
Java EE 5: Central Concepts

dr. gerald loeffler
enterprise software architect, shipserv ltd
gerald.loeffler@googlemail.com

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 2

Contents
• About this course
• Prerequisites

– Java 5 features, dependency injection, AOP, layering
• Overview of Java EE 5
• The example application: TaskTracker
• Java Persistence API
• EJB 3 simplified API
• Implementing web services
• JavaServer Faces
• Asynchronous server-side Java
• Summary

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 3

Acronyms and abbreviations
• EJB – Enterprise JavaBean

– SB – Session Bean
• SFSB – StateFul Session Bean
• SLSB – StateLess Session Bean

– MDB – Message-Driven Bean
• JSF – JavaServer Faces

– JSP – JavaServer Page
• JPA – Java Persistence API
• JAX-WS – Java API for XML Web Services
• IDE – Integrated Development Environment
• JSR – Java Specification Request

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 4

References
• JSR 220: Enterprise JavaBeans, Version 3.0

– EJB 3.0 Simplified API, Proposed Final Draft, 18 Dec
2005, EJB 3.0 Expert Group, Sun Microsystems

– Java Persistence API, Proposed Final Draft, 19 Dec 2005,
EJB 3.0 Expert Group, Sun Microsystems

• JBoss documentation
– JBoss EJB 3.0 Documentation
– Embeddable EJB 3.0
– JBoss Seam Documentation

• JavaServer Faces Specification, Version 1.2
Proposed Final Draft, Ed Burns, Roger Kitain (ed.),
Sun Microsystems

About this course

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 6

Goals of this course
• Have a clear understanding of

– The use of Java 5 annotations in Java EE 5
– How to use Java EE 5 dependency injection
– Options for layering Java EE applications
– One recommended approach to implementing

database-centric web applications with EJB 3 and JSF
– How to implement web services with JAX-WS 2.0

• Have an approximate understanding of
– AOP concepts and their use in Java EE
– Asynchronous server-side architectures, JMS and MDBs
– The purpose of most Java EE 5 technologies

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 7

Benotung
• Die Ermittlung der Note für diese KV erfolgt auf

Basis einer schriftlichen multiple-choice Prüfung
– Termin: siehe web-Seite der KV
– Geprüft wird das Verstaendnis der Konzepte von Java

EE und ihrer Zusammenhänge (und nicht ein
enzyklopädisches Wissen über Programmierdetails)

• Sie müssen JavaEE-Konzepte benennen, erklären und
einordnen können.

• Sie müssen nicht die exakten Namen von Java-
Konstrukten (wie Java packages, classes, methods oder
annotations) kennen, die in Java EE verwendet werden,
aber es ist sehr wohl gefordert, über die prinzipielle
Existenz und den Nutzen jener Java-Konstrukte Bescheid
zu wissen, die in dieser KV besprochen werden.

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 8

Das Softwareentwicklungsprojekt
• …ist optional und wird nicht direkt benotet, ist

aber ein wesentlicher Bestandteil dieser KV und
sollte von allen Teilnehmern vor dem Antreten zur
Prüfung durchgeführt werden.
– Prüfungsfragen können sich auf das

Softwareentwicklungsprojekt beziehen.
• Zu entwickeln ist:

– Ein asynchroner Java EE job scheduler
– Softwarearchitektur wie in dieser KV nahegelegt:

• Web frontend mit JSF
• Service und data access layer als EJB 3 session beans
• Persistent domain objects als EJB 3 entities
• Relationale Datenbank Ihrer Wahl

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 9

Das Softwareentwicklungsprojekt
– Persistent domain objects / database scheme etwa

wie folgt:
• JobClass:

– name: id, “low”/”medium”/”high”
– priority: integer, 1-3

• Job:
– id: integer, generated
– jobClass: many-to-one to JobClass
– userName
– description
– input: integer
– output: integer

– Use cases die die Software unterstützen muss:
• Submit job:

– Im web frontend auswählen einer existierenden JobClass
und Eingabe von description und input.

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 10

Das Softwareentwicklungsprojekt
• Das drücken des “submit”-buttons gibt unmittelbar

Rückmeldung, dass der Job nun in Bearbeitung ist.
• Das Bearbeiten des Jobs, d.h. das Ermitteln des outputs

(Ergebnisses) des Jobs auf Basis des inputs für den Job,
geschieht asynchron. Der output eines Jobs ist immer

output = 2*input
• Zugabe: “submit job” als SOAP web service exponieren.

– List processed jobs:
• Im web frontend verfügbar.
• Anzeige aller Jobs die für diesen user submitted wurden.

Die Anzeige umfasst alle verfügbaren Daten zu einem
Job, d.h. jedenfalls description und input, und, falls bereits
verfügbar, auch den output der Berabeitung des jobs.

• Zugabe: “list processed jobs” als SOAP web service
exponieren.

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 11

Das Softwareentwicklungsprojekt
• Deliverables:

– Ear
– Beliebiger Automatismus zum Anlegen des Datenbank-

Schemas (z.B. SQL-scripts, Ant script, Hibernate config)
– SQL-scripts für Anlegen der JobClasses “low”, “mdium”

und “high”.

Prerequisites

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 13

Java 5 annotations
• see examples

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 14

Java 5 generics
• see examples

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 15

Dependency injection
• Class A depends on the services provided by a

class implementing interface S

public class A {

private S s;

public void m() {

s.do();

}

}

public interface S {

void do();

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 16

Dependency injection
• Class A itself might instantiate an object of a

class implementing interface S

public class A {

private S s = new SImpl();

//…

}

• Makes class A dependent on class SImpl

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 17

Dependency injection
• Class A might delegate instantiation to a factory

public class A {

private S s = SFactory.createS();

//…

}

• Makes class A dependent on factory class
SFactory

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 18

Dependency injection
• Class A might expose its dependency on S

through a setter and rely on “the container” to
invoke that setter with an object implementing S

public class A {

private S s;

@Resource

public void setS(S s) {

this.s = s;

}

//…

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 19

Dependency injection
• Class A might expose its dependency on S

through a field and rely on “the container” to set
that field to an object implementing S

public class A {

@Resource

private S s;

//…

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 20

Aspect-oriented programming
• Terminology and definitions:

– Advice
– Point-cut
– Aspect
– (Join point)

• Method interception
• Use cases:

– logging, execution time measurements
– security decisions
– transaction management

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 21

Layering (in software design)
• Layering is a means of reducing the complexity

(of software)
– By reducing the number of interdependencies of

software artefacts
• Layers are arranged in a stack
• Each layer depends only on the services offered

(exposed) by the next lower layer(s)
– …and not on the services of the layers further up in the

stack.
– Every layer is ignorant of all higher layers.

• Layer is a logical concept
– Tier is the corresponding physical concept

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 22

Layers (and tiers) form a stack

1
2

3
4

1

2

3

4

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 23

Layering server-side applications
• Typically, Java EE applications use 3 layers:

– Presentation layer (GUI layer)
• Handles user interaction
• Rich-client GUI, web-based user interface (web-UI)
• Often further structured according to Model-View-

Controller (MVC)
– Business logic layer (domain layer)

• Business rules, domain logic, validation logic (often in
addition to GUI), computation, workflow decisions

– Data access layer (DAOs, persistence layer)
• Handles access to and communication with back-end

systems such as:
– Relational databases (DBMSs)
– Text-based indexing software (e.g. Lucene)
– Message-oriented middleware (MOM, messaging systems)

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 24

Layering server-side applications
– Enterprise resource planning (ERP) systems (e.g. SAP)

• Typically, these backend-systems reside in a separate tier

• Here we advocate additional layering decisions
– Business logic layer is subdivided into

• Service layer
– Typically implements exactly what is needed by the

presentation layer to support the required use cases
– Can be stateful but is often stateless (“procedural”)
– Demarcates (begins/commits) transactions!

• Domain objects (business object, domain model)
– An object-oriented implementation of the concepts of the

business domain, their behaviour and relationships.
– Typically, the domain objects are persistent (“persistent

domain model”)
• Domain objects are not a distinct layer because usually

all other layers depend on the domain objects

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 25

Layering server-side applications
• The principles of layering imply

– Service layer and data access layer are independent
of presentation layer

– Data access layer is independent of service layer
• As a convention, classes in the same layer

belong to the same (root) Java package, e.g.
– com.corp.proj.domain
– com.corp.proj.dao
– com.corp.proj.service
– com.corp.proj.webui

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

16

Layering in J2EE applications 4/4

service layer

presentation layer

data/EIS access layer

DB SAP

do
m

ai
n

ob
je

ct
s

normal user admin user monitoring
system

• Exercise: think of sensible assignments of these layers to tiers!
– For different types of application: web app, standalone app

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

17

Other basic software design building blocks 1/2

• The classical GOF (Gamma et al.) design patterns
– Singleton: Ensures a class only has one instance, and provide a

global point of access to it
– (Abstract) Factory: Provides an interface for creating families of

related objects without specifying their concrete classes
– Prototype: Specify the kinds of objects to create using a

prototypical instance, and create new objects by copying this
prototype

– Facade: Provides a unified interface to a set of interfaces in a
subsystem. Defines a higher-level interface that makes the
subsystem easier to use.

– Proxy: Provide a surrogate or placeholder for another object to
control access to it

– ...

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

18

Other basic software design building blocks 2/2

• Model-View-Controller (MVC) as a general design principle for
user interfaces

• Distributed computing/J2EE/EJB patterns
– Data Transfer Object: (Plain Java) classes which contain and

encapsulate bulk data in one network transportable bundle
• Domain Data Transfer Object vs. Custom Data Transfer Object

– Session Facade: Clients should have access only to session beans
(and not to entity beans)

– EJBHomeFactory, BusinessDelegate, Business Interface: see later
• Very basic OO design principles

– Encapsulation
– Separation of concerns
– ...

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

55

Spring and layering in J2EE applications 2/2

data access layer

service layer

session façade layer

presentation layercontroller

actions

session beans

service objects

DAOs

Overview of Java EE 5

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

20

Examples of J2EE applications 1/3

• Portfolio Management System
– intranet clients on bank-controlled PCs, globally; Swing frontend
– one application server per continent
– IIOP as protocol between clients and servers
– database (data warehouse) to store portfolio information in
– mainframes as back-end systems to handle trading (connected via

message-oriented middleware (MOM)

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

21

Examples of J2EE applications 2/3

• MMS processing system
– MMS-capable phones as clients
– mobile network infrastructure translates requests into HTTP
– load-balanced application servers handle HTTP requests
– MMS after processing passed on to delivery system

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

22

Examples of J2EE applications 3/3

• Mobile work management system
– PDAs in factory setting as clients, receive work-units and confirm

cmpletion; AWT-frontend
– occasional HTTP-based connection to application server
– web-application as control station to distribute work to clients
– SAP back-end defines work-units and is notified of completion
– database to "buffer" data between application core and SAP

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

33

Examples of J2EE architectures 2/3

Web application using EJBs ("3.5 tier"), e.g. Task Tracker

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

34

Examples of J2EE architectures 3/3

Mixed-client (web service, Corba and DB) distributed application

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 27

Java EE is…
• … Java Enterprise Edition
• …what used to be called J2EE
• …a collection of Java technologies to build

distributed (incl. web) applications
• …a set of specifications to write these

applications against such that they are portable
across application servers

• …a set of specifications that defines the
behaviour of application servers (“containers”)

• …an umbrella JSR (JSR TODO) and numerouse
JSRs for the underlying technologies

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 28

Java EE 5 technologies / APIs
• EJB 3.0
• Servlet 2.5
• JSP 2.1
• JMS 1.1
• JTA 1.1
• JavaMail 1.4
• JAF 1.1
• Connector 1.5
• Web Services 1.2
• JAX-RPC 1.1
• JAX-WS 2.0

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 29

Java EE 5 technologies / APIs
• JAXB 2.0
• SAAJ 1.3
• JAXR 1.0
• Java EE Management 1.1
• Java EE Deployment 1.2
• JACC 1.1
• JSP Debugging 1.0
• JSTL 1.2
• Web Services Metadata 2.0
• JSF 1.2
• Common Annotations 1.0

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 30

Java EE 5 technologies / APIs
• StAX 1.0
• Java Persistence 1.0
• all Java SE 5 APIs

– Java IDL
– JDBC
– RMI-IIOP
– JNDI
– JAXP
– JAAS
– JMX

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 31

Java EE components
• Servlet

– A Java class that consumes HTTP requests and
produces a HTTP response for each request

– Used by JSF
• JSP

– “HTML file with Java code”
– But can contain arbitrary markup (XML)
– Typically used as a “view technology” in JSF

• EJB
– Business logic component

• Resource adapter (“connector”)
– To plug an external, transactional system (resource;

SAP, MOM, object cache) into an applicaction server
• Applet, application

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

43

Components, modules, deployment descriptors 1/3

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

44

Components, modules, deployment descriptors 2/3

• Compononents are collections of Java classes/interfaces:
– web: Servlet, JSP, ...
– EJB: session bean, message driven bean, entity bean
– ...

• Modules are jar-files that bundle components and follow a
specific layout:
– EJB module = ejb-jar file (xyz-ejb.jar)

• DD: ejb-jar.xml (J2EE standard), sun-ejb-jar.xml (app server specific)
– web app module = war (Web Archive) file (xyz.war)

• DD: web.xml (J2EE standard), sun-web.xml (app server specific)
– ...

• J2EE application (= ear (Enterprise Archive) file) is a jar-file that
bundles other modules and follows a specific layout
– DD: application.xml (J2EE standard), sun-application.xml (app

server specific)

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 32

Application server
• Runtime environment for Java EE components
• Made up of containers

– Web container hosts Servlets, JSPs, JSF applications
– EJB container hosts EJBs

• Provides services to components
– Dependency injection
– Inerception
– Thread pooling
– State management
– Security

• Authentication, authorization (access control), encryption
– Transaction management

• Is a web server, contains a transaction manager

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 33

…

Interception by the container

Client

Java EE
Component

Application server / container

Container services

request
response

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 34

Java EE modules
• TODO: 43

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 35

Software versions
• JBoss 4.0.4RC1

– Includes EJB 3.0 container “on top of” J2EE 1.4
• Includes snapshot of Hibernate for persistence

• Hibernate as an EJB 3 persistence provider
– Hibernate Core
– Hibernate Annotations
– Hibernate Entity Manager

• Glassfish / Sun Java System App Server 9
– Nascent reference implementation for Java EE 5

• Kodo 4.0.0 persistence provider early access
– SolarMetric now owned by BEA

• JOnAS EJB 3 early preview

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 36

Prototypical software architecture
• For the most common Java EE scenario: a

database-centric web application exposing
some web services
– Countless other scenarios and architectures possible

• Explicitly accounts for asynchronicity through
message-driven beans

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 37

Prototypical software architecture

WS client

Browser

JS
F

pr
es

en
-

ta
tio

n
la

ye
r

JA
X-

W
S

bi
nd

in
g,

ru
nt

im
e

EJ
B3

 lo
ca

l S
B

se
rv

ic
e

la
ye

r

EJ
B3

 lo
ca

l S
B

d
at

a
ac

ce
ss

 (D
A

O
) l

ay
er

EJB3 entity domain objects

DB

M
D

B
as

yn
ch

bu

sin
es

s
lo

gi
c

EJ
B3

 lo
ca

l S
B

sy
nc

h
bu

sin
es

s l
og

ic

web EJB

The example application:
TaskTracker

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 39

TaskTracker
• Is a simple database-centric web application
• Follows our “prototypical” software architecture

– Has asynchronous business logic
– Exposes web services in a Java-first manner

• Implemented on top of JBoss 4.0.4RC1
• Complete source code provided

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 40

TaskTracker use cases

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 41

TaskTracker domain object model

Java Persistence API

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 43

What it’s about
• Object/relational mapping
• Focus is on (annotated) Java domain classes

– Light-weight, local
• Query language is new version of EJB QL
• Can be used outside of EJB container

– Web container
– Java SE

• Very similar to Hibernate in “look&feel”
• Annotations and DDs supported
• Core concepts:

– Persistence provider, Entity, EntityManager, persistence
context, persistence.xml, orm.xml

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

213

Object/relational mapping (ORM) ‐ object graph

b
c

e

a

d

A1

B2

C4

C2 C3

class B {
int d;
C e;

}

Set

class A {
int a;
B b;
Set c;

}

class C {}

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

214

Object/relational mapping (ORM) ‐ relations

a b
2

A

d e

4

B

pk
1
2
...

pk
1
2
... pk

1
2
3
4
...

C
fkA

1
1

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

215

ORM of inheritance hierarchies 1/4

abstract class A {
int a1;
float a2;

}

Type hierarchy

class B extends A {
int b1;
float b2;

}

class C extends A {
int c1;
float c2;

}

class D extends C {
int d1;
float d2;

}

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

216

ORM of inheritance hierarchies 2/4
One table per type (ʺclassʺ) hierarchy

type a1 a2 b1 b2 c1 c2 d1 d2pk

1

2

3

C

B

D

x x x

x x

x

x x xx x x

x x

ABCD

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

217

ORM of inheritance hierarchies 3/4
One table per type (ʺsub‐classʺ)

type a1 a2

b1 b2

c1 c2pk

1

2

3

C

B

D

x x x

x x

x

x

x x

x

pk

1

3

A C

d1 d2

x x x x

pk

2

pk

3

B D

First a “realistic” example…

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 45

Family.java
// table: Family

// col: id primary key

// sequence: FAMILY_SEQU

@Entity

@SequenceGenerator(name="FamilySequ“,

sequenceName="FAMILY_SEQU“

public class Family {
@Id
@GeneratedValue(strategy=GenerationType.
SEQUENCE, generator="FamilySequ")

private Integer id;
// inverse side of bidirectional 1-to-many
@OneToMany(mappedBy="family", cascade=ALL)
private Set<FamilyMember> members;

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 46

FamilyMember.java
// table: FAMILY_MEMBER

// col: id primary key

// col: family_id references FAMILY.id

@Entity

@Table(name = "FAMILY_MEMBER")

@Inheritance(strategy = InheritanceType.JOINED)

public class FamilyMember {
@Id
private Integer id;
// owning side of birectional many-to-1
@ManyToOne(cascade = { CascadeType.MERGE,

CascadeType.PERSIST, CascadeType.REFRESH
})
private Family family;

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 47

Parent.java
// table: Parent

// col: id primary key refs FAMILY_MEMBER.id

@Entity

public class Parent extends FamilyMember {
// ...

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 48

Child.java
// table: Child

// col: id primary key references FAMILY_MEMBER.id

// col: reatreat_id unique refs PRIV_CHILD_ROOM.id

// join table: Child_Toy

// col: Child_id references Child.id

// col: toys_name references Toy.name

@Entity

@NamedQuery(name="findAChild",

query="select c from Child c where...")

public class Child extends FamilyMember {
// owning side of bidirectional 1-to-1
@OneToOne(cascade = { MERGE, PERSIST, REFRESH })
private PrivateChildRoom retreat;
// (owning side of) unidirectional many-to-many
@ManyToMany(cascade = { MERGE, PERSIST, REFRESH })
private Set<Toy> toys = new LinkedHashSet<Toy>();

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 49

PrivateChildRoom.java
// table: PRIV_CHILD_ROOM

// col: id primary key

@Entity

@Table(name = "PRIV_CHILD_ROOM")

public class PrivateChildRoom {
@Id
private Integer id;
@OneToOne(mappedBy = "retreat", cascade = {

CascadeType.MERGE, CascadeType.PERSIST,
CascadeType.REFRESH })

// inverse side of bidirectional 1-to-1
private Child occupiedBy;

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 50

Toy.java
// table: Toy

// col: name varchar2(255) primary key

public class Toy {
@Id
private String name;

}

…now the theory

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 52

Entities
• @Entity annotation
• Public/protected no-arg constructor
• Not inner class
• Not final, no methods final
• Can be Serializable

– E.g. if used as a Data Transfer Object
• Can be abstract
• Can be part of inheritance tree

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 53

Persistent state and access to it
• Access to fields

– By persistence provider
• Property-based: through JavaBeans property accessors

– Annotate getter (!)
– Accessors must be public or protected
– Exclusion from persistent state: @Transient

• Field-based: direct
– Annotate fields
– Exclusion from persistent state: transient or @Transient

– By clients of entity: only through accessors
• Fields must not be public
• (And should really be private)

• Personal recommendation:
– Use field-based access

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 54

Persistent state
• Types of fields/properties

– Primitives, primitive wrappers, String
– BigInteger, BigDecimal
– Date, Calendar
– java.sql-types: Date, Time, Timestamp
– Char[], Character[]
– Byte[], Byte[]
– Collection (sub-) interfaces

• Collection, Set, List, Map
– Enums

– Entities

– Embeddables

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 55

Entity identity: primary keys
• Every identity has an id, corresponds to primary

key in the database
– Is immutable after persist()

• Simple primary key
– Single field mapped to single column: @Id

• Composite primary key
– Primary key class with multiple fields mapped to

multiple columns
• Either embedded in entity: @EmbeddedId
• Or referenced from entity and primary key fields

duplicated in entity: @IdClass
• Public no-arg constructor, Serializable, equals() and
hashCode() based on primary key columns

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 56

Family.java
// table: Family

// col: id primary key

// sequence: FAMILY_SEQU

@Entity

@SequenceGenerator(name="FamilySequ“,

sequenceName="FAMILY_SEQU“

public class Family {
@Id
@GeneratedValue(strategy=GenerationType.
SEQUENCE, generator="FamilySequ")

private Integer id;
// inverse side of bidirectional 1-to-many
@OneToMany(mappedBy="family", cascade=ALL)
private Set<FamilyMember> members;

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 57

Persistence context
• Accessed through EntityManager
• Comprises a set of entity instances where at

most one instance exists for each persistent
entity identity (= primary key value)
– Is exactly what you expect: “one row of a table

corresponds to one object”
• Persistence context lifetime

– Defined when EntityManager is created (injected)
– Transaction-scoped persistence context

• Default and most natural
– Extended persistence context

• PC spans more than one transaction

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 58

EntityManager
• Works on exactly one persistence context

– Defines the API to interact with persistence context
• Important operations:

– void persist(Object entityInstance)

– void remove(Object entityInstance)

– T merge (T entityInstance)

• Detached object support
– T find(Class<T> entity, Object id)

– void refresh(Object entityInstance)

– Query createNamedQuery(String queryName)

• EJB QL query string defined with @NamedQuery
• SQL query string defined with @NamedNativeQuery

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 59

Entity states

managed

detached

new

removed

persist()

remove()

persist()
commit
rollback
serialize

m
e
r
g
e
(
)

Persistent
id?

Associated
w/ PC ?

no no

no

yes yes

yes yes

yes

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 60

Cascading entity state changes
• Each entity-entity relationship may be

annotated with one or more CascadeTypes:
– Default is to not cascade!
– CascadeType: PERSIST, REMOVE, MERGE, REFRESH, ALL

to propagate the corresponding state changes
(method calls) on the entity instance w/ the annotated
reference to the referenced entity instance(s).

– No delete-orphan!
– REMOVE not portable for ManyToOne or ManyToMany

• A note on CascadeType.MERGE
– As merge() can result in a copy of the instance to be

returned, cascading merge() requires that the
reference be re-set to that copy. This is done by the
persistence provider.

– Can thus result in a completely new object graph!

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 61

Synchronisation with database
• Flush: entity instance state written to database

– Only effects entities currently associated with PC
– Simplest case: automatic flush at commit
– Explicitly through EntityManager.flush()
– Typically (Hibernate) before query execution

• Ensure that entity state always obeys all constraints

• Refresh: database to entity instance state
– Only explicitly for each instance through

EntityManager.refresh()
– Overwrites un-flushed changes to entity instance

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 62

Entity manager management
• Container-managed entity manager (Java EE)

– = transaction-propagated persistence context
• Persistence context flows with JTA transactions

– All EntityManagers invoked within a transaction access the
same persistence context

– Lifecycle (create, close) of EntityManager is managed
by container and persistence provider

– If EntityManager is injected or looked up via JNDI
• Happens automatically

• Application-managed entity manager (EE, SE)
– = stand-alone persistence context

• Persistence context does not flow with JTA transactions
– Lifecycle of EntityManager is managed by application

• EntityManagerFactory, EntityManaaer.close()

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 63

FamilyService.java
public interface FamilyService {

Family createRandomFamily()

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 64

FamilyServiceImpl1.java
// container-managed entity manager

// transaction-scoped persistence context

@Stateless

public class FamilyServiceImpl1 implements
FamilyService {

@PersistenceContext
private EntityManager em;

public Family createRandomFamily() {
Family f = new Family();
Child c = (Child) em.createNamedQuery(

"findAChild").getSingleResult();
// ..
em.persist(f);
return f; // f now detached

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 65

FamilyServiceImpl3.java (1/2)
// application-managed entity manager

// transaction-scoped persistence context

@Stateless

public class FamilyServiceImpl3 implements
FamilyService {

@PersistenceUnit
private EntityManagerFactory emf;
private EntityManager em;

@PostConstruct
public void createEM() {
em = emf.createEntityManager();

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 66

FamilyServiceImpl3.java (2/2)
@PreDestroy
public void closeEM() {
em.close();

}
public Family createRandomFamily() {
Family f = new Family();
Child c = (Child) em.createNamedQuery(

"findAChild").getSingleResult();
// ..
em.persist(f);
return f; // f now detached

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 67

Extended persistence context
• Within container only in stateful session beans

– @PersistenceContext(type=EXTENDED)

• PC exists from creation of EntityManager to
close
– For container-managed: from time of injection or JNDI-

lookup until execution of @Remove method
– For application-managed: from creation using
EntityManagerFactory to call of
EntityManager.close()

• PC may span several transactions
– EntityManager transparently participates in the

transactions in which it is invoked
– Entity instances remain associated with the PC after

transaction commit/rollback
• Do not become detached

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 68

Extended persistence context
• Allows PC operations to be called outside a

transaction
– persist(), remove(), merge(), refresh()

• No more exceptions when accessing lazily
initialised relationships, no need to merge()

• Restrictions for container-managed entity
managers (transaction-propagated persistence
contexts) apply
– Call from session bean with transcation-scoped PC to

session bean with extended PC within the same JTA
transaction raises exception

• Two orthogonal concepts: lifetime and
propagation behaviour of persistence context!

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 69

FamilyServiceConversational.java
public interface FamilyServiceConversational

extends FamilyService {
void goAway();

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 70

FamilyServiceImpl2.java
// container-managed entity manager

// extended persistence context

@Stateful

public class FamilyServiceImpl2 implements
FamilyServiceConversational {

@PersistenceContext(type=EXTENDED)
private EntityManager em;
private Family f;
public Family createRandomFamily() {
f = new Family();
Child c = (Child) em.createNamedQuery(

"findAChild").getSingleResult();
// ..
em.persist(f);
return f; // f still managed

}
@Remove
public void goAway() {}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 71

FamilyServiceImpl4.java (1/2)
// application-managed entity manager

// extended persistence context

@Stateful

public class FamilyServiceImpl4 implements
FamilyServiceConversational {

@PersistenceUnit
private EntityManagerFactory emf;
private EntityManager em;
private Family f;

@PostConstruct
public void createEM() {
em = emf.createEntityManager(

PersistenceContextType.EXTENDED);
}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 72

FamilyServiceImpl4.java (2/2)
public Family createRandomFamily() {

f = new Family();
Child c = (Child) em.createNamedQuery(

"findAChild").getSingleResult();
// ..
em.persist(f);
return f; // f still managed

}
@Remove
public void goAway() {
em.close(); // f now detached

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 73

Embeddable
• A class that isn’t an entity itself but exists only as

part of an entity
– No id
– It’s state is mapped to columns of its entity

• Using the same access type as its entity
– Not shareable between between entities (classes)

• Used to map coarse-grained database schema
to fine-grained object model

• @Embeddable on class and/or @Embedded on
field/property of its entity

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 74

Entity relationships
• If an entity references one or more other entities

– One-to-one, one-to-many, many-to-one, many-to-
many

– A relationship to entity A can hold entity instances of
sub-classes of A (polymorphism, just as in Java itself)

• Java type of the referenced entity must be
known: generics or annotation parameter

• Fetch strategy: eager vs. lazy
– Defines when a relationship is loaded from the

database – not how
– Defaults: eager for *ToOne, lazy for *ToMany
– Entity instance must be associated with PC for fetch…

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 75

Family1.java
// default mapping, insecure bidirectional rels

@Entity

public class Family1 {
@Id
private Integer id;
@OneToMany(mappedBy = "family")
private Set<Child1> children;

public Set<Child1> getChildren() {
return children;

}
public void setChildren(Set<Child1> children) {
this.children = children;

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 76

Child1.java
@Entity

public class Child1 {
@Id
private Integer id;
@ManyToOne(fetch=FetchType.LAZY)
private Family1 family;

public Family1 getFamily() {return family;}
public void setFamily(Family1 family) {
this.family = family;

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 77

Bidirectional entity relationships
• A references B and B references A
• Have owning and inverse side

– Owning side determines foreign key value!
– Inverse side may be followed (cascade) but is not used

to set the foreign key value!
– Mapping annotations must be on owning side

• Many-to-one and one-to-many:
– Many-side is owner (because it contains the foreign

key)
– One-side is always inverse side

• One-to-one:
– Side containing the foreign key is the owning side
– Specify mappedBy on inverse side

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 78

Bidirectional entity relationships
• Many-to-many:

– Mapped through join table (with 2 foreign keys)
– Denote arbitrary side as inverse using mappedBy to refer

to field/property on owning side
• Persistence runtime does not maintain referential

integrity of bidirectional relationships!
– Include required logic in accessors

• An argument for field-based access
• Would be cleanest to disallow direct mutable access to

Collections of many-valued relationships
– Implement add/remove methods instead

– Might use helper-library like Gemini instead

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 79

Family2.java
// manually secured bidirectional rel

@Entity

public class Family2 {
@Id private Integer id;
@OneToMany(mappedBy = "family")
private Set<Child2> children=new HashSet<Child2>();
/** do not alter returned Set */
public Set<Child2> getChildren() {return children;}
// no setter for children
public void addChild(Child2 child) {
if (child != null) child.setFamily(this);

}
public void removeChild(Child2 child) {
if (child != null && children.contains(child))

child.setFamily(null);

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 80

Child2.java
// manually secured bidirectional rels

@Entity

public class Child2 {
@Id
private Integer id;
@ManyToOne
private Family2 family;

public Family2 getFamily() {return family;}
public void setFamily(Family2 family) {
if (this.family != null &&

!this.family.equals(family)) {

this.family.getChildren().remove(this);
}
this.family = family;
if (family!= null) family.getChildren().add(this);

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 81

Family3.java
// referential integrity maintained by Gemini

@Entity

public class Family3 {
@Id
private Integer id;
@OneToMany(mappedBy = "family")
@BidirectionalMany(oppositeName = "family",
initOnlyFirstTime = true)

private Set<Child3> children;

public Set<Child3> getChildren() {
return children;

}
public void setChildren(Set<Child3> children) {
this.children = children;

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 82

Child3.java
// referential integrity maintained by Gemini

@Entity

public class Child3 {
@Id
private Integer id;
@ManyToOne
@BidirectionalOne(oppositeName="children",

oppositeType = BidirectionalMany.class)
private Family3 family;

public Family3 getFamily() {return family;}
public void setFamily(Family3 family) {
this.family = family;

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 83

Mapping defaults
• Define how relational database schema is

derived from (annotated) domain model
– All defaults can be overridden with annotations or in

orm.xml
• Entity name -> table name
• Field/property name -> column name
• Join table

– For many-to-many or unidirectional one-to-many (!)
– Name: <entity1>_<entity2>

• Foreign key column name:
– <field>_<pk> if field/property name is available
– <entity>_<pk> otherwise

• foreign key in join table referencing owning side in an uni-
directional one-to-many or many-to-many relationship

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 84

Inheritance mapping
• Three strategies defined:

– Single table per class hierarchy
• Complete inheritance graph collapsed into one table
• All state of subclasses must map to nullable columns

– Single table per concrete class (optional)
– Joined subclass

• Each class has its table, with primary key acting as foreign
key into table of superclass

– Thank god for single inheritance in Java
• Most clean and flexible, may be slow due to joins

• Joined subclass strategy

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 85

FamilyMember.java
// table: FAMILY_MEMBER

// col: id primary key

// col: family_id references FAMILY.id

@Entity

@Table(name = "FAMILY_MEMBER")

@Inheritance(strategy = InheritanceType.JOINED)

public class FamilyMember {
@Id
private Integer id;
// owning side of birectional many-to-1
@ManyToOne(cascade = { CascadeType.MERGE,

CascadeType.PERSIST, CascadeType.REFRESH
})
private Family family;

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 86

Parent.java
// table: Parent

// col: id primary key refs FAMILY_MEMBER.id

@Entity

public class Parent extends FamilyMember {
// ...

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 87

Child.java
// table: Child

// col: id primary key references FAMILY_MEMBER.id

// col: reatreat_id unique refs PRIV_CHILD_ROOM.id

// join table: Child_Toy

// col: Child_id references Child.id

// col: toys_name references Toy.name

@Entity

@NamedQuery(name="findAChild",

query="select c from Child c where...")

public class Child extends FamilyMember {
// owning side of bidirectional 1-to-1
@OneToOne(cascade = { MERGE, PERSIST, REFRESH })
private PrivateChildRoom retreat;
// (owning side of) unidirectional many-to-many
@ManyToMany(cascade = { MERGE, PERSIST, REFRESH })
private Set<Toy> toys = new LinkedHashSet<Toy>();

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 88

Persistence unit and packaging
• Persistence unit comprises

– META-INF/persistence.xml
• Defines persistence unit and its name
• The persistence provider (e.g. Hibernate)
• The DataSource JNDI name
• Think hibernate.cfg.xml

– Compiled entities
– Optional META-INF/orm.xml

• No new archive (no “par”), may be contained in
– EJB-JAR
– WAR
– JAR which may be contained in

• WAR, EAR, application-client-jar

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 89

What we didn’t talk about
• The query language EJB QL
• Most Id generation strategies
• Details of composite primary keys
• Callbacks
• Use of FlushMode
• Optimistic locking, version fields
• Native queries and SQL result set mapping
• Details of mapping annotations
• persistence.xml and orm.xml
• Details of use in Java SE environment

EJB 3 simplified API

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 91

Themes
• Simplifying the developer’s task
• Metadata annotations in addition to XML
• Configuration by exception
• Session beans: no required home interface
• Entity beans: light-weight ORM
• Interceptors for session beans and MDBs
• Architectural properties

– of session beans and MDBs remain essentially
unchanged

– of EJB 3 entities are very similar to Hibernate entities

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 92

Session and message-driven beans
• Focus on (annotated) enterprise bean class
• Deployment descriptors available

– To override annotations
– May be sparse

• Support interception of invocation of
– Business methods
– Lifecycle callbacks

• Can be target of dependency injection
• Transaction management:

– Default is container-managed
– @TransactionManagement on bean class to specify

bean-managed
– @TransactionAttribute on bean or business

methods

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 93

FamilyService1.java
// plain interface

public interface FamilyService1 {
Object createNewFamily(String spec);

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 94

FamilyServiceImpl1.java
// stateless, local, CMT, two interceptors

// name defaults to FamilyServiceImpl1

@Stateless

@Interceptors({ LogInterceptor.class })

public class FamilyServiceImpl1 implements
FamilyService1 {

public Object createNewFamily(String spec) {
Object family = null;
// ...

return family;
}
@AroundInvoke
public Object spy(InvocationContext ictx)

throws Exception {
// tell the neighbours...
return ictx.proceed();

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 95

LogInterceptor.java
public class LogInterceptor {

@AroundInvoke
public Object log(InvocationContext ictx)

throws Exception {
try {
// log args
Object ret = ictx.proceed();
// log return value
return ret;

} catch (Exception e) {
// log exception
throw e;

}
}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 96

Lifecycle and lifecycle callbacks
1. Instantiation of bean instance
2. Dependency injection
3. @PostConstruct

– Unspecified transaction and security context
4. Invocations of business methods
5. Invocation of business method with @Remove

– Stateful session beans only
6. @PreDestroy

– Unspecified transaction and security context
7. Destruction of bean instance

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 97

Lifecycle and lifecycle callbacks
• For stateful session beans only: between
@PostConstruct and @PreDestroy possibly
arbitrary pairs of
– @PrePassivate

– Passivation (serialization) to external storage
– Activation (deserialization) from external storage
– @PostActivate

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 98

Session beans
• Business interface is plain Java interface

– No required component interface
(EJB(Local)Object)

• Default is local business interface
– Use @Local and @Remote

• If more than one interface implemented
• If a remote interface is required
• May appear on business interface or bean class

– Serializable, Exteranlizable can’t be business
interfaces

• Declare arbitrary exceptions on business
methods
– Don’t use RemoteException
– Remote client sees EJBException

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 99

Session beans
• No need for home interface

– Lookup (incl. injection) returns EJB instance

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 100

FamilyService2.java
@Remote

public interface FamilyService2 {
void initFamily(String mothersName);
void addChild(String name);
void enough() throws NotYetEnough;

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 101

WorkService2.java
// plain interface

public interface WorkService2 {

double earnIncome();

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 102

FamilyServiceImpl2.java
// stateful, remote and local, CMT

@Stateful(name = "StatefulFamilyService")

@Local({ WorkService2.class })

public class FamilyServiceImpl2 implements
FamilyService2, WorkService2 {

public void initFamily(String mothersName) {}
public void addChild(String name) {}
@Remove(retainIfException = true)
public void enough() throws NotYetEnough {}
@TransactionAttribute(

TransactionAttributeType.REQUIRES_NEW)
public double earnIncome() {
return 0.0;

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 103

Stateless session beans
• @Stateless annotation

– No need to implement SessionBean
• Lifecycle callbacks

– @PostConstruct, @PreDestroy
• @WebService, @WebMethod for definition of web

services (JSR 181)

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 104

Stateful session beans
• @Stateful annotation

– No need to implement SessionBean or Serializable
• Implementation of SessionSynchronization

supported
• Lifecycle callbacks

– @PostConstruct, @PreDestroy
– @PostActivate, @PrePassivate

• Lookup returns new instance
– Typically needs initialization via business method(s)!

• @Remove annotates a “normal” business method
– Client initiates removal by calling this method
– Removal through container after completion

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 105

Interceptor methods
• Specialised AOP facility

– Only around advice
– Only on session beans and MDBs

• Only business methods and lifecycle callbacks
• Method with @AroundInvoke

– Only one per bean class
– public Object *(InvocationContext) throws
Exception

– InvocationContext passed around as data holder
– InvocationContext.proceed() to proceed

• Become “part of” method invocation
– Share transaction and security context
– Can throw same exceptions as “their” method
– Can invoke JNDI, JDBC, JMS, EJBs, Entity Manager

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 106

FamilyServiceImpl1.java
// stateless, local, CMT, two interceptors

// name defaults to FamilyServiceImpl1

@Stateless

@Interceptors({ LogInterceptor.class })

public class FamilyServiceImpl1 implements
FamilyService1 {

public Object createNewFamily(String spec) {
Object family = null;
// ...

return family;
}
@AroundInvoke
public Object spy(InvocationContext ictx)

throws Exception {
// tell the neighbours...
return ictx.proceed();

}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 107

Interceptor classes
• Holds interceptor method

– Same rules as for those
– Only one @AroundInvoke per interceptor class

• Stateless, associated with enterprise bean
– InvocationContext passed around as data holder

• Public no-arg constructor
• Definition and assocation with beans is static

– Default interceptors
• Apply to all session beans and MDBs in ejb-jar
• Defined in deployment descriptor

– Denoted on bean using @Interceptors
• Definition order is invocation order

• Can be target of dependency injection

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 108

LogInterceptor.java
public class LogInterceptor {

@AroundInvoke
public Object log(InvocationContext ictx)

throws Exception {
try {
// log args
Object ret = ictx.proceed();
// log return value
return ret;

} catch (Exception e) {
// log exception
throw e;

}
}

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 109

Dependency injection
• Injection of

– EJBContext (SessionContext) (first)
– DataSource

– UserTransaction

– EntityManager

– Anything (?) that can be looked up via JNDI in
java:comp/env

• Injection into fields or with setters
– @EJB, @Resource
– Missing information inferred from field or setter

• Resource type
– From field/property type

• Resource name
– From field/property name

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 110

FamilyService3.java
public interface FamilyService3 {

Object generateBoyfriend(String spec);

}

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 111

FamilyServiceImpl3.java
// declarative security, EJB ref, resource ref

@Stateless

@DeclareRoles({ "Adolescent", "MidlifeCrisis" })

@RunAs("Adolescent")

public class FamilyServiceImpl3 implements
FamilyService3 {

@EJB
private FamilyService1 consequences;
@Resource(name = "jms/NappyQ")
private QueueConnectionFactory qcf;
@RolesAllowed({ "Adolescent“,"MidlifeCrisis" })
public Object generateBoyfriend(String spec) {

Object boy = null;
// ...
Object f = consequences.createNewFamily(spec);
// ...
return boy;

}

}

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

194

Transaction fundamentals 1/4

• A transaction is a unit of work that has the ACID properties
– atomicity:either the complete unit of work is performed or none at

all - all or nothing
– consistency:by executing the unit of work, a system is transferred

from one consistent state to another consistent state, irrespective of
whether the transaction succeeds or fails

– isolation:the effects of a transaction are invisible to other
transactions as long as the (original) transaction has not succeeded
(cf. transaction isolation level)

– durability: the effect of a transaction is (usually) persistent and
survives system failures/shutdowns

• Local transaction vs. global (distributed) transaction
– a local transaction involves exactly one transactional resource, e.g.

a relational database
– a distributed transaction involves several transactional resources,

e.g. a relational database and a messaging system (JMS provider)

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

195

Transaction fundamentals 2/4

• Participants in a distributed transaction:
– application: uses the facilities of the application server to

begin/commit/rollback transactions, which in turn delegates this
responsibility to the transaction manager

– application server: uses a transaction manager (which is usually
part of the application server) to coordinate transactions by calling
begin(), commit(), etc. on the transaction manager

– transaction manager: coordinates transactions across several
transactional resources by enlisting them and orchestrating a two-
phase commit protocol among them

– resource (manager): the resource manager is the entity that
interacts with the transaction manager on behalf of a transactional
resource, e.g. a RDBMS would be a transactional resource and the
JDBC driver would be the resource manager for that resource

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

196

Transaction fundamentals 3/4

• The Distributed Transaction Processing (DTP) model of the
Open Group (formerly X/Open) defines interfaces between the
basic components of a distributed transaction system:
– TX is the interface that a transaction manager exposes to the

application or application server
• begin(), commit(), rollback()

– XA is the (bidrectional) interface between a resource manager and
a transaction manager

• e.g. the database and its JDBC driver must implement XA

• JTA (Java Transaction API)
– consists of javax.transaction packages
– builds on X/Open DTP
– defines the contracts between application, app server, transaction

manager and resource manager
– defines UserTransaction class to be used by J2EE developer

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

197

Transaction fundamentals 4/4

• Two-phase commit is the protocol
executed by the transaction
manager in a distributed transaction
to ensure ACID properties
– e.g. in a successful scenario:

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

198

Transactions in J2EE

• Distributed transactions must be supported by app server
– involve multiple transactional resources
– involve multiple components (in particular EJBs)
– app server contains transaction manager that coordinates two-

phase commit across multiple XA-capable resources
• Transactional resources in J2EE:

– RDBMS accessed via JDBC connection
– MOM (message-oriented middleware) accessed via JMS session
– EIS accessed via resource adapter (connector)
– Some resources (or their adapters) may not support XA!

• IIOP transaction propagation protocol currently not required (=
transaction managers need not be implemented in terms of JTS)

• Only flat transactions (no nested transactions)

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

199

A distributed transaction scenario

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

200

Another distributed transaction scenario

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

206

Transaction attributes for container‐managed tx

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

209

Exceptions thrown from EJB methods 1/3

• Application exceptions
– are all checked exceptions (not a sub-class of RuntimeException)

that are not sub-classes of RemoteException
– are used to report business logic problems, not technical problems

• the intention of an application exception is to signal to the client that the
EJB ran into an expected condition that prevents it from fulfilling the
request, e.g. illegal arguments supplied to the EJB method,
precondition of calling the EJB method not met

– e.g. javax.ejb.CreateException, javax.ejb.RemoveException,
com.sun.tasktracker.....EntryServiceArgumentException

– can be thrown from any method in home or component interface
• An application exception thrown from an EJB method does not

cause an automatic rollback of a pending transaction: in the EJB
method you need to
– either explicitly rollback transaction (EJBContext.setRollbackOnly())
– or make sure that a commit leads to a consistent state of the EJB

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

210

Exceptions thrown from EJB methods 2/3

• System exceptions
– are all sub-classes of RuntimeException including EJBException

• EJB methods must not throw RemoteException
– are used to report unexpected problems or problems that the EJB

can not recover from
• e.g., OutOfMemoryError occured in method body, inability to obtain

database connection/make JNDI lookup/send JMS message,
unexpected RuntimeExceptions occured in method body

– should be thrown by the EJB method as follows:
• EJB method bodies should not catch RuntimeException (but pass it

through as a system exception)
• EJB method bodies must catch unrecoverable checked exceptions

(e.g. JNDI's NamingException) and throw an EJBException
• throw EJBException if anything else unrecoverable happens

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

211

Exceptions thrown from EJB methods 3/3

• A system exception thrown from an EJB method is caught by
the EJB container and
– causes a rollback of the current transaction (regardless of whether

the transaction was started by the container or by the bean (and is
not commited or rolled back))

– causes the client to receive a RemoteException (for remote clients)
or EJBException (for local clients)

– the EJB instance is not used by the container any more
• The EJB method does not have to worry about clean-up if it

throws a system exception
• transction is rolled-back (see before)
• the container releases any resources (DB connections, etc.) that are

declared in the EJB's environment (!)

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 112

Security terminology
• Principal

– The authenticated subject, e.g. the user
– Has a name

• Authentication data
– E.g. the password

• Authentication
– The process of proving the identity of a principal
– Involves matching principal and authentication data

against a “store” (LDAP, database, file)
• Username and password are validated

• Credential
– Encodes what the user is allowed to do
– Is the result of successful authentication

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 113

Security terminology
• (Security) role

– A logical concepts that is used by the application and
Java EE to group permissions

– An application defines security roles, which need to be
mapped to principals (users) from the operating
environment

– E.g. admin, manager, loser
• Authorization, access control

– The process of granting of denying a principal access
to resources based on the principal’s roles

• Security (policy) domain, realm
– Scope of one security policy

• Securiy context
– Used by app server to hold credentials

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

75

Security terminology 3/3

Operating
Environment

Application

Role1

Role2

Group1 Group2

User1

User2 User3

Permission1

Permission2

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

89

Know what you do when using a remote view

• Applies to remote client view and web service client view
• Martin Fowler's first law of distributed objects: "Don't distribute

your objects"
• Location independence is beautiful and provides flexibility in

deployment but remote calls
– have high latency (network, network stack,

marhsalling/unmarshalling ("copying") of parameters and return
values)

– must therefore be coarse-grained: few remote calls, transporting as
much data as is sensible and possible

– may fail due to network problems, unavailable server, etc.
• Local EJBs offer mainly "only" (declarative) security and

transaction support over normal Java objects
• The developer decides between remote and/or local client view

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

90

Passivation and activation

• Applies to stateful session beans and entity beans
• The app server (ejb container) actively manages memory by

serializing/deserializing bean instances to/from disk when
required: passivation/activation
– all fields in an EJB must be serializable, "part of the EJB spec" (or

null at the moment of passivation)
– don't use transient fields

• ejbPassivate() and ejbActivate() methods called by container
immediately before passivation and after activation, respectively
– ejbPassivate()

• close any open resources (e.g. DB connections)
• set all fields to null that are not serializable or "part of the EJB spec"

– ejbActivate()
• re-open any resources (e.g. DB connections)
• re-initialize any null-fields

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

107

Declarative security for EJBs

• Protectable resource: calling EJB methods
• An application's roles and access controls are declared in the

deployment descriptor
– again: roles are a logical concept of the application; all roles must

be enumerated in the deployment descriptor
– permissions (to call EJB methods) are assigned to roles
– roles are mapped to principals (users) and groups from the

operating environment (e.g. in the app server specific deployment
descriptor)

• Example: Task Tracker ejb-jar.xml, sun-application.xml

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

108

Programmatic security for EJBs

• Encoding authorisation requirements in code
• To be used (only) if declarative security is not enough (too

static)
• API

– EJBContext
• isCallerInRole(String roleName)

– can be used to code more dynamic security policies than can be expressed
(in the deployment descriptor) using declarative security

• getCallerPrincipal()
– could be used to lookup information in database based on the name of the

principal calling the EJB

• Role names used in code are logical role names that can be
linked to "real" role names in the deployment descriptor
(security-role-ref).

• Example: Task Tracker EntryServiceBean.createEntry()

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 114

What we didn’t talk about
• Enterprise bean context and lookup

– Explicit lookups:
• New EJBContext.lookup() method
• JNDI lookups

• New deployment descriptor

Implementing web services

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 116

HTTP GET request
GET /articles/news/today.asp HTTP/1.1

Accept: */*

Accept-Language: en-us

Connection: Keep-Alive

Host: localhost

Referer: http://localhost/links.asp

User-Agent: Mozilla/4.0 (compatible; MSIE
5.5;Windows NT 5.0)

Accept-Encoding: gzip, deflate

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 117

HTTP response
HTTP/1.1 200 OK

Date: Wed, 13 Jan 1999 13:19:42 GMT

Server: Apache/1.3.1 (Unix)

Connection: close

Cache-control: private

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
4.0Transitional//EN">

<HTML>

…

</HTML>

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 118

Need to know
• Web service concepts

– HTTP
– SOAP
– WSDL
– (UDDI)

• WSDL-first versus Java-first
• Essential JAX-WS 2.0 and JAXB 2.0

annotations/concepts
– see tasktrackerWSExample

• Keep this in mind:
– Document-centric rather than RPC
– Literal rather than encoded
– Wrapped rather than unwrapped

JavaServer Faces

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 120

HTTP basics
• RFC 1945 (HTTP/1.0), RFC 2616 (HTTP/1.1)

– http://www.rfc.net/
• Request -Response cycle
• HTTP Request

– Method: GET, HEAD, POST, PUT, DELETE, OPTIONS, TRACE
– Request URL
– Header, body

• HTTP Response
– Result code: 404 (not available), 500 (server error)
– Header, body

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 121

HTML forms – HTTP GET
<form action=“http://localhost/serv”
method="GET">

name=<input type="text" name="name">

age=<input type="text" name="age">

<input type="submit" VALUE=“get this!">

</form>

http://localhost/serv?name=anton&age=35

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 122

HTML forms – HTTP POST
<form action=“http://localhost/serv”
method="POST">

name=<input type="text" name="name">

age=<input type="text" name="age">

<input type="submit" VALUE=“post this!">

</form>

http://localhost/serv

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

64

Servlet request URL

• Available from HttpServletRequest
• http://www.you.com/superapp/buy/confirm?value=OK

– Protocol: http
– Host: www.you.com
– Request path: /superapp/buy/confirm
– Context path: /superapp
– Servlet path: /buy
– Path info: /confirm
– Query string: value=OK

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

65

Servlet (web) sessions

• Session ties together HTTP requests from one client
• HttpServletRequest.getSession() of all requests (within a

session) returns the same session object
– call before getting Writer/OutputStream so that a cookie can be set

• Session identity maintained between requests
– via cookies (stored on client and sent with requests)
– via URL rewriting (http://host/a/b/c.jsp;jsessionid=12321): must be

done explicitly through HttpServlerResponse.encodeURL()
• Sessions timeout and/or call to invalidate()
• Objects can be stored in session as named attributes

– HttpSession.setAttribute(String, Object) and getAttribute(String)
– all attributes should be serilizable!

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 123

Need to know
• Using JSPs as the view technology
• Managed beans and their scope
• Calling SBs in the service layer from managed

beans
• Configuring the controller: faces-config.xml

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 124

JSF request processing lifecycle

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 125

JSF request processing life cycle
• 3 representative calls from JSF to model

– Validation
• <h:inputText … validator=“#{model.valid}”/>

calls
void valid(FacesContext, UIComponent, Object)
on “model”

– Get/set model values
• <h:inputText value=“#{model.size}”/>

calls setter/getter for “size” on “model”
– Invoke application (“action”)

• <h:commandButton action=“#{mode.doit}”/>
calls
String doit()
on “model”

• Prerequisites: ELResolver, value/method
expressions

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 126

As an aside: ELResolver
• New in 1.2 for VariableResolver and

PropertyResolver
• Resolves segments in an expression

– #{model.size} is resolved to a JavaBean called “model”
and its property “size”

• There is a ManagedBeanELResolver that finds JSF
managed beans by name

• There can also be a SessionBeanResolver that
does a JNDI-lookup of EJB 3 session beans…
– JBoss Seam does this
– (Spring similarly resolves Spring beans)

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 127

Managed Beans and Java EE 5
• JavaBeans created/destroyed by JSF’s

Managed Bean facility are known as “Managed
Beans”

• Managed Beans may be the target of Java EE 5
dependency injection:
– @EJB, @Resource
– @PersistenceContext not yet?

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

76

Declarative security for web components 1/2

• An application's roles and access controls are declared in the
deployment descriptor

• Protectable resource: URLs
• Web authentication mechanisms:

– HTTP basic authentication
• username/password (base64-encoded)
• handled by web browser

– HTTP form-based authentication
• username/password, but app provides HTML form

– HTTPS client authentication
• user needs Public Key Certificate

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

77

Declarative security for web components 2/2

• Transport guarantee is the means of specifying encrypted
communication (i.e. HTTPS)

• Security roles are identified in the deployment descriptor
(web.xml) and mapped to users/groups from the operating
environment in the app-server-specific deployment descriptor
(sun-web.xml or sun-application.xml)

• Example: TaskTracker
web.xml, sun-web.xml,
sun-application.xml,
admin console

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

78

Programmatic security for web components

• Encoding authorisation requirements in code
• To be used (only) if declarative security is not enough (too

static)
• API

– HttpServletRequest
• getRemoteUser(): the login name of the user making the request (if (!)

sent with the request)
• isUserInRole(String roleName)
• getUserPrincipal(): the name of the currently authenticated user

(wrapped in a Principal object); null means not logged in

• Role names used in code are logical role names that can be
linked to "real" role names in the deployment descriptor
(security-role-ref).

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

66

Web archive (WAR) 1/2

• Packaging and deployment unit of web apps
• Contains

– web components (servlets, JSPs)
– server-side Java classes
– static web content (HTML, images, …)
– client-side Java classes (applets, support classes)
– standard and app-server-specific deployment descriptor (web.xml

and sun-web.xml)
• Packaged as jar with extension war

– jar cvf example.war .

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

67

Web archive (WAR) 2/2

Asynchronous server-side Java

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

115

MOM, JMS and message‐driven beans overview

• Message-oriented middleware (MOM) is a class of enterprise
software products that facilitates the programmatic exchange of
messages
– this is not email
– messaging is peer-to-peer via MOM
– possesses typical enterprise features: reliability, transaction

support, scalability, security, ...
• Java Messaging Service (JMS) is the Java API to MOM

– MOM-product is called JMS provider
– supports queues and topics

• Every J2EE app server contains a JMS provider (MOM product)
• A message-driven bean (MDB) is an EJB that consumes

messages via JMS

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

116

Messaging

Message
Producer

Message
Consumer

Sun Java System Message Queue
BEA WebLogic JMS
IBM WebSphere MQ
Fiorano MQ
Softwired iBus
any J2EE app server

+ Msg. Acknowledgement
+ Msg. Persistence
+ Msg. Selectors

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

118

Point‐to‐point messaging domain

Queue

Queue
Senders

Queue
Receivers

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

117

Topic
Publishers

Topic
Subscribers

Topic

+ Durable Subscribers

Publish/subscribe messaging domain

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

121

Message types

+ Properties
+ Format Conversion

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

122

JMS message producer

public class HelloQueueSender {
public static final String D_NAME = "ex1Queue";
public static final String CF_NAME = "QueueConnectionFactory";

public static void main(String[] args) {
try {

Context ctx = new InitialContext();
QueueConnectionFactory qcf = (QueueConnectionFactory) ctx.lookup(CF_NAME);
Queue q = (Queue) ctx.lookup(D_NAME);
QueueConnection qc = qcf.createQueueConnection();
try {

QueueSession qsess = qc.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

QueueSender qsnd = qsess.createSender(q);
TextMessage msg = qsess.createTextMessage("Hello JMS World");
qsnd.send(msg);

} finally {
try {qc.close();} catch (Exception e) {}

}
} catch (Exception e) {

System.out.println("Exception occurred: " + e.toString());
}

}
}

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

125

Message‐driven bean characteristics

• Asynchronous message consumer from queues and/or topics
• MDB can also listen on non-JMS messages
• Stateless
• No home interface or component interface

– an MDB implements the interface MessageListener which defines
one method onMessage(Message)

• Client does not interact directly with MDB
– client sends message to queue/topic
– JMS provider delivers message to MDB
– complete decoupling of client and MDB

• client does not know of existence of MDB
• MDB does not know client identity (principal, caller, user, whatever)

• MDBs are a high-performance EJB type that is known only on
the app server

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

129

Messaging scenario 1: asynch backend connectivity

Application Server

Backend
Service SB

Backend
Collector MDB

ResultQ

Backend
System

RequestQ

ResponseQ

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

130

Messaging scenario 2: job scheduling

Application Server

Scheduler
SB

Executor MDBResultQ

InputQ

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

179

Task Tracker and messaging

EntryService
Session Bean
createEntry()

TTQ

EntryReplicator
MDB

onMessage()

Entry

JMS Message

Entry

Entry

JMS Message

App Server

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 129

Message-driven beans
• @MessageDriven annotation

– No need to implement MessageDrivenBean
• Business interface is defined by messaging type

– For JMS: javax.jms.MessageListener
• Lifecycle callbacks

– @PostConstruct, @PreDestroy

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 130

AsynchNappyChanger.java
@MessageDriven(activationConfig = {

@ActivationConfigProperty(

propertyName="destinationType",

propertyValue="javax.jms.Queue"),

@ActivationConfigProperty(

propertyName="destination",

propertyValue="jms/NappyQ")

})

public class AsynchNappyChanger implements
MessageListener {

public void onMessage(Message msg) {
// ...

}

}

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

110

J2EE application review

• A J2EE application bundles several modules into one ear-file
• Deployment descritors (application.xml, sun-application.xml)

describe the application as a whole and certain properties of
each module
– if you know that modules will be used within an application, then

move DD elements into the application DDs to avoid redundancy:
• context-root for web modules
• security-role-mapping from role names to users/groups

• Example: Task Tracker application.xml, sun-application.xml

March 2005 J2EE, Gerald Loeffler, Sun
Microsystems

111

J2EE application (ear) deployment descriptor

• META-INF/application.xml in .ear file

Summary: Need to know

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 132

Need to know
• Core concepts

– layering
– Java EE 5 technology mapping to layers

• Java Persistence API (EJB 3 persistence)
– Entity, Embeddable
– ID, persistence context, EntityManager

• persist() vs. merge()
• transcaction-scoped persistence context

– Basic mappings: primitives, String, Date, etc.
– Relationship mapping:

• one-to-many, many-to-one
• (one-to-one, many-to-many)

– Lazy vs. eager loading, problem with detached objects

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 133

Need to know
– Entity states and detached object use
– Cascading of entity state changes

• EJB 3 Simplified API
– Session bean types: stateful, stateless
– Message driven beans
– Container managed security (declarative security)
– Bean-managed security (programmatic security)
– Container managed transactions

• Transaction attributes
– Transaction propagation

• JSF web applications
– Managed beans
– JSPs as views

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 134

Need to know
– Essential JSF HTML components
– Simplified JSF request processing cycle
– Authentication (login-config)
– Authorization (security constraint, declarative security)
– Programmatic security

• Security context propagation
– web to EJB
– EJB to EJB

• Implementing web services with JAX-WS 2.0
– anatomy of a WSDL definitions file
– Simple Java-first approach
– Essential JAXB 2.0 annotations to guide Java-XML

mapping: field access, transient

Java EE 5 - Central Concepts | Gerald Loeffler, Univ of Linz, March 2006 135

Need to know
• JMS and MDBs

– Message types
– Destination types: Queue and Topic
– Transactional MDBs and message retrieval
– Transactional SBs and message sending

thank you !

dr. gerald loeffler
enterprise software architect, shipserv ltd
gerald.loeffler@googlemail.com

	Java EE 5: Central Concepts
	Contents
	Acronyms and abbreviations
	References
	About this course
	Goals of this course
	Benotung
	Das Softwareentwicklungsprojekt
	Das Softwareentwicklungsprojekt
	Das Softwareentwicklungsprojekt
	Das Softwareentwicklungsprojekt
	Prerequisites
	Java 5 annotations
	Java 5 generics
	Dependency injection
	Dependency injection
	Dependency injection
	Dependency injection
	Dependency injection
	Aspect-oriented programming
	Layering (in software design)
	Layers (and tiers) form a stack
	Layering server-side applications
	Layering server-side applications
	Layering server-side applications
	Overview of Java EE 5
	Java EE is…
	Java EE 5 technologies / APIs
	Java EE 5 technologies / APIs
	Java EE 5 technologies / APIs
	Java EE components
	Application server
	Interception by the container
	Java EE modules
	Software versions
	Prototypical software architecture
	Prototypical software architecture
	The example application: TaskTracker
	TaskTracker
	TaskTracker use cases
	TaskTracker domain object model
	Java Persistence API
	What it’s about
	First a “realistic” example…
	Family.java
	FamilyMember.java
	Parent.java
	Child.java
	PrivateChildRoom.java
	Toy.java
	…now the theory
	Entities
	Persistent state and access to it
	Persistent state
	Entity identity: primary keys
	Family.java
	Persistence context
	EntityManager
	Entity states
	Cascading entity state changes
	Synchronisation with database
	Entity manager management
	FamilyService.java
	FamilyServiceImpl1.java
	FamilyServiceImpl3.java (1/2)
	FamilyServiceImpl3.java (2/2)
	Extended persistence context
	Extended persistence context
	FamilyServiceConversational.java
	FamilyServiceImpl2.java
	FamilyServiceImpl4.java (1/2)
	FamilyServiceImpl4.java (2/2)
	Embeddable
	Entity relationships
	Family1.java
	Child1.java
	Bidirectional entity relationships
	Bidirectional entity relationships
	Family2.java
	Child2.java
	Family3.java
	Child3.java
	Mapping defaults
	Inheritance mapping
	FamilyMember.java
	Parent.java
	Child.java
	Persistence unit and packaging
	What we didn’t talk about
	EJB 3 simplified API
	Themes
	Session and message-driven beans
	FamilyService1.java
	FamilyServiceImpl1.java
	LogInterceptor.java
	Lifecycle and lifecycle callbacks
	Lifecycle and lifecycle callbacks
	Session beans
	Session beans
	FamilyService2.java
	WorkService2.java
	FamilyServiceImpl2.java
	Stateless session beans
	Stateful session beans
	Interceptor methods
	FamilyServiceImpl1.java
	Interceptor classes
	LogInterceptor.java
	Dependency injection
	FamilyService3.java
	FamilyServiceImpl3.java
	Security terminology
	Security terminology
	What we didn’t talk about
	Implementing web services
	HTTP GET request
	HTTP response
	Need to know
	JavaServer Faces
	HTTP basics
	HTML forms – HTTP GET
	HTML forms – HTTP POST
	Need to know
	JSF request processing lifecycle
	JSF request processing life cycle
	As an aside: ELResolver
	Managed Beans and Java EE 5
	Asynchronous server-side Java
	Message-driven beans
	AsynchNappyChanger.java
	Summary: Need to know
	Need to know
	Need to know
	Need to know
	Need to know
	thank you !
	selected_from_2005.pdf
	J2EE: Introduction, Practice and Software Architecture
	About this course 1/2
	About this course
	Table of contents
	Benotung
	Das Softwareentwicklungsprojekt 1/3
	Das Softwareentwicklungsprojekt 2/3
	Das Softwareentwicklungsprojekt 3/3
	Literature and References 1/2
	Literature and References 2/2
	Software architecture and design fundamentals
	Layering (in software design)
	Layering in J2EE applications 1/4
	Layering in J2EE applications 2/4
	Layering in J2EE applications 3/4
	Layering in J2EE applications 4/4
	Other basic software design building blocks 1/2
	Other basic software design building blocks 2/2
	Introduction
	Examples of J2EE applications 1/3
	Examples of J2EE applications 2/3
	Examples of J2EE applications 3/3
	Levels of J2EE knowledge
	J2EE is...
	J2EE 1.4 APIs 1/4
	J2EE 1.4 APIs 2/4
	J2EE 1.4 APIs 3/4
	J2EE 1.4 APIs 4/4
	J2EE component overview
	Application server
	Software products used in this course
	Examples of J2EE architectures 1/3
	Examples of J2EE architectures 2/3
	Examples of J2EE architectures 3/3
	Interception by the application server / container
	J2EE component interplay
	Components, containers, protocols
	Protocols
	Task Tracker - the example application
	Task Tracker use cases
	Task Tracker domain object model
	Task Tracker database schema
	Components, modules, deployment descriptors 1/3
	Components, modules, deployment descriptors 2/3
	Components, modules, deployment descriptors 3/3
	Inversion of control and dependency injection, Spring
	Motivation 1/4
	Motivation 2/4
	Motivation 3/4
	Motivation 4/4
	Setter-base dependency injection
	IoC and J2EE
	Spring bean factory
	Spring and layering in J2EE applications 1/2
	Spring and layering in J2EE applications 2/2
	Web development with J2EE
	HTTP basics
	HTTP GET request
	HTTP response
	HTML forms - HTTP GET
	HTML forms - HTTP POST
	HttpServlet 1/2
	HttpServlet 2/2
	Servlet request URL
	Servlet (web) sessions
	Web archive (WAR) 1/2
	Web archive (WAR) 2/2
	Java Server Pages (JSP) basics 1/2
	Java Server Pages (JSP) basics 2/2
	Java Standard Tag Library (JSTL)
	Task Tracker web frontend
	Struts
	Security terminology 1/3
	Security terminology 2/3
	Security terminology 3/3
	Declarative security for web components 1/2
	Declarative security for web components 2/2
	Programmatic security for web components
	Enterprise JavaBeans
	Enterprise Java Bean (EJB) principles 1/3
	Enterprise Java Bean (EJB) principles 2/3
	Enterprise Java Bean (EJB) principles 3/3
	Remote access to an EJB
	A bit of perspective on EJBs 1/2
	A bit of perspective on EJBs 2/2
	EJB remote client view and remote clients
	EJB local client view and local clients
	EJB web service client view and web service clients
	Know what you do when using a remote view
	Passivation and activation
	Writing a session bean (local/remote client view) 1/4
	Writing a session bean (local/remote client view) 2/4
	Writing a session bean (local/remote client view) 3/4
	Writing a session bean (local/remote client view) 4/4
	Ejb-jar file
	Session beans, client and container
	Creating a session bean instance
	Removing a session bean instance
	Stateless session bean life cycle
	Stateful session bean life cycle
	Reentrancy with session beans
	Using a session bean (local/remote client view) 1/2
	Using a session bean (local/remote client view) 2/2
	EJB home factory
	Business delegate
	EJB access using Spring
	Declarative security for EJBs
	Programmatic security for EJBs
	J2EE applications
	J2EE application review
	J2EE application (ear) deployment descriptor
	EAR file
	JMS and message-driven beans
	Introduction to JMS
	MOM, JMS and message-driven beans overview
	Messaging
	Publish/subscribe messaging domain
	Point-to-point messaging domain
	Messaging and J2EE
	Destinations
	Message types
	JMS message producer
	JMS message producer using Spring
	JMS message consumer
	Message-driven bean characteristics
	MDB example
	EJB deployment descriptor
	WLS deployment descriptor
	Messaging scenario 1: asynch backend connectivity
	Messaging scenario 2: job scheduling
	JMS provider implementation architectures
	JMS and implementations
	Pub/sub often broadcast-based
	Pub/sub architecture I
	Pub/sub architecture II
	Pub/sub architecture III
	PTP mostly connection-based
	PTP architecture I
	PTP architecture II
	JMS details
	Provider model
	Decoupling producer-consumer
	Message types
	XML messages
	Message properties
	Message selectors
	Message headers
	JMS factories
	Connection factory
	Session
	Destination
	Message producer
	Non-MDB message consumer
	Durable topic subscriber
	Multiple queue receivers on one queue
	Delivery mode: persistent vs. non-persistent messages
	Message expiry and time-to-live
	QueueBrowser
	Request/reply and requestor helper classes
	MDB subtleties
	Acknowledgement, recovery and transactions in JMS
	Acknowledgement/recovery/transaction decision tree
	Message acknowledgement 1/2
	Message acknowledgement 2/2
	Session recovery
	Transaction with JMS
	JMS local transactions via transacted sessions
	Distributed transactions
	Transactions with message driven beans
	EJB deployment descriptor 1
	EJB deployment descriptor 2
	Acknowledgement/recovery/transaction decision tree
	Last messages
	Performance tips 1/2
	Performance tips 2/2
	Security considerations 1/2
	Security considerations 2/2
	JMS is suited to EAI because…
	Task Tracker and messaging
	JMS administered objects in Sun application server
	Creating a JMS connection factory
	Creating a physical queue
	Creating a destination resource
	J2EE component environment and references
	Component's environment entries
	J2EE component and dependencies (references)
	Component's EJB references 1/2
	Component's EJB references 2/2
	Component's resource manager connection factory references 1/2
	Component's resource manager connection factory references 2/2
	Component's message destination references 1/2
	Component's message destination references 2/2
	Transactions
	Transaction fundamentals 1/4
	Transaction fundamentals 2/4
	Transaction fundamentals 3/4
	Transaction fundamentals 4/4
	Transactions in J2EE
	A distributed transaction scenario
	Another distributed transaction scenario
	Transaction demarcation in servlets/JSPs 1/2
	Transaction demarcation in servlets/JSPs 2/2
	Transaction demarcation in EJBs
	Container-managed transaction demarcation 1/2
	Container-managed transaction demarcation 2/2
	Transaction attributes for container-managed tx
	Bean-managed transaction demarcation 1/2
	Bean-managed transaction demarcation 2/2
	Exceptions thrown from EJB methods 1/3
	Exceptions thrown from EJB methods 2/3
	Exceptions thrown from EJB methods 3/3
	Persistence in J2EE applications
	Object/relational mapping (ORM) - object graph
	Object/relational mapping (ORM) - relations
	ORM of inheritance hierarchies 1/4
	ORM of inheritance hierarchies 2/4
	ORM of inheritance hierarchies 3/4
	ORM of inheritance hierarchies 4/4
	Entity beans 1/2
	Entity beans 2/2
	Java Data Objects (JDO)
	Hibernate
	Lightweight ORM solutions
	Why lightweight ORM?
	Entity beans compared to lightweight ORM
	What do RDBMs do well?
	What do RDBMs do badly?
	Data is important
	The goal
	Hibernate
	Hibernate
	Auction object model and DB schema
	Persistent class
	XML mapping
	Dirty checking
	Transitive persistence
	Detachment
	Optimizing data access
	Transparent lazy fetching
	Eager (outer join) fetching 1/2
	Eager (outer join) fetching 2/2
	Optimizing data access
	Hibernate query options
	Hibernate Query Language (HQL)
	HQL examples 1/5
	HQL examples 2/5
	HQL examples 3/5
	HQL examples 4/5
	HQL examples 5/5
	Criteria query
	Criteria query as "query by example"
	Fine-grained persistence
	Components
	Detached object support 1/5
	Detached object support 2/5
	Detached object support 3/5
	Detached object support 4/5
	Detached object support 5/5
	Detached objects and transitive persistence
	Using Hibernate in a web component or EJB
	Using Hibernate in a web component or EJB
	Hibernate tools
	Persistence J2EE administration details
	Creating a DataSource in Sun app server 1/3
	Creating a DataSource in Sun app server 2/3
	Creating a DataSource in Sun app server 3/3
	Hibernate
	Epilogue
	Portability of J2EE applications 1/3
	Portability of J2EE applications 2/3
	Portability of J2EE applications 3/3
	What we didn't talk about (in sufficient detail) 1/3
	What we didn't talk about (in sufficient detail) 2/3
	What we didn't talk about (in sufficient detail) 3/3
	- The End -
	Sub-section heading here

