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Outline for Grammar/Parsing
• Context-Free Grammars and Constituency
• Some common CFG phenomena for English

– Sentence-level constructions
– NP, PP, VP
– Coordination
– Subcategorization

• Top-down and Bottom-up Parsing
• Problems with these parsers

– Ambiguity
– Left-recursion
– Repeated work

• Solution: Dynamic Programming parsing
– CKY
– Earley

• Quick sketch of probabilistic parsing



  

Review

• Parts of Speech
– Basic syntactic/morphological categories that 

words belong to
• Part of Speech tagging

– Assigning parts of speech to all the words in a 
sentence



  

Syntax
• Syntax: from Greek syntaxis, “setting out together, 

arrangement’
• Refers to the way words are arranged together, and 

the relationship between them.
• Distinction:

– Prescriptive grammar: how people ought to talk
– Descriptive grammar: how they do talk

• Goal of syntax is to model the knowledge of that 
people unconsciously have about the grammar of 
their native language



  

Syntax
• Applications

– Grammar checkers
– Database access
– Question answering 
– Information retrieval
– Information extraction
– Machine translation
– Summarization
– Text generating



  

3 key ideas of syntax
• Constituency

Groups of words may behave as a single unit.
Ex.: the dog, a big dog, the dog that barked

• Grammatical relations
Formalization of ideas from traditional grammar such as SUBJECTS and 
OBJECTS, and other related notions.
Ex. She ate a mammoth breakfast.

• Subcategorization and dependency relations (local and long-
distance dependencies)
–Refer to certain kinds of relations between words and phrases. Ex.: the 
verb want can be followed by an infinitive, as in I want to fly to Detroit, 
or a noun phrase, as in I want a flight to Detroit. But the verb find cannot 
be followed by an infinitive (*I found to fly to Dallas).



  

Context-Free Grammars
• Capture constituency and ordering

– Ordering:
• What are the rules that govern the ordering of words 

and bigger units in the language?
– Constituency:

How words group into units and how the various 
kinds of units behave

– Constituent: 
Group of words that may behave as a single unit or 
phrase



  

Constituency
• Noun phrases (NPs)

• Three parties from Brooklyn
• A high-class spot such as Mindy’s
• The Broadway coppers
• They
• Harry the Horse
• The reason he comes into the Hot Box

• How do we know these form a constituent?
– They can all appear before a verb:

• Three parties from Brooklyn arrive…
• A high-class spot such as Mindy’s attracts…
• The Broadway coppers love…
• They sit…



  

Constituency (II)
– They can all appear before a verb:

• Three parties from Brooklyn arrive…
• A high-class spot such as Mindy’s attracts…
• The Broadway coppers love…
• They sit

– But individual words can’t always appear before verbs:
• *from arrive…
• *as attracts…
• *the is
• *spot is…

– Must be able to state generalizations like:
• Noun phrases occur before verbs



  

Constituency (IV)

• Practical test for constituent:
– May appears independently
– May be replaced with other
– May be moved (in the beginning, at the end)



  

Context-Free Grammars (CFG)
• Also called Phrase-Structure Grammar
• Equivalent to Backus-Naur Form (BNF)
• Consists of:

– Set of rules (productions) – express the ways that symbols 
of the language can be grouped and ordered together

– Lexicon of words (symbols)
Symbols are divided into 2 classes:

• Terminal symbols – correspond to words in the language
• Non-terminal symbols – express generalizations



  

CFG Examples
• S  NP VP
• NP  Det NOMINAL
• NOMINAL  Noun
• VP  Verb
• Det  a
• Noun  flight
• Verb  left



  

CFGs

• S  NP VP
– This says that there are units called S, NP, and VP 

in this language
– That an S consists of an NP followed immediately 

by a VP
– Doesn’t say that that’s the only kind of S
– Nor it says that this is the only place that NPs and 

VPs occur



  

Generativity

• As with FSAs and FSTs you can view these 
rules as either analysis or synthesis machines
– Generate strings in the language
– Reject strings not in the language
– Assign structures (trees) on strings in the language



  

Derivations

• A derivation is a sequence of rules applied to a 
string that accounts for that string
– Covers all the elements in the string
– Covers only the elements in the string



  

Derivations as Trees (Parse Tree)



  

Parsing

• Parsing is the process of taking a string and a 
grammar and returning a parse tree(s) for that 
string



  

Context?
• The notion of context in CFGs has nothing to do with 

the ordinary meaning of the word context in 
language.

• All it really means is that the non-terminal on the left-
hand side of a rule is out there all by itself (free of 
context)
A  B C
Means that I can rewrite an A as a B followed by a C 
regardless of the context in which A is found



  

Key Constituents (English)

• Sentences
• Noun phrases
• Verb phrases
• Prepositional phrases



  

Sentence-Types

• Declaratives:  A plane left
S  NP VP

• Imperatives:   Leave!
S  VP

• Yes-No Questions: Did the plane leave?
S  Aux NP VP

• WH Questions: When did the plane leave?
S  WH Aux NP VP



  

NPs
• NP  Pronoun

– I came, you saw it, they conquered
• NP  Proper-Noun

– Los Angeles is west of Texas
– John Hennesey is the president of Stanford

• NP  Det Nominal
• Nominal  Noun 

– The president
• Nominal  Nominal Noun

– A morning flight to Denver



  

VPs

• VP → Verb NP
– prefer a morning flight

• VP → Verb NP PP
– leave Boston in the morning

• VP → Verb PP 
– leaving on Thursday



  

PPs

• PP  Preposition NP
– From LA
– To Boston
– On Tuesday
– With lunch



  

Recursion

• We’ll have to deal with rules such as the 
following where the non-terminal on the left 
also appears somewhere on the right (directly).
NP  NP PP [[The flight] [to Boston]]
VP  VP PP [[departed Miami] [at noon]]



  

Recursion
• Of course, this is what makes syntax interesting

flights from Denver
Flights from Denver to Miami
Flights from Denver to Miami in February
Flights from Denver to Miami in February on a Friday
Flights from Denver to Miami in February on a Friday under $300
Flights from Denver to Miami in February on a Friday under $300 with 
lunch



  

Recursion

• Of course, this is what makes syntax interesting
[[flights] [from Denver]]
[[[Flights] [from Denver]] [to Miami]]
[[[[Flights] [from Denver]] [to Miami]] [in February]]
[[[[[Flights] [from Denver]] [to Miami]] [in February]] 

[on a Friday]]
Etc.



  

Implications of recursion and 
context-freeness

• If you have a rule like
– VP  V NP

– It only cares that the thing after the verb is an NP. 
It doesn’t have to know about the internal affairs 
of that NP



  

The Point
• VP  V NP
• I hate

flights from Denver
Flights from Denver to Miami
Flights from Denver to Miami in February
Flights from Denver to Miami in February on a Friday
Flights from Denver to Miami in February on a Friday under $300
Flights from Denver to Miami in February on a Friday under $300 with 

lunch



  

Bracketed Notation
[S [NP [PRO I] [VP [V prefer [NP [NP [Det a][Nom [Nom [N morning]] [N flight]]]]



  

Coordination Constructions

• S  S and S
– John went to NY and Mary followed him

• NP  NP and NP
• VP  VP and VP
• …
• In fact the right rule for English is

X  X and X



  

Problems

• Agreement
• Subcategorization
• Movement



  

Agreement
• This dog
• Those dogs

• This dog eats
• Those dogs eat

• *This dogs
• *Those dog

• *This dog eat
• *Those dogs eats



  

Possible CFG Solution
• S  NP VP
• NP  Det Nominal
• VP  V NP
• …

One way is to expand our 
grammar with multiple sets 
of rules.

• SgS  SgNP SgVP
• PlS  PlNp PlVP
• SgNP  SgDet SgNom
• PlNP  PlDet PlNom
• PlVP  PlV NP
• SgVP  SgV Np
• …



  

CFG Solution for Agreement
• It works and stays within the power of CFGs
• But its ugly and it doesn’t scale all that well

• It doubles the size of grammar

These problems are compounded in languages 
like Bulgarian, German or French, which not 
only have number-agreement as in English, 
but also have gender agreement.



  

Subcategorization
• Verbs can be subcategorized by the types of 

complements/arguments they expect.
• Sneeze:  John sneezed
• Find:  Please find [a flight to NY]NP

• Give: Give [me]NP[a cheaper fare]NP

• Help: Can you help [me]NP[with a flight]PP

• Prefer: I prefer [to leave earlier]TO-VP

• Said: You said [United has a flight]S

• …



  

Subcategorization

• *John sneezed the book
• *I prefer United has a flight
• *Give with a flight

• Subcat expresses the constraints that a 
predicate (verb for now) places on the number 
and syntactic types of arguments it wants to 
take (occur with).



  

So?

• So the various rules for VPs overgenerate.
– They permit the presence of strings containing verbs 

and arguments that don’t go together
– For example
– VP -> V NP 

therefore
Sneezed the book is a VP since “sneeze” is a verb 
and “the book” is a valid NP



  

Subcategorization
The possible sets of complements of a verb are called its 
subcategorization frame

• Sneeze:  John sneezed
• Find:  Please find [a flight to NY]NP

• Give: Give [me]NP[a cheaper fare]NP

• Help: Can you help [me]NP[with a flight]PP

• Prefer: I prefer [to leave earlier]TO-VP

• Told: I was told [United has a flight]S

• …

Another way of talking about the relation between the verb and 
these other constituents is to think of the verb as a logical 
predicate and the constituents as logical arguments of the 
predicate.



  

Forward Pointer

• It turns out that verb subcategorization facts 
will provide a key element for semantic 
analysis (determining who did what to who in 
an event).

 



  

Possible CFG Solution
• VP -> V
• VP -> V NP
• VP -> V NP PP
• …

Subtypes of verbs:
– intransitive
– transitive

Each rule could be 
modified to require the 
appropriate verb subtypes

• VP -> IntransV
• VP -> TransV NP
• VP -> TransVwPP NP PP
• …

Problem: The vast explosion in the number of rules.



  

Movement

• Core example
– My travel agent booked the flight



  

Movement

• Core example
– [[My travel agent]NP [booked [the flight]NP]VP]S

• I.e. “book” is a straightforward transitive verb. 
It expects a single NP arg within the VP as an 
argument, and a single NP arg as the subject.



  

Movement

• What about?
– Which flight do you want me to have the travel 

agent book?
• The direct object argument to “book” isn’t 

appearing in the right place. It is in fact a long 
way from where its supposed to appear.

• And note that its separated from its verb by 2 
other verbs.



  

CFGs: a summary
• CFGs appear to be just about what we need to 

account for a lot of basic syntactic structure in 
English.

• But there are problems
– That can be dealt with adequately, although not elegantly, 

by staying within the CFG framework.
• There are simpler, more elegant, solutions that take us 

out of the CFG framework (beyond its formal power)
• Syntactic theories: HPSG, LFG, Minimalism, etc



  

Other Syntactic stuff

• Grammatical Relations
– Subject

• I booked a flight to New York
• The flight was booked by my agent.

– Object
• I booked a flight to New York

– Complement
• I said that I wanted to leave



  

Dependency Grammars

• The syntactic structure of a sentence is 
described purely in terms of words and binary 
semantic or syntactic relations between these 
words.



  

Dependency Parsing
• Word to word links instead of constituency
• Based on the European rather than American 

traditions
• But dates back to the Greeks
• The original notions of Subject, Object and the 

progenitor of subcategorization (called ‘valence’) 
came out of Dependency theory.

• Dependency parsing is quite popular as a 
computational model since relationships between 
words are quite useful



  

Dependency Grammars



  

Dependency Grammars

• One of the main advantages of pure 
dependency grammars is their ability to handle 
languages with relatively free word order.



  

Parsing

• Parsing: assigning correct trees to input strings
• Correct tree: a tree that covers all and only the 

elements of the input and has an S at the top
• For now: enumerate all possible trees

– A further task: disambiguation: means choosing 
the correct tree from among all the possible trees.



  

Parsing

• The Link Grammar parser
– http://www.link.cs.cmu.edu/link/

• Colorado parser
– http://sds.colorado.edu/SEPA

• The Connexor dependency parser
– http://www.connexor.com/demos/syntax_en.html

http://www.link.cs.cmu.edu/link/
http://www.link.cs.cmu.edu/link/
http://www.link.cs.cmu.edu/link/
http://sds.colorado.edu/SEPA
http://www.connexor.com/demos/syntax_en.html


  

Treebanks

• Parsed corpora in the form of trees
• The Penn Treebank

– The Brown corpus
– The WSJ corpus

• Tgrep
– http://www.ldc.upenn.edu/ldc/online/treebank/
– http://www.ldc.upenn.edu/ldc/online/

http://www.ldc.upenn.edu/ldc/online/treebank/
http://www.ldc.upenn.edu/ldc/online/


  

TreeBanks



  

Treebanks



  

Treebanks



  

Treebank Grammars



  

Lots of flat rules



  

Example sentences from those 
rules

• Total: over 17,000 different grammar rules in 
the 1-million word Treebank corpus



  

Parsing

• The parser can be viewed as searching through 
the space of possible parse trees to find the 
correct parse tree for a given sentence.

• As with everything of interest, parsing 
involves a search which involves the making 
of choices

• We’ll start with some basic (meaning bad) 
methods before moving on to the one or two 
that you need to know 



  

For Now

• Assume…
– You have all the words already in some buffer
– The input isn’t pos tagged
– We won’t worry about morphological analysis
– All the words are known



  

Parsing



  

Parsing



  

Top-Down Parsing

• Since we’re trying to find trees rooted with an 
S (Sentences) start with the rules that give us 
an S.

• Then work your way down from there to the 
words.



  

Top Down Space



  

Bottom-Up Parsing

• Of course, we also want trees that cover the 
input words. So start with trees that link up 
with the words in the right way.

• Then work your way up from there.



  

Bottom-Up Space



  

Control

• Of course, in both cases we left out how to 
keep track of the search space and how to 
make choices
– Which node to try to expand next
– Which grammar rule to use to expand a node



  

Top-Down, Depth-First, Left-to-Right 
Search



  

Example



  

TopDownDepthFirstLeftoRight

flight flight



  

TopDownDepthFirstLeftoRight

flightflight



  

Top-Down and Bottom-Up

• Top-down
– Only searches for trees that can be answers (i.e. 

S’s)
– But also suggests trees that are not consistent with 

the words
• Bottom-up

– Only forms trees consistent with the words
– Suggest trees that make no sense globally



  

So Combine Them

• There are a million ways to combine top-down 
expectations with bottom-up data to get more 
efficient searches

• Most use one kind as the control and the other 
as a filter
– As in top-down parsing with bottom-up filtering



  

Adding Bottom-Up Filtering



  

3 problems with TDDFLtR Parser

• Left-Recursion
• Ambiguity
• Inefficient reparsing of subtrees



  

Left-Recursion

• What happens in the following situation
– S -> NP VP
– S -> Aux NP VP
– NP -> NP PP
– NP -> Det Nominal
– …
– With the sentence starting with

• Did the flight…



  

Ambiguity

• One morning I shot an elephant in my 
pyjamas. How he got into my pajamas I don’t 
know.   (Groucho Marx)



  

Lots of ambiguity

• VP -> VP PP
• NP -> NP PP
• Show me the meal on flight 286 from SF to 

Denver
• 14 parses!



  

Lots of ambiguity

• Church and Patil (1982)
– Number of parses for such sentences grows at rate of 

number of parenthesizations of arithmetic expressions
– Which grow with Catalan numbers

€ 

C ( n ) = 1

n + 1

2 n

n

 

 
 

 

 
 

PPs Parses
1 2
2 5
3 14
4 132
5 469
6 1430



  

Avoiding Repeated Work

• Parsing is hard, and slow. It’s wasteful to redo 
stuff over and over and over.

• Consider an attempt to top-down parse the 
following as an NP

A flight from Indianapolis to Houston on TWA



  

flight



  

flight

flight



  



  



  

Dynamic Programming
• We need a method that fills a table with partial 

results that
– Does not do (avoidable) repeated work
– Does not fall prey to left-recursion
– Can find all the pieces of an exponential number of 

trees in polynomial time.
• We’ll introduce 2

– CKY
– Earley



  

The CKY (Cocke-Kasami-Younger) 
Algorithm

• Requires the grammar be in Chomsky Normal 
Form (CNF)
– All rules must be in following form:

• A -> B C
• A -> w

• Any grammar can be converted automatically 
to Chomsky Normal Form



  

Converting to CNF
• Rules that mix terminals and non-terminals

– Introduce a new dummy non-terminal that covers the 
terminal

• INFVP -> to VP      replaced by:
• INFVP -> TO VP
• TO -> to

• Rules that have a single non-terminal on right (“unit 
productions”)
– Rewrite each unit production with the RHS of their 

expansions
• Rules whose right hand side length >2

– Introduce dummy non-terminals that spread the right-hand 
side



  

Automatic Conversion to CNF



  

CKY Recognition
• We will use a simple two-dimensional matrix to 

encode the structure of a parse tree
– Like other dynamic programming methods!

• For a sentence of length n
– We will use the upper-triangular portion

• Of an (n+1) x (n+1) matrix
– Each cell [i,j] contains the set of constituents that span 

positions i thru j of the input:

–            NP[1,3]
–                 __________________

– 0 Book 1 the 2 flight 3 through 4 Chicago 5



  

CKY Recognition
• Each cell [i,j] contains the set of constituents that 

span positions i thru j of the input
• CNF -> Each non-terminal has exactly 2 daughters 
• Therefore, for each constituent covering [i,j]

– There must be a point k, i < k < j, where it can be split
– Given such a k, the first constituent [i,k] lies to left
– And the second constituent [k,j] lies beneath on column j



  

CKY Algorithm



  

0 Book 1 the 2 flight 3 through 4  Chicago 5 



  

• Filling the 
[i,j]th cell in the 
CKY table



  

Filling the last column after reading 
the word Houston



  

Filling the last column after reading 
the word Chicago



  

Filling the last column after reading 
the word Chicago



  

Filling the last column after reading 
the word Chicago



  

Filling the last column after reading 
the word Chicago



  

Parsing and Ambiguity

• We can store all the different parses efficiently
• But retrieving parses, we still have to do all the 

exponential work
• So in practice, we will need some way to do 

disambiguation as we go, so we don’t have to 
store every parse of very ambiguous sentences.



  

Earley Parsing
• Doesn’t require CNF grammars
• Where CKY is bottom-up, Earley is top-down
• Fills a table in a single sweep over the input 

words
– Table is length N+1; N is number of words
– Table entries represent

• Completed constituents and their locations
• In-progress constituents
• Predicted constituents



  

Earley States

• The table-entries are called states and are 
represented with dotted-rules.
S -> · VP A VP is predicted

NP -> Det · Nominal An NP is in progress

VP -> V NP · A VP has been found



  

Earley States/Locations

• We need to know where these things are in the input:
S -> · VP [0,0] A VP is predicted at the 

start of the sentence
NP -> Det · Nominal [1,2] An NP is in progress; the 

Det goes from 1 to 2
VP -> V NP · [0,3] A VP has been found 

starting at 0 and ending at 3



  

Graphically



  

Earley Algorithm

• March through chart left-to-right.
• At each step, apply 1 of 3 operators

– Predictor
• Create new states representing top-down expectations

– Scanner
• Match word predictions (rule with word after dot) to 

words
– Completer

• When a state is complete, see what rules were looking 
for that completed constituent



  

Predictor
• Given a state

– With a non-terminal to right of dot
– That is not a part-of-speech category
– Create a new state for each expansion of the non-terminal
– Place these new states into same chart entry as generated state, 

beginning and ending where generating state ends. 
– So predictor looking at

• S -> . VP [0,0]  
–   results in

• VP -> . Verb [0,0]
• VP -> . Verb NP [0,0]



  

Scanner
• Given a state

– With a non-terminal to right of dot
– That is a part-of-speech category
– If the next word in the input matches this part-of-speech
– Create a new state with dot moved over the non-terminal
– So scanner looking at

• VP -> . Verb NP [0,0]
– If the next word, “book”, can be a verb, add new state:

• VP -> Verb . NP [0,1]
– Add this state to chart entry following current one
– Note: Earley algorithm uses top-down input to disambiguate 

POS! Only POS predicted by some state can get added to chart!



  

Completer
• Applied to a state when its dot has reached right end of role.
• Parser has discovered a category over some span of input.
• Find and advance all previous states that were looking for this 

category
– copy state, move dot, insert in current chart entry

• Given:
– NP -> Det Nominal . [1,3]
– VP -> Verb. NP [0,1]

• Add
– VP -> Verb NP . [0,3]



  

Earley: how do we know we are 
done?

• How do we know when we are done?.
• Find an S state in the final column that spans 

from 0 to n+1 and is complete.
• If that’s the case you’re done.

– S –> α · [0,n+1]



  

Earley

• So sweep through the table from 0 to n+1…
– New predicted states are created by starting top-

down from S
– New incomplete states are created by advancing 

existing states as new constituents are discovered
– New complete states are created in the same way. 



  

Earley

• More specifically…
1. Predict all the states you can upfront
2. Read a word

1. Extend states based on matches
2. Add new predictions
3. Go to 2

3. Look at N+1 to see if you have a winner



  

Example

• Book that flight
• We should find… an S from 0 to 3 that is a 

completed state…



  

Example



  

Example



  

Earley example cont’d



  

Example



  

What is it?

• What kind of parser did we just describe (trick 
question).
– Earley parser… yes
– Not a parser – a recognizer

• The presence of an S state with the right attributes in the 
right place indicates a successful recognition.

• But no parse tree… no parser
• That’s how we solve (not) an exponential problem in 

polynomial time



  

Converting Earley from Recognizer 
to Parser

• With the addition of a few pointers we have a 
parser

• Augment the “Completer” to point to where 
we came from.



  

Augmenting the chart with 
structural information



  

Retrieving Parse Trees from Chart
• All the possible parses for an input are in the table
• We just need to read off all the backpointers from every 

complete S in the last column of the table
• Find all the S -> X .  [0,N+1]
• Follow the structural traces from the Completer
• Of course, this won’t be polynomial time, since there could be 

an exponential number of trees
• So we can at least represent ambiguity efficiently



  

Earley and Left Recursion

• Earley solves the left-recursion problem 
without having to alter the grammar or 
artificially limiting the search.
– Never place a state into the chart that’s already 

there
– Copy states before advancing them



  

Earley and Left Recursion: 1

• S -> NP VP
• NP -> NP PP

• Predictor, given first rule:
– S -> · NP VP [0,0]

• Predicts:
– NP -> · NP PP [0,0]
– stops there since predicting same again would be redundant



  

Earley and Left Recursion: 2

• When a state gets advanced make a copy and 
leave the original alone…

• Say we have NP -> · NP PP [0,0]
• We find an NP from 0 to 2 so we create

NP -> NP · PP [0,2]
• But we leave the original state as is



  

Dynamic Programming Approaches

• Earley
– Top-down, no filtering, no restriction on grammar form

• CYK
– Bottom-up, no filtering, grammars restricted to Chomsky-

Normal Form (CNF)
• Details are not important...

– Bottom-up vs. top-down
– With or without filters
– With restrictions on grammar form or not



  

How to do parse disambiguation

• Probabilistic methods
• Augment the grammar with probabilities
• Then modify the parser to keep only most 

probable parses
• And at the end, return the most probable parse



  

Probabilistic CFGs

• The probabilistic model
– Assigning probabilities to parse trees

• Getting the probabilities for the model
• Parsing with probabilities

– Slight modification to dynamic programming 
approach

– Task is to find the max probability tree for an input



  

Probability Model

• Attach probabilities to grammar rules
• The expansions for a given non-terminal sum 

to 1
VP -> Verb .55
VP-> Verb NP .40
VP-> Verb NP NP .05
– Read this as P(Specific rule | LHS)



  

PCFG



  

PCFG



  

Probability Model (1)

• A derivation (tree) consists of the set of 
grammar rules that are in the tree

• The probability of a tree is just the product of 
the probabilities of the rules in the derivation.



  

Probability model

• P(T,S) = P(T)P(S|T) = P(T); since P(S|
T)=1

€ 

P ( T , S ) = p ( rn )
n ∈T

∏



  

Probability Model (1.1)

• The probability of a word sequence P(S) is the 
probability of its tree in the unambiguous case.

• It’s the sum of the probabilities of the trees in 
the ambiguous case.



  

Getting the Probabilities

• From an annotated database (a treebank)
– So for example, to get the probability for a 

particular VP rule just count all the times the rule 
is used and divide by the number of VPs overall.



  

Probabilistic Grammar 
Assumptions

• We’re assuming that there is a grammar to be 
used to parse with.

• We’re assuming the existence of a large robust 
dictionary with parts of speech

• We’re assuming the ability to parse (i.e. a parser)
• Given all that… we can parse probabilistically 



  

Typical Approach

• Bottom-up (CYK) dynamic programming 
approach

• Assign probabilities to constituents as they are 
completed and placed in the table

• Use the max probability for each constituent 
going up



  

What’s that last bullet mean?
• Say we’re talking about a final part of a parse

– S->0NPiVPj

The probability of the S is…
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing 
bottom-up parsing



  

Modern parsers: lexicalized PCFG

• Modern CFG-based parsers use lexicalized 
PCFGs
– Collins parser (Bikel version of this in Java)
– Charniak parser
– Stanford parser

• Also recent probabilistic versions of
– HPSG parser
– LFG parser



  

Summary
• Context-Free Grammars
• Parsing

– Top Down, Bottom Up Metaphors
– Dynamic Programming Parsers: CKY. Earley

• Disambiguation:
– PCFG
– Probabilistic Augmentations to Parsers
– Treebanks


