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Abstract

In spite of the ongoing discussion about the functioning of filtratory apparatus of the filter feeding freshwater pelagic organism
of the genus Daphnia, experiments suggest food size selectivity as well as a high degree of adaptability of filtration to food
organism size. A model of feeding adaptation of a filter feeder in the framework of a pelagic ecosystem is constructed by
modifying the simplified ecosystem model AQUAMOD for the presence of several species of algae of different size.

The assumption that filtration adaptability is an optimization type process is incorporated. Two possible strategies were
followed: an instantaneous optimality at each time interval and an integral formulation, maximization of the integral biomass
over 1-year time period. Numerical simulations as well as theoretical calculations were performed with the model. The results
suggest, that the feedback between food selection by Daphnia and algal size composition is very strong.

When growth rates of several species of algae of different size is limited by a single nutrient and a value of Daphnia filter
density is constant, competitive exclusion principle may hold, only one species survives.

Simulations for different constant values of Daphnia filter density show an effect not only on the size of algae surviving, but also
on the number of species able to survive. The integral formulation results in higher biomass suggesting that the organisms do better
if not reacting only on immediate changes but having developed mechanisms consistent with more long-term considerations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider a simplified ecosys-
tem model AQUAMOD for the presence of several
species of algae of different size. The model consists
of phosporus(x1) as a limiting nutrient for growth
of four species of algae of different size (x2–x5) and
zooplankton(x6). Similar models ofn species of mi-
croorganisms competing exploitatively for a one, two
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or more growth-limiting nutrients are used to study
continuous culture of microorganisms in chemostat
under constant condition(Wolkowicz and Xia, 1997;
Wolkowicz et al., 1997; Li et al., 2000; Li and Smith,
2001) without of any predators. All coefficients de-
scribing maximum uptake rate, mortality rate, etc.
occuring in these models are supposed to be constant.

Description of chemostat in detail and general the-
ory of chemostat is given bySmith and Waltman
(1995).

Adaptability and in general control over own activ-
ity belong to basic features specific for biological ob-
jects, responsible for their fitness to the environment.

0304-3800/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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Table 1
Equations of the model in the ecological formulation (and the corresponding mathematical notation used inTable 2.)

Size-specific parameters of algae:
Ci Frz(Vi) = FRZ× Ei(u) Forcing function

Ei(u) = exp(−0.1(u − ui)
2) Selectivity

Vi Algal cell volume [�m3]
ui = 2 1/3

√
3Vi/4π Diameter corresponding toVi

pi Pmax(Vi) = 0.5 − 0.05 LOG(Vi) Species growth rate [day−1]
ri Resp(Vi) = 0.02+ 0.002 LOG(Vi) Species resp. rate of algae [day−1]
si KS(Vi) = −5 + 10 LOG(Vi) Half saturation constant for P [mg m−3P]
f1 Faz= 0.8 + 0.25 cos(t) + 0.12 cos(2t) Sedimentation function
f2 Temp= 12+ 10 sin(t + 220) Water temperature [◦C]
f3 I0 = 280+ 210 sin(t + 240) Light intensity [cal cm−2 day−1]

State variables
Phosphorus [mg m−3P]

dP

dt
= INOUT +

5∑
i=2

UVOLA (i) + EXCR(i) − GROWTA(i)

INOUT = Q

V
(PRFOS− P)

UVOLA (i) = Frz(Vi) × A(i) × Z ×
(

1 − APZ × KSA

KSA + A(i)

)
EXCR(i) = Resp(Vi) × Temp× A(i)

GROWTA(i) = Pmax(Vi) × f(Temp) × g(I0) × A(i) × P

P + KS(Vi)

f(Temp) = exp(0.09× Temp), g(I0) = I0

I0 + IKM
ALGAE i = 1, . . . ,4 [mg m−3CHA]
A(i)

dt
= GROWTA(i) − VYZ (i) − SED(i) − RESP(i) + INOUT(i)

VYZ (i) = Frz(Vi) × A(i) × Z, SED(i) = UA × Faz× A(i), RESP(i) = EXCR(i)

INOUT(i) = Q

V
PRA(i)

Zooplankton [mg m−3P]
dZ

dt
= GRWTZ− MORTAL + ZO

GRWTZ = ∑4
i=1 Frz(Vi) ∗ A(i) ∗ Z ∗ APZ ∗ KSA ∗ CP

KSA + A(i)
MORTAL = MORTZ × Z

Parameters
a1 UA 0.05 Sedimentation rate [day−1]
a2 APZ 0.6 Maximum efficiency of

zooplankton assimilation
a3 CP 0.05 Recalculation from units of

algae to units of zooplankton
a4 KSA 60 Half saturation constant for

zooplankton feeding [mg m−3 CHA]
a5 MORTZ 0.03 Zooplankton mortality [day−1]
a6 ZO 0.002 Inflow of zooplankton

[m−3C day−1]
a7 Q/V 0.1 Hydraulic loading [day−1]
a8 PRFOS 200 Inflow phosphorus

concentration [mg m−3P]
a9 FRZ 0.9 Zooplankton filtration rate

[m−3C day−1]
a10 IKM 120 Half saturation constant for

light [cal cm−2 .day−1]
a11–a14 PRA(i) 0. Inflow of phytoplankton

concentration [mg m−3CHA]
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In ecology it did not receive until now much attention,
both empirically and theoretically.

The present concept of fitness is autecological, di-
rected to life history of individual species(Stearns,
1977). The tight coupling of the organism and the
environment and among different organisms is ne-
glected. Our hypothesis is that feedback relations
between the given species, its preys and predators
as well as its abiotic environment result in organism
behaviour different from the one predicted without re-
spect to the adaptation. The present study is a search
for methodology to evaluate the components of fit-
ness in the ecosystem context. Rather than using an
abstract approach, we have included the adaptability
of an organism into a functioning, simple ecosystem
model to test our hypothesis.

In the absence of a general theory, it seems useful
to study first some specific examples of adaptation for
which empirical ideas exist. Cladocera with their im-
portant position in the aquatic pelagial of the temper-
ate region(Peters and De Bernardi, 1987)represents
such a well studied example of selfcontrol, particularly
as concerns their feeding abilities(Scheffer, 1999;
Lampert and Brendelberg, 1996; Pop, 1991; Machacek,
1998). When cladocerans are subject to different food
concentrations, they switch, at a concentration called
incipient limitation level, from the maximum filtration
rate, to a very exact adjustment of the rate just to keep
the amount of food obtained constant (e.g.Kasprzak
et al., 1986, summary inLampert, 1987). In spite of a
relatively simple morphology, they are able to select
suitable and unsuitable food (e.g.Meise et al., 1985),
and also to change their filtration rates on a daily basis
in accordance with food availability(Haney, 1985).

The feature we are interested here is the ability of
Cladocera to adapt both the filtration area and filter
density to the amount and size structure of the food
particles (algae) population(Koza and Kǒrínek, 1985;
Kořínek et al., 1986; Mangalo, 1987). The assump-
tion that filtration in aquatic filter feeders is an opti-
mal process was followed byLehman (1976). One of
his postulates is that feeding activity ceases at very
low food concentrations.Porter et al. (1983)claim that
their observations do not support this postulate. How-
ever, their earlier data(Porter et al., 1982)indicate a
threshold value for feeding at a concentration of about
5 × 102 mm−3 algal cells and also a decreased graz-
ing (ingestion) rate at the lowest food concentration of

Table 2
System of equation of the model in the mathematical notation

dx1

dt
= a7(a8 − x1)

−
5∑

i=2

(
d1xipix1

x1 + si
+ rif2xi + xix6Ci

(
1 − d4

a4 + xi

))
dxi
dt

= d1xipix1

x1 + si
− rif2xi − xix6Ei − d2xi + ai+9a7,

for i = 2, . . . ,5

dx6

dt
= x6

(
d3

5∑
i=2

Cixi

a4 + xi
− a5

)
+ a6

whereCi = Ei(u)a9, d1 = f(Temp)g(I0), d4 = a2a4,
d3 = a3d4, d2 = a1f1

their experiment. In all experiments performed up to
now, a region over which the amount of food gathered
remains constant is always detected(Lampert, 1987).

Most of the above ideas are based on the assump-
tion, that filter feeding is a simple screening process,
the efficiency of filtration being dependent on the
relation between filter density and the size of food
particles. Details of the particle capture process by
Daphnia and other filter feeders are a subject of hearty
debate, with one school stressing inadequacies of
the “classical” view of simple filtration (Porter et al.
1983b;Ganf and Shiel, 1985), the other accumulat-
ing arguments for its validity(Brendelberger, 1985;
Brendelberger et al., 1986; Fryer, 1987). Gerritsen
et al. (1988)used epifluorescent microscopic video
image analyses and high-speed microcinematography
to show new details of Daphnia suspension feeding,
suggesting that simple sieving according to the clas-
sical views is an unlikely process for routine particle
collection.

Our assumption is that the process of food selection,
like any other life history process, is organised as to
increase the organism fitness. The connection between
feeding and fitness was demonstrated for Daphnia
magna in a careful experimental study byPorter et al.
(1982). Fitness is difficult to be measured directly,
particularly in the ecosystem context. We are using an

Table 3
Parameters for the four “species” of algae

Vi 50 500 2500 5000
ui 4.572 9.849 16.84 21.22
Pmax(Vi) 0.4151 0.3651 0.3301 0.3151
KS(Vi) 11.99 21.99 28.98 31.99
Resp(Vi) 0.0234 0.0254 0.0268 0.0274
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indirect measure, which we consider consistent with
the conclusions ofPorter et al. (1983): “Daphnia are
adapted for rapid population increase and for recov-
ery from mass mortality in cyclical environments with
conditions for optimal growth that can be expected
to reoccur but are of highly variable duration”. This
strategy is reflected in the trend to obtain maximum
instantaneous biomass possible within the limits of the
environmental constraints and the organism adaptabil-
ity. Simultaneously, we evaluate another possible strat-
egy, to adapt in a way conforming to more long-term
goals: the population should reach in a variable envi-
ronment the highest possible integral of biomass over
time. Our selected time unit is 1 year, based on the
cyclicity of conditions in temperate region.

In the absence of detailed understanding of the food
selection process by Daphnia, simplified assumptions
are made, based on accepted generalizations of empir-
ical observations. The size of food particles seems to
be an important variable of food selection (for feed-

Fig. 1. Assumed size selectivity of algae for different values ofVi. Each curve represents the selectivity of Daphnia with a particular
density of setae. For eachV , the peak of the curve corresponds to a given value ofVi.

ing experiments seeLampert, 1987, in the ecosys-
tem context e.g.Bergquist et al., 1985; Lehman and
Sandgren, 1985, theoretical investigation byCarpenter
and Kitchell, 1984). We are using a modification of
our earlier model covering the generalized size depen-
dence of the ecophysiological parameters of algae.

Under the situation specified above, the goal of the
present paper is to follow how far does the incorpora-
tion of the optimality notion for zooplankton feeding
adaptation into an ecosystem model result in trends of
changes, similar to those observed in nature. There-
fore, it is a methodical question rather than an attempt
to realistically simulate specific situations. Only the
adaptation of zooplankton filtration to the species com-
position of phytoplankton is modelled, the adaptation
to phytoplankton concentration being neglected.

This paper is organized as follows. In the next sec-
tion, we present a description of a model and selectiv-
ity function of zooplanktonEi. Section 3deals with
global behaviour of the model. InSection 4, we give
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numerical analysis of the model for different filter den-
sity u under constant environmental condition.

2. Model description

The model used is given inTables 1 and 2in ecolog-
ical and mathematical notation, respectively. It is de-
rived from the models of the series AQUAMOD (e.g.
Straškraba and Gnauck, 1985; Kmeť and Straškraba,
1989) modified by the inclusion of several “species”
of algae. The description of the light dependence of
algae is highly simplified. Instead of an approxima-
tive integration of the algal growth over depth and
time distribution of light intensity only a simple func-
tion g(I) is used, describing a Michaelis–Menten type
dependence with the halfsaturation constant for light
IKM. We consider this oversimplification appropriate
for the purposes of this paper.

Four species of algae were considered during the
computations performed:x2, . . . , x5. Each “species”

Fig. 2. Two years of simulation of the four sizes of algae withu = constant= 4. The initial conditions were set as follows:
x◦

1 = 17.3, x◦
2 = 10.1, x◦

3 = 0.1, x◦
4 = 0.01, x◦

5 = 10, x◦
6 = 0.5 under periodically varying environmental conditions.

is represented by a particular algal cell (or colony)
volume. The volumes were set arbitrarily to(Vi =
50,500,2500 and 5000�m3), to approximate the set
of “edible” algal sizes commonly occurring in our
reservoirs. The ecological parameters of the algae are
considered functions ofVi in agreement withRadtke
and Straškraba (1982)(model SELFOPT inStraškraba
and Gnauck, 1985). Table 3gives the corresponding
values used in the present simulations. However, for
other values ofVi it is possible to derive the parame-
ters from the functionsPmax(Vi), KS(Vi) and Resp(Vi)
given inTable 1. It is to be noted thatPmax corresponds
to light saturation and temperature of 0◦C; for 20◦C,
the growth rate will be about 7.2 times higher. The high
values of PRFOS are used to simulate eutrophic con-
ditions. For the filtration capability of zooplankton, we
assume that algal volumes selected at a given setting of
the filtratory apparatus have log-normal distribution.
This is identical with the “size limited predators” of
Zaret (1980)and the function we propose is approxi-
mately identical with the “selectivity” by this class of
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predators as given byZaret (1980). The description of
selectivityEi is as follows:

Ei(u) = exp(−0.1(u − ui)
2) (1)

whereu is the value of setal density directly related
to the algal diameter for which selectivity is maximal
andui = 2 1/3

√
3Vi/4π is the diameter corresponding

to each algal cell volumeVi.
Because of the nonlinear relationship between di-

ameters and algal cell volume(Vi = 4/3π(ui/2)3),
the normal distribution given byEq. (1)converts to a
shape of a log-normal character (Fig. 1). The specific
filtration rate of algae of different sizes (volumes) of
the population adapted to certain condition (i.e., with
certain values ofu becomes

Frz(Vi) = FRZ× Ei(u) (2)

where FRZ is the filtration rate for algae of the optimal
size, i.e., those which are filtered with the selectivity
factorsEi(ui) = 1.

Fig. 3. The same asFig. 2, u = 5.

3. Examination of the global model behavior

Assume in this paragraph thatEi(u) = constant for
i = 2, . . . ,5. Assume alsoaj > 0 for j = 5, . . . ,14.
We will show that under these assumptions our system
under the effect of periodically varying environmen-
tal conditions has a periodic solution with the period
360◦(∼360 days,∼1 years).

Let us denote

z(t) = x1(t) + · · · + x6(t).

Denote further

b = min(a7, d2, a5), a = a7(a6 + a11 + · · · + a14).

It follows that
◦
z(t) ≤ −z(t)b + a.

By variation of constants we obtain

z(t) ≤ exp(−bt)(z◦ − a) + a
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wherez◦ = x◦
1+· · ·+x◦

6 andx◦ is the initial condition
of the solutionx(t, t◦, x◦), i.e. x(t = t◦, x◦) = x◦.

It follows that

lim
t→∞ z(t) ≤ a.

Now, we will demonstrate that the solutions of the
system are ultimately bounded, i.e., it existsB > 0
andT > 0 such that for all solutionsx(t, t◦, x◦) of the
system holds thatx(t, t◦, x◦) < B for all t > t◦ + T ,
whereB does not depend ont◦ andx◦ andT can de-
pend ont◦ andx◦. SetT = 1 for z◦ ≤ a + 1, T =
(ln(z◦ − a))/b for z◦ > a+ 1 andB = 3(a+ 1). Evi-
dently holds true thatx(t, t◦, x◦) < B for t > t◦ + T .
The solutions of the system are therefore ultimately
bounded. According toYoshizawa (1975), there ex-
ists a periodic solution with the period 360 days (see
Figs. 2 and 3for u = 4 and 5, respectively) and the
following proposition is true.

Fig. 4. Numerical solution of system (1) under constant environmental conditions foru = 17. The initial conditions were set as follows:
x◦

1 = 17.3, x◦
2 = 10.1, x◦

3 = 0.1, x◦
4 = 0.01, x◦

5 = 10, x◦
6 = 0.5.

Proposition 1. System(1) given inTable 2under pe-
riodically varying environmental conditions with pe-
riod 360 days has a periodic solution with the same
period.

During constant density of setae(u = constant) the
zooplankton captures only phytoplankton of a certain
size range dependent onu. The growth of other species
of algae which are not at all or only to a limited ex-
tent consumed is therefore limited mainly by nutrients.
We will demonstrate that the species which is not in-
tensively consumed by zooplankton and has therefore
the best conditions for development dominates in the
struggle for existence over other species.

Assume further thatai = 0 for i = 11, . . . ,14.
Derivativesx◦

i for i = 2, . . . ,5 can be written in
the following way

◦
xi = xiFi(x, t),
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where

Fi(x, t) = d1pi
x1

x1 + si
− Eix6 − d2 − rif2.

As follows from the shape of functionspi andsi, the
following holds true:

pi > pj, ri < rj and si < sj for i < j.

Therefore,
pi

x1 + si
>

pj

x1 + sj
for i < j. (3)

In respect to the shape of the functionEi for u suffi-
ciently large(u > u2)

E2 < Ej for j = 3–5. (4)

Calculate the derivatives( ◦
xi

xj

)
= xi

xj
(Fi(x, t) − Fj(x, t)).

Fig. 5. Numerical solution of system (1) under constant environmental conditions foru = 4. The initial conditions were set as follows:
x◦

1 = 17.3, x◦
2 = 10.1, x◦

3 = 0.1, x◦
4 = 0.01, x◦

5 = 10, x◦
6 = 0.5.

In respect to(3) and (4), the following holds true

F2(x, t) > Fj(x, t) for j = 3–5.

By variation of constants, we obtain

x2(t)

xj(t)
= x2(0)

xj(0)
exp

(∫ t

0
(F2(x, s) − Fj(x, s))ds

)
.

It is true that

lim
t→∞

x2(t)

xj(t)
= ∞

Due to boundedness of the solutions,xj(t) converges
to zero forj = 3–5 and the following proposition is
true.

Proposition 2. In respect to(3), (4)and u sufficiently
large the species of algae are not able to coexist.

Remark. In a similar way, we can show that forx2 =
0, x4 andx5 go extinct fort → ∞.
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4. Model simulation

Figs. 4–6show the dynamics of algae in a simpli-
fied aquatic ecosystem simulating the presence of zoo-
plankton of different body size and correspondingly
different filter density,u under constant environmental
condition. The comparison of the three figures for se-
lected arbitrary constant values ofu demonstrates that
not only the size but also the number of algal species
surviving in the system depends onu. For the envi-
ronmental conditions specified for the given simula-
tion experiment andu = 17 (Fig. 4) the algal sizesxj
for j = 3,4,5 converge to zero and only the smallest
phytoplankton speciesx2 survives. This is equivalent
to assume that Daphnia in this experiment is an effec-
tive screener of larger food particles, the small ones
remaining much less affected. Whenu is set to 4 or
5 in Fig. 5 and 6, i. e., the filter of Daphnia present
is more dense, two species of algae are able to coex-

Fig. 6. Numerical solution of system (1) under constant environmental conditions foru = 5. The initial conditions were set as follows:
x◦

1 = 17.3, x◦
2 = 10.1, x◦

3 = 0.1, x◦
4 = 0.01, x◦

5 = 10, x◦
6 = 0.5.

ist. With a denser filter the smaller algae are filtered
out more efficiently; because of the nonlinear effects
of algal size on ecological parameters a broader spec-
trum of species of different sizes is able to survive in
the system under the environmental conditions identi-
cal with the experiments shown inFig. 2 and 3.

For chemostat models with one growth-limiting nu-
trient, we get the following cases:

1. chemostat is an inadequate environment for either
population to survive,

2. model exhibits competitive exclusion.

Under constant environmental conditions, the sys-
tem (1) is autonomous. With respect to (3) andu con-
stant, there are no nontrivial interior equilibria. Equi-
librium point can exist only forx3 = x4 = x5 = 0
(or x2 = x3 = x4 = 0 and so on). Detailed analysis
of similar systems is given, for example, inKmět and
Straškraba (1989), Scheffer et al. (2000).
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5. Optimization

In this section, we are interested in the ability of
Cladocera to adapt both the filtration area and filter
density to the amount and size structure of the food
particles (algae) population. We assume that filtration
in aquatic filter feeders is an optimal process of max-
imal feeding strategy. We will investigate two strate-
gies(Kmět, 1996):

(1) instantaneous maximal biomass production as a
goal function (local optimality), i.e.,

◦
x6 = f6(x, u, t) → max

in respect tou for all t,
(2) integral maximal biomass (global optimality), i.e.,

J(u) =
∫ t

0
x6(t)dt.

Fig. 7. Optimal solution with local strategy under constant environmental conditions. Initial conditions:x◦
1 = 80.3, x◦

2 = 0.4, x◦
3 = 0.3,

x◦
4 = 0.2, x◦

5 = 0.1, x◦
6 = 0.1, t = 120.

Local optimality.
In the case of strategy 1, we maximize the following

function

J(u) =
5∑

i=2

Ei(u)d3xia9

(xi + a4)
.

This function attains its maximum on the interval
(u2, u5), whereu2 < u3 < u4 < u5.

Global optimality.
In case of strategy 2, we have the following optimal

control problem: to find a functionu∧(t), for which
the goal function

J(
∧
u) =

∫ T

0
x6(t)dt

attains its maximum, whereT denotes the lifetime of
an individual Daphnia.
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Fig. 8. Optimal solution with local strategy under constant environmental conditions. Initial conditions:x◦
1 = 80.3, x◦

2 = 0.4, x◦
3 = 0.3,

x◦
4 = 0.2, x◦

5 = 0.1, x◦
6 = 0.1, t = 210.

The Pontryagin maximum principle(Pontryagin
et al., 1983)for this optimal control problem results
for T fixed andu∧ optimal in the following system
of equations:

◦
x(t) = ∂H(x, z, u, t)

∂z
, x(0) = x0 (5)

◦
z(t) = ∂H(x, z, u, t)

∂x
, z(T) = 0 (6)

H(x, z,
∧
u, t) = max

u
H(x, z, u, t) (7)

where

H(x, z, u, t)

=
(
a7(a8 − x1) −

5∑
i=2

(
d1xipix1

x1 + si

+ rif2xi + xix6Ci

(
1 − d4

a4 + xi

)))
z1

+
5∑

i=2

(
d1xipix1

x1 + si
− rif2xi

− xix6Ei − d2xi + ai+9a7

)
zi

+
(
x6

(
d3

5∑
i=2

Cixi

a4 + xi
− a5

)
+ a6

)
z6 + x6

We have solved the given optimal control prob-
lem by an iteration method described byBrunovský
(1980) and by subprogram according toPierre and
Lowe (1975).

The results of numerical solutions (Figs. 7–10)
have shown that the optimal strategiesu∼(t) andu∧(t)
based on short or long-term perspective, respectively,
have different time trajectory for different values of
Faz= 0.8+0.25 cos(t)+0.12 cos(2t)—sedimentation
function, Temp= 12+ 10 sin(t + 220)—water tem-
perature, andI0 = 280 + 210 sin(t + 240)—light
intensity (t = 120,210).
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Fig. 9. Optimal solution with global strategy under constant environmental conditions. Initial conditions:x◦
1 = 80.3, x◦

2 = 0.4, x◦
3 = 0.3,

x◦
4 = 0.2, x◦

5 = 0.1, x◦
6 = 0.1, t = 120.

When following local strategy, the selection ofu is
that the smallest alga is filtered independently of local
conditions. Switching is observed among the values
of u permitting maximal filtration of the individual
species (Fig. 7 and 8). The initial concentrations of
different algal sizes have only a minor influence.
Global strategy results in a different behavior: the
smallest species is not filtered at all (Fig. 9 and 10).
As a result its concentration rises and only when the
smallest alga reaches high concentrations, Daphnia
changes the control so that this smallest species is uti-
lized. Whenu∧(t) is optimal (what is valid according
to numerical results) then

J(
∧
u(t))�J(∼u(t)),

i.e., the total biomass for the short-term perspective
is smaller or maximally equal to the biomass for the
long-term perspective. The numerical results have

Table 4
Result of goal function evaluation for local and global optimality

J(u∼) 10.04 (Fig. 7) 71.23 (Fig. 8)
J(u∧) 15.2 (Fig. 9) 80.42 (Fig. 10)

shown, that for the initial conditions considered

J(
∧
u(t)) > J(

∼
u(t))

(seeTable 4).

6. Discussion

The results obtained confirm the hypothesis that the
change of food screening process by Cladocera can be
understood as an adaptation to maximize its biomass.
Incorporation of this assumption into the model yields
in systematic reactions of the model qualitatively con-
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Fig. 10. Optimal solution with global strategy under constant environmental conditions. Initial conditions:x◦
1 = 80.3, x◦

2 = 0.4, x◦
3 = 0.3,

x◦
4 = 0.2, x◦

5 = 0.1, x◦
6 = 0.1, t = 210.

sistent with the observed changes. Evidently, Daphnia
is not in a position to switch between different values
of u rapidly, as predicted by the model. However, it
can be assumed that an intermediate value ofu is in
fact selected, or some other mechanism used for cop-
ing with this problem in reality.

Simulations with the model suggest that both the
number of species surviving and their abundance de-
pends on zooplankton food selectivity. This means
that the optimum strategy of an organism in an
ecosystem food web depends both on mutual inter-
actions between the change of food selectivity by
zooplankton and changes of the reaction of phyto-
plankton species on the environment. Because of
the prevalence of nonlinear, mostly feedback rela-
tions within the ecosystem and between organism
sizes and their physiological parameters, it is impos-
sible to intuitively predict the outcome of various
situations.

Chemostat model with one growth-limiting nutri-
ent exhibits competetive exclusion or chemostat is
an inadequate environment for either population to
survive.

The main indication of the model results is that food
selectivity based on maximal production of biomass
affects the survival of algae of different sizes (x2–x5)
in the model. In the case of short-term strategy popu-
lation dynamic resulting from a model presented that
Daphnia followed the prediction of optimal foraging
theory(Křiván, 1996; Ǩriván and Sikder, 1999; Ǩriván
and Eisner, 2003). When we consider a long-term
strategy, the results of this study contradict the instan-
tenous maximal feeding strategy and are in agreement
with the finding byPlath (1998).

The higher biomass of zooplankton obtained in the
case of integral formulation points towards the as-
sumption that the organisms do better if not reacting
only to the immediate changes, but having developed
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mechanisms consistent with more long-term consid-
eration.
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