
Author
Dominik Staudinger

Submission
Institute for System
Software

Thesis Supervisor
DI Lukas Makor

March 2024

Bachelor Thesis
to obtain the academic degree of

Bachelor of Science
in the Bachelor’s Program

Informatik

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Str. 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Bachelor's Thesis

Implementing a simple 2D physics engine

Student: Dominik Staudinger

Advisor: Dipl.-Ing. Lukas Makor, BSc

Start date: October 2023

Physics engines are used in various areas, e.g., game development, simulation, and movies. Typically,
physics engines are categorized into 2D and 3D physics engines.

As part of this thesis a simple 2D physics engine, supporting discrete collision detection and collision
resolution for circles, axis-aligned bounding boxes and arbitrary polygons should be implemented. Addi-
tionally, forces such as gravity should be considered and simple rotations for axis-aligned bounding
boxes should be implemented. Only rigid bodies need to be considered for this work.

Goals of this thesis:

• Research up-to-date and reasonable algorithms for collision detection and collision reso-
lution

• Implement a simple physics engine as described above

• Implement a simple 2D visualization to visualize the state of the world simulated by the
physics engine

• Setup test scenes to test and illustrate the correctness of the physics engine

Modalities:

The progress of the project should be discussed at least every three weeks with the advisor. A time schedule and
a milestone plan must be set up within the first four weeks and discussed with the advisor. It should be continuously
refined and monitored to make sure that the thesis will be completed in time. The final version of the thesis must be
submitted not later than 31.03.2023.

Dipl.-Ing. Lukas Makor, BSc

Institute for System Software

T +43-732-2468-3435

lukas.makor@jku.at

Abstract

Physics engines are utilized for a variety of use cases, including, but not limited to, video
games, simulations concerning flight or driving, and mechanical simulations. They rely
on mathematics to define entities and their behaviour in an imitated physics world. En-
gines enable simulations to replicate the laws of physics with varying degrees of realism.
Generally, physics engines are separated into two classes: real-time and high-precision
engines. High-precision engines rely on highly accurate and compute-intensive algorithms
to calculate precise and realistic simulations. In contrast, real-time engines utilize ap-
proximations to enable very fast simulations, which are often used for entertainment
applications. The aim of this work was to develop a simple real-time 2D physics engine,
namely Rustycs. It is easy to understand and written in a programming language called
Rust.

i

Kurzfassung

Physik-Engines werden in diversen Gebieten verwendet, beispielsweise in Videospielen,
Flug- und Fahrsimulationen oder auch mechanische Simulationen. Sie verwenden math-
ematische Konzepte, um Objekte und deren Verhalten in einer simulierten Welt zu
definieren. Diese Definitionen ermöglichen es, dass Engines die Regeln der Physik in
Applikationen replizieren können. Die Genauigkeit mit der die Physik repliziert wird
variiert. Grundsätzlich gibt es zwei verschiedene Arten von Physik-Engines: Echtzeit-
Engines und präzise Engines. Präzise Engines verwenden hochakkurate und recheninten-
sive Algorithmen, um realistische Simulationen zu berechnen. Echtzeit-Engines hingegen
benutzen Annäherungen, um effizientere Simulationen zu ermöglichen. Daher werden
Echtzeit-Engines oft in Entertainment-Applikationen verwendet. Das Ziel dieser Arbeit
war, eine einfache Echtzeit-2D-Engine namens Rustycs zu implementieren. Sie ist einfach
zu verstehen und wurde in der Programmiersprache Rust entwickelt.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Physics Engines . 3
2.2 Rust . 6
2.3 Mathematics . 6

3 Implementation 8
3.1 Engine . 8

3.1.1 Forces & Attractors . 11
3.1.2 Bodies . 12
3.1.3 Collision Detection & Resolution 13
3.1.4 The World . 18

3.2 Optimizations . 20
3.3 Demo Application . 23

4 Evaluation 25
4.1 Demo Scenes . 25
4.2 Manual Testing Sandbox . 27
4.3 Coherence . 29

5 Lessons Learned 31
5.1 General . 31
5.2 Rust . 32

6 Limitations and Future Work 34
6.1 Missing Features . 34
6.2 Potential Optimizations . 35

7 Conclusion 36

8 Literature 37

iii

1 Introduction

The task of simulating physics has changed considerably in the last few decades. In the
past, it was necessary to program engines from scratch, if a solution in a given program-
ming language did not exist. This was a lengthy and error-prone process, due to the lack
of proper resources compared to today. Nowadays, there are all kinds of physics engines
written in various programming languages, and some even have built-in two-dimensional
and three-dimensional capabilities. More importantly, numerous physics engines are
open source and free to use for developers. For instance, Box2D is a relatively simple 2D
physics engine that takes care of the complex aspects of simulating physics [1].

The granularity and realism needed in separate domains differ greatly. A simple two-
dimensional platformer will certainly not require advanced or realistic physics. On one
hand, the realism of simulations could influence the game experience negatively, on the
other hand, more realistic physics require expensive calculations, which could impact
performance. In contrast, a realistic fluid simulation in 3D space requires sophisticated
maths and intricate optimizations.

As there are multiple existing engines that cover a lot of use cases ranging from sim-
plified 2D physics to very realistic 3D simulations, one might wonder if it is worthwhile
to "reinvent the wheel" [1, 2]. Of course, this depends on what kind of physics a given ap-
plication needs. Specifically, in 3D space, implementing an efficient and accurate physics
engine is a monumental task. Despite this, understanding the fundamental concepts uti-
lized in such engines to a certain extent is beneficial in many domains. Programming
a physics engine from scratch enables the developer to define constraints and approxi-
mations suiting the explicit needs of the application. It teaches problem-solving skills,
software design, critical thinking, and general concepts like optimizing and writing clean
code.

When researching resources about physics engines, it quickly becomes clear that the
domain and existing implementations are quite abstract and difficult to understand [3].
This highlights one of the main focus points of this paper: coherence of the concepts
that are used. The goal of the engine implementation is to be easy to understand and
to utilize concepts that are beginner friendly. This allows us to focus more on the core
concepts of the engine, rather than optimizing every possible aspect of it.

1

However, we did not ignore aspects like time and space complexity, or memory safety. To
address these issues we took a different approach than most implementations out there.
We tackle several facets of these issue domains at the language level [4, 5]. Rust is quite
unique in terms of memory management, because it employs the concept of Ownership
& Borrowing [6]. It has no required manual memory management and no garbage collec-
tor. Of course, this concept was not invented by Rust, but it is the first general-purpose
programming language that uses this concept past an experimental level. The language
also offers concepts like zero-cost abstractions, which enable the utilization of higher-level
code paradigms, such as iterators, without an additional run-time overhead.

Summarizing the goals of this work, it was in our interest to develop a coherent physics en-
gine in a modern language like Rust. More importantly, we aimed to research techniques
and concepts used in physics engines and to apply or compare them to our implementa-
tion.

The rest of the paper is structured as follows: Section 2 explains terminology and con-
cepts relevant to this work. It also provides a rationale as to why we decided to use
Rust to implement our engine. In Section 3, we elaborate on important implementation
aspects regarding the engine itself, and its visualisation. Section 4 evaluates the integrity
of the engine by discussing demo scenes and the visual debugger we have implemented.
In the 5th Section, we focus on the lessons we learned during the implementation re-
garding physics engines themselves. Additionally, it evaluates some Rust-specific factors
that impacted the development process in various ways. In Section 6, we consider the
limitations of the engine and outline potential future work. Lastly, we conclude this
thesis in Section 7.

2

2 Background

This section provides the necessary information to reason about the topics at hand.
Section 2.1 roughly describes what physics engines are, lists different characteristics of
them, and explains how basic concepts like bodies can be modelled within the simulation.
In Section 2.2 we present Rust, the programming language the engine is implemented in,
and some of its advantages. Section 2.3 elaborates crucial mathematical branches, that
are needed to simulate physics.

2.1 Physics Engines

Physics engines encompass the simulation of physical systems such as rigid body dynam-
ics [7], soft body dynamics [8], or fluid dynamics [9]. These engines are utilized in various
domains to simulate realistic behaviour of physical entities. To define how such entities
interact with each other engines make use of mathematical concepts and formulate rules
or constraints with them. While simulations made with physics engines can adhere to
the expectations of reality, they are not required to. In Figure 1, we depict a simple
example: We can define gravity to model its observed behaviour, going straight down.
However, nothing prohibits us to utilize a custom gravity direction that is inclined to the
right.

Figure 1: Standard gravity compared to a custom gravity.

The primary tasks of physics engines are to move dynamic bodies through a simulated
space, as well as detecting and resolving their collisions with other entities. Those entities
could be other moving bodies, immovable bodies or even the boundaries of the world.
Unless the space is empty collisions are inevitable and the engine has to detect and handle
them according to a set of defined rules. In two-dimensional engines, it is comparatively
simple to analyze whether two bodies collide. Collisions are the intersections between
bodies, or rather intersections between the shapes of the bodies. Figure 2 illustrates a

3

simple collision between two circle-shaped bodies. In Section 3, we will explore how such
a collision resolution can be implemented.

Figure 2: Example of a simple collision between two circles.

Physics engines can be classified by numerous characteristics. One rather obvious distinc-
tion is, whether the engine operates in two dimensions, like Rustycs, or in three dimen-
sions. The absence of a whole dimension makes two-dimensional engines comparatively
simple and they are the main focus of our work. On the other hand, three-dimensional
engines are very compute-intensive and require their developers to have a detailed un-
derstanding of various physical and mathematical concepts.

The detection of collisions is an important topic for physics engines and multiple tech-
niques to enable it have been developed. Discrete Collision Detection (DCD) describes
the process of evaluating the world state at discrete points in time (ticks) and suffices
in a lot of use cases. Its shortcomings become apparent when working with bodies that
move particularly fast, also known as bullets. In DCD it is possible that bullets move so
fast that they completely pass a wall or other entities in between ticks, and therefore no
collision gets detected. Continuous Collision Detection (CCD) prevents such evaluation
artifacts by predicting and calculating collisions between ticks, which adds additional
computational overhead [10]. Furthermore, it requires even more resources to calculate
additional properties of collisions, such as the actual time of impact.

Various techniques exist to resolve detected collisions. For instance, one way to resolve
collisions is called the projection method. This technique simply displaces colliding bod-
ies to separate them again, but by itself, it does not account for the transferal of energy
of colliding entities. An alternative resolution is the impulse method, which does not
change the body locations directly, but rather applies instantaneous impulses to their
velocities to separate them.

4

Bodies within physics engines are typically at least defined via their shape and whether
they can move or not. In the context of a physics engine immovable bodies are called
static and have infinite mass. In contrast, dynamic bodies can move through the physics
world and are affected by forces within it. In addition to world forces, collisions also affect
how bodies move since they have to be resolved. Furthermore, in Rustycs body shapes
are classified into four categories: circles, axis-aligned bounding boxes (AABB), oriented
bounding boxes (OBB) and polygons. Note that the main difference between AABBs
and OBBs is that OBBs can rotate, whereas AABBs are unable to. Two-dimensional
vertices are used to define the concrete shapes of AABBs, OBBs and polygons. Circles
are not defined via vertices and we will discuss how we model them in Section 3.

Combinations of an arbitrary number of vertices theoretically allow us to define infinite
distinct polygon shapes. However, within our implementation, we restrict valid polygon
shapes to be convex and to use at most 8 vertices [11]. The subset of convex polygons
separate themselves from the set of all polygons via a special characteristic in regard
to their shape. Every point on any line segment between two arbitrary points within a
convex polygon remains within the boundaries of the polygon. Restricting the engine with
these boundaries improves performance and simplifies collision handling. The Separating
Axis Theorem (SAT) and algorithms utilizing it are commonly used to detect collisions,
and it assumes involved shapes to be convex [12]. Figure 3 illustrates the difference
between a convex polygon and a concave polygon.

Figure 3: Difference between convex and concave polygons.

5

2.2 Rust

Rust is a general-purpose programming language initially designed by Graydon Hoare
with a focus on performance, reliability, and productivity. It utilizes LLVM to com-
pile its code directly to assembly [13]. However, being a compiled language is not its
only performance advantage. Zero-cost abstractions enable developers to use high-level
programming patterns, for instance, iterators, without worrying about performance im-
pacts. Another performance factor is that the language manages memory uniquely. It
leverages the concept of Ownership & Borrowing to manage its memory [6]. Ownership
rules define the variable, which holds a value, to be the owner of that value. When the
owner goes out of scope, the value will be dropped or rather deallocated. Developers can
specify how to handle the owner in the context of their program. Values of owners can be
borrowed to prevent them from being dropped when passing their value around, for ex-
ample as function parameters. Consequently, Rust does not have a garbage collector and
its associated run-time costs, nor does it require developers to manually handle memory
like C or C++. Ownership also impacts the reliability regarding the memory safety of
the language. Rust offers a rich type system and a sophisticated compiler, which enable
it to find most errors at compile-time. The type system is very explicit and implicitly
reveals how various concepts, for example, memory allocation, work. The language is
well documented and even offers an integrated package manager, called cargo, to boost
the productivity of developers. In addition, there are numerous other aspects, like its
active and maintained community-driven ecosystem [14], which make Rust a great choice
in various programming domains.

2.3 Mathematics

The primary tasks of physics engines involve the movement of bodies and the resolution
of collisions within their simulation. Implementing these features requires a basic grasp
of specific mathematical concepts. Two central domains of mathematics for this purpose
are vectors and trigonometry. Vectors are used to reason about where objects are in the
environment and how they are moved accordingly. Trigonometry allows us to extract
collision data and to apply rotations to dynamic objects. Consequently, a fundamental
understanding of these domains is of utmost importance in the development of physics
engines.

In two-dimensional space, locations can be represented by two-dimensional vectors (x, y),
where x represents the horizontal axis and y the vertical axis. Similarly, forces and

6

velocities can also be described by vectors, representing the magnitude and direction of
movement or acceleration. Trigonometry allows us to define collision resolutions and how
to rotate bodies in our simulated space. For instance, to rotate any object around the
world origin (0, 0) by a given angle θ in two-dimensional space, one can observe the 2×2

rotation matrix R.

R =

[
cos θ − sin θ

sin θ cos θ

]
(1)

Translating this into code is rather straightforward and by itself not a complicated oper-
ation. In Listing 1, we take the absolute world location of a body as (x, y) and an angle

and perform the correct calculation according to the rotation matrix above:

Listing 1: Rotation around the world origin

1 fn rotate_body_location(

2 x: f32, y: f32, angle: f32

3) -> (f32, f32) {

4 let x_new = x * angle.cos() - y * angle.sin();

5 let y_new = x * angle.sin() + y * angle.cos();

6 return (x_new, y_new);

7 }

However, if we want to rotate the body around its own center, this does not work, since
we actually want to rotate the shape, or more specifically, the vertices that define the
shape. Therefore, it is necessary to translate the vertices to the world origin before
rotating the vertices themselves. Afterwards, we translate the vertices back to the actual
location of the body. An exemplary function that does this can be viewed in Listing 2.

Listing 2: Rotation of a body

1 fn rotate_body_vertices(

2 vertices: Vec<(f32, f32)>, x: f32, y: f32, angle: f32

3) -> Vec<(f32, f32)> {

4 for (v_x, v_y) in vertices {

5 (v_x, v_y) = (v_x - x, v_y - y);

6 (v_x, v_y) = rotate(v_x, v_y, angle);

7 (v_x, v_y) = (v_x + x, v_y + y);

8 }

9 return vertices;

10 }

7

3 Implementation

This chapter describes the implementation process of our physics engine Rustycs and its
corresponding demo application. The details regarding the physics engine are presented
in Section 3.1. Section 3.2 elaborates optimization approaches. Two approaches are
applicable generally and another one is specific to physics engines. Lastly, Section 3.3
presents implementation details regarding the demo application used to visualize the
state of a Rustycs world.

3.1 Engine

We implemented a two-dimensional physics engine that checks for collisions in discrete
time steps (DCD) and resolves them via instantaneous velocity impulses. The engine
evaluates a subset of possible body shapes, which are illustrated in Figure 4. The lo-
cations of all bodies and the shapes of AABBs, OBBs and polygons are defined by
two-dimensional vectors. Defining the shape of circles with vectors is not practical, since
it is impossible to store enough vectors to represent a smooth circle shape. Instead, we
define circle shapes via their radius, since this is sufficient and cheap in terms of detecting
shape intersections. Their radii in combination with the concrete body locations allow
us to analyse whether the circles collide with other entities. Furthermore, the bodies are
considered to be rigid, which means they are unable to deform.

Figure 4: Illustration of all supported shapes.

In Figure 4, the center of the grid is the world origin (0, 0) and every grid box has a
width and height of 1. Consequently, the AABB has a world location of (1, 1) and its
top-left corner is located at (0.5, 1.5). However, in our engine, shape vectors are stored
inside of bodies, relative to the location of the body they belong to. For this reason, the

8

top-left corner of the AABB is actually stored as v′corner = vcorner − vbody. In Figure 4,
this results to the vector (0.5, 1.5) − (1, 1) = (−0.5, 0.5). Storing the shape vectors like
this allows us to rotate the shape without having to translate the vertices to the world
origin for each rotation. Additionally, we do not need to move individual shape vertices
when moving bodies, just their location. When we need the absolute locations of the
shape vertices, for instance during rendering or collision detection, we simply offset them
with the body location.

Evidently, vectors are fundamental building blocks when reasoning in two-dimensional
or three-dimensional space. Implementing custom representations of vectors to enable
efficient implementations tailored to the necessary features is a common practice in engine
development. Therefore, we decided to design our own vector data structure, namely
Vector2. In many other languages, we would implement such a structure as a class,
but classes do not exist in Rust. Instead, Rust offers simple structures, similar to other
system programming languages. Listing 3 showcases the Vector2 struct as well as how to
extend it by utilizing an implementation block. These blocks are used to define methods
or associated functions on structures, which enables us to extend them with the needed
functionality. The simplicity of our homemade vector struct allowed us to implement
vector functionalities concisely. Furthermore, the flexibility of the implementation blocks
enabled us to focus only on crucial vector concepts needed by Rustycs.

Listing 3: The Vector2 struct

1 pub struct Vector2 {

2 pub x: f32,

3 pub y: f32,

4 }

5

6 impl Vector2 {

7 // method

8 pub fn rotate_self(&mut self, angle: f32) {

9 let x = self.x;

10 let y = self.y;

11

12 self.x = x * angle.cos() - y * angle.sin();

13 self.y = x * angle.sin() + y * angle.cos();

14 }

15

9

16 // associated function

17 pub fn rotate(v: Vector2, angle: f32) -> Vector2 {

18 return Vector2 {

19 x: v.x * angle.cos() - v.y * angle.sin(),

20 y: v.x * angle.sin() + v.y * angle.cos(),

21 };

22 }

23 }

In addition to defining locations within the world, vectors also describe location changes
and other body characteristics, such as their velocity. When we want to move a body
located at L = (5, 7) to a target location of T = (10, 3), we can calculate their difference
M as T − L = (5,−4). By adding M to L, the body will reach the target location
T instantaneously, and consequently, the body will seemingly teleport. However, in
our context, teleportation completely disregards the time needed to execute physical
movement. Rustycs defines a concrete time interval, used to explicitly probe the world
state and update it accordingly. It is common practice to declare the inverse time interval
in the form of a fixed tick rate. For instance, if the evaluation has a tick rate of 64, we
probe the world state 64 times each second, which results in a probing interval of 1/64 =

0.015625 seconds. We call the probing interval the "delta time", and every location or
velocity change within the simulation gets scaled with it. Without this consideration,
movement is going to be inconsistent across different tick rates.

10

3.1.1 Forces & Attractors

Dynamic bodies can be moved in various ways in a simulated physics world. For instance,
bodies can be moved by a fixed amount every tick, which is a concept known as linear
velocity. Acceleration can be utilized to change the velocity of the body; this results in
nonlinear movement that changes over time. Additionally, we can adjust the location of
a body directly and simulate its teleportation. Regardless of the specific method chosen,
movement in two-dimensional space is modelled by vectors in the form of (x, y).

To move bodies, Rustycs primarily relies on forces and attraction entities that we call
"attractors". Forces affect all dynamic bodies within the physics world. This is com-
parable to gravity in reality, but we can simulate other forces, such as wind, with this
concept as well. Attractors pull dynamic bodies towards them and are categorized into
global and local attractors. Global attractors affect all bodies in the world similar to
forces, whereas local attractors have a maximum range and do not affect bodies outside
of it. Forces and attractors constantly affect body locations and allow us to simulate
approximations of real world behaviour.

Our engine is not limited to a single force per simulation. However, separate forces get
accumulated into a single world force, which accelerates and affects dynamic bodies in
the simulation. This is functionally equivalent to the sequential application of individual
forces but more efficient in terms of run-time overhead. For instance, we can create a
force called "gravity" with an acceleration of (0,−9.81). Next, we can simulate a strong
wind in our world that flows to the right with an acceleration of (2, 0). These two forces
result in a total world force of (2,−9.81) which accelerates bodies by 2.0m/s2 to the right
and 9.81m/s2 downwards.

Like forces, global attractors influence all dynamic bodies within the simulation. How-
ever, instead of a predetermined direction and acceleration, they calculate these factors
dynamically at run-time. Bodies are drawn towards the attractors, which means the
direction and magnitude of their attraction is distinct for individual bodies. In addition,
their magnitude depends on the mass of the attractor and the body, as well as the dis-
tance between them. In every physics step we have to calculate the attraction force for
each body and consider all attractors. These attractions are accumulated and applied
to the respective body. Local attractors have an additional maximum range. Bodies
outside of the local attractor range do not get pulled towards them and are ignored by
the attractor.

11

3.1.2 Bodies

The shape is not the only important characteristic of a body for a physically accurate
simulation in Rustycs. The engine is aware of various characteristics, such as the body’s
material, or whether it is dynamic or static. The Body structure contains the following
data:

• Shape: An enum used to analyse whether bodies intersect with others. In Rust,
enums are special since they are not simple indicators of what they represent. In-
stead, Rust enums can associate an arbitrary data structure to their variants. For
example, the circle shape variant holds a circle structure. This circle structure
contains the radius of the circle and a single vector to represent the circle orien-
tation. The area of the shape is utilized to dynamically calculate the body mass
upon its creation. Furthermore, depending on the shape variant, different detection
algorithms get applied in the collision pipeline.

• Transform: A structure that keeps track of the body location, velocity, and angular
velocity. In Rustycs, the body transform state gets affected by forces, attractors,
and collisions between bodies.

• Material : A structure containing values for the density, restitution, and friction
of bodies. In Rustycs, the body material is used to define the body mass and
inertia when bodies are created. Furthermore, it allows us to dynamically resolve
collisions based on the material types of the colliding bodies. Specifically, material
restitution and friction coefficients influence collisions.

• BodyType: An enum that determines whether a body is dynamic or static. It is
crucial to distinguish between dynamic and static bodies, since they have to be
handled differently in various aspects during the physics step.

• Mass: A numerical value that represents the mass of the body. It depends on the
shape of the body and the density of the body material. In Rustycs, the body mass
is used to define how a body is affected by attractors and collisions. In impulse
based physics engines it is common practice to associate the absence of mass with
immovable objects to simulate the effect of "infinite" mass. As a consequence,
static bodies have a mass of 0. The reason for this lies in the way collisions are
resolved with impulses, which we will discuss in Section 3.1.3.

• Inertia: A numerical value that represents the inertia of the body. It describes the
tendency of an object that is already in motion to stay in motion. Similarly, it

12

also describes the tendency of objects at rest to stay at rest. Its value depends on
the specific body shape and is proportional to the body mass. Inertia is commonly
used to define the rotational behaviour of different objects in physics engines. In
Rustycs, static bodies have an inertia of 0, for similar reasons that cause them to
have 0 mass.

Finally, we also store the inverse mass and inverse inertia of the body. This enabled us
to implement optimizations, which will be discussed in Section 3.2.

3.1.3 Collision Detection & Resolution

One of the main tasks of physics engines is to handle collisions, which happen when the
shapes of bodies intersect. Whether intersections occur is easy to determine visually,
but a physics engine is unable to do that. Consequently, engines have to approach this
problem differently. They utilize algorithms that rely on mathematical characteristics of
the body’s geometry to detect intersections. The Gilbert-Johnson-Keerthi (GJK) algo-
rithm is commonly utilized to detect collisions between bodies in real-time applications
such as physics engines [15]. However, since it is designed for arbitrary shape types, it is
quite abstract and therefore difficult to understand. Rustycs took a different approach
and explicitly checks for collisions between concrete shape types. One the one hand, this
improved the coherence of the detection algorithms. On the other hand, it was necessary
to implement explicit algorithms for each possible shape combination.

The simplest shape combination in terms of detecting an intersection is a collision between
two circles. Circle bodies are represented by two characteristics: their location in the
world and their shape, which is defined by the circle radius. Listing 4 showcases an
algorithm to detect intersections between two circle bodies via their characteristics. First,
we compute the difference between the circle locations as a vector. Next, the sum of their
radii is calculated. Finally, we can return whether the length of the difference vector is
smaller than the sum of the radii.

Listing 4: CircleCircle collision detection

1 fn circle_circle_b(a: &Body, b: &Body) -> bool {

2 let distance = b.transform.location - a.transform.location;

3 let r = a.shape.as_circle().r + b.shape.as_circle().r;

4

5 distance.len() < r

6 }

13

Additionally, Figure 5 illustrates circles A and B intersecting and compares the radii
sum to the respective distances. Evidently, if the distance between them is smaller than
their radii sum, the circles intersect.

Figure 5: Comparison of circles that do not intersect vs. circles that do intersect.

The detection function in Listing 4 is only useful in terms of detecting whether a colli-
sion happened. However, it provides no actual information on how to resolve the collision
and separate the bodies accordingly. The collision detection functions of Rustycs extract
important data after the collision was detected, and stores it in manifolds. Collision
manifolds enable us to streamline collecting collision data. They contain the collision
information that is needed to resolve collisions in the resolution phase. Information of
interest includes characteristics such as how deep the intersection is (collision depth),
in which direction the bodies should be moved (collision normal) and where exactly the
bodies collided (contact points).

Listing 5 showcases the collision detection implementation of two circles in Rustycs. In-
stead of returning if an intersection occurs, we use that knowledge to generate a manifold
if necessary. When a collision gets detected, we generate an empty manifold as seen in
line 9. During this initial construction of the manifold, the average friction and bounce
coefficients of the bodies get inferred from the involved body materials. For "circle-circle"
collisions we calculate the collision normal, depth and contact point and store them in the
manifold before returning it. After detecting the collision and generating its manifold,
the collision is almost ready to be resolved.

Listing 5: CircleCircle collision detection with manifold generation

1 fn circle_circle(

2 a: &Body, a_idx: usize, b: &Body, b_idx: usize

3) -> Option<Manifold> {

4 // ...

14

5 if distance.len_squared() >= r * r {

6 return None;

7 }

8

9 let ra = a.shape.as_circle().r;

10 let mut m = Manifold::new(a, a_idx, b, b_idx);

11

12 let normal =

13 distance.normalized().unwrap_or(Vector2::rand_normal());

14

15 m.normal = normal;

16 m.depth = r - distance.len();

17 m.contacts[0] = a.transform.location + (normal * ra);

18 m.contact_count = 1;

19

20 Some(m)

21 }

Collisions between other shapes other than circles are harder to detect. Rustycs relies on
the Separating Axis Theorem and two-dimensional vector projection techniques to extract
information from collisions that do not exclusively involve circles [12]. Furthermore,
collisions that involve no circles at all are special. Figure 6 depicts how their collisions
might involve multiple contact points, which are limited to at most two in two-dimensions.
If non-circle bodies collide on their surfaces in parallel, the collision needs to involve two
contact points to enable a proper resolution.

Figure 6: Example of an AABB collision with two contact points its collision normal and
depth.

15

When all precomputable coefficients are calculated and stored in the manifold we can
resolve the collision with velocity impulses. We calculate velocity impulses sequentially
in separate resolution iterations and apply them to the bodies [16, 17]. By adjusting the
number of resolution iterations we control how accurate the resolution is. The more ve-
locity impulses get calculated, the more accurate the resolution. Furthermore, we apply
multiple impulses to the body velocities so that we can accumulate all velocity changes
of a physics step and apply them at the end. This prevents new collisions from happen-
ing during the collision resolution process, which would require us to scan for collisions
before each resolution iteration.

Each contact point of a collision requires two impulses, to consider the separation as well
as the friction during the resolution. Listing 6 shows how resolutions apply impulses to
the body’s velocity and angular velocity. Apart from the calculated impulse magnitude,
the velocity impulse depends on the distance between the locations of the involved bodies
and the concrete contact point locations.

Listing 6: Applying resolution impulses

1 fn apply_impulses(

2 a: &mut Body, b: &mut Body,

3 impulse: Vector2, ac: Vector2, bc: Vector2

4) {

5 a.transform.velocity -=

6 impulse * a.inverse_mass;

7 a.transform.angular_velocity -=

8 ac.crossed(impulse) * a.inverse_inertia;

9

10 b.transform.velocity +=

11 impulse * b.inverse_mass;

12 b.transform.angular_velocity +=

13 bc.crossed(impulse) * b.inverse_inertia;

14 }

In general, resolution impulses are proportional to the relative velocity between the in-
volved collision bodies. The rotation impulse correlates to the collision normal, whereas
the friction impulse correlates to its tangent. Figure 7 illustrates how a rotational impulse
gets applied to the angular velocity of an OBB. Figure 8 illustrates how a friction impulse

16

gets applied to the angular velocity of a circle. However, simply applying these impulses
is not enough to separate the bodies. Rustycs does not correct the body positions via
the resolution impulses. Instead, it adjusts the body locations according to the collision
depth after the velocity changes have been applied. In addition to the collision depth, the
positional correction depends on the masses of the involved bodies. For instance, if the
involved bodies have distinct masses, the body with less mass gets displaced more than
the heavier body. If a static body is involved in any collision, it will not be displaced
since its mass is infinite and modelled as zero and the dynamic body gets displaced by
the total collision depth.

Figure 7: Visualisation of a rotational impulse.

Figure 8: Visualisation of a friction impulse.

17

Listing 7 shows how the rotation impulse gets calculated. The calculation utilizes pre-
computed coefficients, which are stored in the collision manifold m and its actual contacts
c. Calculating the friction impulse is done similarly, but utilizes the tangent of the
collision normal instead of the normal itself. Additionally, the friction impulse does not
involve the bounce factor and it gets clamped proportionally to the rotational impulse.

Listing 7: Collision resolution - rotation/normal impulse

1 v_rel = b.transform.velocity

2 + cross(b.transform.angular_velocity, c.diff_to_b);

3 v_rel -= a.transform.velocity

4 + cross(a.transform.angular_velocity, c.diff_to_a);

5

6 let v_rel_n = v_rel.dotted(m.normal);

7

8 let mut jn = c.normal_magnitude

9 * v_rel_n

10 * m.bounce_factor

11 * m.inv_contact_count;

12

13 jn = f32::max(jn, 0.);

14

15 apply_impulses(a, b, jn * m.normal, c.diff_to_a, c.diff_to_b);

3.1.4 The World

The world contains all the necessary data structures to simulate our physics world. It is
the main entry point into Rustycs and describes how its physics evaluation works at the
highest level. Its primary purpose is to store bodies, attractors and forces. Next, it keeps
track of collision manifolds that get generated in the collision detection phase. Finally, it
holds the simulation tick rate, delta time and a fixed number of resolution iterations, the
collision precision, that should be performed in the collision resolution phase. A physics
step in Rustycs involves 4 sub-steps and its implementation can be viewed in Listing 8:

• Collision detection: Every dynamic body gets compared to all other bodies. The
comparison classifies the bodies according to their shape combination, e.g., circle vs.
AABB. Afterward, Rustycs analyzes the shapes and generates a collision manifold
if the body shapes intersect.

18

• Applying world and attractor forces: Once the collisions have been detected, we
apply the accelerations of the world force and all attractors to the body velocities.

• Collision resolution: Here we resolve all collisions by their manifold. The resolution
process sequentially calculates velocity and angular velocity impulses and applies
them to the body’s transform state. At the end, the body locations get adjusted
directly to revert their intersection.

• Moving dynamic bodies: Finally, we apply the velocities and angular velocities that
were accumulated in the physics steps to the body. We have now cleanly updated
the body with respect to all present forces and collisions that occurred.

Listing 8: The physics step

1 pub fn update(&mut self) {

2 // Collision detection

3 self.detect_collisions();

4

5 // Applying world and attractor forces

6 for body in self.bodies

7 .iter_mut().filter(|b| b.body_type == Dynamic)

8 {

9 let mut f = self.forces;

10 self.attractors.iter().for_each(|a| {

11 f += a.get_attraction(body);

12 });

13 body.transform.velocity += f * self.delta_time;

14 }

15

16 // Collision resolution

17 if !self.manifolds.is_empty() {

18 self.setup_resolutions();

19 for _ in 0..self.collision_precision {

20 self.resolve_collisions();

21 }

22 self.correct_positions();

23 self.manifolds.clear();

24 }

19

25

26 // Moving dynamic bodies

27 for body in self.bodies

28 .iter_mut().filter(|b| b.body_type == Dynamic)

29 {

30 body.transform.location +=

31 body.transform.velocity * self.delta_time;

32 // rotate according to angular velocity

33 body.rotate(self.delta_time);

34 }

35 }

3.2 Optimizations

Numerous techniques to optimize the time and space complexity of algorithms or ap-
plications exist. Some techniques we will discuss in this section are applicable to any
algorithm. However, they require basic knowledge about how instructions get executed
on the CPU or how memory management works. Techniques specifically designed to
optimize physics engines are generally less flexible but can be useful in other domains.

Allocating memory happens in two main memory regions of a program: the stack and
the heap. Memory allocations on the stack are fast and possible when the program
knows the size of the data at compile-time [18]. In contrast, allocation on the heap is
much slower. However, it is more flexible and is e.g., used when the specific size of the
data structure can only be determined at run-time, or if the structures are too big to
be efficiently stored in the stack. Consequently, a collection of data structures can only
be stored on the stack, if it has a predefined size. This corresponds to an array in most
programming languages. Since allocation on the stack is much faster, it should be used
whenever it is possible and reasonable to do.

In Rustycs we store the vertices of the body shapes in arrays. This is possible, because we
defined a maximum of 8 possible vertices per shape. While this eliminates the possibility
of more complex shapes, it is certainly not a downside. Detecting collisions is a process
that gets exponentially more expensive for each additional vertex, especially when we
want to detect collisions between two polygon bodies. Additionally, allocating the ver-
tices on the stack reduces memory fetching time. Therefore, we increase the computation

20

speed greatly since the engine potentially needs to execute this process hundreds, if not
thousands, of times in a single physics step.

In programming, most of the time, there is more than one way to achieve a desired out-
come. However, the cost to achieve it is not necessarily always the same. During the
implementation process, we noticed that physics engines use inverse values in various
parts of them. The reason is that the CPU requires more cycles to calculate divisions
than multiplications. In fact, divisions require up to 10 times more cycles than their
counterparts [19]. So, when we need to divide values by the same constant in a lot of
places, it is beneficial to calculate the inverse of the constant once and multiply the
values by the inverse instead. Other examples would be the power function and taking
the square root of a number. Multiplying a number by itself is equivalent to taking its
power of two, but in terms of computational complexity, the power operation performs
worse than a simple multiplication. Taking the square root of a number is also a highly
complex procedure for the CPU.

In line 10 of Listing 5 we can see a practical example of these optimizations. There is
no reason to compute the actual distance between the two circles since we can simply
compare the squared distance to the squared total radius. This allows us to delay the
computation of the actual distance, which involves taking a square root. Furthermore,
instead of computing the square radius via a power function, we can simply multiply the
radius by itself. Now the check for the actual collision is optimized and we only compute
expensive characteristics when we need them.

Although the improvements above certainly result in performance gains, in our case, they
are not enough by themselves. Collision detection of n bodies has a run time complexity
of O(n2), which bottlenecks our engine quickly if we implement the detection process
naively. The run-time complexity is especially problematic if we accurately check for
intersections between each body immediately. By utilizing a physics engine optimization
technique that involves a broad and a narrow phase, we can reduce the compute intensity
of the collision pipeline.

The broad phase initially decides if it is possible that two bodies intersect, and marks
them as a possible collision. It calculates axis-aligned bounding boxes for each body with
respect to their current rotation, which we call their "hitboxes", which represent the outer
bounds of the bodies. OBBs and polygons have to continuously update their bounding

21

boxes since a rotation changes their orientation, which could influence their outer bounds.
Only if the outer bounds of the bodies collide, we consider the pair to possibly collide.
With this technique we filter out the majority of bodies that do not intersect with cheap
AABB collision checks. In Figure 9, we illustrate examples of hitboxes intersecting and
getting flagged as possible collisions. On the left side, we see that the OBB hitbox
is equal to its actual shape due to its rotation, and does not intersect with the circle
hitbox. However, rotating the OBB by 90 degrees results in a hitbox that intersects with
the hitbox of the circle even though the OBB location did not change. For that reason,
the broad phase marks the example on the right side as a possible collision.

Figure 9: Comparison of hitboxes.

Generating the manifolds and checking whether the bodies actually intersect is deferred
to the narrow phase. Since we filtered out the majority of cases where bodies could not
possibly intersect, the number of accurate and expensive checks is reduced dramatically.

22

3.3 Demo Application

Developing a physics engine from scratch involves various challenges. Arguably, the most
crucial aspect is verifying whether the engine works as intended. A simple way to check
how the engine behaves is to visualize it. Other engines usually come with a demo show-
case to tackle this problem. However, since we developed our very own engine from
scratch, there are no existing solutions to visualize the inner workings of the simulation.
One obvious reason for this is that other developers can not possibly predict what the
world state looks like or how its contents are defined. Interestingly, this problem begins
with the decision regarding the data types used. For example, there is no guarantee
that existing visualisations utilize the same floating point accuracy as Rustycs and we
potentially need to convert every single number of our world state to visualize it.

To circumvent these issues, we decided to implement a custom demo application to vi-
sualize the world’s state. However, seemingly simple tasks like rendering pixels on the
screen are intricate processes that utilize the graphics pipeline and require direct calls to
the GPU and CPU. For this reason, we defer this task to an existing rust crate called
"Macroquad" [20]. This library is very easy to use and we utilize it to render lines, circles
and text to the screen.

One basic challenge of displaying world entities on the screen is the discrepancy in the
internal coordinate systems. Rendering libraries commonly use screen coordinates, which
diverge from a classic coordinate system. The main distinction is the location of their
origins. Figure 10 illustrates the difference between classical screen coordinates and
world coordinates. Screen coordinates usually have their origin in the top-left corner
of the screen and are bounded by the physical screen, whereas world coordinates are
centered around their origin and unbounded.

Figure 10: Comparison of screen and world coordinates.

23

Screen coordinates have no negative values and incrementing the vertical axis value corre-
lates to downward movement. Furthermore, we needed to define a ratio of world distance
to pixels to achieve a stable visualisation of distances. This was modelled as the "pixel
to meter" ratio (PTMR) in the world struct and was also incorporated in the transla-
tion. Additionally, the ratio allows us to zoom the visualisation in or out, by adjusting
it during the application run-time. In Listing 9, we show how the actual translation is
achieved.

Listing 9: Translating between screen and world space

1 pub fn world_to_screen(

2 &self, coordinate: Vector2, w: f32, h: f32

3) -> (f32, f32) {

4 let x = (coordinate.x * self.pixel_to_meter) + w * 0.5;

5 let y = (-coordinate.y * self.pixel_to_meter) + h * 0.5;

6 (x, y)

7 }

8

9 pub fn screen_to_world(

10 &self, x: f32, y: f32, w: f32, h: f32

11) -> Vector2 {

12 let x = (x - w * 0.5) * self.inv_pixel_to_meter;

13 let y = -(y - h * 0.5) * self.inv_pixel_to_meter;

14 Vector2::from(x, y)

15 }

To translate world to screen coordinates we multiply them by the PTMR. Note that it
is necessary to invert the vertical coordinate, since the screen handles them differently.
Afterwards, we can simply add half of the screen height or width to offset them to the
screen center. Translating the screen to world coordinates is achieved by reversing the
order of the instructions. Once we are able to freely translate between the two coordinate
systems, we can render the state of the world. We simply iterate over all entities we
want to render, translate their world coordinates to screen coordinates, and apply any
additional scaling that is necessary. In addition to visualisation, the demo application
offers more advanced features that interact with the engine state. In the interest of
conciseness, interacting with the simulation is done via keyboard strokes, which are
detected with the macroquad crate. In Section 4, we expand on these additional features
of the demo application.

24

4 Evaluation

This chapter evaluates Rustycs in regard to its functionality and coherence. In Section
4.1, we analyze Rustycs with the help of implemented demo scenes that test various
aspects of the engine. Section 4.2 expands on the debug features of the demo application.
In Section 4.3, we attempt to evaluate how coherent the implementation of Rustycs itself
is.

4.1 Demo Scenes

We implemented various demo scenes that enable future users to quickly verify if the
correctness and accuracy of Rustycs suffices their needs. Demo scenes efficiently verify
Rustycs’ integrity since there is no need to understand the source code of Rustycs to
test its functionality. Due to page constraints, we will only discuss a subset of the im-
plemented demo scenes in this thesis.

To showcase how bodies interact with each other during collisions, we designed a demo
scene that spawns randomly generated bodies that can rotate. These body types are
circles, OBBs, and polygons. Each body has a random material associated with it and
has a random size. Figure 11 depicts the scene once the bodies have fallen into the pool
and come to a standstill.

Figure 11: Demo scene: piling of rotating bodies.

25

Next, to showcase how body materials behave differently, we designed a demo scene
that spawns five circles with different materials. They all fall from the same height and
spawn next to each other, making the comparison very clear. Additionally, the user can
spawn other objects to interact with the different bodies and analyze how the material
friction factors affect the collisions. Figure 12 depicts the scene after the initial bounce
of each circle. The difference in their bounce height is clearly visible and results from
their distinct restitution averages. The circles have the following materials: rubber (red),
plastic (green), stone (grey), metal (dark grey), and default (black). We can clearly see
that the rubber ball bounces the highest, which makes sense since the rubber material
has the highest restitution coefficient.

Figure 12: Demo scene: bounce difference of materials.

Lastly, to showcase the integrity of attractors, we implemented an approximated sim-
ulation of the solar system. The sun is an attractor in the middle of the demo scene,
and all planets are bodies that that oscillate around the sun. Planets have manually
assigned mass values to enable the approximation of their behaviour in regard to the
sun’s attraction force. Additionally, we associate names with the attractor and bodies to
render them with custom colors instead of the material colors. Figure 13 illustrates an
arbitrary state during the simulation of the solar system.

26

Figure 13: Demo scene: approximation of the solar system.

In Figure 14, we highlight the orbital velocity of Jupiter after some time has passed. Its
velocity indicator showcases how the gravitational force of the sun prevents Jupiter from
leaving its approximated orbit around the sun.

Figure 14: Demo scene: Jupiter’s orbital velocity after numerous physics steps.

4.2 Manual Testing Sandbox

Verifying the correctness of Rustycs proved to be challenging when solely relying on a
debugger or printing various states. To improve the process of debugging the engine, we
implemented several features that helped us gain a detailed insight into the current state
of the physics world.

Implementing these features was done by utilizing the existing functionalities of the
macroquad crate. The crate enabled us to probe for specific keystrokes, so we defined a
mapping for each debugging feature and implemented its functionality. For instance, it
is possible to pause the engine by pressing the ESC key.

27

Figure 15 displays the simulation in its paused state. When paused the demo application
displays all implemented debugging features and their associated keybindings.

Figure 15: Visual debugging information.

As depicted in Figure 15, the application offers various helpful features, such as stepping
through the simulation one tick at a time. Being able to analyze individual physics
steps and what happens between them allowed us to detect bug sources, especially those
present in the collision pipeline. Displaying collision points and body hitboxes allowed
us to further analyze the collision detection process, and these features are illustrated in
Figures 16 and 9, respectively.

Figure 16: Visualisation of collision contact points.

Spawning bodies or attractors dynamically at the mouse location allowed us to test all
kinds of interactions in a flexible manner. Finally, adjusting the location and zoom factor
of the camera enabled us to get a more detailed depiction of interactions.

28

4.3 Coherence

One of the primary goals of this work was to create a coherent physics engine in terms of
its structure and source code. We achieved coherent structure by separating the engine
by responsibilities:

• The world struct: The main entry point into the engine, and when utilizing the
engine in separate projects, we wanted other developers to simply work with the
world in their application loop. Therefore, the world is used to initialize the sim-
ulation state in regard to its tick rate and the bodies, forces, and attractors it
contains. Once a world is initialized, it is only necessary to update it sequentially
in a continuous loop and visualize its state.

• Entities within the world and their properties: The engine updates the world state
according to the present bodies, forces, and attractors. We structured the code
base accordingly and created separate files for bodies and their properties, such as
their material and transform state. Attractors and forces, on the other hand, are
less complex and self contained files.

• The collision pipeline: Detecting and resolving collisions is a huge factor in terms
of the complexity of the physics engine. Therefore, the whole collision pipeline
and its associated data types, such as the manifolds or hitboxes, were separated
into their own submodule. Since the entire pipeline is complex, we additionally
utilize a concept called "do or delegate". It intentionally breaks up complex code
into trivial problems and delegates them to sub-functions that handle them. For
instance, classifying collisions according to the involved body shapes and delegating
them to their respective detection functions uses this pattern.

• Visualisation: A key focus during implementation was to keep the demo application
and the engine completely separated. We achieved this by implementing all the
advanced features of the demo applications,such as predefined polygon shapes, in
the demo application. Furthermore, when translating world coordinates to screen
coordinates, we provide the concrete floating point values instead of Vector2 in-
stances. This enables all future projects that want to use Rustycs to use custom
structures and processes to visualize the world state.

• Demo application features: Additional advanced features of the demo application,
like the movable camera or scene management, were also implemented outside of
the engine. They are not necessary to the engine’s functionality and have no place
in its source code.

29

Another key aspect of coherence is the readability of the source code. We put effort
into naming variables used within the engine and demo application to represent what
they mean in their context. This was especially important when comparing our source
code to the implementations of other engines, which often use abstract variable names
and are comparatively less readable as a result. Rust as a language also enabled us
to write readable and modern source code without sacrificing run-time performance.
We utilized various zero-cost enum types to represent states in favor of simple boolean
values. Combining speaking variable names and enums with other zero-cost abstractions
of Rust, such as its iterators, resulted in coherent code, which enables future developers
to understand the concepts used in Rustycs easily.

30

5 Lessons Learned

This chapter highlights interesting lessons we learned during the implementation of our
physics engine. Section 5.1 focuses on general concepts and knowledge we gained by
implementing the engine. In Section 5.2, we explain how Rust assists and sometimes
almost forces developers to deepen their understanding of low-level concepts.

5.1 General

Separating large projects based on functionalities, e.g., physics bodies and their materi-
als, is vital for their coherence and future maintainability. Section 4.3 already elaborated
on how implementing Rustycs honed our ability to write coherent code in the context of
physics engines. However, numerous concepts we utilized in this project are applicable
to general programming.

By implementing a simplified two-dimensional physics engine, we gained insight into the
way such engines function at a high level. Modelling locations and movement within a
simulated space is done via vectors, which are easy to interpret and extend with func-
tionality in actual code. There are various ways to implement entities that live in the
simulated world, and they should be defined according to the use case of the engine. For
instance, if there is no need for different types of materials, they should not be included
in the body representation. Extensive planning and analysis of what the engine will
be used for is crucial for preventing unnecessary development overhead. Performance
quickly becomes a significant aspect when implementing physics engines. Therefore, it
is of utmost importance to understand how individual parts of the engine interact with
each other to optimize internal and external processes.

Utilizing the engine in our demo application surfaced issues regarding the separation of
concerns. The engine should only be responsible for tasks that concern the engine to
prevent external dependencies. Otherwise, there is a possibility that the engine depends
on the visualisation that uses it, which leads to several issues for the usage of the engine
in third party software. Furthermore, extending the demo application with additional
debugging features deepened our understanding of utilizing a continuous loop to inter-
act with and visualize the world state. Additionally, we were confronted with distinct
representations of coordinate systems, how to translate between them, and why they are
necessary.

31

5.2 Rust

On the one hand, choosing Rust initially slowed the implementation process down, in a
way languages like Java or Python would not have. It was necessary to study its type
system, its syntax, and how to utilize its memory management efficiently. On the other
hand, Rust deepened our knowledge about how code actually works under the hood. As
we got more familiar with the language, we realized its potential and noticed shortcuts
or bad practices that are embedded in other languages. However, we acknowledge that
Rust is not perfect and certainly not a language that should be used for every task. Its
comparatively complex, explicit syntax and type system, in combination with its unique
way to manage memory, provides advantages, that are not necessarily needed in many
domains.

A common issue for new Rust developers is its complex string handling. However, their
complex nature is not unwarranted and could be considered a feature of Rust. Strings of
any kind, especially UTF-8 encoded strings, are complex data structures [21]. Typical
programming languages, such as JavaScript, tend to hide the complexity of strings in
their compilers and runtimes to simplify their usage. Rust deliberately exposes the real
complexity of strings to developers. This trade-off prevents incorrect handling of UTF-8
characters (which require more memory than 8-bit ASCII characters) and thus prevents
errors that could occur otherwise.

In the context of memory management, Rust is not only an efficient language, it highlights
the intricacies and complexity of managing memory itself. As previously mentioned, Rust
manages memory via the concept of Ownership & Borrowing [6]. It enables the compiler
to detect most memory issues, i.e., a program will not even compile with memory man-
agement issues in the code base. Interestingly, during the implementation of Rustycs we
encountered a total of zero memory issues once the engine successfully compiled. Since
the Rust compiler rigorously checks numerous ownership rules and performs other tasks,
such as inferring static types, the compile times can become quite long. However, the
Rust project maintains their own a language server protocol (LSP) [22]. It is common
practice to embed a LSP into the programming environment because it highlights faulty
code immediately after it is written. Regarding Rust specifically, the LSP enables de-
velopers to detect errors without compiling the code base, which in turn eliminates the
wait times during compilation.

32

Since Rust is statically typed, the compiler and therefore the LSP can leverage its type
system to infer additional context information. Rust’s rich and explicit type system
improves the coherence of source code and even models memory management concepts.
Smart pointers in Rust act like traditional pointers in languages like C or C++ but
also provide additional capabilities and metadata [23]. For instance, we can wrap any
variable of type T that would usually get stored on the stack with a Box<T> smart
pointer, which explicitly tells Rust to store the variable on the heap instead. In addition,
Rust supports type aliasing out of the box. This is important since developers often have
to wrap data types with multiple smart pointers to achieve the intended functionality.
Listing 10 models the traditional functionality of a binary tree node in Rust. We can see
that the concrete type definition is quite verbose and complex. To ease its future usage,
we can type alias it.

Listing 10: Example of type aliasing smart pointer type

1 struct Node {

2 pub val: i32,

3 pub left: Option<Box<Node>>,

4 pub right: Option<Box<Node>>,

5 }

6

7 type TreeNode = Option<Box<Node>>;

33

6 Limitations and Future Work

In this section, we discuss the current limitations of our work and how we will address
them in the future. Section 6.1 lists a few common physics engine features we neglected
for this work. In Section 6.2, we elaborate various techniques that could be utilized to
further improve the performance of Rustycs.

6.1 Missing Features

For this work, we focused on a subset of body shapes that are relatively simple to imple-
ment. Fully functional physics engines do not take such shortcuts. Concave polygons are
the obvious next shape type to support within Rustycs. The concavity of these polygons
makes special guarantees of convex polygons with regard to the separating axis theorem
obsolete. Algorithmically splitting up arbitrary polygons into triangles is the common
way to circumvent these issues. However, this makes the collision detection process more
complex.

When engines detect collisions in a DCD fashion, they run into the issue of potentially
missing collisions that happened in between distinct ticks. CCD would prevent these
detection artifacts but it again adds additional complexity and demands more resources
since it needs to predict whether collisions happen.

Particle systems are objects within a physics world that emit or contain numerous minute
particles [24]. Common use cases are the simulation of fire or sprinkling water within
the engine. Their primary feature is not to simply display the particles, but that their
individual particles can interact with other entities present in a scene. Since such systems
usually emit numerous particles, the main factor that prevented us from implementing
them was performance. Additional optimizations would be necessary to ensure good
performance when particle systems are present in Rustycs.

34

6.2 Potential Optimizations

The glaring issue of Rustycs’ current state is that it is evaluated by only a single CPU
core. Implementing multithreading to utilize multiple CPU cores would dramatically
boost performance. However, correct and deterministic multithreading is a hard chal-
lenge in any programming language, and more so in Rust due to its explicit and precise
syntax nature.

Caching collision manifolds across physics steps and warm starting them helps to sta-
bilize the collision handling [25]. Instead of detecting all collisions and generating their
manifolds in each physics step, caching them allows us to simply update the manifolds
that were present in the previous step. If the bodies no longer collide, the manifold can
be removed; otherwise, it needs to be updated accordingly. To stabilize the collision
simulation properly, it is important to constraint updates and potentially only update a
manifold if the change passes a certain threshold.

In the current iteration of Rustycs the world space is not bounded. Therefore, bodies
could theoretically reach coordinates where they overshoot the maximum value of 32-bit
floating point numbers. Once they reach these kinds of coordinates, their behaviour
in an optimized Rust program is undefined. Optimized compilations do not check for
overflows, since that would affect run-time efficiency. However, Rust debug compilations
are intentionally less optimized to identify issues such as numerical overflows. So, by
limiting the size of the world, we eliminate the issues that undefined behaviour introduces
in such cases. More importantly, a size limit would allow us to define sectors within the
world, which can be used to enhance the broad phase efficiency in the collision detection
phase. Bodies that move past the world boundaries can be removed, and if we limit
the allowed size of bodies, we would only need to check neighbouring sectors within the
world.

35

7 Conclusion

Physics engines enable the simulation of realistic physical behaviour in various domains,
including, but not limited to, video games and CGI. In recent years, established physics
engines, such as PhysX by Nvidia, have accumulated large code bases and have become
hard to analyze [2]. Engines tailored to educational purposes, such as Box2D-lite by Erin
Catto, tend to be smaller, but often suffer from practices that impact the coherence of
their structure or source code.

In the course of this work, a physics engine and a separate demo application to visual-
ize and interact with the engine were implemented. The engine supports four distinct
shape types, namely circles, AABBs, OBBs and polygons. Collisions between bodies are
detected via DCD and the rate of detection (tick rate) is freely adjustable. The demo
application makes use of the implemented engine but is separated from any engine logic.

This project was developed in the programming language Rust and utilizes external li-
braries to generate random numbers and render the world state to the screen. Careful
consideration during the implementation of Rustycs and partially the usage of Rust en-
abled the source code and project structure to stay coherent over the development life
cycle. The final iteration of this work consists of 4055 lines of code spread across 29
files. The implementations of the engine1 and demo application2 can be viewed in their
respective GitHub repositories.

While the functionality of Rustycs is rather simple, the project still serves as a great
starting point for developers interested in venturing into the world of physics engines or
Rust alike.

1https://github.com/divtor/rustycs
2https://github.com/divtor/rustycs-macroquad-demo

36

8 Literature

List of Figures

1 Standard gravity compared to a custom gravity. 3
2 Example of a simple collision between two circles. 4
3 Difference between convex and concave polygons. 5
4 Illustration of all supported shapes. 8
5 Comparison of circles that do not intersect vs. circles that do intersect. . . 14
6 Example of an AABB collision with two contact points its collision normal

and depth. 15
7 Visualisation of a rotational impulse. 17
8 Visualisation of a friction impulse. 17
9 Comparison of hitboxes. 22
10 Comparison of screen and world coordinates. 23
11 Demo scene: piling of rotating bodies. 25
12 Demo scene: bounce difference of materials. 26
13 Demo scene: approximation of the solar system. 27
14 Demo scene: Jupiter’s orbital velocity after numerous physics steps. 27
15 Visual debugging information. 28
16 Visualisation of collision contact points. 28

37

Listings

1 Rotation around the world origin . 7
2 Rotation of a body . 7
3 The Vector2 struct . 9
4 CircleCircle collision detection . 13
5 CircleCircle collision detection with manifold generation 14
6 Applying resolution impulses . 16
7 Collision resolution - rotation/normal impulse 18
8 The physics step . 19
9 Translating between screen and world space 24
10 Example of type aliasing smart pointer type 33

38

References

[1] E. Catto, “Box2d.” https://github.com/erincatto/box2d, October 2020. (visited
on 06/02/2024).

[2] Nvidia, “Physx.” https://github.com/NVIDIA-Omniverse/PhysX, January 2024.
(visited on 06/02/2024).

[3] R. Gaul, “Collision detection in 2d or 3d – some steps for suc-
cess.” https://randygaul.github.io/collision-detection/2019/06/19/

Collision-Detection-in-2D-Some-Steps-for-Success.html, June 2019. (vis-
ited on 06/02/2024).

[4] T. R. Foundation, “The rust programming language.” https://www.rust-lang.org,
August 2023. (visited on 06/02/2024).

[5] A. B. et al, “System programming in rust: Beyond safety,” Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, pp. 156–161, 2017.

[6] T. R. Foundation, “Understanding ownership.” https://doc.rust-lang.org/

book/ch04-00-understanding-ownership.html, August 2023. (visited on
06/02/2024).

[7] Wikipedia, “Rigid body dynamics.” https://en.wikipedia.org/wiki/Rigid_

body_dynamics, February 2024. (visited on 19/02/2024).

[8] Wikipedia, “Soft-body dynamics.” https://en.wikipedia.org/wiki/Soft-body_

dynamics, February 2024. (visited on 19/02/2024).

[9] Wikipedia, “Fluid animation.” https://en.wikipedia.org/wiki/Fluid_

animation, February 2024. (visited on 19/02/2024).

[10] Unity, “Continuous collision detection (ccd).” https://docs.unity3d.com/Manual/
ContinuousCollisionDetection.html, February 2024. (visited on 20/02/2024).

[11] Wikipedia, “Convex polygon.” https://en.wikipedia.org/wiki/Convex_polygon,
February 2024. (visited on 06/03/2024).

[12] D. Wiki, “Seperating axis theorem (sat).” https://wiki.delphigl.com/

index.php/Tutorial_Separating_Axis_Theorem, September 2013. (visited on
05/03/2024).

39

https://github.com/erincatto/box2d
https://github.com/NVIDIA-Omniverse/PhysX
https://randygaul.github.io/collision-detection/2019/06/19/Collision-Detection-in-2D-Some-Steps-for-Success.html
https://randygaul.github.io/collision-detection/2019/06/19/Collision-Detection-in-2D-Some-Steps-for-Success.html
https://www.rust-lang.org
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://en.wikipedia.org/wiki/Rigid_body_dynamics
https://en.wikipedia.org/wiki/Rigid_body_dynamics
https://en.wikipedia.org/wiki/Soft-body_dynamics
https://en.wikipedia.org/wiki/Soft-body_dynamics
https://en.wikipedia.org/wiki/Fluid_animation
https://en.wikipedia.org/wiki/Fluid_animation
https://docs.unity3d.com/Manual/ContinuousCollisionDetection.html
https://docs.unity3d.com/Manual/ContinuousCollisionDetection.html
https://en.wikipedia.org/wiki/Convex_polygon
https://wiki.delphigl.com/index.php/Tutorial_Separating_Axis_Theorem
https://wiki.delphigl.com/index.php/Tutorial_Separating_Axis_Theorem

[13] LLVM, “Llvm.” https://llvm.org, November 2023. (visited on 20/02/2024).

[14] T. R. Foundation, “The crates ecosystem.” https://crates.io/crates?sort=

downloads, Februrary 2024. (visited on 20/02/2024).

[15] Wikipedia, “Gilbert-johnson-keerthi (gjk) algorithm.” https://en.wikipedia.org/
wiki/GilbertâĂŞJohnsonâĂŞKeerthi_distance_algorithm, February 2024. (vis-
ited on 28/02/2024).

[16] E. Catto, “Box2d lite.” https://github.com/erincatto/box2d-lite, January
2019. (visited on 02/03/2024).

[17] E. Catto, “Sequential impulses.” https://box2d.org/files/ErinCatto_

SequentialImpulses_GDC2006.pdf, January 2019. (visited on 02/03/2024).

[18] Wikipedia, “Stack-based memory allocation.” https://en.wikipedia.org/wiki/

Stack-based_memory_allocation, January 2024. (visited on 06/03/2024).

[19] Wikipedia, “Computational complexity of mathematical operations.” https:

//en.wikipedia.org/wiki/Computational_complexity_of_mathematical_

operations, February 2024. (visited on 27/02/2024).

[20] F. Logachev, “Macroquad.” https://macroquad.rs, Februrary 2024. (visited on
21/02/2024).

[21] T. R. Foundation, “Storing utf-8 encoded text with strings.” https://doc.

rust-lang.org/beta/book/ch08-02-strings.html, February 2023. (visited on
04/03/2024).

[22] Wikipedia, “Language server protocol (lsp).” https://en.wikipedia.org/wiki/

Language_Server_Protocol, September 2023. (visited on 04/03/2024).

[23] T. R. Foundation, “Smart pointers.” https://doc.rust-lang.org/book/

ch15-00-smart-pointers.html, February 2023. (visited on 04/03/2024).

[24] D. Shiffman, “Particle systems.” https://natureofcode.com/particles/, Febru-
ary 2024. (visited on 03/03/2024).

[25] A. Chou, “Collision warm starting.” https://allenchou.net/2014/01/

game-physics-stability-warm-starting/, January 2014. (visited on
03/03/2024).

40

https://llvm.org
https://crates.io/crates?sort=downloads
https://crates.io/crates?sort=downloads
https://en.wikipedia.org/wiki/Gilbert–Johnson–Keerthi_distance_algorithm
https://en.wikipedia.org/wiki/Gilbert–Johnson–Keerthi_distance_algorithm
https://github.com/erincatto/box2d-lite
https://box2d.org/files/ErinCatto_SequentialImpulses_GDC2006.pdf
https://box2d.org/files/ErinCatto_SequentialImpulses_GDC2006.pdf
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
https://macroquad.rs
https://doc.rust-lang.org/beta/book/ch08-02-strings.html
https://doc.rust-lang.org/beta/book/ch08-02-strings.html
https://en.wikipedia.org/wiki/Language_Server_Protocol
https://en.wikipedia.org/wiki/Language_Server_Protocol
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
https://natureofcode.com/particles/
https://allenchou.net/2014/01/game-physics-stability-warm-starting/
https://allenchou.net/2014/01/game-physics-stability-warm-starting/

	Introduction
	Background
	Physics Engines
	Rust
	Mathematics

	Implementation
	Engine
	Forces & Attractors
	Bodies
	Collision Detection & Resolution
	The World

	Optimizations
	Demo Application

	Evaluation
	Demo Scenes
	Manual Testing Sandbox
	Coherence

	Lessons Learned
	General
	Rust

	Limitations and Future Work
	Missing Features
	Potential Optimizations

	Conclusion
	Literature

