
System Software Project

Memory Management

The goal of this project is to implement a heap with a freelist as well as a Mark &
Sweep garbage collector. Since it is a large project you can implement it in teams of
two students. It is recommended to use C++ or C as an implementation language
because the low-level programming required for a garbage collector is hard (if not
impossible) to do in Java or C#.

1. Memory Allocation
Implement a class Heap representing a heap of size 32 Kbytes. The list of free heap
blocks should be managed with the first-fit method. Objects should be allocated with
an alloc function. In order to allocate an object of a class Student, say, one should call

adr = Heap::alloc("Student");

This function should allocate an object with the required size, install in it a pointer to
the type descriptor of class Student, and return the address of the new object.

object size
type descriptor type tag

data of
Student

adr

mark bit
object

-n

n: value to subtract
from the type tag in
order to set the tag
pointer to its original
value

The least significant bit of the type tag is used as the mark bit of the garbage collector.
For every class (e.g. Student) there is exactly one type descriptor. Normally, type
descriptors are generated by the compiler. In your project, however, they should be
created and initialized by the user program. The type descriptor of every class should
be registered at the heap using the call:

Heap::registerType("Student", studentDescAdr);

The heap maintains a list of all type descriptors and assigns them to the type tags of
newly allocated objects.
In the beginning the free list contains a single large block (i.e., the whole heap).

2. Garbage Collector
Implement a Mark & Sweep garbage collector using the Deutsch-Schorr-Waite
algorithm. It should be invoked by

Heap::gc(roots);

where roots is an array of root pointers terminated with a null value. The mark phase
should traverse and mark all objects that can be directly or indirectly reached from the
roots (use the least significant bit of the type tag for marking an object). You can
assume that the method call stack does not contain any pointers when gc is called. The
sweep phase should build a new freelist and merge adjacent free blocks.
For testing the garbage collector, implement a method

Heap::dump();

which prints a list of all live objects as well as a list of free blocks. For every live
object the following values should be printed:

 address (hexadecimal)
 name of the object's type
 the first 4 bytes of the object in hex form (to get a clue of the object's contents)
 a list of all pointers in this object (in hexadecimal form)
dump() should also print the total amount of memory used by live objects.
When dumping the freelist the address and length of every free block should be
printed as well as the total amount of free memory.

3. Test program
Test your memory management system with a real application. For example, you
could implement a program that manages students and courses according to the
following class diagram.

A snapshot of such a data structure could look as follows:

Lecture

StudentList StudNode

Student

LectNode

At the start of your program create all type descriptors for your classes and register
them at the heap. In order to create a Student object in C++, you can then write

Student s = (Student) Heap::alloc("Student");

Build a sufficiently complex data structure with your objects and then delete some
objects by removing all pointers to them. Call the garbage collector and check if all
unreferenced objects are collected correctly. Finally delete the pointer to the
StudentList node and call the garbage collector again. The heap should now consist of
a single free block again.
Assume that your program has a single root pointer pointing to the StudentList node.

StudentList
first: StudNode
add(student)
remove (student)

StudNode
next: StudNode
stud: Student

Student
id: int
name: String
lect: LectNode
add(lecture)
remove (lecture)

LectNode
next: LectNode
lect: Lecture

Lecture
id: int
name: String
semester: int

