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Abstract

Large and complex software systems like compilers have to be tested thoroughly to ensure

correctness and robustness. Although handwritten tests, e.g. unittests, cover the most

important test scenarios, edge cases might be overlooked or ignored.

Fuzzing is a method that helps covering previously unconsidered test scenarios by

generating random input that is fed into the system under test. In GraalVM's fuzzing

project, daily fuzzing jobs try to detect compiler bugs that found their way through the

extensive gate tests.

Currently, most of the code generator's parameters are hard-coded, causing its output

space to be quite limited. Feedback-directed fuzzing should be employed to tweak either

the code generator's con�guration or the generated code itself based on some metric,

e.g. the compiler's code coverage, to explore more test scenarios than would otherwise

be possible.

In this thesis, we present a way of using GraalVM's optimization log in combination

with a genetic algorithm to reach this goal. During the development process, we found

and reported nearly 50 bugs.
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Kurzfassung

Groÿe und komplexe Softwaresysteme, beispielsweise Compiler, müssen gründlich getestet

werden, um Korrektheit und Robustheit sicherzustellen. Obwohl hand-geschriebene Tests

wie Unit-Tests die meisten Testszenarien abdecken, werden Grenzfälle oft übersehen oder

ignoriert.

Fuzzing ist eine Methode, die hilft, bisher unbeachtete Testszenarien abzudecken,

indem zufällige Inputs dem getesteten System zur Verarbeitung gegeben werden. Im Falle

des Fuzzing-Projektes der GraalVM werden täglich Fuzzing-Prozesse durchlaufen, um

Bugs im Compiler zu entdecken, die einen Weg durch die umfangreichen Tests gefunden

haben.

Aktuell sind die meisten Parameter des Codegenerators Konstanten, wodurch die

Diversität der generierten Programme eingeschränkt ist. Feedback-getriebenes Fuzzing

soll eingesetzt werden, um entweder die Parameter des Codegenerators oder den gener-

ierten Code selbst anhand einer bestimmten Metrik zu ändern, beispielsweise der Code-

Abdeckung. Dadurch werden mehr Testszenarien erforscht als ansonsten möglich wäre.

In dieser Arbeit präsentieren wir einen Weg, wie das Optimierungs-Log der GraalVM

in Kombination mit einem genetischen Algorithmus genutzt werden kann, um dieses Ziel

zu erreichen. Während des Entwicklungsprozesses wurden fast 50 Bugs gefunden und

gemeldet.
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1 Introduction

Compilers are an essential part of every software development toolchain, and their cor-

rectness and robustness are expectations every developer sets. However, they can only

be truly ful�lled using formal veri�cation, which is possible [1, 2], but hard for software

systems of such complexity. Bugs in compilers can cause di�erent symptoms: In the

best case, the compiler crashes or runs inde�nitely, signaling to the developer that there

is a problem. A missed optimization is undesirable but not critical in most cases as it

only impacts the performance or size of the generated machine code. The worst case

scenario is a silent miscompilation. Developers might spend hours trying to �nd a bug

in their source code when the actual error happened during compilation. Additionally, a

miscompilation can be a security concern, even for open-source projects [3, 4].

Standard methods of quality control, e.g. unit-testing, guarantee correct behavior only

to a certain extent. As those tests are handwritten, they test cases that the developer is

already aware of and probably implemented correctly anyway. Easily overlooked cases,

e.g. edge cases, potentially undermine the compiler's correctness if they are not handled

correctly in the code. Compiler fuzzing (Section 2.4.1) is a testing method that helps

detecting bugs in overlooked scenarios. It works by generating random code that the

compiler must process.

The GraalVM compiler (Section 2.3), although being tested extensively, is not an

exception to these problems. Daily compiler fuzzing jobs try to �nd bugs that did

not cause any of the gate tests to fail, with some success. However, there is room for

improvement. The parameters of the random code generator are hard-coded, hence the

diversity of generated test cases is limited.

In this thesis, we extend GraalVM's compiler fuzzing to be feedback-directed. A

prominent example of a feedback-directed fuzzer is american fuzzy lop (AFL)[5], a general

fuzzer that uses code coverage as feedback to directly mutate input data in a set of test

cases, increasing coverage iteratively. Measuring code coverage, however, is not `free'.

We conducted preliminary experiments using JaCoCo to collect coverage information

during a GraalVM compiler fuzzing run to measure the introduced overhead. In these

experiments, we generated about 17% fewer tests compared to a run without coverage

collection. Also, code coverage does not include potentially useful context information

such as which compiler optimization was applied at what point in the compilation.

Having these requirements (low overhead, context) in mind, we propose using the

compiler's optimization log as feedback. In this thesis, we use a simpli�ed version of

this log which counts how often every optimization was applied during a fuzzing run.
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Collecting this information is practically free of overhead, and we have domain-speci�c

information. Our goal is to use this log as feedback to mutate the code generator's param-

eters. This results in the generator creating more diverse code, increasing the probability

of triggering previously undetected bugs. We use a genetic algorithm (Section 2.6) to

drive this process.

In this thesis, we �rst explain necessary background concepts in Section 2. Then,

we have a look at the code generator and its abilities in Section 3 to get an overview of

the parameters we can mutate based on the optimization log. As using all parameters

would increase the search space drastically, we explain in Section 4 how we select only

the most important parameters. Section 5 is the core of this thesis, where we show how

to implement our feedback-directed fuzzing. Lastly, we evaluate our implementation in

Section 6.

In the context of this thesis, we authored a paper for the 3rd International Fuzzing

Workshop [6]. Hence, some parts of this thesis, although not copied, will be very similar

to the content of our paper.
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2 Background

2.1 Interpreted languages

Most object-oriented programming languages like Java or C# are not actually compiled

to native machine code, but to an intermediate language. Java source code, for example,

is compiled to bytecode, which is then interpreted by a Java runtime environment (JRE)

containing a Java Virtual Machine (JVM) [7] in most instances. A major bene�t of an

interpreter-based JRE is that a Java program can be �written once, run anywhere� [8] as

only the interpreting backend is platform-speci�c. However, interpretation comes at the

cost of a signi�cant speed and memory overhead. To mitigate this overhead, just-in-time

(JIT) [9] compilation is used.

2.2 HotSpot VM

One such JIT compiling JVM is the HotSpot VM [10]. It �nds a trade-o� between inter-

preting bytecode and dynamically compiling so-called hot spots, i.e. parts of a program

that are executed repeatedly based on collected pro�ling information. Such hot spots

are compiled to native code using a JIT compiler if the performance bene�ts outweigh

the compilation e�ort. This code is then executed directly on hardware instead of the

usual interpretation. Pro�ling information collected during runtime enables speculative

optimization of such code sections by making assumptions about the program state and

checking them in the compiled code. Should these assumptions turn out to be false,

deptimization causes the program to return to bytecode interpretation.

2.3 GraalVM

GraalVM builds upon the HotSpot VM by adding a new JIT compiler. The GraalVM

compiler constructs an intermediate representation (IR) [11] from bytecode as a sea-of-

nodes, combining a data �ow graph (DFG) and a control �ow graph (CFG) in static

single-assignment (SSA) form [12]. This graph has three levels of abstraction, where

compilation starts at the highest level, gradually lowering it until a platform-speci�c

low-level IR (LIR) can be built. Currently, there are over 60 di�erent optimizations

available that transform the IR. GraalVM not only supports JIT compilation, but also

ahead-of-time (AOT) compilation to generate platform-speci�c machine code in advance.

Startup-time, performance and memory usage greatly bene�t from this as the overhead

caused by interpretation vanishes.
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Optimization log. For debugging purposes, the GraalVM compiler can generate an

optimization log that contains an entry for every optimization applied to the IR. These

entries also contain domain-speci�c information about the compiler phase at the time

when the optimization as applied and the position in the source code. In this thesis, we

will use a simpli�ed version of the optimization log for feedback to direct our fuzzer as

the compiler generates it with nearly no overhead compared to the full optimization log.

Listing 1 shows an example of an entry in the full optimization log.

Listing 1: Example of an optimization entry in the optimization log. Taken from [6].

1 "phaseName": "UseTrappingNullChecksPhase",

2 "optimizations": [ {

3 "optimizationName": "UseTrappingNullChecks",

4 "eventName": "NullCheckInsertion",

5 "position": {

6 "HashCodeTest.hashCodeSnippet01(Object)": 1

7 }

8 } ]

2.4 Fuzzing

In 1988 Barton P. Miller from the University of Wisconsin-Madison suggested �The Fuzz

Generator�, a generator that produces random character streams [13]. These streams were

then relayed to various UNIX utilities to see if they break or get stuck. In the experiments

that followed, about a third of the tested utilities crashed or hung at some point, with

one instance even crashing the operating system. Since then, this simple principle has

proven to be very e�ective for testing complex input-processing systems [14, 15].

2.4.1 Compiler fuzzing

Compiler fuzzing is the application of the fuzzing principle on compilers. A random

code generator produces source programs in a certain language that a compiler must

process. As purely random character streams probably never create valid source code,

their generated inputs will not even pass the parser. Hence, primitive fuzzing is ine�ective

as it reaches no interesting parts of the compiler such as optimizations. The generated

code must be syntax-compliant and semantics-compliant, e.g. declarations of variables

must happen before a usage. In short, generated source code must be correct enough to

be successfully compiled if the compiler works as speci�ed. Also, the code should should

not contain any language constructs with unde�ned behavior.

4



2.4.2 Guided compiler fuzzing

Fuzzing as explained before falls under black-box testing or functional testing: The test

only observes the system under test (SUT) from the outside through its interface without

knowing how the system works internally [14, 16]. If some information about the SUT is

available, e.g. a speci�c compiler optimization's prerequisites, the code generator can be

adjusted to support the generation of language constructs that raise the chance of this

optimization to be applied at some point during compilation. In this case, it is called

gray-box testing as some internal knowledge about the SUT is taken advantage of.

But while this might improve fuzzing e�ectiveness, the information must be available

before the execution of a fuzzing campaign. When fuzzing a compiler, some information

such as code coverage can only be collected at run time. Some fuzzing projects use this

information to dynamically �guide� the code generator into a direction that explores new

parts of the system [14]. In this thesis, we use the GraalVM compiler's optimization log

to guide the generator at run time.

2.5 GraalVM's fuzzing project

2.5.1 Architecture

GraalVM 
Compiler

Fuzzing
Harness

Program
Generator

Java
Interpreter

Reference

Output

1

2

3

VM

4

Test

Output
T

R

Profiles
Compiled

Code

Test 
Program

Test 
Program

Test 
Program

Figure 1: Overview of the GraalVM fuzzing framework. Taken from [6].

5



As of writing this thesis, GraalVM's compiler is fuzzed daily by a handful of fuzzing

jobs, each executing a fuzzing campaign for one hour. A fuzzing campaign consists of

a chosen test harness which processes Java code generated by a chosen code generator.

Figure 1 shows how all components cooperate. The test harness used in this thesis is

the FuzzingGraalCompileTest in combination with the LivenessDrivenCodeGenerator

(see Section 3). This harness implements di�erential testing to not only �nd compiler

crashes, but also silent miscompilations. Di�erential testing works by executing the same

generated code 1 in two di�erent ways and matching the outputs. First, the harness

runs the code solely in the interpreter. Unless the generated code contains endless loops

(which must be avoided), this run always terminates and produces some reference output

2 . After the interpreted run, the harness calls the GraalVM compiler to compile the

generated methods until a speci�c call depth is reached 3 . As everything happens

within the same JVM instance, the compiler can use pro�ling information collected by

the interpreter for speculative optimizations. While compiling, crashes (i.e., abnormal

termination of the compilation with an uncaught exception or an assertion failure) can

occur which cause the test to fail and be marked accordingly. If the compilation was

successful, the harness runs the compiled main method and again records the output 4 .

In the last step, the harness compares the actual test output to the reference output and

checks for di�erences, which are a sign of silent miscompilations. For this to work, all

random number generators use the same seed to prevent nondeterminism. Additionally,

the LivenessDrivenCodeGenerator overrides Object.hashCode, Object.toString and

Object.equals with calls to a helper library as the default implementations of these

methods are inherently nondeterministic.

2.5.2 Code generation

GraalVM's fuzzing infrastructure already provides some code generators, most impor-

tantly the LivenessDrivenCodeGenerator, which we use for guided fuzzing in this the-

sis. The basic principle of this code generator is avoiding dead code, i.e. code that the

compiler can remove early on [17]. For more details on the inner workings see Section 3.

2.6 Genetic algorithms

A genetic algorithm (GA), as described by Holland in 1975 [18], mimics the natural

dynamics of evolution to solve optimization problems. In nature, a population is a set

of individuals, each having invisible properties (genotype or chromosome) that de�ne its

visible properties (phenotype). Repeatedly, some selected individuals reproduce to gener-

6



ate children for a new population (the next generation). Children inherit the mixed and

mutated invisible properties of their parents. As the visible properties are dependent on

the invisible properties, the children's visible properties are also similar to their parents'.

Natural selection ensures that individuals have a better chance of reproducing if their

visible properties �t the environment better than their competition's visible properties.

Initialize population
(invisible properties)

Calculate visible
properties

Calculate fitnesses

Select individual

A

B

C

D

Yes NoCrossover?

Select individual

Crossover

Mutation

E

D

F

Start building new
generation

NoYes Generation
full?

Add to new
generation

Figure 2: Work�ow of our GA.

A GA is the application of this principle to optimization problems. Figure 2 shows

the work�ow of our GA implementation described in Section 5 using general descriptions.

Individuals are solution candidates with some (to the selection process) invisible prop-

erties A that can be translated to visible properties B . In the beginning, the initial

generation is a set of random solution candidates. Each solution candidate receives a

�tness score C depending on how optimal its visible properties are. Using the �tness,

the algorithm selects D solution candidates who then reproduce, combining E and mu-

tating F their invisible properties to form a new generation of solution candidates. By

bene�tting solution candidates with a higher �tness (i.e. better visible properties), the
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next generation is more likely to have a higher average �tness. This process repeats until

it reaches a stopping criterion such as convergence of the average �tness or a certain

number of generations. In some applications, the process can run inde�nitely.

We identify �ve components one must de�ne to implement a GA:

A The invisible properties of an individual.

B The function transforming invisible properties to visible properties.

C The �tness function that calculates a score depending on the visible properties.

D The selection function that selects individuals, favoring those with a high �tness.

E The crossover function that combines two individuals into one.

F The mutation function that transforms properties.
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3 Code generation in the GraalVM fuzzer

The e�ectiveness of compiler fuzzing is strongly tied to the capabilities of the code gener-

ator. It must support a variety of di�erent language constructs while still generating code

that is syntax-compliant, semantics-compliant and has no unspeci�ed behavior. How-

ever, there are additional requirements. The generated code must exercise interesting

parts of a compiler such as optimizations. Code that is just semantics-compliant often

lacks complexity where in extreme cases, the compiler can replace an entire method by

a constant, making more interesting optimizations inapplicable. One instance of this

problem is dead code, or dead assignments [19].

In this thesis, we work with GraalVM's fuzzing infrastructure, which provides a ran-

dom Java code generator that avoids generating dead assignments. The following sections

will describe in detail how this generator works.

3.1 Liveness driven code generation

Imagine the following: You just �nished reading a chapter of J.R.R. Tolkien's fantasy

book �The Lord of the Rings�. Suddenly in the next chapter, a set of completely new

characters is introduced. They do not interact with anything described in the previous

chapters, but reference some of it. The new characters go on one of their adventures,

which is told from beginning to end in this chapter. After that, the usual story of The

Lord of the Rings continues without referencing the new characters or their adventure

ever again.

This extra chapter can be seen as redundant, i.e. it can be removed from the book

without causing any change on how the book ends. The same principle can be found

in code generated by a simple random code generator: If it generates statements purely

randomly, it might produce code segments that do not a�ect a method's return value.

An example of this are assignments to local variables that remain unused until their next

assignment or the end of the scope. Such assignments are called dead and a compiler

detects and removes them at an early stage in most cases. This removal can `kill' other

assignments, resulting in a cascade of removals. Listing 2 shows example code containing

dead assignments. Reducing code size early on also reduces the probability of interesting

optimizations being applied to the code, which makes fuzzing less e�ective.
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Listing 2: Example for a dead assignment. It can be removed without side e�ects.

1 static int method0(boolean param1) {

2 int var0;

3 int var1 = 1; // dead after removing 5

4 if (param1) {

5 var0 = var1 + 1; // dead

6 }

7 var0 = method1 ();

8 return var0;

9 }

Liveness-driven random program generation [17] avoids this problem by ensuring

liveness of local variable assignments. It works by generating a code block bottom-to-

top, starting with a non-void return statement or a local �eld assignment. When the

code generator generates an expression, it adds all used variables to a live variable set.

Assignments to variables will only be generated if this set contains the assignee, which

guarantees that there is a usage somewhere in the subsequent statements. After an

assignment, the assignee is removed from the set. Listing 3 shows a snapshot during the

creation of a method to visualize this process.

Listing 3: Snapshot during code generation. The code is generated bottom-to-top and

assignments require usages below.

1 // read the code from bottom to top

2 static int method0 () {

3 ...

4 // at this point we can assign to var0 , var2 or var3

5 // live set: {var0 , var2 , var3}

6 var1 = var2 * var3.class0_method1 ();

7 // live set: {var0 , var1}

8 return var0 * var1 + 3;

9 }

Similarly, method parameters also require usages. At any point in an expression, the

generator can create a parameter which is added to the method's parameter list.

GraalVM's fuzzing project has its own implementation of a liveness-driven code gen-

erator that supports the most common Java language constructs. Also, it supports some

special code patterns catered to speci�c optimizations, e.g. fold for loops and map for

loops for vectorization.
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3.2 Language constructs

Every test consists of a program containing the main class Test. Within this class, we

generate subclasses and enums, where each structure can only use the ones created before

to simplify the generation while avoiding most cases of indirect recursion. After that, we

generate some staticmethods as well as a mainmethod that calls the staticmethods in

a short loop and prints the results. These static methods can use all generated subclasses

and enums.

3.2.1 Classes and enums

Each class or enum has a bounded random number of methods which we generate in

the same way as the static methods in Test. To make sure that �elds are not created

unnecessarily, we only create them when generating �eld assignments or usages within

methods of the class. For every local �eld we decide randomly whether we initialize it in

the constructor or in an initializer block. It works similarly for static �elds, which we

initialize inline or in a static block.

3.2.2 Methods

As described before, we create the statements in methods bottom-to-top to ensure liveness

of all assignments. A parameter of each method generation is its maximum number of

statements, where for each statement the generator can choose from the following options:

� Assignment to random local live variable: Generates an assignment of an

expression to a random live variable. We remove the variable from the live set

before adding all free variables in the expression (which can include the assignee

again).

� If statement: Generates conditions and statement lists (recursively) for each

branch of an if else statement. Every statement list has its own live variable

set, which starts as a copy of the current live set. The resulting live set is the

union of the returned live sets of all branches and all free variables appearing in

the conditions.

� Fold for loop: Generates a for loop that transforms and then accumulates ele-

ments of an array or the values of a simple loop counter into a variable. When using

an array, the loop can either have a counter from 0 to the array's length minus 1,

or an enhanced for-loop iterates directly over the elements.

11



� Map for loop: Generates a for loop that transforms and then stores elements of

an array in the corresponding positions of another array. Both arrays can be the

same object.

� While loop: Generates a while loop with a loop counter to prevent endless loops.

This counter might be usable in the loop, but must not be assignable to avoid

endless loops. The fact that the loop is bounded can be hidden to the compiler

using special compiler directives applied to the statement increasing the counter.

Liveness handling is a bit more complicated for general loops as described by

Barany [17]. We want to generate assignments to variables whose values are used

in later loop iterations. This is impossible when the loop body adheres to the same

liveness principle as other code blocks because assigned variables would have to be

used in the same iteration. Thus, we add a random set of variables to the live set

before generating the loop body. To ensure that there is at least one usage, at the

top of the loop we generate an assignment that uses all generated variables that

are still live. The resulting live set is the union of the extended live set with the

free variables of the loop's condition.

� Synchronized block: Generates a synchronized block by generating a statement

list and wrapping it with a synchronized statement containing an expression of

type object. All free variables of this expression are added to the live set returned

by the statement list.

� Field assignment: Generates an assignment similarly to the random local live

variable assignment, but uses either a local �eld of a live object variable or a static

�eld of a class. Free variables occurring in the expression are added to the live

set.

� Method call: Generates a call to a void method. This method can either be a

static method of some class or a member method of some live object variable. All

free variables contained in the argument expressions are added to the live set, if

the method is not static also all free variables contained in the callee expression

are added.

� Early return: Generates an early return statement. It must be the last statement

of an if else branch to avoid unreachable code below it. The new live set is the

set of free variables in the expression, similarly to the initial live set.

12



� Loop exit: Generates a break or continue inside a loop. It must be the last

statement of an if else branch to avoid unreachable code below it. The live set

remains unchanged.

3.2.3 Expressions

Each expression generation starts by de�ning the type that the result must be assignable

to. Then, we randomly select one of the expression types that can produce the required

type. If a selected expression type relies on creating subexpressions (e.g. a binary ex-

pression), we do this recursively. Some expressions have to obey certain conditions that

we pass to the generator, in which case it generates expressions in a retry loop until the

conditions are met. An improvement of this time-consuming mechanism is the subject

of future work (Section 7.1.1). The generator can choose from the following expression

types:

� Initialization Generates an initialization of a variable, which is either a constant

value or a call to the FuzzerUtils helper class that generates a random value at

runtime.

� Local variable usage: Generates a usage of a local variable. This variable can

already exist or be created at this point if the de�ned maximum number of variables

has not been reached yet.

� Parameter usage: Generates a usage of a method parameter if the expression

is created in a method. This method parameter can already exist or be created

at this point if the de�ned maximum number of method parameters has not been

reached yet.

� Binary expression: Generates a binary arithmetic expression with a bitwise,

numeric or boolean operator applied to two subexpressions.

� Unary expression: Generates a unary expression with a bitwise, numeric or

boolean operator applied to a subexpression.

� Ternary expression: Generates a ternary expression of the form boolean subex-

pression ? subexpression : subexpression.

� Comparison: Generates a numeric comparison applied to two subexpressions

or an instanceof, == null or != null check with a subexpression returning an

object.
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� Library method call Generates a call of a library method, which can either be

a static method or require a subexpression that returns an instance of the class

providing the method. For each parameter, another subexpression is generated.

� Generated method call Generates a call of a method of a class or enum that

has already been generated, similarly to library method calls.

� Field access Generates an access to a static �eld of a class or a local �eld of

some object returned by a subexpression.

3.3 Parameters

When the LivenessDrivenCodeGenerator chooses a statement type or expression type,

the probabilities are not distributed uniformly. The generator provides parameters for

the probability of each option, allowing di�erent probability distributions. Weighted

randomized decisions happen not only in this case, but throughout the whole generation

process to allow for a better guiding of the code generation. Listing all parameters (about

130) would be of little value, so we only provide a brief overview of the ones we think

are the most important and/or easy to understand:

� Probability distribution for statement types (ten separate parameters for every

option).

� Probability distribution for expression types (ten separate parameters for every

option).

� Probability of a numeric constant being an `edge case', i.e. close to the limit of the

datatype's value range.

� Probabilities of a class: (1) inheriting from another class, (2) being final and (3)

implementing Cloneable.

� Probabilities of a method: (1) overriding another method, (2) being final, (3)

being synchronized, (4) returning void, (5) returning a boxed value (6) returning

an array and (7) containing calls to other methods.

� Probabilities of a for loop being an enhanced for loop or containing more code

than just the folding or mapping.

� Probabilities of a for loop counter decreasing instead of increasing.
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� Probabilities of a local �eld being initialized in an initializer block or a static �eld

being initialized in a static block.

� Maximum statement nesting depth.

These parameters are especially relevant for this thesis as we mutate them to steer

code generation into a direction that increases fuzzing e�ectiveness. More details follow

in Section 4 and Section 5.1.
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4 Parameter Selection

GraalVM's LivenessDrivenCodeGenerator provides a lot of parameters, some of which

are able to a�ect generated code more than others. For example, greatly raising the

probability of generating while loops changes the shape of the code more than raising

the probability of a class implementing Cloneable. Every parameter that we mutate to

direct the code generator increases the size of the search space. Therefore, we must �nd

out which parameters have the greatest in�uence on the generation and choose those as

our mutable parameters.

To do so, we conducted experiments to �nd out the correlations between the input

parameters and the output we plan to use for guiding, namely GraalVM's optimization

log. This log summarizes which optimizations were executed at which time during com-

pilation. In this thesis, we use a compact version of the optimization log that only logs

the number of applications of each optimization. We are not interested in whether the

correlations are positive or negative, i.e. if increasing a certain parameter has a positive

or negative in�uence on the counts of triggered optimizations. Preventing some optimiza-

tions can lead to others being triggered more often, therefore, any kind of correlation can

be bene�cial.

4.1 Setup

The general sequence of events in these experiments starts by taking a (sub)set of the

generator's parameters. We randomly mutate them using the mutation function we will

later use for the genetic algorithm to ensure the validity of all parameter types (see

Section 5.6). However, for these experiments we applied the function multiple times and

also increased the amount that a parameter can be increased or decreased. We store the

mutated parameters on the �le system and then start a fuzzing run with these parameters.

One run generates 1000 tests, after that we aggregate the compact optimization logs of

the fuzzing processes and also store them. Then, we mutate the parameters again and

the process starts over.

A di�erence to normal fuzzing runs is that di�erential testing (see Section 2.5.1) is

turned o�, i.e. there are no interpreted and native runs, but only compilations as we are

only interested in the triggered optimizations during compilation. This massively speeds

up every test run.

Compilation errors or timeouts can still occur though, therefore after every run, we

check if there are test cases marked as failed or timeout that we should back up.
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4.2 Results

Figure 4 on page 18 and Figure 5 on page 19 show the results of one experiment us-

ing 24 di�erent parameters. Some correlations are clearly visible, positive as well as

negative ones. We can see obvious positive correlations between the probability of

generating a synchronized block and various lock optimizations, e.g. LockElimina-

tion_LockCoarsening. The big strip in the middle, which indicates strong negative

correlations, shows that a high probability of a local variable usage in an expression sup-

presses many optimizations, but this need not be a bad thing. When some optimizations

are not triggered as often, others might appear more frequently if they are not a�ected

negatively by the parameter, e.g. all EnterpriseLockElimination optimizations.
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Figure 3: Correlations between di�erent parameters and triggered optimizations.

More detailed visualizations of correlations are displayed in Figure 3. The strong rela-

tionship between synchronized blocks and lock optimizations can be seen once again, as

well as between fold for loops and BreakChainedPhis_CircularPhiBreakerInsertion.
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while loops might not have strong individual correlations, but many medium correla-

tions, one of them is depicted in the bottom right sub�gure.

Based on these experiments, we select the parameters described in Section 5.1.
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Figure 4: First half of the coe�cients for every pair of parameter (x axis) and optimization

(y axis). Values between -.25 and .25 have been set to 0 to decrease noise.
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Figure 5: Second half of the correlation coe�cients for every pair of parameter (x axis)

and optimization (y axis). Values between -.25 and .25 have been set to 0 to decrease

noise.
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5 Implementation

Our goal in this thesis is to use the Graal compiler's optimization log to optimize the code

generator's parameters to exercise more interesting parts of the compiler and ultimately

�nd bugs. A key assumption we make is that no single parameter setting results in code

that visits all interesting parts. Hence, we need a solution that works with multiple

parameter settings to meet multiple goals at the same time. We propose to use a genetic

algorithm (GA) to direct di�erent vectors of parameters in di�erent directions, some

focusing on applying a certain optimization as often as possible while others trigger

bugs.

In the following sections we will describe how we instantiate the general GA frame-

work from Section 2.6 by explaining the implementations of the individual components

in the context of the GraalVM fuzzer.

5.1 Component A: Invisible properties

Component A is the simplest component. In our case, the invisible properties of an indi-

vidual are the values of a parameter vector we choose to optimize. Simpli�ed parameter

vectors can be seen in Table 1 on page 24. We divide all parameters into three categories:

Probability distributions are sets of parameters that represent the probabilities of

di�erent options the code generator can choose from. Examples are statement types or

expression types. Their sum must stay constant to ensure that it does not exceed 1.

What might be unusual is that the sum does not have to equal 1 as we allow partial

probability distributions. The probabilities for the options that are not optimized stay

constant, but still have to be accounted for when checking that the sum is below or equal

to 1. So the sum of the partial distribution must be 1 minus the sum of the constant

probabilities.

Independent probabilities are probabilities for binary decisions that do not depend

on other parameters, e.g. whether a class implements Cloneable. Their value must be

between 0 and 1, in our case the valid range is 0.05 to 0.95.

Discrete parameters are small integer numbers, e.g. the maximum statement nesting

depth. The valid range must be speci�ed for each discrete parameter individually.
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5.2 Component B: Transforming invisible to visible properties

Component B is where the fuzzing takes place. It produces the visible properties, i.e. the

optimization log as well as found bugs, using the invisible properties, i.e. the values of

the parameter vector. We achieve this by executing a fuzzing run using GraalVM's exist-

ing fuzzing infrastructure (see Section 2.5) and setting the code generator's parameters

accordingly.

After a run, we have to take care of any failed or stuck tests. For once, we must

back them up for further investigation, and also count them and store the resulting value

alongside the optimization log. Some bugs that occur are already known or even �xed

in the most recent version, so before backing up a failed test, we scan its error message

for substrings that classify it as a known bug. This form of deduplication is simple, yet

e�ective enough to prevent over�tting on these bugs if they are easy to trigger. Also, our

bug analysts have to do less unnecessary work.

5.3 Component C: Fitness function

Component C calculates a score that represents how well a parameter vector performs.

The �tness function should return a high result if the parameter vector outperforms its

siblings in one or more of the following categories.

5.3.1 Optimization counts

We want to reward parameter vectors that apply `rare' optimizations more often. In this

thesis, `rare' describes those N optimizations with the least number of occurrences across

all runs of a generation of parameter vectors, where N is a tunable hyperparameter.

De�ning rare optimizations dynamically ensures that the GA does not over�t on any

speci�c optimization, so others might become relevant if they become rarer after some

generations.

For every rare optimization, we rank all parameter vectors according to how often

they reported the optimization in the optimization log. Then, the best ten receive a

score from 10 to 1 that is multiplied by a de�ned weight and added to their total �tness.

Parameter vectors that did not result in an application of the optimization at all do not

participate in the ranking, because else we would reward them for not contributing to a

goal.
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5.3.2 Bugs

(Unclassi�ed) bugs are handled in a similar manner to optimization counts. We construct

a ranking and reward the ten best parameter vectors that have a bug count greater than 0.

5.4 Component D: Selection function

After calculating the �tness, the GA selects parameter vectors randomly, where those

with high �tness have a higher chance of being selected. Then, those vectors are mixed

and mutated to form a new generation. As with most other components, there are

di�erent ways of implementing Component D. For this thesis, we choose tournament

selection [20]. Tournament selection works by �rst picking N random parameter vectors

from the current generation, where N is the tournament size. Within this tournament, the

GA selects the parameter vector with the highest �tness for reproduction. Tournament

selection has several bene�ts, most importantly, it is widely used and well understood.

Furthermore, we can easily tune its `selective pressure'. Selective pressure describes how

biased the selection function is towards parameter vectors with a high �tness [20]. The

tournament size directly in�uences this metric as a bigger (smaller) tournament results

in a higher (lower) probability of high-�tness vectors being present in the tournament.

5.5 Component E: Crossover function

Crossover happens with a con�gurable probability, which is 70% by default. The GA

selects two parameter vectors (parents) for reproduction, combining them to produce new

parameter vectors (children). Some popular variants of crossover are one-point, k-point

and uniform crossover [21]. One-point crossover, in our case, means that we cut both

parents at the same position and produce two children: By concatenating the �rst part of

parent A and the second part of parent B, we can construct the �rst child, for the other

child we concatenate the other pieces. k-point crossover is an extension of this procedure

which performs not one, but k cuts and concatenates the pieces, alternating between

taking a piece from parent A and parent B. Figure 6 shows how 3-point crossover works.

If k is small compared to the size of the parameter vector, values that are close to

each other have a high probability of being passed down to the same child. This is

bene�cial if close values in�uence each other. However, in our parameter vectors, each

parameter's position is arbitrary. Therefore, we deem k-point crossover unsuitable for our

purposes. Additionally, probability distributions cannot be mixed as the sum must stay

constant. Hence, we choose uniform crossover to implement Component E: When two

parameter vectors are selected for crossover, we construct a child by randomly picking
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Parents Children

Figure 6: 3-point crossover of two parents resulting in two children.

each parameter from either parent. Probability distributions are treated as a single

parameter in this case, so we pick the whole distribution from either parent. Table 1 on

page 24 shows a concrete example of our uniform crossover implementation.

5.6 Component F: Mutation function

Crossover alone does not introduce new parameter values into a generation, but only

mixes existing ones, limiting the optimization problem's search space. Mutation in GAs,

similar to mutation in nature, causes a slight change of the invisible properties, i.e. the

values of a parameter vector. Our implementation of Component F handles every cate-

gory of parameters di�erently to adhere to their constraints. We perform two mutations

of every probability distribution, �ve mutations of randomly selected independent prob-

abilities, and with a 25% chance we mutate our single discrete parameter. See Table 1

on page 24 for an example mutation of a parameter vector generated by crossover.

Probability distributions must have a constant sum. To guarantee this, we mutate

them by selecting one parameter which `steals' some probability of another selected

parameter while keeping their individual values between 0.05 and 0.95. With a 5%

probability, we perform an extreme version of this mutation, where the selected parameter

steals from `all' other parameters, increasing its value drastically.

Independent probabilities are mutated by generating a uniformly distributed ran-

dom value between -0.05 and 0.05 and adding it to the parameter's value as long as its

result lies between 0.05 and 0.95.

Discrete parameters are increased or decreased by one, unless they would go out of

their individually de�ned bounds.
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Table 1: Uniform crossover of two (simpli�ed) parameter vectors, followed by mutation.

Bold parameters of the child are inherited from parent A, bold parameters of the mutated

child are mutated.

Parameter Parent A Parent B Child Mutated Child

Statement distribution

If 0.0580 0.0810 0.0810 0.1281

FoldFor 0.1503 0.0557 0.0557 0.0557

MapFor 0.1039 0.0913 0.0913 0.0913

While 0.0522 0.1944 0.1944 0.1944

Synchronized 0.1310 0.0729 0.0729 0.1472

Expression distribution

Init 0.0584 0.1409 0.0584 0.0584

Local 0.0914 0.1986 0.0914 0.1016

Param 0.2024 0.0548 0.2024 0.2024

Binary 0.0548 0.0780 0.0548 0.0548

Generated 0.0737 0.0505 0.0737 0.0737

Ternary 0.1153 0.3191 0.1153 0.1051

Independent probabilities

RuntimeRandomPrimitive 0.3410 0.3166 0.3166 0.3257

ConstantEdgeCase 0.4568 0.5356 0.5356 0.5356

InitInStaticBlock 0.2548 0.2367 0.2548 0.2548

InheritClass 0.5162 0.5001 0.5001 0.5152

Cloneable 0.2074 0.2074 0.2074 0.1957

. . .

Discrete parameters

StatementDepth 2 3 3 3
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6 Experiments and Results

We evaluate two versions of our implementation: (1) One with a high crossover probabil-

ity (80%), (2) another with no crossover at all, i.e. all children are created by mutating

one parent. For both versions, we use the seven least applied optimizations for ranking.

We compare the results to two baselines: (1) Fuzzing runs using the current hard-coded

con�guration of the code generator and (2) fuzzing runs with random mutation of pa-

rameters similar to the experiments in Section 4. The experiment will be executed twice:

Once with the execution of generated code turned o� (i.e. the code is only compiled, not

run), and once with the execution turned on. We want to show that both GA versions

surpass the baselines in the number and diversity of bugs found as well as the number of

applications of rare optimizations.

All experiments are executed on the same type of machine on an internal distributed

computing cluster within Oracle. The machines each have 2 Intel E5-2690 18-core pro-

cessors at 2.6 GHz and 512 GB DDR4-1600 memory. Of these 36 cores, we use 32 for

fuzzing only. Feedback-directed fuzzing experiments run for 20 generations with 32 pa-

rameter vectors each, and every fuzzing run lasts one hour using eight parallel fuzzing

workers, producing about 1500 to 2000 test cases per worker, depending on whether the

code is run or only compiled. Similarly, we execute 640 (20 * 32) hour-long fuzzing runs

for each baseline.

6.1 Results without code execution

6.1.1 Rare optimizations

We show some of the results regarding rare optimizations in Figure 7. It displays for

each generation how often the average parameter vector applies an optimization. As

there are no generations in the baseline implementations, we always group 32 fuzzing

runs for comparison. We chose BreakChainedPhis_CircularPhiBreakerInsertion and

EnterpriseLockElimination_ExitEnterElimination because they clearly show that

both GA implementations have an upwards trend line, indicating that over time the

average number of optimizations increases. In contrast, the trend lines of the baselines

are �at. Whether the no-crossover GA implementation surpasses the high-crossover GA

implementation or vice-versa cannot be determined from these results and is subject to

further research. Appendix A contains �gures for other rare optimizations to further

prove that for most rare optimizations, we reached our goal.
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Figure 7: Average number of applications (y axis) during the compile-only run per gen-

eration (x axis) of two rare optimizations with their respective trend lines.
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Figure 8: Bugs collected by each con�guration during the compile-only run.

6.1.2 Found Bugs

In each fuzzing run, we kept all bugs that were not removed in the deduplication step.

To avoid over�tting on bugs that are easy to trigger while still keeping all others for

comparison, we only removed the most common bugs. Figure 8 shows all bugs that were

triggered and not removed by each implementation.

Unfortunately, this result does not show a clear superiority of the GA implementa-

tions. The total number of bugs triggered is 18 for each GA implementation, 16 and 20

for the random and default baseline respectively, which is not an improvement. From a

diversity perspective, however, we can see that the high-crossover implementation trig-

gered 9 classi�ed and 3 unclassi�ed bugs, and further investigation showed that all un-

classi�ed bugs were di�erent, resulting in 12 di�erent bugs. In comparison to the other

implementations, which all triggered either 7 or 8 di�erent bugs, this result is promising.
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Figure 9: Bugs collected by each con�guration during the run with code execution. The

y axis is scaled logarithmically to make the smaller bars more visible.

6.2 Results with code execution

We expected the performance to be negatively impacted by allowing execution of the

generated code, but the results were even worse than expected. Figure 9 shows that all

implementations had about 100 timeouts (note the logarithmic y axis). This drastically

reduces the number of test cases generated in a fuzzing run as workers can be blocked

for most of the time. Also, the number of rare optimizations that were triggered did not

increase as shown in Figure 10. We suspect that the timeout in addition to the general

overhead of executing the code introduces too much statistical noise in an hour-long

fuzzing run. Tackling this problem at its source is something that we will look into in

future work as described in Section 7.1.
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Figure 10: Average number of applications (y axis) during the run with code execution

per generation (x axis) of two rare optimizations with their respective trend lines.
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7 Future work

7.1 Increasing test case throughput

The best way to decrease statistical noise introduced when doing fuzzing runs in Com-

ponent B is generating more tests. One possibility would be increasing the duration per

run, but this also increases the time the GA takes to converge. Instead, we should focus

on the most time-consuming phases of a fuzzing run.

7.1.1 Expression generator

The ExperessionGenerator is a good candidate to start. Some generated expressions

must ful�ll a certain property, e.g. they must contain a local variable. Currently, the

generator handles this with a retry loop that generates expressions until one satis�es the

property. Sometimes, the number of retries is bounded, so if no generated expression is

satisfactory, the caller of the generator does something di�erent. But in other cases, an

expression must be generated, and if the property is too complex, the retry loop blocks a

fuzzing worker for a long time, possibly until the end of the run. Such timeouts happen

quite frequently and �xing them would increase throughput signi�cantly.

7.1.2 Timeouts

Sometimes, the generated code contains segments that run nearly inde�nitely. A promi-

nent example is string concatenation in a deeply nested loop. The fuzzing infrastructure

can detect such timeouts if every test case runs in a separate subprocess that gets killed

if the test does not �nish within a certain timeframe. But, this causes a lot of overhead.

For this thesis, we decided to deactivate testing in a subprocess to increase test case

throughput as long as we do not run the code (i.e., only test for crashing / stuck compi-

lation bugs). When activating the execution of the code again, we observe test cases that

block fuzzing workers until the end of the run, but the total number of test cases created

is still higher (on average) than if we would execute every single test in a subprocess.

Some form of timeout detection without creating subprocesses would avoid blocked

workers, increasing fuzzing throughput.

7.2 Automatic Deduplication

Currently, we scan a (crashing) bug's error message to �nd out if we have seen the

same bug before. This information must be available before the start of the feedback-

directed fuzzing campaign, and could even be refreshed at some point, e.g. between
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generations. Nonetheless, an engineer must update the list of known bugs manually,

which can introduce errors. If a bug is thought to be �xed, the entry might still be in

the list, making rediscovery impossible.

Performing deduplication automatically would make the campaign more robust against

over�tting on a bug that is easy to trigger, but not listed as known.

7.3 Grammar-based code generation with automatic parameter ex-

traction

A topic we plan to research is grammar-based (Java) code generation. This new code

generator creates random test cases using an attributed grammar instead of our cur-

rent abstraction of the Java language. We hope that we can maintain and expand this

grammar-based generator with less e�ort than the current code generator.

Also, the parameters of the code generator could be automatically extracted from

the grammar: If a production has more than two alternatives, we create a probability

distribution, for example. However, there probably would be more parameters than there

are in the LivenessDrivenCodeGenerator, which results in a large search space when

used for guided fuzzing with the implementation presented in this thesis. Hence, some

form of parameter selection similarly to Section 4 would be required.

Liveness should also be guaranteed, of course.
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8 Conclusion

In this thesis, we presented an implementation of feedback-directed fuzzing for the

GraalVM compiler. Our goal was to use the information from the compiler's optimization

log to mutate the parameters of the code generator to exercise rare optimizations more

often while also �nding bugs. First, we analyzed the code generator and looked at the

di�erent parameterized decisions it can make. Then, we showed the impact of certain

parameters on the triggered optimizations of fuzzing runs and selected those with the

greatest impact, positive as well as negative. We implemented feedback-directed fuzzing

using a genetic algorithm to optimize the selected parameters based on the optimization

log and the triggered bugs. To prove that the implementation outperforms the current

non-directed fuzzing, we conducted experiments and analyzed their results, which showed

an increase in the occurrences of rare optimizations over time if the code is only com-

piled, indicating that the genetic algorithm can converge towards this goal. Additionally,

the number of unclassi�ed bugs triggered was about 50% higher for the high-crossover

compile-only run when compared to each of the other runs, but this result is not de�ni-

tive as it might not be reproducible. The experiment where code execution was allowed

did not show good results, highlighting the importance of avoiding timeouts during test

creation and execution.

Personal thoughts. At �rst, we were skeptical because the `distance' between the

code generator's parameters and the optimization log is quite large, so it was not certain

that the GA will actually meet our needs. Also, the statistical noise introduced by

random code generation could have made it a lot harder, even for the compile-only runs.

When the �rst positive results emerged, we were quite relieved to see that our approach

has potential to be successful, which boosted our motivation. We are satis�ed with the

results presented in this thesis and hope that further research in this topic can enhance

our implementation even further.

When we integrate this feedback-directed fuzzing into the daily fuzzing jobs and

update to the latest version of GraalVM, we are certain that we can discover even more

crashing, hanging or silent miscompilation bugs to ensure the Graal compiler's correctness

and robustness.
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Figure 11: Average applications of rare optimizations over generations with their respec-

tive trend lines.
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B Reported bugs

Table 2: Bugs that we discovered or rediscovered during our experiments. The issue

number refers to the GraalVM team's internal issue tracker.

Issue Symptom Status

GR-52972 Compiler Crash Open

GR-52973 Compiler Crash Fixed

GR-53022 Compiler Crash Fixed

GR-53084 Compiler Crash Fixed

GR-53277 Compiler Crash Open

GR-53279 Compiler Crash Fixed

GR-53299 Compiler Crash Fixed

GR-53301 Compiler Crash Fixed

GR-53307 Compiler Nontermination Fixed

GR-53329 Compiler Crash Open

GR-53391 Compiler Crash Fixed

GR-53404 Compiler Crash Open

GR-53570 Compiler Crash Fixed

GR-53598 Compiler Crash Fixed

GR-53785 Compiler Nontermination Open

GR-53893 Compiler Crash Open

GR-53900 Compiler Crash Fixed

GR-54218 Compiler Crash Open

GR-54219 Compiler Crash Open

GR-54304 Compiler Crash Open

GR-54479 Compiler Crash Open

GR-55993 Compiler Crash Open

GR-55998 Compiler Crash Open

GR-56000 Compiler Crash Open

GR-56006 Compiler Crash Fixed

GR-56528 Compiler Crash Open

GR-57091 Compiler Crash Fixed

GR-57100 Compiler Crash Open

GR-57101 Compiler Crash Open

38



GR-57118 Compiler Crash Fixed

GR-57240 Compiler Crash Fixed

GR-57244 Compiler Crash Fixed

GR-57344 Compiler Crash Open

GR-57583 Compiler Crash Fixed

GR-57639 Miscompilation Open

GR-57643 Miscompilation Open

GR-57647 Miscompilation Open

GR-57861 Compiler Crash Fixed

GR-57901 Compiler Crash Open

GR-57942 Compiler Crash Open

GR-58003 Compiler Crash Open

GR-58054 Miscompilation Open

GR-58061 Miscompilation Open
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