prelude> [2*n | n <- [1..10]]

[2,4,6,8,10,12,14,16,18,20]

Prelude> [x + y | x <- [1,2], y<- [3,4]]

[4,5,5,6]

Prelude>

evaluate
item generated
that conforms
to conditions

Prelude> [even a | a <- [2, 5, 1]]

[True,False,False]

Prelude> [even a | a <- [2, 5, 1], a < 5]

[True,False]

Prelude> [2 * a | a <- [1 .. 10], even a, a > 5]

[12,16,20]

Prelude>

Prelude> [(a, 2*4) | a <- [5 .. 9]]

[(5,8),(6,8),(7,8),(8,8),(9,8)]

Prelude> [(a, 2*a) | a <- [5 .. 9]]

[(5,10),(6,12),(7,14),(8,16),(9,18)]

Prelude> [(a, b) | a <- [1 .. 3], b <- [5 .. 7]]

[(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7)]

Prelude>

list comprehension

18

FP for DB Basic HUGS 35June 2009

double :: [Int] -> [Int]

double x = [2 * a | a <- x]

Main> double [3]
[6]
Main> double [1 .. 5]
[2,4,6,8,10]
Main> double [5, 9, 3, 4]
[10,18,6,8]
Main>

getDigits :: [Char] -> [Char]

getDigits s = [c | c <-s, isDigit c]

-- isDigit c :: Char -> Bool is a Prelude function

Main> getDigits "a12b3"

"123"

Main>

FP for DB Basic HUGS 36June 2009

divisors :: Int -> [Int]

divisors n = [d | d <- [1 .. n], mod n d == 0]

Main> divisors 1

[1]

Main> divisors 4

[1,2,4]

Main> divisors 6

[1,2,3,6]

Main> divisors 9

[1,3,9]

Main> divisors 13

[1,13]

Main>

19

FP for DB Basic HUGS 37June 2009

is_prime :: Int -> Bool
is_prime n
 | n == 1 = True
 |otherwise = (divisors n == [1, n])

Main> is_prime 0

False

Main> is_prime 1

True

Main> is_prime 2

True

Main> is_prime 3

True

Main> is_prime 4

False

Main> is_prime 5

True

Main>

FP for DB Basic HUGS 38June 2009

Main> addPairs [(1, 2), (3, 4), (5, 6)]

[3,7,11]

Main>

addPairs :: [(Int, Int)] -> [Int]

addPairs pairs = [a + b | (a, b) <- pairs]

matches :: Int -> [Int] -> [Int]

matches e x = [a | a <- x, a == e]

is_there :: Int -> [Int] -> Bool

is_there e x = length (matches e x) > 0

Main> matches 1 [2, 1, 3, 1, 1, 5]

[1,1,1]
Main> matches 5 [1,2,3]
[]
Main>
Main> is_there 1 [2, 1, 3, 1, 1, 5]

True

Main> is_there 1 [5, 6]

False

Main>

20

FP for DB Basic HUGS 39June 2009

pattern matching on lists

every finite list is
 either empty []
 or contains head and tail x : xs

3 : [6, 9, 12, 15, 18] ≡ [3, 6, 9, 12, 15, 18]

head tail

a function is polymorphic if it has many types

length :: [Bool] -> Int
length :: [Int] -> Int
..................................

length :: [a] -> Int

stands for an
arbitrary value

type variable -
stands for an
arbitrary type

FP for DB Basic HUGS 40June 2009

Prelude> 1: [2, 3, 4]

[1,2,3,4]
Prelude> 1 : 2 : 3 : 4 : []
[1,2,3,4]

Prelude> [3, 6, 9] ++ [12, 15, 18]

[3,6,9,12,15,18]

Prelude> concat [[3, 6, 9], [12, 15, 18]]

[3,6,9,12,15,18]

Prelude> reverse [12, 15, 18]

[18,15,12]

Prelude> zip [2, 3, 4] [4, 6, 8]

[(2,4),(3,6),(4,8)]

Prelude> zip [2, 3, 4] [1, 2, 3, 4, 5, 6]

[(2,1),(3,2),(4,3)]

Prelude> unzip [(2,1),(3,2),(4,3)]

([2,3,4],[1,2,3])

Prelude> zip [1, 2] [True, False]
[(1,True),(2,False)]
Prelude> zip ["a", "b", "c"] [1, 2, 3]
[("a",1),("b",2),("c",3)]

some standard functions

: a -> [a] -> a
add a single element to the front of the list

++ a -> [a] -> [a]
join two lists together

concat [[a]] -> [a]
concatenate a list of lists into a single list

zip [a] -> [a] -> [(a, b)]
two lists turned into a list of pairs

unzip [(a, b)] -> ([a], [b])
two lists turned into a list of pairs

21

FP for DB Basic HUGS 41June 2009

Prelude> head [12, 15, 18]

12

Prelude> tail [12, 15, 18]

[15,18]

Prelude> head "Linz"

'L'

Prelude> tail "Linz"

"inz"
Prelude> head [1]
1
Prelude> length "Linz"
4
Prelude> length "123"
3
Prelude> length [1, 2, 3]
3
Prelude> length [(1,2), (2, 3)]
2
Prelude> length []
0
Prelude>

head [a] -> a
the first element of a list

tail [a] -> [a]
the remainder of the list

length [a] -> Int
the number of elements in the list

FP for DB Basic HUGS 42June 2009

!! [a] -> Int -> a
the ‘Intth’ element of a list

reverse [a] -> [a]
treverse order of a elements

take Int -> [a] -> [a]
‘Int’ elements from the beginning of a list

drop Int -> [a] -> [a]
remove ‘Int’ elements from the beginning of a list

splitAt Int -> [a] -> ([a], [a])
split a list at a given position

Prelude> [14, 7, 3] !! 1
7
Prelude> [4, 7, 3, 5, 6] !! 0
4
Prelude> "Linz University" !! 5
'U'
Prelude> reverse [128, 15, 33,73]
[73,33,15,128]
Prelude> reverse "Kepler"
"relpeK"
Prelude> take 5 [1, 3, 5, 2, 4, 6, 7]
[1,3,5,2,4]
Prelude> take 2 "Linz"
"Li"
Prelude> drop 3 [1, 3, 5, 2, 4, 6, 7]
[2,4,6,7]
Prelude> drop 2 "Linz"
"nz"
Prelude> splitAt 8 "JohannesKepler"
("Johannes","Kepler")
Prelude> splitAt 2 [12, 14, 4, 18, 3]
([12,14],[4,18,3])
Prelude>

22

FP for DB Basic HUGS 43June 2009

recursion over lists

 -- add up elements of a list

sumLint :: [Int] -> Int

sumLint [] = 0

sumLint (x : xs) = x + sumLint xs

Main> sumLint [2 .. 5]
14
Main> sumLint [1 .. 100]
5050
Main> sumLint [22, 35, 68]
125
Main>

sumLint [2,3,4,5]

→ 2 + sumLint [3,4,5]

→ 2 + (3 + sumLint [4,5])

→ 2 + (3 + (4 + sumLint [5]))

→ 2 + (3 + (4 + (5 + sumLint [])))

→ 2 + (3 + (4 + (5 + 0)))

→ 14

FP for DB Basic HUGS 44June 2009

 -- length of the list

length :: [a] -> Int

length [] = 0

length (x : xs) = 1 + length xs

 -- reverse list

reverse :: [a] -> [a]

reverse [] = []

reverse (x : xs) = reverse xs ++ [x]

 -- concatenate

conc :: [[a]] -> [a]

conc [] = []

conc (x : xs) = x ++ conc xs

23

FP for DB Basic HUGS 45June 2009

-- conjunction of elements within list

andL :: [Bool] -> Bool

andL [] = True

andL (x : xs) = x && andL xs

Main> andL [True, False]

False

Main> andL [True, True]

True

Main> andL [True, True, False]

False

Main> andL [5==4, 25/2 >= 10]

False

Main> andL [5==5, 25/2 >= 10]

True

Main>

FP for DB Basic HUGS 46June 2009

-- product of elements

timesL :: [Int] -> Int

timesL [] = 1

timesL (x : xs) = x * timesL xs

Main> timesL [1,3,5]

15

Main> timesL [2,5,7]

70

Main> timesL [1 .. 5]

120

Main>

24

FP for DB Basic HUGS 47June 2009

-- add pairs of numbers in a list of tuples

addP :: [(Int, Int)] -> [Int]

addP [] = []

addP ((c, d) : xs) = [(c + d)] ++ addP xs

Main> addP [(1,2), (2,3), (3,4)]

[3,5,7]

Main> addP [head [(1,2),(2,3),(3,4)]]

[3]

Main> addP (tail [(1,2),(2,3),(3,4)])

[5,7]

Main>

FP for DB Basic HUGS 48June 2009

-- membership of a list of integers

member :: [Int] -> Int -> Bool

member [] y = False

member (x : xs) y = (x == y) || member xs y

Main> member [1,2,3,4] 1

True

Main> member [10, 12, 3] 12

True

Main> member [1, 3, 5, 7, 11] 4

False

Main>

25

FP for DB Basic HUGS 49June 2009

-- how many times element x occurs in the list xs

elemN :: Int -> [Int] -> Int

elemN s xs = length [a | a <- xs, a == s]

-- alternatively

elemN1 :: Int -> [Int] -> Int

elemN1 s [] = 0

elemN1 s (x : xs)

 | s == x = 1 + elemN1 s xs

 | otherwise = elemN1 s xs

Main> elemN 1 [1,2,1,1,4,5,1]
4
Main> elemN1 1 [1,2,1,1,4,5,1]
4
Main> elemN 9 [1,2,1,1,4,5,1]
0
Main> elemN1 9 [1,2,1,1,4,5,1]
0
Main>

FP for DB Basic HUGS 50June 2009

-- list of numbers that occur exactly once in a given list

uniqueIN :: [Int] -> [Int]

uniqueIN xs = [a | a <- xs, elemN a xs == 1]

Main> uniqueIN [2,4,2,1,4,3,2]

[1,3]

Main> uniqueIN [2,4,2,1,4,3,2]

[1,3]

Main> uniqueIN [1,1,2,2,3,3]

[]

Main> uniqueIN [1,3,4,3,2,9,4,2,1]

[9]

Main> uniqueIN [1,2,3]

[1,2,3]

Main>

26

FP for DB Basic HUGS 51June 2009

7 3 9 2

7 3 9 2

3 9 2

9 2

2

sortLIST

insHEAD sortTAIL

insHEAD sortTAIL

2

29 ≡ 92

2 9

:

2 93 ≡ 32 : 9

2 3 9

7 2 3 9 ≡ 2 : 7 3 9

2 3 7 9

-- where ins = insert into correct place

insertion sort

FP for DB Basic HUGS 52June 2009

iSort :: [Int] -> [Int]

iSort [] = []

iSort (x : xs) = ins x (iSort xs)

ins :: Int -> [Int] -> [Int]

ins x [] = [x]

ins x (y : ys)

 | x <= y = x : y : ys

 | otherwise = y : ins x ys Main> iSort [1,2,3]

[1,2,3]

Main> iSort [7,3,9,2]

[2,3,7,9]

Main> iSort [1,1,2,3,5,2]

[1,1,2,2,3,5]

Main>

27

FP for DB Basic HUGS 53June 2009

4 2 7 1

quick sort

4 5 6

4

2 1 4 7 5 6

p

left <= p right > p

1 2 4 5 6 7

1 2 4 5 6 74

4

FP for DB Basic HUGS 54June 2009

qSort :: [Int] -> [Int]

qSort [] = []

qSort (x : xs) = qSort [y | y <- xs, y <= x] ++ [x] ++ qSort [y | y <- xs, y > x]

Main> qSort [1,2,3]
[1,2,3]
Main> qSort [7,3,9,2]
[2,3,7,9]
Main> qSort []
[]
Main> qSort [1]
[1]
Main> qSort [4,2,7,1,4,5,6]
[1,2,4,4,5,6,7]
Main>

