
Introduction to Computational
Linguistics

Pavlina Ivanova
University of Plovdiv, Bulgaria

Lecture 2: Finite-State Automata,
Morphology, Morphological Parsing,
Transducers, Tokenization

Thanks to Daniel Jurafsky for much of this material

Three equivalent formal constructions
• Any RE (except that use the memory features) can be

implemented as a finite-state automation (FSA).
• Any FSA can be described with a RE.
• Both RE and FSA can be used to describe a particular

kind of formal language called a regular language.
Regular Expressions

Regular LanguagesFinite State Automata

Finite State Automata
• Terminology: Finite State Automata, Finite

State Machines, FSA, Finite Automata
• FSAs and their close relatives are at the core

of most algorithms for NLP.
• FSA can be represented as directed graph: a

finite set of nodes and labeled directed links
between pairs of nodes called arcs.
– Nodes represent the states
– Arcs represent the transitions between the states

Finite-state Automata (Machines)

/^baa+!$/

q0 q1 q2 q3 q4

b a a !

a

state transition final
state

 baa!
 baaa!
 baaaa!
 baaaaa!
 ...

Slide from Dorr/Monz

Sheep FSA
• We can say the following things about this machine

– It has 5 states
– At least b,a, and ! are in its alphabet
– q0 is the start state
– q4 is an accept state
– It has 5 transitions

But note

• There are other machines that correspond to this
language

• More on this one later

Formal Definition of FSA

• You can specify an FSA by enumerating the
following things.
– The set of states: Q
– A finite alphabet: Σ
– A start state q0∈Q
– A set F of accepting/final states F⊆Q
– A transition function δ(q,i) that maps QxΣ to Q

Another Representation of the FSA
• State-transition table

Recognition

• Recognition is the process of determining if a
string should be accepted by a machine

• Or… it’s the process of determining if a string
is in the language we’re defining with the
machine

• Or… it’s the process of determining if a
regular expression matches a string

Recognition
• Traditionally, (Turing’s idea) this process is depicted

with a long tape broken up into cells, with one
symbol written in each cell of the tape.

Recognition
• Start in the start state
• Iterate the following process until you run out of tape

– Examine the current input
– Consult the table
– Go to a new state and update the tape pointer.

• The machine has successfully recognized the input if
it is in the accepting state when it runs out of input

• The machine rejects or fail to accept the input if it
never gets to the final state because:
– It runs out of input
– Some input doesn´t match an arc

Input Tape

a b a ! b

q0

0 1 2 3 4

b a a !a

REJECT

Slide from Dorr/Monz

Input Tape

b a a a

q0 q1 q2 q3 q3 q4

!

0 1 2 3 4

b a a !a

ACCEPT

Slide from Dorr/Monz

Augmented machine with a failing
state

q0 q1 q2 q3 q4

b a a !

a

qFa

!

b

! b ! b
b

a

!

Slide from Dorr/Monz

D-RECOGNIZE

function D-RECOGNIZE (tape, machine) returns accept or reject
 index  Beginning of tape
 current-state  Initial state of machine
 loop
 if End of input has been reached then
 if current-state is an accept state then
 return accept
 else
 return reject
 elsif transition-table [current-state, tape[index]] is empty then
 return reject
 else
 current-state  transition-table [current-state, tape[index]]
 index  index + 1
end

Slide from Dorr/Monz

Tracing D-Recognize

Key Points

• Deterministic means that at each point in
processing there is always one unique
thing to do (no choices).

• D-recognize is a simple table-driven
interpreter

• The algorithm is universal for all
unambiguous languages.
– To change the machine, you change the

table.

Key Points

• Crudely therefore… matching strings with
regular expressions (ala Perl) is a matter of
– translating the expression into a machine (table) and
– passing the table to an interpreter

Recognition as Search

• You can view this algorithm as state-space
search.

• States are pairings of tape positions and state
numbers.

• Operators are compiled into the table
• Goal state is a pairing with the end of tape

position and a final accept state

Generative Formalisms
• Formal Languages are sets of strings

composed of symbols from a finite set of
symbols.

• Finite-state automata define formal languages
(without having to enumerate all the strings in
the language)

• The term Generative is based on the view that
you can run the machine as a generator to get
strings from the language.

Generative Formalisms

• FSAs can be viewed from two perspectives:
– Acceptors that can tell you if a string is in

the language
– Generators to produce all and only the

strings in the language

Another Example: Dollars and Cents
We can have a higher level alphabet consisting of
words.

In this way we can write FSA that models facts about
word combinations.

Task: Build an FSA that model the subpart of English
dealing with amounts of money.

Summary

• Regular expressions are just a compact textual
representation of FSAs

• Recognition is the process of determining if a
string/input is in the language defined by some
machine.
– Recognition is straightforward with deterministic

machines.
• FSAs can be used for both generating and

recognizing all and only the strings of a formal
language

Non-determinism

• A deterministic automaton is one whose
behavior during recognition is fully
determined by the state it is in and the symbol
it is looking at.

• Non-determinism: not fully determined, hence
choice

Non-Determinism

Non-Determinism cont.

• Yet another technique
– Epsilon transitions
– These transitions do not examine or advance the

tape during recognition

ε

NFSA = FSA !!!!

• Non-deterministic machines can be converted
to deterministic ones with a fairly simple
construction

• That means that they have the same power;
non-deterministic machines are not more
powerful than deterministic ones

• It also means that one way to do recognition
with a non-deterministic machine is to turn it
into a deterministic one.

Non-Deterministic Recognition

• In a ND FSA there exists at least one path
through the machine for a string that is in
the language defined by the machine.

• But not all paths directed through the
machine for an accept string lead to an
accept state.

• No paths through the machine lead to an
accept state for a string not in the language.

Non-Deterministic Recognition

• So success in a non-deterministic recognition
occurs when a path is found through the
machine that ends in an accept.

• Failure occurs when none of the possible paths
lead to an accept state.

Example

b a a a ! \

q0 q1 q2 q2 q3 q4

Using NFSA to accept strings
• In general, solutions to the problem of choice in

non-deterministic models:
– Backup:

• When we come to a choice point
• Put a marker indicating:

– Where we are in the tape
– What the state is

– Look-ahead: We could look ahead in the input to
help us decide which path to take.

– Parallelism: Whenever we come to a choice point,
we could look at every alternative path in parallel.

ND-Recognize

Key AI idea: Search
• We model problem-solving as a search for a

solution through a space of possible solutions.
• The space consists of states.
• States in the search space are pairings of tape

positions and states in the machine.
• By keeping track of as yet unexplored states, a

recognizer can systematically explore all the
paths through the machine given an input.

Two kinds of search
• Depth-first search

– Explore one path all the way to the end
– Then backup
– And try other paths

• Breadth-first search
– Explore all the paths simultaneously
– Incrementally extending each tier of the

paths

Depth-first search example

Depth-first search example

Depth-first search example

Depth-first search example

Depth-first search example

Depth-first search example

Depth-first search example

Depth-first search example

NFSA Recognition of “baaa!”

Breadth-first Recognition
of “baaa!”

should be q2

Three Views

• Three equivalent formal ways to look at what
we’re up to

Regular Expressions

Regular LanguagesFinite State Automata

Regular languages
• Regular languages are characterized by FSAs
• For every NFSA, there is an equivalent DFSA.
• Regular languages are closed under

concatenation, Kleene closure, union.

Regular languages

• The class of languages characterizable by regular
expressions

• Given alphabet Σ, the regular languages over Σ
are:
– The empty set ∅ is a regular language
�∀a ∈ Σ ∪ ε, {a} is a regular language
– If L1 and L2 are regular languages, then so are:

• L1 · L2 = {xy|x ∈ L1,y ∈ L2}, concatenation of L1 & L2
• L1 ∪ L2, the union of L1 and L2
• L1*, the Kleene closure of L1

Going from regexp to FSA
• Since all regular languages meet above properties
• And regular languages are the languages

characterizable by regular expressions
• All regular expression operators can be implemented

by combinations of union, disjunction, closure
– Counters (*,+) are repetition plus closure
– Anchors are individual symbols
– [] and () and . are kinds of disjunction

Going from regexp to FSA
• So if we could just show how to turn

closure/union/concatenation from regexps to FSAs, this would
give an idea of how FSA compilation works.

• The actual proof that regular languages = FSAs has 2 parts
– An FSA can be built for each regular language
– A regular language can be built for each automaton

• So I’ll give the intuition of the first part:
– Take any regular expression and build an automaton
– Intuition: induction

• Base case: build an automaton for single symbol (say ‘a’)
• Inductive step: Show how to imitate the 3 regexp operations in automata

Union
• Accept a string in either

of two languages

Concatenation
• Accept a string consisting of a string from language

L1 followed by a string from language L2.

Summary so far
• Finite State Automata

– Deterministic Recognition of FSAs
– Non-Determinism (NFSAs)
– Recognition of NFSAs
– (sketch of) Proof that regular expressions = FSAs

FSAs and Computational
Morphology

• An important use of FSAs is for morphology,
the study of word parts.

English Morphology
• Morphology is the study of the ways that words

are built up from smaller meaningful units
called morphemes

• We can usefully divide morphemes into two
classes
– Stems: The core meaning bearing units (the main

morphemes of the words)
– Affixes: Bits and pieces that adhere to stems to

change their meanings and grammatical functions
Affixes are further divided into prefixes (precede the
stem), suffixes (follow the stem), circumfixes (do
both), and infixes (are inserted inside the stem).

English Morphology
• Four clasess of ways to combine morphems to

create words that play important role in NLP:
– Inflection - the combination of a word stem with a

grammatical morpheme, resulting in a word of the
same class as the original stem (with the same
meaning), and usually filling some syntactic
function like agreement. Ex.: bird, birds; want, wants, wanted

– Derivation - the combination of a word stem with a
grammatical morpheme, usually resulting in a word
of a different class, often with a meaning hard to
predict exactly. Ex.: computerize, computerization; bad, badly;
constant, inconstant

English Morphology
– Compounding - the combination of multiple word

stems together. Ex.: doghouse

– cliticization - the combination of a word stem with a
clitic. A clitic is a morpheme that acts syntactically
like a word, but is reduced in form and attached
(phonologically and sometimes orthographically) to
another word. Ex.: I’ve

Inflectional Morphology
• English has a relatively simple inflectional system;

only nouns, verbs, and sometimes adjectives can be
inflected, and the number of possible inflectional
affixes is quite small.

• English nouns have only two kinds of inflection: an
affix that marks plural and an affix that marks
possessive.

• English verbal inflection is slightly more complex.
English has three kinds of verbs; main verbs – regular
and irregular (eat, sleep, walk), modal verbs (can, will,
should), and primary verbs (be, have, do).
They have afixes appropriate to the tense of the verb.

Regulars and Irregulars
• It gets a little complicated by the fact that

some words misbehave (refuse to follow the
rules)
– Mouse/mice, goose/geese, ox/oxen
– Go/went, fly/flew

• The terms regular and irregular will be used to
refer to words that follow the rules and those
that don’t.

Regular and Irregular Nouns and Verbs
• Regulars…

– Walk, walks, walking, walked, walked
– Table, tables

• Irregulars
– Eat, eats, eating, ate, eaten
– Catch, catches, catching, caught, caught
– Cut, cuts, cutting, cut, cut
– Leaf, leaves

Nouns and Verbs

Derivational Morphology

• Derivation in English is quite complex.
• Start with compute

– Computer -> computerize -> computerization
– Computation -> computational
– Computer -> computerize -> computerizable
– Compute -> computee

Why care about morphology?
• ´Stemming´ in information retrieval

– Might want to search for “going home” and find
pages with both “went home” and “will go home”

• Morphology in machine translation
– Need to know that the Spanish words quiero and

quieres are both related to querer ‘want’
• Morphology in spell checking

– Need to know that misclam and antiundoggingly
are not words despite being made up of word parts

Can’t just list all words
• Turkish
• Uygarlastiramadiklarimizdanmissinizcasina
• `(behaving) as if you are among those whom

we could not civilize’
• Uygar `civilized’ + las `become’ + tir `cause’

+ ama `not able’ + dik `past’ + lar ‘plural’+
imiz ‘p1pl’ + dan ‘abl’ + mis ‘past’ + siniz
‘2pl’ + casina ‘as if’

What we want

• Something to automatically do the following
kinds of mappings:

• Cats cat +N +PL
• Cat cat +N +SG
• Cities city +N +PL
• Merging merge +V +Present-participle
• Caught catch +V +past-participle

Morphological Parsing
• Parsing means taking an input and producing some

sort of linguistic structure for it (morphological,
syntactic, semantic).

• Forms of linguistic structures:
– String
– Tree
– Network

• The problem of recognizing that a word (like foxes)
breaks down into component morphemes (fox and -es)
and building a structured representation of this fact is
called morphological parsing.

Morphological Parsing: Goal

• Morphological Parsing

FSAs and the Lexicon

• This will actual require a kind of FSA called
the Finite State Transducer (FST)

• First we’ll capture the morphotactics
– The rules governing the ordering of affixes in a

language.
• Then we’ll add in the actual words

Building a Morphological Parser
• Three components:

– Lexicon - the list of stems and affixes, together with basic
information about them (whether a stem is a Noun stem or a
Verb stem, etc.).

– Morphotactics - the model of morpheme ordering that
explains which classes of morphemes can follow other
classes of morphemes inside a word.

– Orthographic or Phonological Rules - these spelling
rules are used to model the changes that occur in a word,
usually when two morphemes combine (e.g., the y->ie
spelling rule that changes city + -s to cities rather than citys).

Lexicon: FSA Inflectional Noun
Morphology

-sgoose
sheep
mouse

geese
sheep
mice

fox
cat
dog

pluralIrreg-sg-nounIrreg-pl-nounreg-noun

• English Noun Lexicon

• English Noun
 Rule

Lexicon and Rules: FSA English Verb
Inflectional Morphology

-ed

past

-ed

past-
part

-ing

pres-
part

-scaught
ate
eaten

cut
speak
spoken
sing
sang

walk
fry
talk
impeach

3sgirreg-past-
verb

irreg-verb-
stem

reg-verb-
stem

More Complex
Derivational Morphology

Using FSAs for Recognition:
English Nouns and Inflection

Parsing/Generation
vs. Recognition

• We can only recognize words
• But this isn’t the same as parsing

– Parsing: building structure
– Usually if we find some string in the language we need to

find the structure in it (parsing)
– Or we have some structure and we want to produce a surface

form (production/generation)
• Example

– From “cats” to “cat +N +PL”

Finite State Transducers

• The simple story
– Add another tape
– Add extra symbols to the transitions

– On one tape we read “cats”, on the other we write
“cat +N +PL”

Nominal Inflection FST

For more on morphology and full
definition of FSTs

• Read Chapter 3 of J&M book

Tokenization
• Segmenting words in running text
• Segmenting sentences in running text
• Why not just periods and white-space?

– Mr. Sherwood said reaction to Sea Containers’
proposal has been "very positive." In New York Stock
Exchange composite trading yesterday, Sea Containers
closed at $62.625, up 62.5 cents.

– “I said, ‘what’re you? Crazy?’ “ said Sadowsky. “I
can’t afford to do that.’’

• Words like:
– cents. said, positive.” Crazy?

Can’t just segment on punctuation
• Word-internal punctuation

– M.p.h
– Ph.D.
– AT&T
– 01/02/06
– Google.com
– 555,500.50

• Expanding clitics
– What’re -> what are
– I’m -> I am

• Multi-token words
– New York
– Rock ‘n’ roll

Sentence Segmentation

• !, ? relatively unambiguous
• Period “.” is quite ambiguous

– Sentence boundary
– Abbreviations like Inc. or Dr.

• General idea:
– Build a binary classifier:

• Looks at a “.”
• Decides EndOfSentence/NotEOS
• Could be hand-written rules, or machine-learning

Word Segmentation in Chinese

• Some languages don’t have spaces
– Chinese, Japanese, Thai, Khmer

• Chinese:
– Words composed of characters
– Characters are generally 1 syllable and 1

morpheme.
– Average word is 2.4 characters long.
– Standard segmentation algorithm:

• Maximum Matching (also called Greedy)

Maximum Matching Word
Segmentation

• Given a wordlist of Chinese, and a string.
• Start a pointer at the beginning of the string
• Find the longest word in dictionary that

matches the string starting at pointer
• Move the pointer over the word in string
• Go to 2

English example (Palmer 00)

• the table down there
• thetabledownthere
• Theta bled own there

• Words astonishingly well in Chinese
• Far better than this English example suggests
• Modern algorithms better still:

– probabilistic segmentation

Summary
• Finite State Automata
• Deterministic Recognition of FSAs
• Non-Determinism (NFSAs)
• Recognition of NFSAs
• Proof that regular expressions = FSAs
• Very brief sketch: Morphology, FSAs,

FSTs
• Very brief sketch: Tokenization

