

Introduction to Computational
Linguistics

Lecture 4: Grammars and Parsing
Pavlina Ivanova

University of Plovdiv, Bulgaria

Thanks to Daniel Jurafsky for many of these slides!

Outline for Grammar/Parsing
• Context-Free Grammars and Constituency
• Some common CFG phenomena for English

– Sentence-level constructions
– NP, PP, VP
– Coordination
– Subcategorization

• Top-down and Bottom-up Parsing
• Problems with these parsers

– Ambiguity
– Left-recursion
– Repeated work

• Solution: Dynamic Programming parsing
– CKY
– Earley

• Quick sketch of probabilistic parsing

Review

• Parts of Speech
– Basic syntactic/morphological categories that

words belong to
• Part of Speech tagging

– Assigning parts of speech to all the words in a
sentence

Syntax
• Syntax: from Greek syntaxis, “setting out together,

arrangement’
• Refers to the way words are arranged together, and

the relationship between them.
• Distinction:

– Prescriptive grammar: how people ought to talk
– Descriptive grammar: how they do talk

• Goal of syntax is to model the knowledge of that
people unconsciously have about the grammar of
their native language

Syntax
• Applications

– Grammar checkers
– Database access
– Question answering
– Information retrieval
– Information extraction
– Machine translation
– Summarization
– Text generating

3 key ideas of syntax
• Constituency

Groups of words may behave as a single unit.
Ex.: the dog, a big dog, the dog that barked

• Grammatical relations
Formalization of ideas from traditional grammar such as SUBJECTS and
OBJECTS, and other related notions.
Ex. She ate a mammoth breakfast.

• Subcategorization and dependency relations (local and long-
distance dependencies)
–Refer to certain kinds of relations between words and phrases. Ex.: the
verb want can be followed by an infinitive, as in I want to fly to Detroit,
or a noun phrase, as in I want a flight to Detroit. But the verb find cannot
be followed by an infinitive (*I found to fly to Dallas).

Context-Free Grammars
• Capture constituency and ordering

– Ordering:
• What are the rules that govern the ordering of words

and bigger units in the language?
– Constituency:

How words group into units and how the various
kinds of units behave

– Constituent:
Group of words that may behave as a single unit or
phrase

Constituency
• Noun phrases (NPs)

• Three parties from Brooklyn
• A high-class spot such as Mindy’s
• The Broadway coppers
• They
• Harry the Horse
• The reason he comes into the Hot Box

• How do we know these form a constituent?
– They can all appear before a verb:

• Three parties from Brooklyn arrive…
• A high-class spot such as Mindy’s attracts…
• The Broadway coppers love…
• They sit…

Constituency (II)
– They can all appear before a verb:

• Three parties from Brooklyn arrive…
• A high-class spot such as Mindy’s attracts…
• The Broadway coppers love…
• They sit

– But individual words can’t always appear before verbs:
• *from arrive…
• *as attracts…
• *the is
• *spot is…

– Must be able to state generalizations like:
• Noun phrases occur before verbs

Constituency (IV)

• Practical test for constituent:
– May appears independently
– May be replaced with other
– May be moved (in the beginning, at the end)

Context-Free Grammars (CFG)
• Also called Phrase-Structure Grammar
• Equivalent to Backus-Naur Form (BNF)
• Consists of:

– Set of rules (productions) – express the ways that symbols
of the language can be grouped and ordered together

– Lexicon of words (symbols)
Symbols are divided into 2 classes:

• Terminal symbols – correspond to words in the language
• Non-terminal symbols – express generalizations

CFG Examples
• S  NP VP
• NP  Det NOMINAL
• NOMINAL  Noun
• VP  Verb
• Det  a
• Noun  flight
• Verb  left

CFGs

• S  NP VP
– This says that there are units called S, NP, and VP

in this language
– That an S consists of an NP followed immediately

by a VP
– Doesn’t say that that’s the only kind of S
– Nor it says that this is the only place that NPs and

VPs occur

Generativity

• As with FSAs and FSTs you can view these
rules as either analysis or synthesis machines
– Generate strings in the language
– Reject strings not in the language
– Assign structures (trees) on strings in the language

Derivations

• A derivation is a sequence of rules applied to a
string that accounts for that string
– Covers all the elements in the string
– Covers only the elements in the string

Derivations as Trees (Parse Tree)

Parsing

• Parsing is the process of taking a string and a
grammar and returning a parse tree(s) for that
string

Context?
• The notion of context in CFGs has nothing to do with

the ordinary meaning of the word context in
language.

• All it really means is that the non-terminal on the left-
hand side of a rule is out there all by itself (free of
context)
A  B C
Means that I can rewrite an A as a B followed by a C
regardless of the context in which A is found

Key Constituents (English)

• Sentences
• Noun phrases
• Verb phrases
• Prepositional phrases

Sentence-Types

• Declaratives: A plane left
S  NP VP

• Imperatives: Leave!
S  VP

• Yes-No Questions: Did the plane leave?
S  Aux NP VP

• WH Questions: When did the plane leave?
S  WH Aux NP VP

NPs
• NP  Pronoun

– I came, you saw it, they conquered
• NP  Proper-Noun

– Los Angeles is west of Texas
– John Hennesey is the president of Stanford

• NP  Det Nominal
• Nominal  Noun

– The president
• Nominal  Nominal Noun

– A morning flight to Denver

VPs

• VP → Verb NP
– prefer a morning flight

• VP → Verb NP PP
– leave Boston in the morning

• VP → Verb PP
– leaving on Thursday

PPs

• PP  Preposition NP
– From LA
– To Boston
– On Tuesday
– With lunch

Recursion

• We’ll have to deal with rules such as the
following where the non-terminal on the left
also appears somewhere on the right (directly).
NP  NP PP [[The flight] [to Boston]]
VP  VP PP [[departed Miami] [at noon]]

Recursion
• Of course, this is what makes syntax interesting

flights from Denver
Flights from Denver to Miami
Flights from Denver to Miami in February
Flights from Denver to Miami in February on a Friday
Flights from Denver to Miami in February on a Friday under $300
Flights from Denver to Miami in February on a Friday under $300 with
lunch

Recursion

• Of course, this is what makes syntax interesting
[[flights] [from Denver]]
[[[Flights] [from Denver]] [to Miami]]
[[[[Flights] [from Denver]] [to Miami]] [in February]]
[[[[[Flights] [from Denver]] [to Miami]] [in February]]

[on a Friday]]
Etc.

Implications of recursion and
context-freeness

• If you have a rule like
– VP  V NP

– It only cares that the thing after the verb is an NP.
It doesn’t have to know about the internal affairs
of that NP

The Point
• VP  V NP
• I hate

flights from Denver
Flights from Denver to Miami
Flights from Denver to Miami in February
Flights from Denver to Miami in February on a Friday
Flights from Denver to Miami in February on a Friday under $300
Flights from Denver to Miami in February on a Friday under $300 with

lunch

Bracketed Notation
[S [NP [PRO I] [VP [V prefer [NP [NP [Det a][Nom [Nom [N morning]] [N flight]]]]

Coordination Constructions

• S  S and S
– John went to NY and Mary followed him

• NP  NP and NP
• VP  VP and VP
• …
• In fact the right rule for English is

X  X and X

Problems

• Agreement
• Subcategorization
• Movement

Agreement
• This dog
• Those dogs

• This dog eats
• Those dogs eat

• *This dogs
• *Those dog

• *This dog eat
• *Those dogs eats

Possible CFG Solution
• S  NP VP
• NP  Det Nominal
• VP  V NP
• …

One way is to expand our
grammar with multiple sets
of rules.

• SgS  SgNP SgVP
• PlS  PlNp PlVP
• SgNP  SgDet SgNom
• PlNP  PlDet PlNom
• PlVP  PlV NP
• SgVP  SgV Np
• …

CFG Solution for Agreement
• It works and stays within the power of CFGs
• But its ugly and it doesn’t scale all that well

• It doubles the size of grammar

These problems are compounded in languages
like Bulgarian, German or French, which not
only have number-agreement as in English,
but also have gender agreement.

Subcategorization
• Verbs can be subcategorized by the types of

complements/arguments they expect.
• Sneeze: John sneezed
• Find: Please find [a flight to NY]NP

• Give: Give [me]NP[a cheaper fare]NP

• Help: Can you help [me]NP[with a flight]PP

• Prefer: I prefer [to leave earlier]TO-VP

• Said: You said [United has a flight]S

• …

Subcategorization

• *John sneezed the book
• *I prefer United has a flight
• *Give with a flight

• Subcat expresses the constraints that a
predicate (verb for now) places on the number
and syntactic types of arguments it wants to
take (occur with).

So?

• So the various rules for VPs overgenerate.
– They permit the presence of strings containing verbs

and arguments that don’t go together
– For example
– VP -> V NP

therefore
Sneezed the book is a VP since “sneeze” is a verb
and “the book” is a valid NP

Subcategorization
The possible sets of complements of a verb are called its
subcategorization frame

• Sneeze: John sneezed
• Find: Please find [a flight to NY]NP

• Give: Give [me]NP[a cheaper fare]NP

• Help: Can you help [me]NP[with a flight]PP

• Prefer: I prefer [to leave earlier]TO-VP

• Told: I was told [United has a flight]S

• …

Another way of talking about the relation between the verb and
these other constituents is to think of the verb as a logical
predicate and the constituents as logical arguments of the
predicate.

Forward Pointer

• It turns out that verb subcategorization facts
will provide a key element for semantic
analysis (determining who did what to who in
an event).

Possible CFG Solution
• VP -> V
• VP -> V NP
• VP -> V NP PP
• …

Subtypes of verbs:
– intransitive
– transitive

Each rule could be
modified to require the
appropriate verb subtypes

• VP -> IntransV
• VP -> TransV NP
• VP -> TransVwPP NP PP
• …

Problem: The vast explosion in the number of rules.

Movement

• Core example
– My travel agent booked the flight

Movement

• Core example
– [[My travel agent]NP [booked [the flight]NP]VP]S

• I.e. “book” is a straightforward transitive verb.
It expects a single NP arg within the VP as an
argument, and a single NP arg as the subject.

Movement

• What about?
– Which flight do you want me to have the travel

agent book?
• The direct object argument to “book” isn’t

appearing in the right place. It is in fact a long
way from where its supposed to appear.

• And note that its separated from its verb by 2
other verbs.

CFGs: a summary
• CFGs appear to be just about what we need to

account for a lot of basic syntactic structure in
English.

• But there are problems
– That can be dealt with adequately, although not elegantly,

by staying within the CFG framework.
• There are simpler, more elegant, solutions that take us

out of the CFG framework (beyond its formal power)
• Syntactic theories: HPSG, LFG, Minimalism, etc

Other Syntactic stuff

• Grammatical Relations
– Subject

• I booked a flight to New York
• The flight was booked by my agent.

– Object
• I booked a flight to New York

– Complement
• I said that I wanted to leave

Dependency Grammars

• The syntactic structure of a sentence is
described purely in terms of words and binary
semantic or syntactic relations between these
words.

Dependency Parsing
• Word to word links instead of constituency
• Based on the European rather than American

traditions
• But dates back to the Greeks
• The original notions of Subject, Object and the

progenitor of subcategorization (called ‘valence’)
came out of Dependency theory.

• Dependency parsing is quite popular as a
computational model since relationships between
words are quite useful

Dependency Grammars

Dependency Grammars

• One of the main advantages of pure
dependency grammars is their ability to handle
languages with relatively free word order.

Parsing

• Parsing: assigning correct trees to input strings
• Correct tree: a tree that covers all and only the

elements of the input and has an S at the top
• For now: enumerate all possible trees

– A further task: disambiguation: means choosing
the correct tree from among all the possible trees.

Parsing

• The Link Grammar parser
– http://www.link.cs.cmu.edu/link/

• Colorado parser
– http://sds.colorado.edu/SEPA

• The Connexor dependency parser
– http://www.connexor.com/demos/syntax_en.html

http://www.link.cs.cmu.edu/link/
http://www.link.cs.cmu.edu/link/
http://www.link.cs.cmu.edu/link/
http://sds.colorado.edu/SEPA
http://www.connexor.com/demos/syntax_en.html

Treebanks

• Parsed corpora in the form of trees
• The Penn Treebank

– The Brown corpus
– The WSJ corpus

• Tgrep
– http://www.ldc.upenn.edu/ldc/online/treebank/
– http://www.ldc.upenn.edu/ldc/online/

http://www.ldc.upenn.edu/ldc/online/treebank/
http://www.ldc.upenn.edu/ldc/online/

TreeBanks

Treebanks

Treebanks

Treebank Grammars

Lots of flat rules

Example sentences from those
rules

• Total: over 17,000 different grammar rules in
the 1-million word Treebank corpus

Parsing

• The parser can be viewed as searching through
the space of possible parse trees to find the
correct parse tree for a given sentence.

• As with everything of interest, parsing
involves a search which involves the making
of choices

• We’ll start with some basic (meaning bad)
methods before moving on to the one or two
that you need to know

For Now

• Assume…
– You have all the words already in some buffer
– The input isn’t pos tagged
– We won’t worry about morphological analysis
– All the words are known

Parsing

Parsing

Top-Down Parsing

• Since we’re trying to find trees rooted with an
S (Sentences) start with the rules that give us
an S.

• Then work your way down from there to the
words.

Top Down Space

Bottom-Up Parsing

• Of course, we also want trees that cover the
input words. So start with trees that link up
with the words in the right way.

• Then work your way up from there.

Bottom-Up Space

Control

• Of course, in both cases we left out how to
keep track of the search space and how to
make choices
– Which node to try to expand next
– Which grammar rule to use to expand a node

Top-Down, Depth-First, Left-to-Right
Search

Example

TopDownDepthFirstLeftoRight

flight flight

TopDownDepthFirstLeftoRight

flightflight

Top-Down and Bottom-Up

• Top-down
– Only searches for trees that can be answers (i.e.

S’s)
– But also suggests trees that are not consistent with

the words
• Bottom-up

– Only forms trees consistent with the words
– Suggest trees that make no sense globally

So Combine Them

• There are a million ways to combine top-down
expectations with bottom-up data to get more
efficient searches

• Most use one kind as the control and the other
as a filter
– As in top-down parsing with bottom-up filtering

Adding Bottom-Up Filtering

3 problems with TDDFLtR Parser

• Left-Recursion
• Ambiguity
• Inefficient reparsing of subtrees

Left-Recursion

• What happens in the following situation
– S -> NP VP
– S -> Aux NP VP
– NP -> NP PP
– NP -> Det Nominal
– …
– With the sentence starting with

• Did the flight…

Ambiguity

• One morning I shot an elephant in my
pyjamas. How he got into my pajamas I don’t
know. (Groucho Marx)

Lots of ambiguity

• VP -> VP PP
• NP -> NP PP
• Show me the meal on flight 286 from SF to

Denver
• 14 parses!

Lots of ambiguity

• Church and Patil (1982)
– Number of parses for such sentences grows at rate of

number of parenthesizations of arithmetic expressions
– Which grow with Catalan numbers

€

C (n) = 1

n + 1

2 n

n











PPs Parses
1 2
2 5
3 14
4 132
5 469
6 1430

Avoiding Repeated Work

• Parsing is hard, and slow. It’s wasteful to redo
stuff over and over and over.

• Consider an attempt to top-down parse the
following as an NP

A flight from Indianapolis to Houston on TWA

flight

flight

flight

Dynamic Programming
• We need a method that fills a table with partial

results that
– Does not do (avoidable) repeated work
– Does not fall prey to left-recursion
– Can find all the pieces of an exponential number of

trees in polynomial time.
• We’ll introduce 2

– CKY
– Earley

The CKY (Cocke-Kasami-Younger)
Algorithm

• Requires the grammar be in Chomsky Normal
Form (CNF)
– All rules must be in following form:

• A -> B C
• A -> w

• Any grammar can be converted automatically
to Chomsky Normal Form

Converting to CNF
• Rules that mix terminals and non-terminals

– Introduce a new dummy non-terminal that covers the
terminal

• INFVP -> to VP replaced by:
• INFVP -> TO VP
• TO -> to

• Rules that have a single non-terminal on right (“unit
productions”)
– Rewrite each unit production with the RHS of their

expansions
• Rules whose right hand side length >2

– Introduce dummy non-terminals that spread the right-hand
side

Automatic Conversion to CNF

CKY Recognition
• We will use a simple two-dimensional matrix to

encode the structure of a parse tree
– Like other dynamic programming methods!

• For a sentence of length n
– We will use the upper-triangular portion

• Of an (n+1) x (n+1) matrix
– Each cell [i,j] contains the set of constituents that span

positions i thru j of the input:

– NP[1,3]
– __________________

– 0 Book 1 the 2 flight 3 through 4 Chicago 5

CKY Recognition
• Each cell [i,j] contains the set of constituents that

span positions i thru j of the input
• CNF -> Each non-terminal has exactly 2 daughters
• Therefore, for each constituent covering [i,j]

– There must be a point k, i < k < j, where it can be split
– Given such a k, the first constituent [i,k] lies to left
– And the second constituent [k,j] lies beneath on column j

CKY Algorithm

0 Book 1 the 2 flight 3 through 4 Chicago 5

• Filling the
[i,j]th cell in the
CKY table

Filling the last column after reading
the word Houston

Filling the last column after reading
the word Chicago

Filling the last column after reading
the word Chicago

Filling the last column after reading
the word Chicago

Filling the last column after reading
the word Chicago

Parsing and Ambiguity

• We can store all the different parses efficiently
• But retrieving parses, we still have to do all the

exponential work
• So in practice, we will need some way to do

disambiguation as we go, so we don’t have to
store every parse of very ambiguous sentences.

Earley Parsing
• Doesn’t require CNF grammars
• Where CKY is bottom-up, Earley is top-down
• Fills a table in a single sweep over the input

words
– Table is length N+1; N is number of words
– Table entries represent

• Completed constituents and their locations
• In-progress constituents
• Predicted constituents

Earley States

• The table-entries are called states and are
represented with dotted-rules.
S -> · VP A VP is predicted

NP -> Det · Nominal An NP is in progress

VP -> V NP · A VP has been found

Earley States/Locations

• We need to know where these things are in the input:
S -> · VP [0,0] A VP is predicted at the

start of the sentence
NP -> Det · Nominal [1,2] An NP is in progress; the

Det goes from 1 to 2
VP -> V NP · [0,3] A VP has been found

starting at 0 and ending at 3

Graphically

Earley Algorithm

• March through chart left-to-right.
• At each step, apply 1 of 3 operators

– Predictor
• Create new states representing top-down expectations

– Scanner
• Match word predictions (rule with word after dot) to

words
– Completer

• When a state is complete, see what rules were looking
for that completed constituent

Predictor
• Given a state

– With a non-terminal to right of dot
– That is not a part-of-speech category
– Create a new state for each expansion of the non-terminal
– Place these new states into same chart entry as generated state,

beginning and ending where generating state ends.
– So predictor looking at

• S -> . VP [0,0]
– results in

• VP -> . Verb [0,0]
• VP -> . Verb NP [0,0]

Scanner
• Given a state

– With a non-terminal to right of dot
– That is a part-of-speech category
– If the next word in the input matches this part-of-speech
– Create a new state with dot moved over the non-terminal
– So scanner looking at

• VP -> . Verb NP [0,0]
– If the next word, “book”, can be a verb, add new state:

• VP -> Verb . NP [0,1]
– Add this state to chart entry following current one
– Note: Earley algorithm uses top-down input to disambiguate

POS! Only POS predicted by some state can get added to chart!

Completer
• Applied to a state when its dot has reached right end of role.
• Parser has discovered a category over some span of input.
• Find and advance all previous states that were looking for this

category
– copy state, move dot, insert in current chart entry

• Given:
– NP -> Det Nominal . [1,3]
– VP -> Verb. NP [0,1]

• Add
– VP -> Verb NP . [0,3]

Earley: how do we know we are
done?

• How do we know when we are done?.
• Find an S state in the final column that spans

from 0 to n+1 and is complete.
• If that’s the case you’re done.

– S –> α · [0,n+1]

Earley

• So sweep through the table from 0 to n+1…
– New predicted states are created by starting top-

down from S
– New incomplete states are created by advancing

existing states as new constituents are discovered
– New complete states are created in the same way.

Earley

• More specifically…
1. Predict all the states you can upfront
2. Read a word

1. Extend states based on matches
2. Add new predictions
3. Go to 2

3. Look at N+1 to see if you have a winner

Example

• Book that flight
• We should find… an S from 0 to 3 that is a

completed state…

Example

Example

Earley example cont’d

Example

What is it?

• What kind of parser did we just describe (trick
question).
– Earley parser… yes
– Not a parser – a recognizer

• The presence of an S state with the right attributes in the
right place indicates a successful recognition.

• But no parse tree… no parser
• That’s how we solve (not) an exponential problem in

polynomial time

Converting Earley from Recognizer
to Parser

• With the addition of a few pointers we have a
parser

• Augment the “Completer” to point to where
we came from.

Augmenting the chart with
structural information

Retrieving Parse Trees from Chart
• All the possible parses for an input are in the table
• We just need to read off all the backpointers from every

complete S in the last column of the table
• Find all the S -> X . [0,N+1]
• Follow the structural traces from the Completer
• Of course, this won’t be polynomial time, since there could be

an exponential number of trees
• So we can at least represent ambiguity efficiently

Earley and Left Recursion

• Earley solves the left-recursion problem
without having to alter the grammar or
artificially limiting the search.
– Never place a state into the chart that’s already

there
– Copy states before advancing them

Earley and Left Recursion: 1

• S -> NP VP
• NP -> NP PP

• Predictor, given first rule:
– S -> · NP VP [0,0]

• Predicts:
– NP -> · NP PP [0,0]
– stops there since predicting same again would be redundant

Earley and Left Recursion: 2

• When a state gets advanced make a copy and
leave the original alone…

• Say we have NP -> · NP PP [0,0]
• We find an NP from 0 to 2 so we create

NP -> NP · PP [0,2]
• But we leave the original state as is

Dynamic Programming Approaches

• Earley
– Top-down, no filtering, no restriction on grammar form

• CYK
– Bottom-up, no filtering, grammars restricted to Chomsky-

Normal Form (CNF)
• Details are not important...

– Bottom-up vs. top-down
– With or without filters
– With restrictions on grammar form or not

How to do parse disambiguation

• Probabilistic methods
• Augment the grammar with probabilities
• Then modify the parser to keep only most

probable parses
• And at the end, return the most probable parse

Probabilistic CFGs

• The probabilistic model
– Assigning probabilities to parse trees

• Getting the probabilities for the model
• Parsing with probabilities

– Slight modification to dynamic programming
approach

– Task is to find the max probability tree for an input

Probability Model

• Attach probabilities to grammar rules
• The expansions for a given non-terminal sum

to 1
VP -> Verb .55
VP-> Verb NP .40
VP-> Verb NP NP .05
– Read this as P(Specific rule | LHS)

PCFG

PCFG

Probability Model (1)

• A derivation (tree) consists of the set of
grammar rules that are in the tree

• The probability of a tree is just the product of
the probabilities of the rules in the derivation.

Probability model

• P(T,S) = P(T)P(S|T) = P(T); since P(S|
T)=1

€

P (T , S) = p (rn)
n ∈T

∏

Probability Model (1.1)

• The probability of a word sequence P(S) is the
probability of its tree in the unambiguous case.

• It’s the sum of the probabilities of the trees in
the ambiguous case.

Getting the Probabilities

• From an annotated database (a treebank)
– So for example, to get the probability for a

particular VP rule just count all the times the rule
is used and divide by the number of VPs overall.

Probabilistic Grammar
Assumptions

• We’re assuming that there is a grammar to be
used to parse with.

• We’re assuming the existence of a large robust
dictionary with parts of speech

• We’re assuming the ability to parse (i.e. a parser)
• Given all that… we can parse probabilistically

Typical Approach

• Bottom-up (CYK) dynamic programming
approach

• Assign probabilities to constituents as they are
completed and placed in the table

• Use the max probability for each constituent
going up

What’s that last bullet mean?
• Say we’re talking about a final part of a parse

– S->0NPiVPj

The probability of the S is…
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing
bottom-up parsing

Modern parsers: lexicalized PCFG

• Modern CFG-based parsers use lexicalized
PCFGs
– Collins parser (Bikel version of this in Java)
– Charniak parser
– Stanford parser

• Also recent probabilistic versions of
– HPSG parser
– LFG parser

Summary
• Context-Free Grammars
• Parsing

– Top Down, Bottom Up Metaphors
– Dynamic Programming Parsers: CKY. Earley

• Disambiguation:
– PCFG
– Probabilistic Augmentations to Parsers
– Treebanks

