
Submitted by
Julian Kaindl

Submitted at
Institute for System
Software

Supervisor and First
Examiner
DI Sebastian Kloibhofer

Second Examiner
Dr. Christian Wirth

January 10, 2023

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

IMPLEMENTATION OF
THE FETCH API FOR
GRAAL.JS

Bachelor Thesis
to obtain the academic degree of

Bachelor of Science
in the Bachelor’s Program

Informatik

Sworn Declaration

I hereby declare under oath that the submitted bachelors thesis has been written solely by me
without any third-party assistance, information other than provided sources or aids have not been
used and those used have been fully documented. Sources for literal, paraphrased and cited quotes
have been accurately credited.

The submitted document here present is identical to the electronically submitted text document.

Linz, January 10, 2023

January 10, 2023 Julian Kaindl i/50

Abstract

The Fetch API for JavaScript provides a standardized way of requesting resources asynchronously
across the network. It defines network behavior and interfaces for accessing and manipulating
the request and response data. Most notably, it introduces the global fetch() function and the
global types Request, Response, and Headers. To unify the behavior across different implementa-
tions, the Fetch API standard was developed and is maintained by the Web Hypertext Application
Technology Working Group (WHATWG) as a living document. GraalVM JavaScript or Graal.js is
a high-performance JavaScript implementation on the GraalVM platform. It is compliant to the
latest ECMAScript specification and is implemented in Java, utilizing the language implementa-
tion framework Truffle. This work introduces a first native implementation of the Fetch API, as
specified by the WHATWG, for Graal.js. Networking functionality is implemented using the net-
working capabilities of our host language, Java. Our implementation is integrated into the Graal.js
JavaScript interpreter by utilizing the Truffle framework. The goal of this implementation is to
cover as much of the Fetch API standard as possible, choose sensible alternatives when we can not
conform to the specification and document these deviations.

ii/50 Julian Kaindl January 10, 2023

Kurzfassung

Die Fetch API bietet JavaScript Applikationen eine standartisierte Art, asynchron über das Netz-
werk auf Ressourcen zuzugreifen. Sie definiert Netzwerkabläufe und Schnittstellen für Abfrage-
und Antwortdaten. Die wichtigsten neuen globalen Typen sind Request, Response und Headers,
sowie die globale fetch() Funktion. Um die API für verschiedene Implementierungen zu verein-
heitlichen, wurde der Fetch API Standard entworfen. Er wird von der Web Hypertext Application
Technology Working Group (WHATWG) als lebendes Dokument geführt. GraalVM JavaScript,
oder Graal.js, ist eine performante JavaScript-Implementierung auf der GraalVM Platform. Es ist
konform mit der aktuellen ECMAScript-Spezifikation und ist mit Java und dem Sprachimplemen-
tierungsframework Truffle umgesetzt. Im Rahmen dieser Arbeit wird eine erste native Implemen-
tierung der Fetch API, wie von WHATWG spezifiziert, für Graal.js vorgestellt. Netzwerkbezogene
Funktionalität ist mithilfe der von Java zur Verfügung gestellten Möglichkeiten implementiert. Das
Truffle-Framework wurde genutzt, um die Implementierung korrekt in den Graal.js Interpreter zu
integrieren. Das Ziel dieser Implementierung ist es, den Fetch-API-Standard möglichst vollstän-
dig umzusetzen. Falls eine Umsetzung von speziellen Teilen des Standards nicht möglich ist, sollen
sinnvolle Alternativen genutzt und die Abweichungen dokumentiert werden.

January 10, 2023 Julian Kaindl iii/50

Contents

1 Introduction 1

2 Background 3
2.1 ECMAScript . 3

2.1.1 The Global Object . 3
2.1.2 Objects and Prototypes . 4

2.2 Graal.js . 5
2.2.1 Truffle Nodes and DSL . 5

2.3 The Fetch Living Standard . 6
2.3.1 Concept and Goals . 6
2.3.2 HTTP Fetch . 7
2.3.3 The Fetch Method . 8

2.4 Java Network API . 8
2.4.1 Java Networking Capabilities . 8
2.4.2 HttpURLConnection . 9
2.4.3 HTTP Redirection . 9

2.5 Existing Implementation: node-fetch . 10
2.5.1 Non-standard Extensions . 10

3 Fetch API for Graal.js 12
3.1 Scope and Goals . 12
3.2 Implementation Requirements . 12

3.2.1 The Fetch Method . 13
3.2.2 Request Class . 13
3.2.3 Response Class . 15
3.2.4 Headers Class . 16
3.2.5 Body-mixin . 17

3.3 Selected Implementation Challenges . 18

4 Implementation 19
4.1 Overview . 19
4.2 Fetch Networking Functionality . 20

4.2.1 Handling Redirects . 20
4.2.2 Request and Response Body . 23
4.2.3 Networking Limitations . 23
4.2.4 Final Networking Implementation . 25

4.3 The Fetch Global Builtin . 28
4.3.1 The Fetch Specialization Method . 28

4.4 The Fetch API Types . 30
4.4.1 Request Type . 30

iv/50 Julian Kaindl January 10, 2023

4.4.2 Response Type . 33
4.4.3 Headers Type . 35
4.4.4 Body Functionality . 37

4.5 The FetchError Type . 38
4.6 Promises . 39
4.7 Incomplete and Missing Features . 41

4.7.1 Body Functionality . 41
4.7.2 Browser Features . 41
4.7.3 Miscellaneous . 42
4.7.4 Non-standard Features . 42

5 Testing 43
5.1 Networking Testing . 43
5.2 Fetch Types Testing . 44

6 Benchmarking and Evaluation 45

7 Conclusions 47

January 10, 2023 Julian Kaindl v/50

1 Introduction

This thesis aims to implement the Fetch API in a JavaScript engine that lacked support for it so
far, the GraalVM JavaScript implementation Graal.js. By adopting the API in Graal.js, applications
have access to features and functionality as specified by the Fetch API standard, most notably the
network I/O it provides. In contrast to the current solution, which would be to import the Fetch
API via a third-party extension module, this native approach aims for better performance and
potentially better security.

JavaScript is one of the core technologies of the world wide web. As of 2022, 98% of websites use
it on the client side1. Outside of the browser, it has also become a well-established general pur-
pose programming language. It is specified as ECMAScript by an ever evolving standard [1], that
aims to ensure interoperability between browsers and other JavaScript platforms. Even though
the language is mature and complete, ECMAScript does not standardize any functionality around
I/O. Implementations of the language typically provide that functionality in a proprietary fash-
ion. Different web browsers have a different internal I/O implementation. This lack of unification,
however, creates problems for websites that rely on I/O functionality, for example to request data
from a server over the network. If I/O implementations of different browsers were incompatible,
the client side JavaScript would have to deal with multiple ways of accessing these proprietary
APIs. To mitigate these problems, a number of additional standards, such as the Fetch API, are
used to specify behavior around I/O. They are implemented by web browsers and server-side
JavaScript platforms, like Node.js2 and Graal.js.

The Fetch API, standardized by the WHATWG3, offers functionality related to network I/O. It pro-
vides an interface for fetching, with the goal of standardizing this process across different JavaScript
platforms. Fetching is the process of accessing a resource that lies on the network. Requesting data
from a server endpoint or when simply loading a website. To facilitate this process, the Fetch API
provides Request and Response types. They are the input and output of the central fetch() func-
tion, which actually performs the fetching process and acquires the resource over the network.
A typical usage of the API consists of (1) defining the desired resource using a URL and other
request options, (2) executing the fetch() function, and (3) reading the response data from the
return value.

1https://w3techs.com/technologies/details/cp-javascript/
2https://nodejs.org/en/
3https://whatwg.org/

January 10, 2023 Julian Kaindl 1/50

https://w3techs.com/technologies/details/cp-javascript/
https://nodejs.org/en/
https://whatwg.org/

As focus of this work, we present a first native implementation of the Fetch API in the Graal.js
JavaScript engine. Graal.js4 is a fully ECMAScript-compliant implementation of JavaScript built
on the GraalVM and developed by Oracle Labs. It aims to execute JavaScript with the best pos-
sible performance and allows language interoperability with other GraalVM languages. Graal.js
is implemented in Java and utilizes the language implementation framework Truffle5. Truffle is a
library for creating language interpreters for self-modifying Abstract Syntax Trees [11]. Further-
more, the GraalVM Compiler can greatly optimize the performance of languages implemented
with the Truffle framework [10].

While our implementation of the Fetch API in Graal.js follows the WHATWG specification, it is not
feasible to completely support the Fetch API standard. This is because the Fetch API specification
assumes a client-side context, concretely a web browser. As Graal.js is a JavaScript runtime for
executing JavaScript outside of the browser, this implementation has a server-side context, thus a
number of aspects, that the Fetch specification includes, do not apply.

Our implementation utilizes the Truffle programming model to correctly integrate the Fetch API
interface into the Graal.js interpreter. To implement the Fetch network functionality, we use the
networking capabilities of our host language, Java. Specifically, classes from the standard library
package java.net.*. We use node-fetch6 as a reference implementation, which is an already ex-
isting implementation of the Fetch API standard. It is a third-party module for applications using
the Node.js JavaScript runtime and therefore also operates on a server-side platform. It is well
established and includes an extensive list of unit tests for standardized Fetch API behavior, which
we adopted to validate our implementation.

4https://github.com/oracle/graaljs
5https://www.graalvm.org/22.0/graalvm-as-a-platform/language-implementation-framework/
6https://github.com/node-fetch/node-fetch

2/50 Julian Kaindl January 10, 2023

https://github.com/oracle/graaljs
https://www.graalvm.org/22.0/graalvm-as-a-platform/language-implementation-framework/
https://github.com/node-fetch/node-fetch

2 Background

In this chapter, the technologies and concepts this thesis is based upon, are introduced. First,
Section 2.1 introduces ECMAScript and language-specific concepts relevant for this implementa-
tion. In Section 2.2, the GraalVM JavaScript engine is introduced. The core concepts of the Fetch
API standard are discussed in Section 2.3. The Java networking capabilities and other networking
related background information is presented in Section 2.4. Finally, Section 2.5 introduces node-
fetch, an already existing implementation of this standard for a similar use case.

2.1 ECMAScript

JavaScript is a general-purpose programming language and a central technology in the world-
wide-web. It conforms to the ECMAScript (ECMA 262)1 standard, which is a language specifica-
tion for JavaScript standardized by Ecma International2. The goal of the specification is to ensure
compatibility between different browsers. Only language syntax and semantics of the core API
are specified in the ECMA Language Specification. Implementations of JavaScript that are valid
under the ECMA standard add their own functionality, like I/O handling. In other words, the
term ECMAScript describes a standardized version of the JavaScript language that adheres to the
ECMA 262 standard. For simplicity, when JavaScript is mentioned in the next chapters, we always
refer to an ECMAScript compliant implementation.

The following sections introduce language concepts that are important for the implementation of
the Fetch API.

2.1.1 The Global Object

The ECMAScript standard defines the unique global object as an object that is created before any ex-
ecution context is entered. Upon entering the global execution context, the properties of the global
object are accessible. While the ECMAScript standard specifies a number of different value and
function properties, implementations may have additional properties. [2]

1https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
2https://www.ecma-international.org/

January 10, 2023 Julian Kaindl 3/50

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/

2.1.2 Objects and Prototypes

Version 6 of ECMAScript (ES6), released in 2015, introduced significant new syntax for writing
complex applications using object oriented programming such as the keywords class and ex-

tends. Although ES6 syntactically includes class definitions, the objects are not created using a
class-based approach like in Java or C++. Instead, classes are just object templates and constructor
functions create the objects. To create an object using a constructor function, the new keyword is
needed, for instance new Date() [3]. All objects have an internal property that links to another
object, called its prototype. The prototype then is used for prototype-based inheritance via the pro-
totype chain. The object that the prototype links to has a prototype itself, and so on - this is called
the prototype chain. It terminates when an object has null as its prototype value. When accessing
a property on an object, the property is not only searched in the object itself, but also by follow-
ing the prototype chain until either a matching property name is found or the end of the chain
is reached. Furthermore, it is possible to mutate prototypes and properties of prototypes at run-
time.

The example in Figure 2.1 illustrates the concept of prototype-based inheritance. CF represents a
constructor function. The objects cf1 to cf5 are created with the expression new CF(). All created
objects contain the properties q1 and q2 and implicitly link to the prototype of their constructor
function CF. For example, the prototype of cf1 is CFp. The constructor also has two properties
P1 and P2, which are not visible to the objects cf1 to cf5 and also not to the prototype CFp. The
property CFP1 of CFp is shared by cf1 to cf5 but not by CF. In other words, objects have access
to the properties of their prototype, if they do not already have properties with that exact name.
The constructor function prototype CFp also has an implicit prototype link to a (second) prototype,
which in turn could have a link to another (third) prototype. This prototype chain terminates at
the Object prototype. All properties that are defined by prototypes when following this chain are
shared.

4/50 Julian Kaindl January 10, 2023

Figure 2.1: JavaScript prototypes example [4]

2.2 Graal.js

This section introduces GraalVM JavaScript, in short Graal.js3, a high performance JavaScript imple-
mentation in Java. It gives an overview of a number of concepts regarding the GraalVM platform
which are relevant background information for Chapter 4. Graal.js is built on the GraalVM, which
is an extended Java HotSpot VM with support for additional programming languages. It is devel-
oped by Oracle Labs. The major goals of Graal.js are:

• High performance JavaScript execution

• Full compatibility with the latest version of ECMAScript

• Fast language interoperability using Polyglot Programming[6]

GraalVM allows users to write polyglot applications that are able to inter-operate between two or
more languages using the Truffle Language Implementation Framework, shorthand Truffle [11]. Truffle
is a library for implementing programming languages by building a self-modifying abstract syntax
tree (AST) .

2.2.1 Truffle Nodes and DSL

Truffle facilitates the implementation of a programming language via the concept of Truffle nodes.
These represent the vertices of an AST and the abstract Node class should be extended to implement

3https://github.com/oracle/graaljs

January 10, 2023 Julian Kaindl 5/50

https://github.com/oracle/graaljs

desired functionality for the created language. A Truffle node always has an execute() method
that performs the operation. Operations, e.g., an addition in JavaScript, could allow arguments
of multiple different types. This is where Truffle specializations come in, which provide multiple
execute() methods that fit the possible parameter type combinations of an operation. Since that
would result in a large amount of boilerplate code, the Truffle domain specific language (DSL) uses
the Java annotation system to alleviate the amount of boilerplate code [7].

2.3 The Fetch Living Standard

This section gives an idea of what the Fetch Standard encompasses and the goals it aims to achieve.
It gives some background information about the history, introduce the vital classes on a high level,
but will not contain much implementation specific requirements or challenges. In Chapter 3 these
are discussed in greater detail.

During the early stages of developing web applications it was a difficult task to perform asyn-
chronous requests across websites, for example, when requesting data from a server. Implementa-
tions of JavaScript, by the browsers, included no such functionality. In 1998, the XMLHttpRequest

class, introduced with Internet Explorer 5, provided the first standardized API. It was initially de-
signed to fetch XML resources but support for JSON and other data formats was added later. As
web applications increased in size and complexity, this API got too difficult to work with. To over-
come limitations of the XMLHttpRequest a modern successor was introduced in 2015. The Fetch
API became the de facto standard for handling asynchronous requests in web applications. One
significant advantage is that Promises are used, which allows for a much cleaner API. It is defined
and standardized by the WHATWG[5]. The WHATWG (Web Hypertext Application Technology
Working Group) is an organization dedicated to developing, maintaining and updating a multi-
tude of web standards. This includes the Fetch APIs Living Standard document. A document that
is a living standard is continually being edited and updated, potentially deprecating features or
introducing new ones. The reference for this implementation is a snapshot of the standard as of
28th July 2022 4.

2.3.1 Concept and Goals

Fetching is the process of accessing a resource that lies on the network. For example, such resources
could be public APIs, websites or resources on the local network. The Fetch API provides the
classes Request and Response which are connected via fetching. A typical use case would look
like this:

1. User specifies a desired resource by creating a Request request .

4https://fetch.spec.whatwg.org/commit-snapshots/9bb2ded94073377ec5d9b5e3cda391df6c769a0a/

6/50 Julian Kaindl January 10, 2023

2. fetch(request) is invoked.

3. The call returns a Response response containing the desired resource.

On a high level this operation may seem trivial. A request goes in and a response is returned to
access the resource. The specifics can, however, be quite intricate. Involving, for example, redirects
or different URL schemes. Therefore, fetching should be clearly defined and written-down. This is
where WHATWG sets the goal post for the Fetch Standard: It should provide a consistent way of
handling the fetching process across all web platforms. [5]

2.3.2 HTTP Fetch

While not being strictly limited to the HTTP protocol, the Fetch API uses a lot of HTTP concepts
and applies them to resources obtained via other means. This section introduces these concepts on
a high level.

• Method: A request method is a string that describes the action the user wants to perform on
a resource. In addition to the standard HTTP methods5 the Fetch API supports custom, user
defined request methods.

• Headers: A header list, included in both request and response, enables specifying additional
information, like authorization- or meta-data. It can contain multiple headers where a header
consists of a unique name and a value. For example, the following header field is used to
indicate the type of body content that is sent: "Content-Type":"application/json".

• Status: A response status is an integer indicating if the request has been successfully com-
pleted or if errors occurred. The Fetch API can handle HTTP status codes6 as well as all
values in the inclusive range from 0 to 999.

• Body: Contains the actual data that is being sent or retrieved and is a part of both request and
response.

• Request: A Request object is the input to the fetch method. It defines an operation to be
performed on a given resource.

• Response: A Response object is the result of fetch. It makes the response data accessible and
is built as the resource is fetched.

5https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
6https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

January 10, 2023 Julian Kaindl 7/50

2.3.3 The Fetch Method

This is the central method of the Fetch API. It takes a Request and starts the process of fetching the
resource over the network. It runs asynchronously and resolves to a Response once it is available.
Listing 2.1 shows typical usage of the fetch method. In this case, the request is defined by just the
URL and the Request object is created implicitly.

Listing 2.1: Fetch usage in JavaScript

1 const response = await fetch("https://example.com");

2.4 Java Network API

In this section, we look at the networking capabilities that the Java standard library provides and
go into more detail on relevant classes for this implementation.

2.4.1 Java Networking Capabilities

The java.net7 package contains classes for implementing network applications. It can roughly be
divided into a low-level and a high-level API which deal with different levels of abstraction.

Lower-Level API

• IP addresses

• Network interfaces, defining multiple protocols and interfaces

• Network sockets, for lower level bi-directional communication

Higher-Level API

• URIs (Universal Resource Identifiers) and URLs (Universal Resource Locators), for resource
identification and location

• Connections, that represent the network connections to resources

7https://docs.oracle.com/javase/8/docs/api/java/net/package-summary.html

8/50 Julian Kaindl January 10, 2023

https://docs.oracle.com/javase/8/docs/api/java/net/package-summary.html

For implementing the Fetch API functionality, the higher-level API, dealing with URLs and re-
source connections, is applicative. The URL class is useful for validating user input and, in partic-
ular, the class HttpURLConnection8 provides a lot of out of the box functionality for the fetching
process. The next section explains the class in more detail and contains an example of how it fits a
basic Fetch API use case.

2.4.2 HttpURLConnection

While the underlying connection can stay open for multiple requests, an instance of this class
represents a single HTTP request. Listing 2.2 shows how to send a basic GET request and retrieve
the response status code.

Listing 2.2: GET request with HttpURLConnection

1 URL url = new URL("http://example.com");
2 HttpURLConnection connection = (HttpURLConnection) url.openConnection();
3 connection.setRequestMethod("GET");
4 int status = connection.getResponseCode();

As described in Section 2.3.3, this is basically the functionality required for the Fetch API; a request
goes in and a response comes out. We just have to pass in the request data via different setter meth-
ods, such as setRequestMethod(), and collect the response data via different getter methods, such
as getReponseCode(). The point where the response data is extracted from the HttpURLConnection
class is where a Response object could be created.

2.4.3 HTTP Redirection

A HTTP redirect is used to give more than one URL to a resource and is triggered when the server
sends a specific redirect response. Redirect responses have a status code beginning with 3, which
can indicate different reasons for the redirect where the main difference is between permanent and
temporary redirection.

Figure 2.2 shows the requests and responses involved in the most basic redirect. The initial request
to a resource receives a response with status code 301, indicating a permanently moved resource,
and the new URL, where the resource is actually located, in the Location header field. In this case,
the location is a relative path on the same domain. A subsequent request is then sent to this new
location to actually fetch the resource.

8https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html

January 10, 2023 Julian Kaindl 9/50

https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html

Figure 2.2: Example of a redirect [8]

2.5 Existing Implementation: node-fetch

This section introduces the node-fetch9 implementation of the standard. It brings the Fetch API
functionality to the Node.js10 platform, which is a runtime for JavaScript. As of September 2022, the
module is being downloaded roughly 36 million times weekly from the node package registry11.
Node-fetch is developed as an open source project with over 100 contributors.

Since it also implements the standard from a server-side context, not from the client or browser
context as assumed by the WHATWG, node-fetch is a good reference for this implementation. In
addition, the module defines an extensive list of Fetch API unit tests.

2.5.1 Non-standard Extensions

Node-fetch implements useful extensions to the standard-defined functionality. Mainly the Re-

quest class is extended to give the user more control over the fetching process. The implemen-
tation also tries to be more transparent with errors during fetching. The following options and
default values are non-standard extensions:

• follow = 20: The maximum redirect count. WHATWG defines a constant value of 20. This
option can change that behavior. A value of 0 will allow no redirects.

9https://github.com/node-fetch/node-fetch
10https://nodejs.org/
11https://www.npmjs.com/package/node-fetch

10/50 Julian Kaindl January 10, 2023

https://github.com/node-fetch/node-fetch
https://nodejs.org/
https://www.npmjs.com/package/node-fetch

• compress = true: node-fetch supports gzip and deflate, which are content encoding algo-
rithms used for the response body.

• size = 0: Defines the maximum size of the response body in bytes. A value of 0 disables the
option.

• agent = null: A http(s). Agent12 instance that allows to specify networking options that are
out of scope for the Fetch API, such as using only IPv6 or performing custom DNS lookups.

• highWaterMark = 16384: The maximum size of the internal body buffer.

• insecureHttpParser = false: To use an insecure HTTP parser that allows invalid HTTP
header fields.

These fields are neither specified nor mandated by the Fetch API standard. As the node-fetch
module is an open source project, these features were probably requested by the community and
seen as useful additions by the maintainers. They provide extra functionality that is often needed
when using the Fetch API in a Node.js application.

12https://nodejs.org/api/http.html#http_new_agent_options

January 10, 2023 Julian Kaindl 11/50

https://nodejs.org/api/http.html#http_new_agent_options

3 Fetch API for Graal.js

This chapter discusses the scope of the implementation by outlining the goals and non-goals in
Section 3.1. Section 3.2 lists the Fetch API definitions from the WHATWG standard which serve as
concrete implementation requirements for Chapter 4. Finally, Section 3.3 highlights a number of
interesting challenges which might arising from these requirements.

3.1 Scope and Goals

Although the in Section 2.3 described basic concept and functionality might seem simple, the Fetch
API standard defines a lot of in-depth behavior and specifics which might not be feasible or are
out of scope for this implementation.

Main goal is to implement the Fetch API based on the living standard. All functionality should be
well integrated into the Graal.js interpreter and follow its programming model. The implementa-
tion should cover as much as possible, but does not have to cover all cases or details of the stan-
dard. The incomplete and missing parts of the standard are summarized in Section 4.7.

The Java package java.net should be used to implement all of the fetch networking function-
ality. It is also not expected to have excellent I/O performance and does not have to be further
optimized.

To test and verify completeness, tests from node-fetch1 should be used.

3.2 Implementation Requirements

This section describes the required interfaces, classes and methods as defined by the WHATWG
living standard. The code in the following sections is Web IDL2 code from [5] adapted for readabil-
ity. Also, since the WHATWG definitions assume a browser context some fields or methods that
are not sensible outside of a browser are omitted, as discussed in Section 4.7.

1https://github.com/node-fetch/node-fetch/tree/main/test
2https://webidl.spec.whatwg.org/

12/50 Julian Kaindl January 10, 2023

https://github.com/node-fetch/node-fetch/tree/main/test
https://webidl.spec.whatwg.org/

3.2.1 The Fetch Method

The Fetch API provides a function fetch() which should be globally accessible in the Javascript
realm with a method signature as in Listing 3.1.

Listing 3.1: Fetch method signature
Promise<Response> fetch(RequestInfo input, optional RequestInit init);

The input parameter can be a string representing the URL or a Request object. The init parameter
is optional and allows the user to set options on the request like the method or headers. The
parameter types are described in Section 3.2.2. The parameters are the same as for the constructor
of the Request class.

The first step of the method is to create a new Request by calling the constructor with input and
init as arguments. While the resources are fetched, a Response object should be built. As men-
tioned in Section 2.3.3, the method should return a Promise which resolves to a Response object or
rejects in case of a network error with a FetchError.

3.2.2 Request Class

As described in Section 2.3.2, a request is the start of the fetching process. This class should allow
to specify a resource and different fetching related options. The Request type is defined as in
Listing 3.2 and should be accessible globally. It should not only be usable with the Fetch API but
also serve as a generic request implementation.

One of the parameters to the constructor is of the RequestInit type. It contains options to be set
when creating a new instance. The method field sets the request method. A Header object is created
from the value in the headers field. Same with the body field. The referrer and referrerPolicy

fields are used to set the respective request properties. RequestRedirect is a enum type with "fol-

low", "manual" or "error" as values which set the request redirect mode.

The referrer and referrerPolicy fields are required for setting the Referrer and Referrer-

Policy HTTP header of a request. The user should also be able to specify those headers via the
headers field, but these distinct properties allow for handling default values and conversions.
The referrer headers allow the server to identify where the request comes from and are used for
analytics, optimized caching, and logging [9].

A request is constructed with a RequestInfo, which is either a string representing a URL or a Re-

quest object, and also the already described optional RequestInit object. The Request constructor
has the same parameter list as the fetch method. The user can just skip the step of calling the con-
structor since the fetch method should do this implicitly with the provided arguments. If a Request

January 10, 2023 Julian Kaindl 13/50

Listing 3.2: Request definition
typedef (Request or String) RequestInfo;

dictionary RequestInit {
String method;
HeadersInit headers;
BodyInit body;
String referrer;
ReferrerPolicy referrerPolicy;
RequestRedirect redirect;

};

interface Request {
constructor(RequestInfo input, optional RequestInit init);
readonly attribute String method;
readonly attribute String url;
readonly attribute Headers headers;
readonly attribute String referrer;
readonly attribute ReferrerPolicy referrerPolicy;
readonly attribute RequestRedirect redirect;
Request clone();

};
Request includes Body;

object (request) and a RequestInit object (init) are passed to the constructor, the values from init
should overwrite the values in request and create a new instance. All the properties should be set
in the constructor and be immutable afterwards. The constructor should validate the arguments
and throw an appropriate TypeError if invalid values are provided. In case no value is given for a
specific field, the constructor should set the following defaults:

• method = "GET"

• headers = {}

• referrer = "client"

• referrerPolicy = ""

• redirect = "follow"

With value v, the referrer getter should return the empty string if v is "no-referrer", "about:client"
if v is "client" or v otherwise. Other getters should return the internal value.

The clone() method returns a cloned object of this request. The Request class extends the Body

class and should provide all properties and methods defined by Body as described in Section 3.2.5.

14/50 Julian Kaindl January 10, 2023

3.2.3 Response Class

Listing 3.3: Response definition
dictionary ResponseInit {

short status = 200;
String statusText = "";
HeadersInit headers;

};

interface Response {
constructor(optional BodyInit body, optional ResponseInit init);
static Response error();
static Response redirect(String url, optional short status = 302);
static Response json(any data, optional ResponseInit init);
readonly attribute ResponseType type;
readonly attribute String url;
readonly attribute boolean redirected;
readonly attribute short status;
readonly attribute boolean ok;
readonly attribute String statusText;
readonly attribute Headers headers;
Response clone();

};
Response includes Body;

enum ResponseType { "basic", "cors", "default", "error", "opaque", "opaqueredirect" };

As described in Section 2.3.2, a Response should be the result of fetching. It is built during fetch-
ing and should make all relevant response data accessible. The type Response should be accessible
globally with an interface as defined in Listing 3.3 and described in this section.

The optional body parameter of the constructor is of type BodyInit as described in Section 3.2.5.
It should allow specifying the response’s body. The optional init parameter of the constructor is
of type ResponseInit. It should allow setting options for the response being created. The sta-

tus and statusText fields set the respective response fields. A Header object should be created
from the value in the headers field. Similar to the request class all, properties should be set in the
constructor and be immutable afterwards. The following defaults should be set by the construc-
tor:

• status = 200

• statusText = ""

• headers = {}

January 10, 2023 Julian Kaindl 15/50

• type = "default"

The static error() method should create a new Response r with r.type === ’error’. The static
redirect(url, status) method should validate the URL and status to be a redirection status.
Then create a new Response rwith r.headers.get(’Location’) === url and r.status === sta-

tus. The default status code should be 302. The static json(data, init) method should create a
new Response r with options init and the body defined by data.

The ok getter is a shorthand and should return true if status is in the inclusive range from 200 to
299. The redirected getter should return true if a redirect occurred. Other getters should return
the internal value.

The clone() method should return a cloned object of this response. Same as the Request class, the
Response class also extends the Body class and should provide all properties and methods defined
by Body as described in Section 3.2.5.

3.2.4 Headers Class

Listing 3.4: Headers definition
typedef (sequence<sequence<String>> or record<String, String>) HeadersInit;

interface Headers {
constructor(optional HeadersInit init);
undefined append(String name, String value);
undefined delete(String name);
String? get(String name);
boolean has(String name);
undefined set(String name, String value);
iterable<String, String>;

};

The Headers type is defined as in Listing 3.4 and is used in request and response but should also be
accessible globally. A header consists of a unique name and a value. As described in Section 2.3.2,
a Headers object should have an internal headers list. This internal list should be able to store
multiple values per name. The constructor should take a HeadersInit object as argument and
create the internal header list from this argument. In terms of creating a new Headers object, the
values in Listing 3.5 are equal. If no argument is provided, the internal list should be empty. Since
names are unique it has a map-like interface.

At every method call the arguments should be validated using the respective header-field produc-
tion3 for both header name and value.

3https://datatracker.ietf.org/doc/html/rfc7230#section-3.2

16/50 Julian Kaindl January 10, 2023

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2

Listing 3.5: HeadersInit example

1 const init1 = { "Accept": "*/*", "foo": "bar" };
2 const init2 = [
3 ["Accept", "*/*"],
4 ["foo", "bar"]
5];

The append(name, value) method should append a header. Either by adding the value to the list
if name already exists or by creating a new list if name does not exist.

The delete(name) method should delete the entry with identifier name.

The get(name) method should return all values of identifier name as string separated by comma
and space or undefined if name does not exist.

The has(name) method should return true if name exists or false otherwise.

The set(name, value)method should set name to a new list with value as its only element.

Headers should be iterable and provide a forEach() method. Even though it does not matter how
the headers are organized internally, they should be returned in alphabetical order and header
names should be normalized to lowercase.

3.2.5 Body-mixin

The Body class, as defined in Listing 3.6, should purely be used to define common behavior related
to the HTTP body for the Request and Response classes. It holds a readable stream which it should
be able to consume and convert to a specific data type. Multiple methods are defined that achieve
this. All methods should consume the body and return a Promise that resolves to the desired data
type. The default value of body should be null.

The bodyUsed getter should return true if the body has been consumed and false otherwise.

The arrayBuffer() method should consume the body and return an ArrayBuffer4 object, that is
used to represent fixed length binary data.

The blob() method should consume the body and return a Blob5 object.

The formData()method should consume the body and return a FormData6 object.

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
5https://developer.mozilla.org/en-US/docs/Web/API/Blob
6https://developer.mozilla.org/en-US/docs/Web/API/FormData

January 10, 2023 Julian Kaindl 17/50

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/FormData

Listing 3.6: Definition body
interface mixin Body {

readonly attribute ReadableStream? body;
readonly attribute boolean bodyUsed;
Promise<ArrayBuffer> arrayBuffer();
Promise<Blob> blob();
Promise<FormData> formData();
Promise<any> json();
Promise<String> text();

};

The json() method should consume the body and parse it as a JavaScript object using JavaScript
Object Notation7 (JSON).

The text()method should consume the body, parse it as plain text and return a string.

3.3 Selected Implementation Challenges

This section lists some challenges these requirements might yield. The following list is not an
extensive collection of all the implementation challenges. It should rather give an idea of which
aspects of the requirements might be difficult to implement.

• The Body should be implemented as a base class to the Request and Response class. This
should not be an issue on the Java side, but for the JavaScript objects it could be difficult to
set the types up correctly.

• The fetch method and all the body methods should return a Promise. Because a Response

in JavaScript represents the result of a asynchronous operation there could be difficulties if
the internal networking implementation would work in a synchronous way.

• HTTP redirects should be handled properly according to the standard. This also includes
chains of multiple redirects and possibly dealing with an infinite redirect loop.

7https://developer.mozilla.org/en-US/docs/Glossary/JSON

18/50 Julian Kaindl January 10, 2023

https://developer.mozilla.org/en-US/docs/Glossary/JSON

4 Implementation

This chapter shows the actual implementation of the Fetch API for Graal.js, as defined in Chap-
ter 3. First, Section 4.1 provides an overview of the implementation. It should give an idea of
which classes are created or extended and how they are connected. In Section 4.2, the network-
ing functionality and Java’s capabilities in that regard are discussed. The globally accessible entry
point for the fetch() method is explained in Section 4.3. The implementation of types defined
by the standard is documented in Section 4.4 (operational types of the API), Section 4.5 (new er-
ror types), and Section 4.6 (promises). Finally, incomplete and missing features are discussed in
Section 4.7.

4.1 Overview

The core function of the Fetch API, fetch(), should be provided as a global-builtin. In other
words, a new function property has to be added to the global object. The class GlobalBuiltins

contains other such global function properties, for example the parseInt() function. The new
fetch keyword is added to this class by providing a Truffle node that implements the fetch opera-
tion. This Truffle node (JSGlobalFetchNode) defines a specialization method which has the same
signature and represents the fetch method defined in Section 3.2.1. All of the fetching process is
then completed inside the context of this specialization method: (1) A request is built from the
parameters, (2) the resource is fetched using Java networking features, and (3) a response is built
and returned.

However, this requires the Request, Response, and Headers types. These do not exist yet and to
use them, as input and output types in the fetching process, they first have to be implemented.
To provide a new type, the ConstructorBuiltins class, which contains built-in constructor func-
tions, has to be extended to include the three new types. Again, for every type a Truffle node is
needed to implement the respective constructor operation and return a new object. To create a
new object of a given type the prototype of this type has to be supplied. The classes JSFetchRe-

quest, JSFetchResponse, and JSFetchHeaders build and supply the prototype for the respective
type. The actual data for objects of these types is stored in the internal classes FetchRequest,
FetchResponse and FetchHeaders. The classes with a JS prefix make the data accessible from the
JavaScript side, while the actual data that should also be accessible from the Java side is stored in

January 10, 2023 Julian Kaindl 19/50

these internal classes. Also, the JSContext and JSRealm classes have to be adapted to contain the
new types.

To provide the FetchError type the classes Errors and JSErrorType have to be extended.

4.2 Fetch Networking Functionality

This section details how the Fetch API networking functionality is implemented. We utilize classes
from the Java network API (java.net), as described in Section 2.4. Finally, we discuss some limi-
tations of our approach that are relevant for the Fetch API use case.

4.2.1 Handling Redirects

This section shows the implementation of HTTP redirection, described in Section 2.4.3. The ex-
ample in Listing 4.1 highlights the redirect handling but also already contains the final method
signature and control flow. This static method receives a FetchRequest and returns a FetchRe-

sponse, the internal data classes. This example should outline how redirects are handled. The idea
is to recursively call connect(request) for redirects. The argument that is passed for recursive
calls is the previous request with updated values. For example, the redirect counter is increased
for every recursive call. Also, the URL is updated in order to follow the redirects. The recursion
stops when a request does not return a redirect response or the maximum amount of redirects is
reached.

The HttpURLConnection class follows redirects automatically by default. To get the required con-
trol we have to use the setInstanceFollowRedirects() method as in line 4 of Listing 4.1. After the
connection.connect() call we check if the status code signals a redirect response. The isRedi-

rect(status) method returns true if status is one of the following values:

• 301 (Moved Permanently)

• 302 (Found but moved temporarily, for search engine optimization)

• 303 (See Other)

• 307 (Temporary Redirect)

• 308 (Permanent Redirect)

20/50 Julian Kaindl January 10, 2023

If a redirect response is identified, we extract the value of the Location header and create the new
URL. It is possible that the URL in the Location field also points to a redirection. This results in a
chain of redirects that could theoretically loop endlessly if the URLs form a cycle. Therefore, the
fetch standard defines a redirect count that keeps track of the amount of redirects followed and
terminates the execution at a set maximum. By default, a maximum of 20 redirects are followed
before a FetchError is returned. In Listing 4.1, this check is done at line 14. At the end, we update
the request URL using request.setUrl(locationURL) and return the result of recursively calling
connect which sends a request to the updated URL. If no redirect occurred a FetchResponse object
is built by extracting the data from connection and subsequently returned.

Listing 4.1: Handling redirects

1 public static FetchResponse connect(FetchRequest request) {
2 // Setup Connection
3 HttpURLConnection connection = (HttpURLConnection)

request.getUrl().openConnection();↪→

4 connection.setInstanceFollowRedirects(false);
5 connection.setRequestMethod(request.getMethod());
6 connection.connect();
7
8 int status = connection.getResponseCode();
9

10 if (isRedirect(status)) {
11 String location = connection.getHeaderField("Location");
12 URL locationURL =

URI.create(request.getUrl().toString()).resolve(location).toURL();↪→

13
14 if (request.getRedirectCount() >= request.getFollow()) {
15 throw Errors.createFetchError("maximum redirect reached");
16 }
17
18 request.incrementRedirectCount();
19 request.setUrl(locationURL);
20
21 // following the redirect
22 return connect(request);
23 }
24
25 FetchResponse response = new FetchResponse();
26 // build response
27 return response;
28 }

January 10, 2023 Julian Kaindl 21/50

In Listing 4.2, we show the implementation of multiple redirection modes that are defined for a
fetch request in Section 3.2.2. The three valid redirect modes are:

• manual: Returns the response as is and gives the user control over handling the redirect.

• error: Throws a FetchError when a redirect is encountered.

• follow: The default value, automatically follows redirects as already discussed.

If any other value is passed, a TypeError is thrown.

Listing 4.2: Implementation of the redirect modes

1 if (isRedirect(status)) {
2 String location = connection.getHeaderField("Location");
3 URL locationURL =

URI.create(request.getUrl().toString()).resolve(location).toURL();↪→

4
5 switch (request.getRedirectMode()) {
6 case "manual": // return response as is
7 break;
8 case "error": // reject redirection
9 throw Errors.createFetchError("uri requested responds with a redirect,

redirect mode is set to error", "no-redirect", node);↪→

10 case "follow":
11 // handle redirect
12 // ...
13 return connect(request);
14 default:
15 throw Errors.createTypeError("Redirect option " +

request.getRedirectMode() + " is not a valid value of
RequestRedirect");

↪→

↪→

16 }
17 }

Similar to checking if the maximum amount of redirects has been reached, Fetch performs a num-
ber of checks during a redirect and modifies the request accordingly. The check in Listing 4.3
deletes a number of sensitive headers from the request, if a redirect requires to change the host or
protocol in any way. For example, if the host changes from example.com to foo.bar or the protocol
from https to http.

22/50 Julian Kaindl January 10, 2023

Listing 4.3: Sensitive headers when redirecting

1 if (!isDomainOrSubDomain(locationURL, request.getUrl()) ||
!isSameProtocol(locationURL, request.getUrl())) {↪→

2 Set.of("authorization", "www-authenticate", "cookie", "cookie2").forEach(k ->
{↪→

3 request.headers.delete(k);
4 });
5 }

4.2.2 Request and Response Body

To fit the requirements, HttpURLConnection must be able to send and receive body data. The body
data that is sent is stored in the request and the response body is stored in the response. The
methods getOutputStream() and getInputStream() enable this functionality. With getOutput-

Stream() we can manipulate the stream that writes to the connection and with getInputStream()

we can do the same for the stream that reads from the open connection.

Listing 4.4 shows how both these methods are used to setup the connection and extract the re-
sponse body. If a request body is present, we write it to the output stream using the Output-

StreamWriter class. To get the response body we use getInputStream(). This method throws
an exception when the request returns a response with an error status code. To also get the body
of erroneous requests we use getErrorStream(). At line 23, the responseBody is created which
defaults to the empty string.

4.2.3 Networking Limitations

The HttpURLConnection suits the use case for a Fetch API implementation very well and provides
useful abstractions for HTTP connections. However, it has some limitations that are relevant for
certain details of the Fetch API. This section lists those limitations and Section 4.7 explains how
they correlate to concrete Fetch API features that are not possible or need special setup when using
the HttpURLConnection class.

A request always has a request method and, as Listing 2.2 shows, the setRequestMethod setter
method allows setting the value for this request field. But the implementation of HttpURLConnec-
tion only allows the following method values: "GET", "POST", "HEAD", "OPTIONS", "PUT", "DELETE"
and "TRACE".

As mentioned the class provides useful behavior out of the box but this also includes some un-
desired side effects. A number of HTTP headers are set by the class implicitly. This internal be-

January 10, 2023 Julian Kaindl 23/50

Listing 4.4: HttpURLConnection content using streams

1 HttpURLConnection connection = (HttpURLConnection)
request.getUrl().openConnection();↪→

2
3 if (request.body != null) {
4 OutputStreamWriter out = new OutputStreamWriter(connection.getOutputStream());
5 out.write(request.body);
6 out.flush();
7 out.close();
8 }
9

10 connection.connect();
11
12 InputStream inputStream = null;
13 try {
14 inputStream = connection.getInputStream();
15 } catch (IOException exception) {
16 inputStream = connection.getErrorStream();
17 }
18
19 BufferedReader br = null;
20 if (inputStream != null) {
21 br = new BufferedReader(new InputStreamReader(inputStream));
22 }
23 String responseBody = br != null ? br.lines().collect(Collectors.joining()) : "";

haviour overwrites any user defined headers. Consider using an output stream to set the body
for a HttpURLConnection as in Listing 4.4. The Content-Length is automatically calculated when
setting the body. If we now try to manually set the Content-Length header, the internally calcu-
lated value overwrites the user-provided one. Essentially, the HttpURLConnection class prevents
the user from lying and sending wrong data in headers. Also, by default the class restricts the user
from setting certain headers for security reasons, which requires workarounds. This includes, for
example, the Host header.

While it is not directly a limitation of the HttpURLConnection class, it does not provide any func-
tionality for asynchronous HTTP requests. Using Java concurrency features to work with multiple
threads could be a way to provide this functionality to the current implementation. Other network-
ing classes, for example HttpClient, support asynchronous request out of the box. But none of
these classes provide as much control and flexibility as the HttpURLConnection class.

24/50 Julian Kaindl January 10, 2023

4.2.4 Final Networking Implementation

The method in Listing 4.5 is a shortened version of the final networking implementation. It is a
static method in the FetchHttpConnection class, which is used by the global built-in fetch(). As
the previous sections already presented parts of this method they are omitted and replaced by
comments here.

The method takes a FetchRequest as argument and returns a FetchResponse. If a network error
occurs an IOException is thrown which is later converted to a FetchError.

A scheme is the first part of an URL and is used as an identifier for launching specific applications
with the URL. For example, a URL starting with https:// opens the web browser while mailto://
could open a mail client. The supported schemes by the Fetch API are http, https and data.
The first check in Listing 4.5 validates the URL the user provided to only include a supported
scheme. Otherwise, the call is rejected with a TypeError. After that, the request is built by setting
up the HttpURLConnection class. At line 11, the method setRequestHeaders() is called. Before
the request is sent, the request body is written to the connection’s output stream as explained in
Section 4.2.2.

At line 14 in Listing 4.5, a request is performed using the connect() method. As already discussed
in Section 4.2.1, the response could potentially be a redirect that is handled here. Then, the response
is built by extracting data from the HttpURLConnection and filling it into a new FetchResponse.
The responseBody is extracted as already shown in Section 4.2.2. Finally, the response is returned
by the method.

The setRequestHeaders() method, shown in Listing 4.6, is used by the final networking code. It
sets all the default and user-defined headers for a given HttpURLConnection. First, default val-
ues for the Accept and User-Agent headers are set. Also, the setFixedLengthStreamingMode()

method is called with the body length. By default the HttpURLConnection class buffers everything
that is written to its output stream and calculate the Content-Length header that way. By already
providing the final body length and using a fixed length streaming mode the connection is able
to set the Content-Length header sooner. After that, the Referrer and other user-defined headers
are set. Since they are set last the user-defined headers should overwrite all default headers set
before but as mentioned in Section 4.2.3 this is not possible for all headers.

January 10, 2023 Julian Kaindl 25/50

Listing 4.5: Final networking implementation

1 public static FetchResponse connect(FetchRequest request) throws IOException {
2 if (!SUPPORTED_SCHEMA.contains(request.getUrl().getProtocol())) {
3 throw Errors.createTypeError("unsupported schema");
4 }
5
6 HttpURLConnection connection = (HttpURLConnection)

request.getUrl().openConnection();↪→

7 connection.setInstanceFollowRedirects(false);
8 connection.setRequestMethod(request.getMethod());
9 connection.setDoOutput(true);

10
11 setRequestHeaders(connection, request);
12 // Set Requests Body
13
14 connection.connect();
15
16 int status = connection.getResponseCode();
17
18 if (isRedirect(status)) {
19 // Handle redirect
20 }
21
22 FetchResponse response = new FetchResponse();
23 // Get Response Body
24 response.setBody(responseBody);
25 response.setUrl(request.getUrl());
26 response.setCounter(request.getRedirectCount());
27 response.setStatusText(connection.getResponseMessage());
28 response.setStatus(connection.getResponseCode());
29 response.setHeaders(new FetchHeaders(connection.getHeaderFields()));
30
31 return response;
32 }

26/50 Julian Kaindl January 10, 2023

Listing 4.6: Setting the request headers

1 private static void setRequestHeaders(HttpURLConnection connection, FetchRequest
req) {↪→

2 connection.setRequestProperty("Accept", "*/*");
3 if (req.body != null) {
4 int length = req.getBodyBytes();
5 connection.setFixedLengthStreamingMode(length);
6 } else if (Set.of("POST", "PUT").contains(req.getMethod())) {
7 connection.setFixedLengthStreamingMode(0);
8 }
9 connection.setRequestProperty("User-Agent", "graaljs-fetch");

10
11 if (req.isReferrerUrl()) {
12 connection.setRequestProperty("Referrer", req.getReferrer());
13 }
14
15 // user specified headers
16 req.headers.keys().forEach(key -> {
17 connection.setRequestProperty(key, req.headers.get(key));
18 });
19 }

January 10, 2023 Julian Kaindl 27/50

4.3 The Fetch Global Builtin

This section discusses the implementation of the global object properties in Graal.js and how the
Fetch API’s fetch() function is integrated.

As described in Section 2.1.1, the global object contains a number of value and function properties.
The built-in function properties1 are implemented by Graal.js in the GlobalBuiltins class. Next
to the functions specified in the ECMAScript standard, the fetch function is also implemented as
a built-in function property of the global object in this class. To make the fetch method available
globally, we need the parser to recognize the function name (fetch). This is done by extending the
GlobalBuiltins class. If the parser matches a function name, a Truffle node is returned. Then, the
method of this node with a specialization that is compatible to the function arguments is executed
or an error is thrown if no specialization is compatible.

Listing 4.7 shows our implementation of such a Truffle node that is returned when the fetch key-
word is parsed. Our JSGlobalFetchNode extends JSBuiltinNode, which is a class defining shared
behavior for JavaScript built-ins. All member fields of our node are related to creating promises
and the private toPromise() method, which is detailed in Section 4.6. In the constructor, we pass
all arguments to the base class and instantiate fields needed for promise creation. Most of the Fetch
API related functionality of this node is implemented in its only specialization method, which is
described in the next section.

4.3.1 The Fetch Specialization Method

The new node JSGlobalFetchNode defines one specialization method. This method, depicted in
Listing 4.8, is the entry point of a fetch() call. As required and described in Section 3.2.1, the
method takes two arguments: An input that is either a string or a request object and an options

argument. The toString argument is internal to the parser and allows to parse other values as
strings.

The options argument of type RequestInit is optional, so at line 3 in Listing 4.8 we check if the
argument is present. If it is not present, an empty object is created and used instead. After that,
we check if the input argument is a JSFetchRequest object, which represents a Request object on
the JavaScript side. If that is the case, we extract the internal FetchRequest and apply the parsed
options to it. This overwrites already existing headers values. If it is not a JSFetchRequest object,
the input argument is parsed as string and a new FetchRequest is created using this string and
the parsed options.

The FetchRequest object is then used as argument to FetchHttpConnection.connect(), which is
described in Section 4.2.4. In short, this method performs the actual fetching process. It takes a

1https://262.ecma-international.org/6.0/#sec-function-properties-of-the-global-object

28/50 Julian Kaindl January 10, 2023

https://262.ecma-international.org/6.0/#sec-function-properties-of-the-global-object

Listing 4.7: Fetch global Truffle node

1 public abstract static class JSGlobalFetchNode extends JSBuiltinNode {
2 @Child NewPromiseCapabilityNode newPromiseCapability;
3 @Child JSFunctionCallNode promiseResolutionCallNode;
4 @Child TryCatchNode.GetErrorObjectNode getErrorObjectNode;
5 private final BranchProfile errorBranch = BranchProfile.create();
6
7 protected JSGlobalFetchNode(JSContext context, JSBuiltin builtin) {
8 super(context, builtin);
9 this.newPromiseCapability = NewPromiseCapabilityNode.create(context);

10 this.promiseResolutionCallNode = JSFunctionCallNode.createCall();
11 }
12
13 protected JSDynamicObject toPromise(Object resolution) { ... }
14
15 @Specialization
16 protected JSDynamicObject fetch(Object input, Object options,

@Cached("create()") JSToStringNode toString) { ... }↪→

17 }

FetchRequest and returns a FetchResponse. This response is used to create a new JSFetchRe-

sponse, which represents the Response object on the JavaScript side. In case the method throws
an IOException, a new FetchError is thrown on the JavaScript side. To adhere to the interface
definitions, the response is wrapped in a Promise using the toPromise() method, as described in
Section 4.6.

January 10, 2023 Julian Kaindl 29/50

Listing 4.8: Fetch specialization method

1 @Specialization
2 protected JSDynamicObject fetch(Object input, Object options, @Cached("create()")

JSToStringNode toString) {↪→

3 JSObject parsedOptions;
4 if (options == Null.instance || options == Undefined.instance) {
5 parsedOptions = JSOrdinary.create(getContext(), getRealm());
6 } else {
7 parsedOptions = (JSObject) options;
8 }
9

10 FetchRequest request;
11 if (JSFetchRequest.isJSFetchRequest(input)) {
12 request = JSFetchRequest.getInternalData((JSObject) input);
13 request.applyRequestInit(parsedOptions);
14 } else {
15 request = new FetchRequest(toString.executeString(input), parsedOptions);
16 }
17
18 FetchResponse response = null;
19 try {
20 response = FetchHttpConnection.connect(request);
21 } catch (IOException e) {
22 throw Errors.createFetchError(e.getMessage(), "system", this);
23 }
24
25 return toPromise(JSFetchResponse.create(getContext(), getRealm(), response));
26 }

4.4 The Fetch API Types

This section describes the implementation of the Request, Response, and Headers type. As all of
the three types have common patterns in their implementation, the first section about the Request

implementation is referenced by the other sections for these common parts. The implementation
of body functionality is discussed in Section 4.4.4.

4.4.1 Request Type

This section documents the implementation of the Request type defined in Section 3.2.2. It serves
as input to a fetch() call but should also be usable outside of the Fetch API as a generic request
type.

30/50 Julian Kaindl January 10, 2023

The Constructor

The Request type should be globally accessible via its constructor. To create a new constructor, that
is recognized by the parser as such, the ConstructorBuiltins class has to be extended. Similar to
how the parser matches the fetch() function name in Section 4.3, also the constructor name for this
type is matched. If the parser matches the Request constructor, a Truffle node is created that han-
dles the construction of the new object. This node (ConstructFetchRequestNode) then contains a
specialization method that is invoked to actually create a new Request object.

This specialization method is implemented as in Listing 4.9. The two constructor arguments are
input and options. Parsing the options argument, which is optional and of type RequestInit, is
implemented in the same way as it is for the fetch() function call. If the argument is not present,
an empty object is created and used instead. The input argument can be a string or a Request ob-
ject. In line 10, we check if a Request object was provided and use it to create a new FetchRequest, a
class that represents the data of a Request object internally. To overwrite the existing data with the
potentially provided options argument, the applyRequestInit() method is invoked. If any other
value is provided as input, we parse it as a string and create a new FetchRequest instance. In both
cases, the new Request object is created with JSFetchRequest.create().

Internal Data Class

The implementation of the request constructor in Listing 4.9 makes use of the FetchRequest class.
It is a helper class that provides a convenient way to store the request data and to make it accessible
during the fetching process. The class has a single constructor that takes a string representing the
URL and a options object as arguments. Since this class is where the data is stored, the FetchRe-

quest class implements a majority of the request constructor steps defined by [5]. Other steps are
either implicitly completed or contained in the specialization method. The following points are the
most important functionality implemented by the FetchRequest class:

• Parse and validate the URL.

• Set default values.

• Set values specified via the options argument in the constructor.

For the use case of wrapping a Request object in another Request object, as required by the Request
constructor in Listing 4.9, the FetchRequest class provides the applyRequestInit() method that
takes a RequestInit object as an argument. This provides the flexibility to set and overwrite the
options even if there is already a FetchRequest instance.

January 10, 2023 Julian Kaindl 31/50

Listing 4.9: Construct request specialization method

1 @Specialization
2 protected JSDynamicObject constructFetchRequest(JSDynamicObject newTarget, Object

input, Object options, @Cached("create()") JSToStringNode toString) {↪→

3 JSObject parsedOptions;
4 if (options == Null.instance || options == Undefined.instance) {
5 parsedOptions = JSOrdinary.create(getContext(), getRealm());
6 } else {
7 parsedOptions = (JSObject) options;
8 }
9

10 if (JSFetchRequest.isJSFetchRequest(input) && input != Null.instance && input
!= Undefined.instance) {↪→

11 FetchRequest request = JSFetchRequest.getInternalData((JSObject) input);
12 request.applyRequestInit(parsedOptions);
13 return swapPrototype(JSFetchRequest.create(getContext(), getRealm(),

request), newTarget);↪→

14 }
15
16 TruffleString url = toString.executeString(input);
17 FetchRequest request = new FetchRequest(url, parsedOptions);
18 return swapPrototype(JSFetchRequest.create(getContext(), getRealm(), request),

newTarget);↪→

19 }

JavaScript Object and Prototype

The JSFetchRequest class implements the Request object for the JavaScript side which conforms
to the interface given in Listing 3.2. The static create() method, used in Listing 4.9, creates a new
Request object. It takes the JavaScript context, realm, and a FetchRequest as arguments and creates
an object that fulfills the defined interface. To implement the interface itself, we have to supply the
correct prototype for the Request type. Read-only properties are implemented as getter methods
and are added to the prototype using putBuiltinAccessorProperty(). The clone() method is
a built-in function for the prototype and is implemented in the FetchRequestPrototypeBuiltins

class. All functions defined in this container class are then added to the prototype by using the
putFunctionsFromContainer() method.

Non-standard extensions

Inspired by the node-fetch implementation, we include the follow option as an additional prop-
erty for RequestInit objects. This option gives the user control over the maximum amount of

32/50 Julian Kaindl January 10, 2023

allowed redirects that should be followed, as described in Section 4.2.1. We adopted it because
it is a simple addition and generically useful in a lot of scenarios. Other extensions made by
node-fetch, as listed in Section 2.5.1, could be provided if necessary but are omitted in this imple-
mentation.

4.4.2 Response Type

This section describes the implementation of the Response type, defined in Section 3.2.3. It resem-
bles the output of a fetch call but is also usable outside of the Fetch API as a generic response type.
To make the type available by creating the constructor and prototype, the implementation is es-
sentially the same as for the Request class. This section highlights the most important parts of the
Response implementation. For a more detailed description refer to the Request implementation in
Section 4.4.1.

• The Response constructor is added to the ConstructorBuiltins class.

• The node ConstructFetchResponseNode is created and contains a specialization method that
creates a new Response object.

• The JSFetchResponse class implements the interface defined in Listing 3.3 and provides the
correct prototype.

• Read-only properties are defined as getter methods and the clone() method is implemented
in the FetchResponsePrototypeBuiltins class.

• Internal response and body data is managed by the FetchResponse class, which is used to
create a JSFetchResponse object.

The constructor has two optional parameters, a BodyInit and a ResponseInit object. These are
represented by the arguments body and init. First, the init argument that contains options for
the response. If it is not present, an empty object is used instead. Then a FetchResponse is created
by calling the constructor with body and the parsed options. Finally, the new FetchResponse is
used to create a JSFetchResponse.

Static Response Methods

Static methods are implemented in the FetchResponseFunctionBuiltins class. The functions are
then added to the prototype similar to how the FetchResponsePrototypeBuiltins are added. All
static methods of the Response class return a Response object, each with properties set specific to
the method.

January 10, 2023 Julian Kaindl 33/50

Listing 4.10: Construct response specialization method

1 @Specialization
2 protected JSDynamicObject constructFetchResponse(JSDynamicObject newTarget, Object

body, Object init) {↪→

3 JSObject parsedOptions;
4 if (init == Null.instance || init == Undefined.instance) {
5 parsedOptions = JSOrdinary.create(getContext(), getRealm());
6 } else {
7 parsedOptions = (JSObject) init;
8 }
9 FetchResponse res = new FetchResponse(body, parsedOptions);

10 return swapPrototype(JSFetchResponse.create(getContext(), getRealm(), res),
newTarget);↪→

11 }

The Response.error() method in Listing 4.11 takes no arguments and returns a new Response

object. Properties of this object are set as follows: (1) The status code is set to 0, (2) the status text
is the empty string, and (3) the response type is set to "error".

Listing 4.11: Static response error method

1 protected JSFetchResponseObject error() {
2 FetchResponse response = new FetchResponse();
3 response.setStatus(0);
4 response.setStatusText("");
5 response.setType(FetchResponse.FetchResponseType.error);
6 return JSFetchResponse.create(getContext(), getRealm(), response);
7 }

The Response.json() method in Listing 4.12 takes the same arguments as the Response construc-
tor. It creates a new Response object with the given arguments and sets the content type of the
body to "application/json".

The Response.redirect() method in Listing 4.13 takes a URL and a status code as arguments. It
creates a redirect response with the given arguments as it would look like if an actual redirect oc-
curred. The content of the Location header is the given URL and the status code must be a redirect
status. If a non-redirect status code is provided, a RangeError is thrown.

34/50 Julian Kaindl January 10, 2023

Listing 4.12: Static response JSON method

1 protected JSFetchResponseObject json(JSObject data, JSObject init) {
2 FetchResponse response = new FetchResponse(data, init);
3 response.setContentType("application/json");
4 return JSFetchResponse.create(getContext(), getRealm(), response);
5 }

Listing 4.13: Static response redirect method

1 protected JSFetchResponseObject redirect(TruffleString url, int status) {
2 URL parsedURL;
3 try {
4 parsedURL = new URL(url.toString());
5 } catch (MalformedURLException exp) {
6 throw Errors.createTypeError(exp.getMessage());
7 }
8
9 if (!FetchHttpConnection.REDIRECT_STATUS.contains(status)) {

10 throw Errors.createRangeError("Failed to execute redirect on response:
Invalid status code");↪→

11 }
12
13 FetchResponse response = new FetchResponse();
14 response.setStatus(status);
15 response.headers.set("Location", parsedURL.toString());
16 return JSFetchResponse.create(getContext(), getRealm(), response);
17 }

4.4.3 Headers Type

This section describes the implementation of the Headers type, as defined in Section 3.2.4. While
both Request and Response have a member property of this type, it is also usable outside of the
Fetch API types. To provide the constructor and prototype for Headers, the implementation is
the same as for Request and Response. Here, the most important parts of the Headers implemen-
tation are highlighted. For a more detailed descriptions refer to the Request implementation in
Section 4.4.1.

• The Headers constructor is added to the ConstructorBuiltins class.

• The new ConstructFetchHeadersNode contains a specialization that creates a new Headers

object.

January 10, 2023 Julian Kaindl 35/50

• The JSFetchHeaders class implements the interface defined in Listing 3.4 and provides the
prototype.

• Methods are implemented in the FetchHeadersPrototypeBuiltins class.

• Internally, the data is managed in the FetchHeaders class. This class is a wrapper around a
Java Map<String, List<String», with the header names as keys and multiple header values
per name stored in a list.

• Also, the standard requires the header names to be lowercase and sorted alphabetically. A
TreeMap automatically sorts the inserted entries by header names.

All the interface methods defined in FetchHeadersPrototypeBuiltins extract the internal Fetch-
Headers object, which in turn provides a method to actually execute the operation. The operation
itself is handled by the internal Java Map. The following example shows how the append() method
is implemented. Other methods have a similar implementation. Listing 4.14 shows the specializa-
tion that is entered when the method is called on a Headers object. As mentioned, the internal data
is extracted and the arguments, name and value, are passed to the append() method of the Headers
class.

Listing 4.14: JSHeaders append method

1 @Specialization
2 protected Object append(Object thisHeaders, TruffleString name, TruffleString

value) {↪→

3 asFetchHeaders(thisHeaders).getHeadersMap().append(name.toString(),
value.toString());↪→

4 return Undefined.instance;
5 }

The append() method of the FetchHeaders class in Listing 4.15 implements the behavior. It first
converts the name to lowercase and normalizes the value. Then, both header name and value are
validated. Validation is performed according to the header-field token production2, as specified
by the standard. Concrete regular expressions for the validation implementation are inspired by
the Node.js standard http library3. Finally, the internal Map is used to perform the append opera-
tion.

2https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
3https://nodejs.org/api/http.html

36/50 Julian Kaindl January 10, 2023

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://nodejs.org/api/http.html

Listing 4.15: Headers append method

1 public void append(String name, String value) {
2 name = name.toLowerCase();
3 String normalizedValue = value.trim();
4 validateHeaderName(name);
5 validateHeaderValue(name, normalizedValue);
6 headers.computeIfAbsent(name, v -> new ArrayList<>()).add(normalizedValue);
7 }

4.4.4 Body Functionality

Body Mixin

Since the Request and Response types share some characteristics, this section explains how the
Body class is implemented for both types. As defined in Listing 3.6, the Body class should serve
as a parent for Request and Response as it contains common behavior. In the case of this im-
plementation, the properties of the body mixin are added to the Request and Response types as
member properties for simplicity. This naturally comes with the downside of some amount of du-
plicated code parts. Here, the body interface implementation has to be duplicated for Request and
Response.

Both the body and bodyUsed properties are implemented as getter methods in the JSFetchRequest

and JSFetchResponse classes and are added to the respective prototype using putBuiltinAcces-

sorProperty. The methods that read and consume the body are added to the request and response
PrototypeBuiltins class, similar to the clone() method.

The example in Listing 4.16 shows how the text() method of the body mixin is implemented
for the Request type. For the Response type the specialization method is implemented using the
same approach. The example can be adapted to work for the response by replacing classes related
to Request with classes related to Response. Since the text() method has no parameters, the
specialization only receives the Request object the method is called on as argument. First, the
internal data class FetchRequest is extracted. Then the body is consumed to get a string of the body
content. To return a promise that resolves to the body string, the auxiliary method toPromise() is
used. This method is discussed in Section 4.6. The other body methods are implemented similarly
and mostly differ in the type of output that is created from the body. The following list gives an
overview of the body function implementations:

• text(): The body is consumed from the internal data class and is returned as a string.

January 10, 2023 Julian Kaindl 37/50

• json(): The body is consumed from the internal data class and is parsed as a JavaScript
object using a TruffleJSONParser.

• arrayBuffer(): The body is consumed from the internal data class, is converted to a se-
quence of bytes and a new JSArrayBuffer containing the byte sequence is returned.

• blob() and formData(): These methods are both not implemented. They require prerequisite
types, mentioned in Section 3.2.5, that are not implemented in GraalJS.

Listing 4.16: Implementation of the text() body method for the request type

1 @Specialization
2 protected JSDynamicObject text(Object thisRequest) {
3 FetchRequest request = asFetchRequest(thisRequest).getRequestMap();
4 TruffleString body = request.consumeBody();
5 return toPromise(body);
6 }

Internal Body Class

As already mentioned in this section, the body data for requests and responses is stored in the
FetchRequest and FetchResponse internal data classes. Internally, the body functionality is im-
plemented as a base class FetchBody for both the internal classes. It provides methods to set and
consume the body to the FetchRequest and FetchResponse class, as shown in Listing 4.16. The
body content is stored as a string in the body field. The class provides a method to consume the
body, which updates the bodyUsed boolean field. An attempt to consume a body twice is rejected
with a TypeError.

4.5 The FetchError Type

The Fetch API specification is not designed to be transparent about the cause of request errors
during fetching. A network error is defined as a Response object with response.type === "error".
If at the end of fetching the response is a network error, the fetch method will throw a TypeError4 to
indicate that fetching failed, without further details about the cause. Therefore, the error handling
in this implementation is inspired by the node-fetch implementation with the following baseline
idea.

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypeError

38/50 Julian Kaindl January 10, 2023

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypeError

Programmer errors that occur before fetching, for example, during argument validation, are a
TypeError. This also is compliant with the specification. However, operational errors that occur
during the fetching process, for example, a network failure, are not handled as the specification
describes. A new error type FetchError captures the cause of the error.

To create a new error type, the class JSErrorType has to be adapted to contain the new type. Also,
the error constructor has to be added to the ConstructorBuiltins class. A new utility function,
shown in Listing 4.17, is added to the Errors class and can create a FetchError object during
fetching. It takes a message, type, and the originating Truffle node as arguments. The node is used
to get the correct JavaScript context. Next to the message, a type is included for more detailed
error reporting. Line 6 in Listing 4.17 shows where this type property is set. The used error types
are:

• "system", for system or network errors

• "no-redirect", if the request’s redirect mode is set to "error"

• "max-redirect", if the maximum amount of redirects has been reached

• "unsupported-redirect", other redirect errors

Listing 4.17: The createFetchError() method

1 public static JSException createFetchError(String message, String type, Node
originatingNode) {↪→

2 JSContext context = JavaScriptLanguage.get(originatingNode).getJSContext();
3 JSRealm realm = JSRealm.get(originatingNode);
4 JSErrorObject errorObj = JSError.createErrorObject(context, realm,

JSErrorType.FetchError);↪→

5 JSError.setMessage(errorObj, message);
6 JSObjectUtil.putDataProperty(context, errorObj, JSError.ERRORS_TYPE, type,

JSError.ERRORS_ATTRIBUTES);↪→

7 JSException exception = JSException.create(JSErrorType.FetchError, message,
errorObj, realm);↪→

8 JSError.setException(realm, errorObj, exception, false);
9 return exception;

10 }

4.6 Promises

This section describes the implementation of the toPromise() helper method that is used when a
Promise should be returned. This does not change a synchronous implementation to work asyn-

January 10, 2023 Julian Kaindl 39/50

chronously. It just wraps the returned type in a Promise, when it is required by the standard to
conform with the defined interfaces. Usages of toPromise() are the fetch method (in Listing 4.8)
and all the body methods (e.g. text() in Listing 4.16).

The implementation of the toPromise() method is shown in Listing 4.18. The method has one
parameter, that defines the value that the promise resolves to. In case of the fetch() method, it
would be a JSFetchResponseObject. The PromiseCapabilityRecord class provides the promise
functionality and by executing a function call with promiseResolutionCallNode we put the reso-
lution value into the promise. We expect to enter the catch clause extremely rarely. With a Truffle
BranchProfile (errorBranch) we can speculate on this and exclude it from optimized compila-
tion. When errorBranch.enter() is invoked, the optimized code is invalidated and the branch is
enabled for compilation. Otherwise, if errorBranch.enter() is never invoked, the branch never
gets compiled.

Listing 4.18: Creating a promise

1 protected JSDynamicObject toPromise(Object resolution) {
2 JSRealm realm = getRealm();
3 PromiseCapabilityRecord promiseCapability =

newPromiseCapability.execute(realm.getPromiseConstructor());↪→

4 try {
5 promiseResolutionCallN-

ode.executeCall(JSArguments.createOneArg(Undefined.instance,
promiseCapability.getResolve(), resolution));

↪→

↪→

6 } catch (AbstractTruffleException ex) {
7 errorBranch.enter();
8 if (getErrorObjectNode == null) {
9 CompilerDirectives.transferToInterpreterAndInvalidate();

10 getErrorObjectNode =
insert(TryCatchNode.GetErrorObjectNode.create(getContext()));↪→

11 }
12 Object error = getErrorObjectNode.execute(ex);
13 promiseResolutionCallN-

ode.executeCall(JSArguments.createOneArg(Undefined.instance,
promiseCapability.getReject(), error));

↪→

↪→

14 }
15 return promiseCapability.getPromise();
16 }

40/50 Julian Kaindl January 10, 2023

4.7 Incomplete and Missing Features

While missing or incomplete features are also discussed in the applicable implementation sections,
we also summarize them in this section to provide an organized overview.

4.7.1 Body Functionality

There are a number of limited and missing features regarding the Body class:

• Body as base class for Request and Response from the JavaScript side.

• Internal body is not a ReadableStream.

• The blob() and formData() body methods are not implemented.

Defined in Section 3.2.5 and implemented in Section 4.4.4, the Body class contains common behav-
ior for Request and Response and these types should be implemented by using Body as base class.
Because of how new types are implemented in Graal.js, it is easier to handle common functionality
internally, but duplicate the implementation of body properties for both the Request and Response

type in the JSFetchRequest and JSFetchResponse classes. In other words, for the JavaScript side
there is no Body base class and the body properties are contained in request and response objects
as direct member properties. The standard does not require the Body mixin to be exported as a
type and is only intended for internal use, so for most use cases this implementation detail does
not actually make a difference.

The standard requires the body property to be an instance of ReadableStream, which is a web
type. The implementation uses a reasonable workaround by storing the actual body data in a
Java String and using Java I/O classes (InputStream and OutputStream) with the HttpURLCon-

nection.

As already discussed in Section 4.4.4, the blob() and formData() methods are not implemented
because their required return types are not yet implemented for Graal.js.

4.7.2 Browser Features

The standard defines the Fetch API for the implementation in a browser. All functionality related
to the topics listed below are not relevant for this implementation, because they only apply in a
browser context. As these limitations were already known before implementing, details regarding
these topics were already omitted from the implementation requirements in Section 3.2.

• Cross-Origin

January 10, 2023 Julian Kaindl 41/50

• Content Security Policy

• Mixed Content

• Service Workers

Caching is not considered in this implementation, because server-side caching can differ per use
case and the decision is left to the user. The implementation lacks a built-in cookie store. Cookies
have to be manually extracted from the headers, for example, with headers.get(’Set-Cookie’).

4.7.3 Miscellaneous

Other known limitations are:

• Aborting a request via AbortSignal.

• Synchronous implementation.

• Support for custom HTTP methods when using HttpURLConnection.

• Limited control over request headers when using HttpURLConnection.

For the Request class a signal property that is an instance of AbortSignal is missing in this imple-
mentation because the required AbortSignal type is a web type and not implemented for Graal.js.

As mentioned in Section 4.2.3, the networking implementation works synchronously, thus block-
ing the main thread. Ideally, the networking part of the fetching process would run in a separate
thread. That would also allow a more sensible use of the Promise return type as discussed in
Section 4.6.

The HttpURLConnection provides a lot of control, but comes with some restrictions. It does not
accept custom request methods and only provides limited control over request headers. For ex-
ample, the Content-Length header is calculated automatically and a user-specified value cannot
overwrite it. A more detailed explanation of the HttpURLConnection limitations can be found in
Section 4.2.3.

4.7.4 Non-standard Features

While it is not our goal to be fully compatible to node-fetch, we adapted some non-standard fea-
tures from node-fetch. A full list of extensions that node-fetch contains can be found in Section 2.5.1.
For this implementation we decided to implement the request option follow, as it provides a lot of
utility for the user. Other extensions made by node-fetch are not implemented.

42/50 Julian Kaindl January 10, 2023

5 Testing

This chapter discusses the testing of the implementation. As mentioned in Section 2.5, the node-
fetch implementation is well tested, both by an extensive suite of unit tests and actual usage of
the package by millions of applications. For the purpose of testing this implementation, initially a
subset of the already existing tests from node-fetch are utilized and extended when needed. Tests
regarding non-standard extension made by the module, that are also not part of this implementa-
tion, are omitted.

Unit tests from node-fetch use a Node.js testing framework. While it would be possible to set up
the tests by using Graal.js to execute Node.js code, the simpler approach is to rewrite tests and use
the default JavaScript suite. Since networking related tests require a local testing server, they are
implemented as JUnit tests and a Java HttpServer is used as testing server. Section 5.1 contains
the network behaviour testing. Other non-networking tests for the Request, Response and Headers

class are implemented in JavaScript, these tests are discussed in Section 5.2.

5.1 Networking Testing

The behavior of the fetch() function is tested by a suite of 73 unit test. 71 of the tests pass,
while two tests are ignored. The ignored tests would test behavior that this implementation can’t
produce because of the internally used HttpURLConnection class. Both tests involve custom HTTP
methods, which is a known limitation of this class, as discussed in Section 4.2.3.

To have a controlled testing environment, a local HTTP server is used for testing. The server is
implemented in the FetchTestServer class and defines a number of endpoints to test against, for
example, routes that test redirection behavior, returning appropriate status codes and headers, or
a general purpose /inspect endpoint that returns the request it received as JSON response body,
containing the requests url, method, headers, and body. Exemplary, Listing 5.1 shows how the tests
are implemented. JavaScript code is passed to the async method, which creates an execution con-
text and evaluates the given code in an async function. This test case specifically tests the behavior
when a custom header is sent. The /inspect endpoint returns the request as JSON so it can be
read from the Response object using .json() and logged with console.log(). Output of async()
is a string containing the logs, which is then asserted to validate to test.

January 10, 2023 Julian Kaindl 43/50

Listing 5.1: Custom header JUnit test

1 @Test
2 public void testSendRequestWithCustomHeader() {
3 String out = async(
4 "const res = await fetch('http://localhost:8080/inspect', {" +
5 " headers: { 'x-custom-header': 'abc' }" +
6 "});" +
7 "const result = await res.json();" +
8 log("result.headers['x-custom-header']")
9);

10 assertEquals("abc\n", out);
11 }

5.2 Fetch Types Testing

Different from the networking related tests, the tests for the Request, Response, and Headers class
do not need a HTTP server for testing. They can be implemented purely in JavaScript. Exemplary,
Listing 5.2 shows a test for the Request class that tests the behavior when Request objects wrap
each other using the constructor.

Listing 5.2: Request JavaScript test

1 (function shouldSupportWrappingOtherRequest() {
2 const r1 = new Request(baseURL, {
3 method: 'POST',
4 });
5 const r2 = new Request(r1, {
6 method: 'POST2',
7 });
8 assertSame(baseURL, r1.url);
9 assertSame(baseURL, r2.url);

10 assertSame('POST2', r2.method);
11 })();

44/50 Julian Kaindl January 10, 2023

6 Benchmarking and Evaluation

This chapter examines the performance of the implementation. A basic benchmarking script uses
the Fetch API’s fetch() function to perform a large number of plain GET requests to a local HTTP
server and measure the time it takes to successfully read from the response of these requests. The
following benchmarks using the same starting variables and setup are run by the benchmarking
script:

• B1: Using the Graal.js JavaScript interpreter to run the built-in fetch() function provided by
this implementation.

• B2: Using the GraalVM compiler to compile the benchmarking code that also runs the built-
in fetch() provided by this implementation.

• B3: The node-fetch implementation is also benchmarked as reference. It is run using the
Node.js runtime at version 16.

Listing 6.1: Benchmark setup

1 async function run(fetchFunc, N) {
2 const start = performance.now();
3 for (let i = 0; i < N; i++) {
4 const result = await fetchFunc(URL);
5 if (!result.ok) {
6 throw new Error('Request not successful');
7 }
8 }
9 return performance.now() - start;

10 }

Listing 6.1 shows the core of the benchmarking script. It receives a function and the amount of
requests as arguments. The function is either the built-in fetch() function or imported from the
node-fetch module, depending on which benchmark is actually executed. Then it performs re-
quests and measures the time it took using the JavaScript internal high precision time API Per-

January 10, 2023 Julian Kaindl 45/50

formance1. Multiple runs are executed per benchmark. For the setting of 10 total runs with 1000

requests each, these are the average times to perform the requests of one run:

• B1: fetch() with the interpreter: 10.9 seconds

• B2: fetch() with compiled JavaScript: 10.6 seconds

• B3: node-fetch using Node.js: 22.1 seconds

0

10

20

30

B1 − Graal.js interpreted B2 − Graal.js compiled B3 − Node.js

D
ur

at
io

n
in

 s
ec

on
ds

Benchmark

B1 − Graal.js interpreted

B2 − Graal.js compiled

B3 − Node.js

The compiled benchmark (B2) is barely faster than the interpreted code (B1). This is the expected
result, since most of the time is spent in the internal Java implementation that handles network I/O
and not in runtime code that the GraalVM optimizing compiler can improve significantly.

The results for node-fetch (B3) might seem implausibly bad. The reasons for this result could be
(1) JavaScript concurrency, (2) runtime engine related aspects, or (3) differences in the underlying
network implementation (e.g. java.net.* and node:http). However, that is just speculation and
would require more specific testing. Because of those issues the performance comparison can only
give preliminary results. They prove, however, that a native implementation of the Fetch API
has potential to compete with, if not outperform, an implementation provided as an extension
module.

1https://developer.mozilla.org/en-US/docs/Web/API/Performance

46/50 Julian Kaindl January 10, 2023

https://developer.mozilla.org/en-US/docs/Web/API/Performance

7 Conclusions

In this work we presented an initial implementation of the WHATWG Fetch API standard for
Graal.js. The Request, Response, and Headers classes as well as the fetch() function are provided
to the JavaScript interpreter. Networking functionality is implemented using the HttpURLConnec-

tion class from the standard library package java.net. To correctly integrate the Fetch API into the
JavaScript implementation, we utilized the Truffle programming model and DSL.

Since the standard assumes a client or browser context and this implementation has a server side
context, there inherently are parts of the specification that are infeasible for this implementation.
Although the core functionality of the Fetch API is implemented, as mentioned above, we also de-
scribe a number of limitations and some missing features. Nonetheless, we were able to provide an
implementation of the Fetch API, with all major classes and functionality to JavaScript applications
in Graal.js.

Finally, we tested the validity and performance of this implementation. To verify completeness,
unit test from the node-fetch implementation were adapted. Tests involving extended behavior
implemented by node-fetch were ignored. To explore the performance of the implementation, we
created a basic benchmark script. It compares the Fetch API performance of the Graal.js interpreter,
compiled code using the GraalVM compiler and the node-fetch implementation using Node.js as
runtime. The results of our performance comparison show that this native implementation has the
potential to outperform currently existing approaches.

January 10, 2023 Julian Kaindl 47/50

Bibliography

[1] ECMAScript® 2022 Language Specification. URL: https://262.ecma-international.org.

[2] ECMAScript® 2022 Language Specification. URL: https://262.ecma-international.org/
#sec-global-object.

[3] ECMAScript® 2022 Language Specification. URL: https://262.ecma-international.org/
#sec-objects.

[4] ECMAScript® 2022 Language Specification. URL: https://262.ecma-international.org/
#figure-1.

[5] Fetch API - Living Standard. URL: https://fetch.spec.whatwg.org/.

[6] GraalVM - Polyglot Programming. URL: https://www.graalvm.org/22.0/reference-manual/
polyglot-programming/.

[7] Christian Humer et al. “A Domain-Specific Language for Building Self-Optimizing AST In-
terpreters”. In: (2014), pp. 123–132. URL: https://doi.org/10.1145/2775053.2658776.

[8] Redirections in HTTP - HTTP | MDN. URL: https://developer.mozilla.org/en-US/docs/
Web/HTTP/Redirections.

[9] Referer - HTTP | MDN. URL: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Referer.

[10] Christian Wimmer and Thomas Würthinger. “Truffle: A Self-Optimizing Runtime System”.
In: Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software
for Humanity. SPLASH ’12. Tucson, Arizona, USA: Association for Computing Machinery,
2012, pp. 13–14. ISBN: 9781450315630. DOI: 10.1145/2384716.2384723. URL: https://doi.
org/10.1145/2384716.2384723.

[11] Thomas Würthinger et al. “One VM to Rule Them All”. In: Proceedings of the 2013 ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on Programming Software. On-
ward! 2013. Indianapolis, Indiana, USA: Association for Computing Machinery, 2013, pp. 187–
204. ISBN: 9781450324724. DOI: 10.1145/2509578.2509581. URL: https://doi.org/10.1145/
2509578.2509581.

48/50 Julian Kaindl January 10, 2023

https://262.ecma-international.org
https://262.ecma-international.org/#sec-global-object
https://262.ecma-international.org/#sec-global-object
https://262.ecma-international.org/#sec-objects
https://262.ecma-international.org/#sec-objects
https://262.ecma-international.org/#figure-1
https://262.ecma-international.org/#figure-1
https://fetch.spec.whatwg.org/
https://www.graalvm.org/22.0/reference-manual/polyglot-programming/
https://www.graalvm.org/22.0/reference-manual/polyglot-programming/
https://doi.org/10.1145/2775053.2658776
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

List of Figures

Figure 2.1 JavaScript prototypes example [4] . 5
Figure 2.2 Example of a redirect [8] . 10

January 10, 2023 Julian Kaindl 49/50

List of Listings

Listing 2.1 Fetch usage in JavaScript . 8
Listing 2.2 GET request with HttpURLConnection . 9

Listing 3.1 Fetch method signature . 13
Listing 3.2 Request definition . 14
Listing 3.3 Response definition . 15
Listing 3.4 Headers definition . 16
Listing 3.5 HeadersInit example . 17
Listing 3.6 Definition body . 18

Listing 4.1 Handling redirects . 21
Listing 4.2 Implementation of the redirect modes . 22
Listing 4.3 Sensitive headers when redirecting . 23
Listing 4.4 HttpURLConnection content using streams . 24
Listing 4.5 Final networking implementation . 26
Listing 4.6 Setting the request headers . 27
Listing 4.7 Fetch global Truffle node . 29
Listing 4.8 Fetch specialization method . 30
Listing 4.9 Construct request specialization method . 32
Listing 4.10 Construct response specialization method . 34
Listing 4.11 Static response error method . 34
Listing 4.12 Static response JSON method . 35
Listing 4.13 Static response redirect method . 35
Listing 4.14 JSHeaders append method . 36
Listing 4.15 Headers append method . 37
Listing 4.16 Implementation of the text() body method for the request type 38
Listing 4.17 The createFetchError() method . 39
Listing 4.18 Creating a promise . 40

Listing 5.1 Custom header JUnit test . 44
Listing 5.2 Request JavaScript test . 44

Listing 6.1 Benchmark setup . 45

50/50 Julian Kaindl January 10, 2023

	1 Introduction
	2 Background
	2.1 ECMAScript
	2.1.1 The Global Object
	2.1.2 Objects and Prototypes

	2.2 Graal.js
	2.2.1 Truffle Nodes and DSL

	2.3 The Fetch Living Standard
	2.3.1 Concept and Goals
	2.3.2 HTTP Fetch
	2.3.3 The Fetch Method

	2.4 Java Network API
	2.4.1 Java Networking Capabilities
	2.4.2 HttpURLConnection
	2.4.3 HTTP Redirection

	2.5 Existing Implementation: node-fetch
	2.5.1 Non-standard Extensions

	3 Fetch API for Graal.js
	3.1 Scope and Goals
	3.2 Implementation Requirements
	3.2.1 The Fetch Method
	3.2.2 Request Class
	3.2.3 Response Class
	3.2.4 Headers Class
	3.2.5 Body-mixin

	3.3 Selected Implementation Challenges

	4 Implementation
	4.1 Overview
	4.2 Fetch Networking Functionality
	4.2.1 Handling Redirects
	4.2.2 Request and Response Body
	4.2.3 Networking Limitations
	4.2.4 Final Networking Implementation

	4.3 The Fetch Global Builtin
	4.3.1 The Fetch Specialization Method

	4.4 The Fetch API Types
	4.4.1 Request Type
	4.4.2 Response Type
	4.4.3 Headers Type
	4.4.4 Body Functionality

	4.5 The FetchError Type
	4.6 Promises
	4.7 Incomplete and Missing Features
	4.7.1 Body Functionality
	4.7.2 Browser Features
	4.7.3 Miscellaneous
	4.7.4 Non-standard Features

	5 Testing
	5.1 Networking Testing
	5.2 Fetch Types Testing

	6 Benchmarking and Evaluation
	7 Conclusions

