
Program Slicing
for

Object-Oriented
Programming Languages

A dissertation submitted to the

JOHANNES KEPLER UNIVERSITY LINZ

for the degree of
Doctor of Technical Sciences

presented by
Dipl.-Ing. Dipl.-Ing. Christoph Steindl

Johannes Kepler University Linz

accepted on the recommendation of
Prof. Dr. H. Mössenböck, examiner
Prof. Dr. T. Gyimóthy, co-examiner

1999

Program Slicing for Object-Oriented Programming Languages

Christoph Steindl

Copyright (c) Christoph Steindl, 1999

Program Slicing
for

Object-Oriented
Programming Languages

A dissertation submitted to the

JOHANNES KEPLER UNIVERSITY LINZ

for the degree of
Doctor of Technical Sciences

presented by
Dipl.-Ing. Dipl.-Ing. Christoph Steindl

Johannes Kepler University Linz

accepted on the recommendation of
Prof. Dr. H. Mössenböck, examiner
Prof. Dr. T. Gyimóthy, co-examiner

1999

v

Acknowledgements

I want to thank my advisor Prof. H. Mössenböck for a liberal supervision of this project
and for his ongoing encouragement and patience. The Oberon System was an excellent
working tool and an appropriate base for the work presented in this thesis. Markus Hof and
David Parsons proof-read earlier versions of this thesis and provided valuable comments
and improvements. Last but not least, I wish to thank my colleagues at the department, my
friends in Linz, my parents Grete and Alois, and my sisters Kathi and Ulli for their steady
encouragement and help.

vi

Contents

Abstract viii
Kurzfassung ix

1 Introduction 1
1.1 Motivation 1
1.2 Goals 2
1.3 Outline 2

2 Background Information 5
2.1 Oberon-2 5
2.2 Control Flow 7

2.2.1 Control Flow Graphs 7
2.2.2 Dominator and Post-dominator Trees 8
2.2.3 Control Dependences 10

2.3 Data Flow 12
2.3.1 Data Dependences 12
2.3.2 Computation of Used and Defined Variables 14
2.3.3 Computation of Reaching Definitions 16

2.4 Program Slicing 21
2.4.1 Variants of Program Slicing 22
2.4.2 Applications 26

3 Current Slicing Algorithms 31
3.1 Slicing as a Data Flow Problem 31
3.2 Slicing as a Graph-Reachability Problem 34

3.2.1 Program Dependence Graph 35
3.2.2 System Dependence Graph 35
3.2.3 Computation of Summary Edges 42
3.2.4 Enhancing Slicing Accuracy 45

4 Implementation 47
4.1 Overview 47
4.2 Algorithm 48
4.3 Data Structures 49
4.4 Computation of Control Flow Information 54
4.5 Computation of Data Flow Information 66

4.5.1 Computation of Used and Defined Variables 67
4.5.2 Computation of Reaching Definitions 78

vii

4.6 Slicing 99
4.6.1 Intraprocedural Slicing 100
4.6.2 Interprocedural Slicing 101
4.6.3 Intermodular Slicing 102

4.7 Support of Object-Oriented Features 105
4.8 Modularization 106

4.8.1 Module Repository 107
4.8.2 Module Slicer 109

5 User Interface 113
5.1 Visual Elements 113

5.1.1 Bidirectional Links Between the Caller and the Callee 113
5.1.2 Data Dependences 115
5.1.3 Parameters 116
5.1.4 Aliases 119
5.1.5 Dynamic Types 120

5.2 User Feedback 124
5.3 Module SlicerFE 125
5.4 Model-View-Controller Concept 127

6 Comparison 129
6.1 Chopshop 129
6.2 Ghinsu 129
6.3 Spyder 130
6.4 Unravel 130
6.5 VALSOFT 131
6.6 Wisconsin Program-Slicing Project 131

7 Conclusions 133

8 Future Work 137
8.1 Integration into the Programming Environment 137
8.2 Other Variants of Slicing 138
8.3 Software Metrics 138

Appendix: Additional Module Definitions 141

Bibliography 151

Curriculum Vitae 157

viii

Abstract

Program slicing is a program analysis technique that reduces programs to those statements
that are relevant for a particular computation. A slice provides the answer to the question
"What program statements potentially affect the value of variable v at statement s?" Mark
Weiser introduced program slicing because he made the observation that programmers have
some abstractions about the program in mind during debugging. When debugging a
program one follows the dependences from the erroneous statement s back to the
influencing parts of the program. These statements may influence s either because they
decide whether s is executed or because they define a variable that is used by s. Program
slicing computes these dependences automatically and thus assists the programmer in a lot
of error prone tasks, such as debugging, program integration, software maintenance,
testing, and software quality assurance.

Object-oriented programming languages have attracted more and more attention during
the last years since they allow one to write programs that are more flexible, reusable and
maintainable. However, the concepts of inheritance, dynamic binding and polymorphism
represent new challenges for static program analysis.

The result of this thesis is the Oberon Slicing Tool, a fully operational program slicing
tool for the programming language Oberon-2. It integrates state-of-the-art algorithms and
applies them to a strongly-typed object-oriented programming language. It extends them to
support intermodular slicing of object-oriented programs. Control and data flow analysis
considers inheritance, dynamic binding and polymorphism, as well as side-effects of
functions, short-circuit evaluation of Boolean expressions and aliases due to reference
parameters and pointers. The algorithm for alias analysis is fast but effective by taking into
account information about the type of variables and the place of their declaration. The
result of static program analysis is visualized with active text elements: hypertext links
connect the call sites with the possible call destinations, parameter information elements
indicate the direction of data flow at calls. Since static program analysis must make
conservative assumptions about actual program executions, the sets of possible aliases and
call destinations due to dynamic binding are more general then necessary. We visualize
these sets and allow the programmer to restrict them via user interaction. These restrictions
are then used to compute more precise control and data flow information. In this way, the
programmer can limit the effects of aliases and dynamic binding and bring in his
knowledge about the program into the analysis.

ix

Kurzfassung

Program Slicing ist eine Programmanalysetechnik, die Programme auf jene Anweisungen
reduziert, die für eine bestimmte Berechnung relevant sind. Ein Slice ist die Antwort auf
die Frage: "Welche Anweisungen im Programm können den Wert der Variable v bei der
Anweisung s beeinflussen?" Mark Weiser erfand Program Slicing, weil er beobachtete,
dass sich Programmierer während der Fehlersuche Gedanken über die Beziehungen
zwischen Programmteilen machen. Bei der Fehlersuche verfolgt man solche Beziehungen
von der fehlerhaften Anweisung s zurück zu den Programmteilen, die sich auf s auswirken.
Diese Anweisungen können s beeinflussen, indem sie entscheiden, ob s ausgeführt wird,
oder indem sie einer Variablen einen Wert zuweisen, der von s verwendet wird. Program
Slicing berechnet diese Beziehungen automatisch und unterstützt dadurch den
Programmierer bei vielen fehleranfälligen Tätigkeiten, wie Fehlersuche, Integration von
Programmversionen, Software-Wartung, Testen und Software-Qualitätssicherung.

Objektorientierte Programmiersprachen haben sich in den letzten Jahren immer mehr
durchgesetzt, da sie es erlauben, Programme zu schreiben, die flexibler, besser
wiederverwendbar und besser wartbar sind. Die Konzepte der Vererbung, der dynamischen
Bindung und des Polymorphismus stellen allerdings für die Programmanalyse neue
Herausforderungen dar.

Das Ergebnis dieser Doktorarbeit ist das Oberon Slicing Tool, ein voll funktionsfähiges
Werkzeug für das Slicen von Oberon-2 Programmen. Es kombiniert Algorithmen, die dem
Stand der Technik entsprechen, und wendet sie auf eine objektorientierte Programmier-
sprache mit strenger Typprüfung an. Es erweitert sie, um intermodulares Slicen von
objektorientierten Programmen zu unterstützen. Die Kontroll- und Datenflussanalyse
berücksichtigt Vererbung, dynamische Bindung und Polymorphismus, sowie Nebeneffekte
von Funktionen, Kurzschlussauswertung von Booleschen Ausdrücken und Aliase aufgrund
von Referenzparametern und Zeigern. Der Algorithmus für die Analyse von Aliasen ist
schnell, aber trotzdem effektiv, indem er Information über den Typ von Variablen und den
Ort ihrer Deklaration in Betracht zieht. Die Ergebnisse der statischen Programmanalyse
werden durch aktive Textelemente dargestellt: Hypertext-Verknüpfungen verbinden Proze-
duraufrufe mit den möglichen Aufrufzielen, Parameter-Informations-Elemente zeigen die
Richtung des Datenflusses bei Aufrufen an. Da bei statischer Programmanalyse
konservative Annahmen über die tatsächlichen Programmabläufe gemacht werden müssen,
sind die Mengen der möglichen Aliase und Aufrufziele aufgrund von dynamischer Bindung
allgemeiner, als sie sein müssten. Wir stellen diese Mengen dar und erlauben dem
Programmierer, die Mengen durch Benutzerinteraktion einzuschränken. Die Restriktionen
werden anschließend verwendet, um genauere Kontrollund Datenflussinformation zu
berechnen. Auf diese Weise kann der Programmierer die Auswirkungen von Aliasen und
dynamischer Bindung einschränken und sein Wissen in die Analyse einbringen.

1 Introduction

1.1 Motivation

Program slicing [Wei84] is a program analysis and reverse engineering technique that
reduces a program to those statements that are relevant for a particular computation.
Informally, a slice provides the answer to the question "What program statements
potentially affect the value of variable v at statement s?"

Program slicing was introduced by Mark Weiser because he made the observation that
programmers have some abstractions about the program in mind during debugging. The
process of debugging consists of following dependences from the erroneous statement s

back to the influencing parts of the program. These statements may influence s either
because they decide whether s is executed at all (control dependence) or because they
define a variable that is used by s (data dependence). A program slicer can be used to
automatically compute and visualize the slice of the program with regard to the statement s

and the variables used or defined at s. It allows the programmer to focus his attention on
the statements that are part of the slice and that might therefore contribute to the fault.
Additionally, the programmer sees any statements that are not part of the slice although he
knows that they should be.

Program slicing can be used to assist the programmer in a lot of tedious and error prone
tasks, such as debugging, program integration, software maintenance, testing, and software
quality assurance. Several variants of program slicing have been proposed for these
purposes, including static slicing, dynamic slicing, backward slicing, forward slicing,
chopping, interface slicing, etc.

A survey of existing program slicing tools shows that most of them are written for the
programming language C, some for COBOL and FORTRAN. Most of these program slicers
have problems with dynamic binding which is a cornerstone of object-oriented
programming. Neither do they address the concepts of inheritance and polymorphism.
Another problem is the performance of the program slicers. Since program slicing is an
interactive method intended to assist the programmer, the results should ideally be
presented immediately. It is unsatisfactory to wait for several minutes before the slice can
be viewed.

2 Introduction

1.2 Goals

The purpose of this work is to investigate whether static program slicing can be efficiently
implemented for an object-oriented language such as Oberon-2. Although Oberon-2 is a
small language, it is powerful and we may encounter many difficulties. We used the
following goals as guidelines for the implementation of the Oberon Slicing Tool:

o The program slicer should be able to analyze the entire language which includes
user-declared data types, structured types (records and arrays), global variables,
functions with side-effects, nested procedures, type extension, dynamic binding via
type-bound procedures (also called methods) and procedure variables (also called
function pointers), recursion, and modules.

o The object-oriented features of Oberon-2 such as inheritance, dynamic binding and
polymorphism should be fully supported. Object-oriented programs make heavy use
of dynamic binding and pointers which are both difficult to handle by static analysis.
Necessary conservative assumptions shall be restricted by feedback from the user.

o The internal data structures of the program slicer should closely model the semantics
of the program.

o The computation of the slices should be fast, but the resulting slices should still be as
precise as possible.

o The program slicer should support slicing of modular systems. Information that has
already been computed for a module should be reused when slicing dependent
modules.

o The program slicer should be an interactive tool. It should visualize all the
information that has been computed during slicing and that could be useful for the
programmer in order to understand the program.

o As the main fields of application of the program slicer we envisage assistance to the
programmer, debugging, code understanding, maintenance, program testing and
software metrics.

1.3 Outline

Chapter 2 gives an overview of the programming language Oberon-2, some background
information about the computation of control flow and data flow as well as an overview of
program slicing and a survey of the variants and applications of program slicing.

Chapter 3 describes current slicing algorithms together with their data structures, ranging
from the original approach where slicing is seen as a data flow problem to the
state-of-the-art where slicing is seen as a graph-reachability problem.

Chapter 4 describes the implementation of the Oberon Slicing Tool, its data structures and
the algorithms used for the computation of control flow and data flow information as well

3Introduction

as for slicing itself.

Chapter 5 describes the user interface of the Oberon Slicing Tool, its visual elements and
how user feedback is used to bridge the gap between static and dynamic slicing.

Chapter 6 compares the Oberon Slicing Tool with existing program slicers.

Chapter 7 gives a summary of the contributions of this thesis.

Chapter 8 outlines some areas for future work.

2 Background Information

Since significant parts of this thesis refer to the programming language Oberon-2, Section
2.1 will briefly summarize its features. Then we will concentrate on the main problem
when implementing a program slicing tool: the construction of an intermediate
representation of the program that closely models its semantics. The flow of control and the
flow of data are the two main concepts for modeling the semantics of a program. In
sections 2.2 and 2.3 we will give an overview of the techniques that have been used to
model the flow of control and the flow of data. In Section 2.4 we will give an overview of
program slicing and a survey of the variants and applications of program slicing.

2.1 Oberon-2

Oberon-2 [MöWi91] is a general-purpose programming language in the tradition of Pascal
and Modula-2 with block structure, modularity, separate compilation, static typing with
strong type checking (also across module boundaries), type extension (object-orientation
with single inheritance) and type-bound procedures (methods). In the following subsections
we will give an overview of various language constructs.

Language constructs for structured control flow

There are three language constructs to express selection and three to express iteration:

o The IF statement for conditional execution of statement sequences.

o The CASE statement for the selection and execution of a statement sequence
according to the value of an expression.

o The WITH statement for the execution of a statement sequence depending on the
result of a run-time type test. The tested type is applied to every occurrence of the
tested variable within the guarded statement sequence.

o The WHILE statement for the repeated execution of a statement sequence while a
condition (specified as a Boolean expression, the guard of the loop) is satisfied.

o The REPEAT statement for the repeated execution of a statement sequence until a
condition specified by a Boolean expression is satisfied.

o The FOR statement for a fixed number of executions of a statement sequence while an
integer variable is incremented in every iteration.

6 Background Information

Language constructs for unstructured control flow

There are three language constructs for moderately unstructured control flow:

o The LOOP statement for the repeated execution of a statement sequence with possibly
multiple EXITs from the nested statement sequence.

o The EXIT statement for termination of the enclosing loop statement and continuation
with the statement following that loop statement.

o The RETURN statement for the termination of a procedure (also specifying the return
value of functions).

Language constructs for the declaration of user-declared data types

There are several language constructs for the declaration of user-declared data types:

o Predefined data types include numeric, Boolean and character types. Pointers can
point to arrays and to records. References to objects may be polymorphic (i.e. they
may point to an object whose type is an arbitrary extension of the pointer's static
type. The object's type is then called the pointer's dynamic type.)

o Data types can be defined as arrays or records of other data types.

o Data types can be defined as extensions (subtypes) of other data types (single
inheritance).

o Procedures can be associated with types (type-bound procedures, also called
methods).

Language constructs for abstraction and stepwise refinement

There are several language constructs to support abstraction and stepwise refinement:

o A program (module) can be built out of procedures. Procedures can be (directly or
indirectly) recursive, they can declare and use local procedures. Parameters of
procedures can be passed by value or by reference. Procedures may return values but
these values must not be arrays or records.

o A module defines its interface by exporting items such as constants, types, variables,
and procedures. It can import other modules. Although modules are compiled
separately, strong type-checking is performed across module boundaries.

o A module can have multiple entry points. In an interactive environment, these entry
points (also called commands) can be activated directly by the user.

7Background Information

Further Remarks

Some further remarks are necessary to conclude the overview of the programming language
Oberon-2:

o Short-circuit evaluation is used for Boolean expressions.

o Objects can be allocated on the heap with the predefined function NEW, they can also
be allocated automatically on the stack or statically as global variables of modules.

o A garbage collector finds the blocks of memory that are not used any more and makes
them available for allocation again.

o Run-time type tests and type guards can be used to perform safe casting.

o Modules can be loaded dynamically. The body of a module is guaranteed to be
executed upon loading of the module.

o Reference parameters as well as pointers to dynamically allocated objects on the heap
may introduce aliases.

o Procedure calls can be either statically bound or dynamically bound: ordinary
procedure calls and super calls of methods can be bound statically, calls of
type-bound procedures and calls via procedure variables must be bound dynamically.

2.2 Control Flow

In high-level languages, control structures (such as IF, WHILE and RETURN) express the
flow of control. For example the Boolean expression of an IF decides which branch will be
executed. These control structures can be translated into the conditional and unconditional
jumps in low-level languages. Several data structures have been proposed to model the
semantics of control flow at different levels of abstraction.

The sections about control flow graphs, dominator and post-dominator trees, and
control dependences partly follow the explanations of Brandis [Bra95], Aho et al. [ASU86]
and Ferrante et al. [FeOW87].

2.2.1 Control Flow Graphs

Control flow graphs [ASU86] have been used as a basis for data flow analysis and for
many optimizing code transformations such as common subexpression elimination, copy
propagation, and loop-invariant code motion. The definition of control flow graphs builds
on the concept of basic blocks:

Definition: A basic block is a sequence of consecutive statements in which flow of control

8 Background Information

enters at the beginning and leaves at the end without halt or possibility of branching except
at the end. A basic block is either executed in its entirety or not at all.

Definition: A control flow graph is a directed graph whose nodes are basic blocks with a
unique entry node START and a unique exit node STOP. There is a directed edge from node
A to node B if control may flow from block A directly to block B. This is the case if the last
statement in A is a branch to B, or when B is on the fall-through path from A. We assume
that for any node N in the graph there exists a path from START to N and a path from N to
STOP. If an edge is labeled T (or F), then the target node of the edge will be executed if the
predicate at the origin of the edge evaluates to TRUE (or FALSE).

Fig. 2.1 shows a piece of source code with the corresponding control flow graph.

END

p := p.next

END

INC(cnt)

IF p.val > 0 THEN

WHILE p # NIL DO

p := head; cnt := 0

START

p # NIL

p.val > 0

p := p.next

INC(cnt)

STOP

T

T

F

F

p := head

cnt := 0

Fig. 2.1 - A piece of source code and its corresponding control flow graph

Control flow graphs accurately model the branching structure of the program and collate all
statements between two branches into basic blocks. They can be built while parsing the
source code with algorithms that have linear time complexity in the size of the program.

2.2.2 Dominator and Post-dominator Trees

Dominator trees represent the dominance relation between the nodes of directed graphs.

Definition: In a directed graph with entry node START, we say that a node A dominates

node B, iff for all paths P from START to B, A is a member of P. A is called a dominator of
B.

9Background Information

The dominance relation is

o reflexive: Each node dominates itself.
o transitive: If node A dominates node B and node B dominates node C, then node A

dominates node C.
o anti-symmetric: If node A dominates node B and node B dominates node A, then node

A must be equal to B.

Definition: We call A the immediate dominator of B, iff A is a dominator of B, A # B, and
there is no other node C that dominates B and is dominated by A.

Definition: The dominator tree of a directed graph G with entry node START is the tree that
consists of the nodes of G, has the root START, and has an edge between nodes A and B if A

immediately dominates B.

Each node in the dominator tree has exactly one parent (except for the entry node START).
All nodes being predecessors of some node A are dominators of A. If a basic block A

dominates basic block B, A is on every path from START to B, and thus the statements in A

have always been executed when control reaches B. Fig. 2.2 shows the dominator tree for
the piece of source code shown in Fig. 2.1.

START

p # NIL

p.val > 0

p := p.nextINC(cnt)

STOP

p := head

cnt := 0

Fig. 2.2 - Dominator tree for the source code shown in Fig. 2.1

The dominator tree can be computed from the control flow graph. The algorithm due to
Lengauer and Tarjan [LeTa79] runs in time O(N * α(N)), where N is the number of nodes in
the control flow graph and α is the inverse of the Ackermann function. For structured
languages such as Oberon-2 the dominator tree can be computed in linear time [BrMö94].

Definition: In a directed graph with exit node STOP, we say that a node A post-dominates
node B, iff for all paths P from B to STOP, A is a member of P. We call A a post-dominator
of B.

10 Background Information

Definition: We call A the immediate post-dominator of B, iff A is a post-dominator of B,
A # B, and there is no other node C, for which A is a post-dominator and that is itself a
post-dominator of B.

Definition: The post-dominator tree of a directed graph G with exit node STOP is the tree
that consists of the nodes of G, has the root STOP, and has an edge between nodes A and B

if A immediately post-dominates B.

If a basic block A post-dominates basic block B, A is on every path from B to STOP, and
thus the statements in A will always be executed when control reaches B. Fig. 2.3 shows the
post-dominator tree for the piece of source code shown in Fig. 2.1.

STOP

p # NIL

p := p.next

p.val > 0INC(cnt)

START

cnt := 0

p := head

Fig. 2.3 - Post-dominator tree for the source code shown in Fig. 2.1

2.2.3 Control Dependences

Ferrante et al. [FeOW87] introduced the notion of control dependences to represent the
relations between program entities due to control flow.

Definition: Let G be a control flow graph. Let A and B be nodes in G. B is control
dependent on A iff all of the following hold:

1. There exists a directed path P from A to B.

2. B post-dominates any C in P (excluding A and B).
3. B does not post-dominate A.

If B is control-dependent on A, then A must have multiple successors. Following one path
from A results in B being executed, while taking others may result in B not being executed.

Definition: The control dependence graph over the control flow graph G is the graph over
all nodes of G, in which there is a directed edge from node A to node B, iff B is control
dependent on A.

The control dependence graph compactly encodes the required order of execution of the

11Background Information

program's statements due to control flow. A node evaluating a condition on which the
execution of other nodes depends has to be executed first. The latter nodes are therefore
control dependent on the condition node.

The control dependence graph can be built from the control flow graph and the

post-dominator tree using an algorithm with time complexity O(N2), where N is the number
of nodes in the control flow graph [FeOW87].

For structured programming languages, control dependences reflect a program's nesting
structure [HoRB90].

Definition: Let G be an abstract syntax tree of a structured program. The nodes of G

represent statements and expressions of the program as well as pseudo nodes. The control
dependence graph over G contains a control dependence edge from node A to node B iff
one of the following holds:

1. A is the entry node and B represents a component that is not nested within any loop or
conditional. These edges are labeled T.

2. A represents a control predicate and B represents a component immediately nested
within the loop or conditional whose predicate is represented by A. The edge is
labeled T if B is executed if the predicate A evaluates to TRUE, otherwise F.

The direction of the dependence indicates the flow of control. Fig. 2.4 shows the control
dependences according to the latter definition for the piece of source code shown in
Fig. 2.1.

START

p := head cnt := 0 p # NIL

p.val > 0 p := p.next

INC(cnt)

T TT

T T

T

STOP

T

Fig. 2.4 - Control dependences for the source code shown in Fig. 2.1

12 Background Information

2.3 Data Flow

Data flow describes the flow of the values of variables from the points of their definitions
to the points where their values are used. In the following sections we describe how data
flow information can be computed for structured programming languages (following
[ASU86]).

2.3.1 Data Dependences

A data dependence from a node A to another node B means that the program's computation
might be changed if the relative order of the nodes were reversed.

Definition: A data dependence graph over the abstract syntax tree of a program contains a
data dependence (also called flow dependence) from node D to node U iff all of the
following hold:

1. Node D defines variable x.
2. Node U uses x.
3. Control can reach U after D via an execution path along which there is no intervening

definition of x.

The direction of the data dependence indicates the flow of the value of the defined variable.
The value computed at U depends on all definitions D that may reach U.

Aho et al. [ASU86] use the term reaching definition to express that the value defined at a
node may be used at another node.

Definition: If node U is data dependent on node D then D is a reaching definition for U.

The precise computation of reaching definitions is the goal of data flow analysis.
Fig. 2.5 shows a procedure that computes the greatest common divisor of two numbers

along with its control dependence graph. Control dependences are shown as thin lines with
small arrows.

13Background Information

END GCD;

RETURN v

UNTIL u = 0;

u := u MOD v

END ;

t := u; u := v; v := t

IF u < v THEN

REPEAT

BEGIN

VAR t: INTEGER;

PROCEDURE GCD (u, v: INTEGER): INTEGER;

START

initial u initial v repeat STOP

u = 0

t := u u := v v := t

u < v u := u MOD v

RETURN v

control dependence

Fig. 2.5 - A program and its control dependence graph

Fig. 2.6 shows the data dependence graph. Data dependences are shown as thick lines with
large arrows. The exit node is data dependent on the return value

14 Background Information

START

initial u initial v repeat STOP

u = 0

t := u u := v v := t

u < v u := u MOD v

RETURN v

data dependence

Fig. 2.6 - The data dependence graph for the program of Fig. 2.5

Fig. 2.7 shows the program dependence graph with control and data dependences.

START

initial u initial v repeat STOP

u = 0

t := u u := v v := t

u < v u := u MOD v

RETURN v

data dependence

control dependence

Fig. 2.7 - Program dependence graph for the program of Fig. 2.5

2.3.2 Computation of Used and Defined Variables

A first step in computing reaching definitions is to compute for each statement of the
program the set of variables that are used and the set of variables that are defined by the
statement.

15Background Information

Uses

The set of variables that are used by a statement of the dependence graph is easily
computed by a traversal of the graph representation of the program. Table 2.1 shows a few
examples.

p.next.i := a p, next, a i

r.i := 5 r i

a := b + c b, c a

Source code Used Defined

Table 2.1 - Used and defined objects

Definitions

There are only two possibilities for changing a variable's value:

o First, the variable can be assigned a value with an assignment statement. Such a
definition is unambiguous since the variable on the left-hand side is always given a new
value. It is therefore also called a killing definition since the old value of the variable is
always replaced by the new one, illustrated by the following example:

x := 4; (* generates a definition of x *)
y := 5; (* generates a definition of y *)
x := 3; (* generates a new definition of x, kills the first definition of x *)
sum := x + y (* only the definition of y and the last definition of x are reaching *)

o Second, a variable can be passed at a call as a reference parameter (VAR parameter). If
the called procedure assigns to the corresponding formal parameter, the variable that has
been passed as actual parameter is changed. Such a definition is in general uncertain
since the actual parameter is not necessarily changed by the procedure call. It is
therefore also called a non-killing definition since a previous definition is not killed by
the new one.

There are some additional problems with definitions of array elements and record fields:

o Definition of Array Elements
A definition of an array element must not be regarded as a killing definition of the entire
array, since only one element is changed. A simple approach is to treat definitions of
array elements as both a definition of the entire array (since one element is changed) and
a use of the entire array (since the other elements remain their old values).

In the following example the definition of the i-th array element is only killed by the
subsequent definition of the j-th array element if i = j. Since one cannot deduce in general
whether i = j or i # j, one has to assume that i may be equal to j. In other words, the second
assignment generates a new definition but does not kill the first one. Both can reach the
usage of the i-th array element in the last assignment. Assignments to array elements
must therefore be considered as non-killing definitions.

16 Background Information

a[i] := 0; (* reaches the last statement if i # j *)
a[j] := 1; (* reaches the last statement if i = j *)
y := a[i];

o Definition of Record Fields
A record field has a constant position within the record. When accessing the field, its
offset can be added to the address of the record in order to get the address of the record
field. Therefore, an assignment to a record field is unambiguous as long as the address
of the record is known at compile time and as long as there are no aliases. For statically
allocated records, assignments to record fields can be considered as killing definitions as
long as there are no aliases. In general, assignments to fields of heap-allocated records
must not be considered as killing definitions.

In the following example p and q are pointers to heap-allocated records. The
definition of p^.f is only killed by the subsequent definition of q^.f if p = q. Since one
cannot deduce in general whether p = q or p # q, one has to assume that p may be equal to
q. In other words, the second assignment generates a new definition but does not kill the
first one. Both can reach the usage of the field f in the last assignment.

p^.f := 0; (* reaches the last statement if p # q *)
q^.f := 1; (* reaches the last statement if p = q *)
y := p^.f;

2.3.3 Computation of Reaching Definitions

Once the sets of used and defined variables have been computed for every statement,
reaching definitions can be computed for each usage of a variable. Therefore, all definitions
are labeled. This label is used to identify the definition. In the following we will use the
notions definition set, gen set, kill set, in set, and out set, which we define as:

Definition: The definition set of variable x contains as its elements the labels of all
definitions that define x.

Definition: The gen set of statement S contains as its elements the labels of all definitions
that are generated by S. The kill set of statement S contains as its elements the labels of all
definitions that are killed by S.

Definition: The in set of statement S contains as its elements the labels of all definitions
that reach S. The out set of statement S contains as its elements the labels of all definitions
that leave S.

Algorithm for the computation of reaching definitions:

o In a first traversal, one computes the definition set of each variable that has been defined
and the gen and kill sets for each statement.

17Background Information

o In another traversal, one computes the reaching definitions in a syntax-directed manner
and inserts links from the usage nodes of variables to all its reaching definitions.
(Remark: This is only possible for languages with structured control flow. For languages
with unconstrained control flow (e.g., with gotos), an iterative approach must be chosen
to compute the reaching definitions rather than a syntax-directed one.)

In order to compute the gen and kill sets as well as the reaching definitions, one has to
solve the data flow equations for all statements of the program.

Data Flow Equations for Assignments

An assignment to a variable generates a definition. If the assignment is unambiguous, the
definition is a killing one with a non-empty kill set, otherwise it is a non-killing one with an
empty kill set. Fig. 2.8 shows a killing assignment with the associated data flow equations.

d: a := b + c

gen(S) = {d}

kill(S) = DefinitionSet(a) - {d}

out(S) = gen(S) U (in(s) - kill(S))

in(S)

out(S)

in(S)

out(S)

S

Fig. 2.8 - Data flow equations for a killing assignment

Each assignment is given a label d. The gen set of the statement has this label as its only
element, meaning that it generates the definition d for variable a. On the other hand, it kills
all other definitions of a. The out set consists of all definitions that are generated by S (i.e.,
gen(S)), since they surely reach the end of the statement. Furthermore, definitions that reach
the statement S (i.e., in(S)) and are not killed by S (i.e., kill(S)) reach the end of the
statement. If the assignment were non-killing, the kill set would be empty.

Data Flow Equations for Statement Sequences

When two statements are executed in sequence, their effects can be combined. Fig. 2.9
shows how the effects of the statements S1 and S2 can be combined to give the effects of
the sequence S.

S1

S2

S

in(S1)

in(S)

out(S)

out(S1) = in(S2)

out(S2)

in(S1)

in(S2)

gen(S)

kill(S)

out(S)

in(S)

out(S1)

gen(S2) U (gen(S1) - kill(S2))

kill(S2) U (kill(S1) - gen(S2))

out(S2)

=

=

=

=

=

Fig. 2.9 - Data flow equations for a sequence of two statements

18 Background Information

The compound statement S generates everything that is generated by S2 (i.e. gen(S2)).
Furthermore, all definitions that are generated by S1 (i.e. gen(S1)) and are not killed by S2

(i.e. kill(S2)) are generated by the compound statement S. Likewise, the compound statement
S kills everything that is killed by S2 (i.e. kill(S2)). Furthermore, all definitions that are
killed by S1 (i.e. kill(S1)) and are not generated by S2 (i.e. gen(S2)) are killed by the
compound statement S.

Data Flow Equations for Selective Statements

Fig. 2.10 shows how the effects of the branches of selective statements (such as IF and
CASE) can be combined to the effects of the compound statement S.

S1 S2 S

in(S1) in(S)

out(S)out(S2)

in(S2)

out(S1)

gen(S)

kill(S)

out(S)

=

=

=

union of gen of all branches

intersection of kill of all branches

union of out of all branches

in of each branch = in(S)

Fig. 2.10 - Data flow equations for a selection of two statements

A definition that is generated by any branch of the selective statement can be thought of as
being generated by the compound statement S. On the other hand, a definition is only killed
by the compound statement S if it is killed by each branch. If a definition is killed in one
branch, but not in the other, the conservative assumption for the compound statement must
be that the definition is not killed (since one cannot determine statically which branch will
actually be executed).

Data Flow Equations for Iterative Statements

Fig. 2.11 shows the data flow equations for iterative statements (such as WHILE and
REPEAT).

S1 S

in(S)

out(S)

out(S1)

in(S1)

out(S)

in(S)

out(S) =

gen(S)

kill(S)

in(S1)

=

=

=

out(S1)

gen(S1)

kill(S1)

in(S) U gen(S1)

Fig. 2.11 - Data flow equations for an iterative statement

19Background Information

The gen and kill sets of the compound statement are the same as for the nested statement
sequence: If a definition is generated during the first iteration of the loop, it will also be
generated during the second iteration and so on. The proof why in(S1) can be regarded as
the union of in(S) and gen(S1) and not (as obvious from the figure) as the union of in(S) and
out(S1) is given in Section 4.5.2

Aho et al. [ASU86] describe a two-phase algorithm that can be used to solve the data flow
equations for structured programming languages:

o The gen and kill sets that have been computed in the previous step for each defining
node can be composed in a bottom-up manner for each statement sequence.

o For each statement, the out set is computed as a function of the gen and kill sets as well
as of the in set by applying the equation

out(S) = gen(S) ∪ (in(S) - kill(S))

Fig. 2.12 will illustrate this algorithm for the computation of reaching definitions with a
small example.

MODULE ComputeGenKill; Definition Sets:
u: {0, 3, 6, 8}

VAR u, v, t: INTEGER; v: {1, 4, 7}
(* initial definitions: t: {2, 5}

(* 0: *) u := 0;
(* 1: *) v := 0; Node gen kill
(* 2: *) t := 0; 0: {0} {3, 6, 8}

*) 1: {1} {4, 7}
BEGIN 2: {2} {5}

(* 3: *) u := 10; 3: {3} {0, 6, 8}
(* 4: *) v := 2; 4: {4} {1, 7}

IF u < v THEN 5: {5} {2}
(* 5: *) t := u; 6: {6} {0, 3, 8}
(* 6: *) u := v; 7: {7} {1, 4}
(* 7: *) v := t 8: {8} {0, 3, 6}

END ;
(* 8: *) u := u MOD v

END ComputeGenKill.

Fig. 2.12 - Example for the computation of the gen and kill sets

First, the gen and kill sets of the individual statements are composed for each statement
sequence in a bottom-up manner.

Sequence 3-4: gen(3-4) = gen(4) ∪ (gen(3) - kill(4)) = {4} ∪ ({3} - {1, 7})
= {3..4}

kill(3-4) = kill(4) ∪ (kill(3) - gen(4)) = {1, 7} ∪ ({0, 6, 8} - {1, 7})
= {0..1, 6..8}

Sequence 5-6: gen(5-6) = gen(6) ∪ (gen(5) - kill(6)) = {6} ∪ ({5} - {0, 3, 8})
= {5..6}

kill(5-6) = kill(6) ∪ (kill(5) - gen(6)) = {0, 3, 8} ∪ ({2} - {6})
= {0, 2..3, 8}

20 Background Information

Sequence 5-7: gen(5-7) = gen(7) ∪ (gen(5-6) - kill(7)) = {7} ∪ ({5..6} - {1, 4})
= {5..7}

kill(5-7) = kill(7) ∪ (kill(5-6) - gen(7)) = {1, 4} ∪ ({0, 2..3, 8} - {7})
= {0..4, 8}

Selection IF: gen(IF) = gen(5-7) ∪ gen(ELSE) = {5..7} ∪ {}
= {5..7}

kill(IF) = kill(5-7) ∩ kill(ELSE) = {0..4, 8} ∩ {}
= {}

Sequence 3-4-IF: gen(3-4-IF) = gen(IF) ∪ (gen(3-4) - kill(IF)) = {5..7} ∪ ({3..4} - {})
= {3..7}

kill(3-4-IF) = kill(IF) ∪ (kill(3-4) - gen(IF)) = {} ∪ ({0..1, 6..8} - {5..7})
= {0..1, 8}

Sequence 3-8: gen(3-8) = gen(8) ∪ (gen(3-4-IF) - kill(8)) = {8} ∪ ({3..7} - {0, 3, 6})
= {4..5, 7..8}

kill(3-8) = kill(8) ∪ (kill(3-4-IF) - gen(8)) = {0, 3, 6} ∪ ({0..1, 8} - {8})
= {0..1, 3, 6}

Then the out sets are computed as a function of the in sets as well as the gen and kill sets

(out = gen ∪ (in - kill). The in set for statement 3 consists of the initial definitions. At each
node U, reaching definitions are inserted to all nodes D whose labels are included in in(U)

and which define the variable that is used at U.

Node 3: in(3) = {0..2}
out(3) = gen(3) ∪ (in(3) - kill(3)) = {3} ∪ ({0..2} - {0, 6, 8}) = {1..3}

Node 4: in(4) = out(3) = {1..3}
out(4) = gen(4) ∪ (in(4) - kill(4)) = {4} ∪ ({1..3} - {1, 7}) = {2..4}

IF: in(IF) = out(4) = {2..4}
node 3 is a reaching definition for usage of u
node 4 is a reaching definition for usage of v

out(IF) = gen(IF) ∪ (in(IF) - kill(IF) = {5..7} ∪ ({2..4} - {}) = {2..7}
Node 5: in(5) = in(IF) = {2..4}

node 3 is a reaching definition for usage of u
out(5) = gen(5) ∪ (in(5) - kill(5)) = {5} ∪ ({2..4} - {2}) = {3..5}

Node 6: in(6) = out(5) = {3..5}
node 4 is a reaching definition for usage of v

out(6) = gen(6) ∪ (in(6) - kill(6)) = {6} ∪ ({3..5} - {0, 3, 8}) = {4..6}
Node 7: in(7) = out(6) = {4..6}

node 5 is a reaching definition for usage of t
out(7) = gen(7) ∪ (in(7) - kill(7)) = {7} ∪ ({4..6} - {1, 4}) = {5..7}

Node 8: in(8) = out(IF) = {2..7}
node 3 is a reaching definition for usage of u
node 6 is a reaching definition for usage of u
node 4 is a reaching definition for usage of v
node 7 is a reaching definition for usage of v

out(8) = gen(8) ∪ (in(8) - kill(8)) = {8} ∪ ({2..7} - {0, 3, 6}) = {2, 4..5, 7..8}

21Background Information

2.4 Program Slicing

Program slicing [Wei84] is a program analysis and reverse engineering technique that
reduces a program to those statements that are relevant for a particular computation.
Informally, a slice provides the answer to the question "What program statements
potentially affect the value of variable v at statement s?"

Program slicing was originally introduced by Mark Weiser as a "method for
automatically decomposing programs by analyzing their data flow and control flow.
Starting from a subset of a program's behavior, slicing reduces that program to a minimal
form which still produces that behavior. The reduced program, called a slice, is an
independent program guaranteed to represent faithfully the original program within the
domain of the specified subset of behavior." [Wei84] He defined a slice with respect to a
program point p and a subset of the program variables V to consist of all statements in the
program that may affect the values of the variables in V at point p. In other words, a
program slice consists of all parts of the program that (potentially) affect the values of the
interesting variables at some point of the program.

Program slicing usually requires access to the source code of the program, since it can
be seen as a source code to source code transformation. However, program slicing
algorithms work on an internal representation of the program. If this internal representation
can be derived from the object code or bytecode of a compiled program (e.g., via
decompilation), and if the internal representation can again be visualized as program source
code, then access to the source code is not necessary. Fig. 2.13 shows a piece of source
code and three slices computed for different slicing criteria: The first slice is derived for
line 12 and variable z, the second for line 9 and variable x, the third for line 12 and variable
total.

22 Background Information

BEGIN

Read(x, y);

total := 0;

IF x <= 1 THEN

ELSE

Read(z);

total := x * y

END ;
Write(total, sum)

END

sum := 0;

sum := y

1

2

3

4

5

6

7

8

9

10
11

12

12, {z}
BEGIN

Read(x, y);

IF x <= 1 THEN

ELSE

Read(z);

END

END

9, {x}
BEGIN

Read(x, y);
END

12, {total}
BEGIN

Read(x, y);

total := 0;

IF x <= 1 THEN
ELSE

total := x * y
END

END

Fig. 2.13 - Piece of source code with 3 examples of slices

The following sections describe variants of program slicing and their applications. We
partly follow the survey of Binkley and Gallagher [BiG96].

2.4.1 Variants of Program Slicing

Static Slicing and Dynamic Slicing

Static slicing [Wei84] uses static analysis to derive slices, i.e. the source code of the
program is analyzed and the slices are computed for all possible input values. No
assumptions may be made about the input values, predicates may evaluate either to true or
false. Therefore, conservative assumptions have to be made, which may lead to relatively
big slices. A static slice contains all statements that may effect the value of a variable at a
program point for every possible execution.

Dynamic slicing (introduced by Korel and Laski [KoL88]) makes use of the
information about a particular execution of a program. The execution of the program is
monitored, and the dynamic slices are computed with respect to the execution history. A
dynamic slice contains all statements that actually affect the value of a variable at a
program point for that particular execution.

Fig. 2.14 demonstrates the difference between static and dynamic slicing in a simple
example: Depending on an operation code entered by the user, different values are
computed. The result is printed. In both cases, the slice with respect to the output statement
is shown in bold face.

23Background Information

MODULE StaticSlicing; MODULE DynamicSlicing;

IMPORT Math, In, Out; IMPORT Math, In, Out;

VAR VAR
x, y: REAL; x, y: REAL;
op: ARRAY 10 OF CHAR; op: ARRAY 10 OF CHAR;

BEGIN BEGIN
In.Open; In.Open;
In.String(op); In.Real(x); In.String(op); In.Real(x);
IF op = "sin" THEN IF op = "sin" THEN

y := Math.Sin(x) y := Math.Sin(x)
ELSE ELSE

y := Math.Cos(x) y := Math.Cos(x)
END ; END ;
Out.Real(y) Out.Real(y)

END StaticSlicing. END DynamicSlicing.

Fig. 2.14 - Static slice computed for the last statement (left) and
dynamic slice for the input op = "sin" (right)

Backward Slicing and Forward Slicing

Program slices, as originally introduced by Weiser [Wei84], are now called backward
slices, because they contain all parts of the program that might have influenced the variable
at the statement under consideration. On the other hand, forward slices contain all parts of
the program that might be influenced by the variable. Fig. 2.15 shows the backward and
forward slices for the statement x := 3.

MODULE BackwardSlicing; MODULE ForwardSlicing;

VAR VAR
x, y, z: INTEGER; x, y, z: INTEGER;

BEGIN BEGIN
x := 3; x := 3;
y := x + 4; y := x + 4;
z := y + 3 z := y + 3

END BackwardSlicing. END ForwardSlicing.

Fig. 2.15 - Backward slice and forward slice computed for the statement "y := x + 4"

Intraprocedural Slicing and Interprocedural Slicing

Intraprocedural slicing computes slices within one procedure. Calls to other procedures are
either not handled at all or handled conservatively. If the program consists of more than
one procedure, interprocedural slicing can be used to derive slices that span multiple
procedures.

Interprocedural slicing raises a new problem: When a procedure is called at different
places, the calling context must be considered, in order to correctly model the run-time

24 Background Information

execution at compile time. Interprocedural data flow analysis has a similar goal to only
consider paths that correspond to legal call/return sequences. Such paths are called
realizable, valid, or feasible. Fig. 2.16 shows a module where procedure Add is called at
two places: once in procedure Increment, another time in procedure A.

MODULE CallingContext;

PROCEDURE Add (VAR a: INTEGER; b: INTEGER);
BEGIN a := a + b
END Add; PROCEDURE Main;

VAR sum, i: INTEGER;
PROCEDURE Increment (VAR z: INTEGER); BEGIN
BEGIN Add(z, 1) sum := 0;
END Increment; i := 1;

WHILE i < 11 DO
PROCEDURE A (VAR x, y: INTEGER); A(sum, i)
BEGIN END

Add(x, y); END Main;
Increment(y)

END A; END CallingContext.

Fig. 2.16 - Example module with two call sites of procedure Add

Fig. 2.17 shows a trace of the procedure activations during the execution of procedure Main.

Main Main Main Main Main Main

A A A A A

Add Increment Increment

Add

call

A call

Add call

Add

return call

Increment

Main

A

Increment

Main

A

Main

returnreturn

return

call

A

to A

to Incrementto A

to Main

Fig. 2.17 - Trace of procedure activations (activations of Add are shaded)

When computing the slice, "regarding the calling context" means that the slicing algorithm
correctly models the execution. When the call of Add in procedure Increment is encountered,
it is necessary to continue the analysis with procedure Add, but when returning from
procedure Add, analysis of procedure Increment must be continued. It would not be a precise
model of the run-time execution to call Add in procedure Increment but to return to
procedure A, as shown in Fig. 2.18.

25Background Information

Main Main

A A

Increment Increment

Addcall

Add

Main

A

return

to A

Fig. 2.18 - Trace of procedure activations equivalent to wrong handling of calling context

If procedure Increment is sliced for the output parameter z without regarding the calling
context, the slice will contain the whole program. This is imprecise, if one allows not only
the deletion of entire statements from the original program but also of smaller parts such as
individual parameters: the call of Add within procedure A, the first actual parameter of A at
its call in procedure Main and the initialization of sum are not relevant. The imprecision is
introduced because Add is (necessarily) included into the slice (since it is called in
Increment) and all call sites of Add are then (unnecessarily) included into the slice. The call
of Add in Increment must be included into the slice, but the call of Add in A should not be
included into the slice. The inclusion of the call of Add within A into the slice necessitates
the inclusion of the formal parameter x of A, the corresponding actual parameter sum and
the initialization of sum. On the other hand, if the calling context is regarded, the run-time
execution of the program is modeled correctly and the slice will only contain the relevant
parts, as shown in Fig. 2.19.

MODULE CallingContext;

PROCEDURE Add (VAR a: INTEGER; b: INTEGER);
BEGIN a := a + b
END Add; PROCEDURE Main;

VAR sum, i: INTEGER;
PROCEDURE Increment (VAR z: INTEGER); BEGIN
BEGIN Add(z, 1) sum := 0;
END Increment; i := 1;

WHILE i < 11 DO
PROCEDURE A (VAR x, y: INTEGER); A(sum, i)
BEGIN END

Add(x, y); END Main;
Increment(y)

END A; END CallingContext.

Fig. 2.19 - Slice computed for the output parameter z of procedure Increment
with regarding the calling context

Slicing Granularity

Program slices can be computed at different abstraction levels. The parts of the program
that are considered to be included into the slice can be as big as procedures or as small as
nodes of the syntax tree of the program (e.g., statements, expressions, variables,
parameters, etc.). Slicing at the level of syntax tree nodes (also called at the expression

26 Background Information

level) gives the most detailed and precise information. However, the resulting slices are no
longer executable programs. In Fig. 2.20 we show the slice for the last statement computed
either by expression-oriented slicing or by statement-oriented slicing.

MODULE ExpressionSlicing; MODULE StatementSlicing;

IMPORT Out; IMPORT Out;

VAR i, j, k, l: INTEGER; VAR i, j, k, l: INTEGER;

PROCEDURE F (VAR i: INTEGER): INTEGER; PROCEDURE F (VAR i: INTEGER): INTEGER;
BEGIN INC(i); RETURN i BEGIN INC(i); RETURN i
END F; END F;

BEGIN BEGIN
i := 1; j := 2; k := 3; i := 1; j := 2; k := 3;
l := i + F(j) * k; l := i + F(j) * k;
Out.Int(j, 0) Out.Int(j, 0)

END ExpressionSlicing. END StatementSlicing.

Fig. 2.20 - Slicing at the expression level (left) and at the statement level (right)
computed for the last statement

2.4.2 Applications

Program slicing can be used to assist the programmer in a lot of tedious and error prone
tasks. In the following we give a brief survey.

Debugging

During debugging, a programmer usually has a test case in mind which causes the program
to fail. A program slicer that is integrated into the debugger can be very useful in
discovering the reason for the error by visualizing control and data dependences and by
highlighting the statements that are part of the slice. Variants of program slicing have been
developed to further assist the programmer: Program dicing [LyW86] identifies statements
that are likely to contain bugs by using information that some variables fail some tests
while others pass all tests. Several slices are combined with each other in different ways:
e.g. the intersection of two slices contains all statements that lead to an error in both test
cases; the intersection of slice a with the complement of slice b excludes from slice a all
statements that do not lead to an error in the second test case. Another variant of program
slicing is program chopping [JaR94]. It identifies statements that lie between two points a

and b in the program and will be affected by a change at a. This can be useful when a
change at a causes an incorrect result at b. Debugging should be focused on the statements
between a and b that transmit the change of a to b.

27Background Information

Program Integration

Programmers frequently face the problem of integrating several variants of a base program.
It is only a first step to simply look for textual differences. Semantics-based program
integration is a technique that attempts to create an integrated program that incorporates the
changed computations of the variants as well as the computations of the base program that
are preserved in all variants.

Berzins [Be86] addresses a part of the program-integration problem from the semantic
perspective. Given two programs, his method attempts to find a merged program that is the
least (semantic) extension that subsumes both versions, that is, a merged program that
incorporates the whole behavior of the two versions. However, as software evolves, not
only extensions but also modifications (such as bug fixes) are made to the base program.
Modifications are not addressed by his method.

Horwitz et al. [HoPR89] presented an algorithm for semantics-based program
integration that creates the integrated program by merging certain program slices of the
variants. Their integration algorithm takes as input three programs Base, A, and B, where A
and B are variants of Base. The integrated program is produced by (1) building graphs that
represent Base, A, and B, (2) combining program slices of the program dependence graphs
of Base, A, and B to form a merged graph, (3) testing the merged graph for certain
interference criteria, and (4) reconstituting a program from the merged graph.

Yang [Yan90] extends the algorithm of Horwitz et al.: The new algorithm is extendible
in that it can incorporate any techniques for detecting program components with equivalent
behaviors (components with isomorphic slices, see [HoR91]) and it can accommodate
semantics-preserving transformations. He classifies the nodes of A into the classes:

o NewA is the class of all nodes of A that have no corresponding nodes in Base. These
nodes represent program components that have been added to Base to create A, or
have been moved to a context that has changed their execution behaviors (similar for
NewB).

o ModifiedA is the class of all nodes of A that have a corresponding node in Base, but
the node's text in A differs from the text of the corresponding node in Base. These
nodes represent components of A whose texts have been changed but whose
execution behaviors remain the same.

o ModifiedB is the class of all nodes of A that have corresponding nodes in Base and B,
for which the node's text in A is the same as the text of the corresponding node in
Base, but whose text differs from the text of the corresponding node in B.

o IntermediateA is the class of all nodes of A that have a corresponding node in Base
and whose text in A is the same as the text of the corresponding node in Base, but
there is no corresponding node in B (either because the node was deleted from B, or
because the node's execution behavior was changed, or because the node assigns to a
different variable in B).

o Unchanged is the class of all nodes of A that have corresponding nodes in Base and
B. All three nodes have the same text. These nodes represent components whose texts
and behaviors are identical in all three programs.

28 Background Information

Likewise, the nodes of B are classified into the sets NewB, ModfiedB, ModifiedA,

Unchanged, and IntermediateB. The nodes of Base are similarly classified into the sets
ModifiedA, ModifiedB, IntermediateA, IntermediateB, Unchanged, and Deleted. A node in
Base is in Deleted if neither A nor B contains a corresponding node. The classification
process may discover that A and B interfere with respect to Base by identifying
corresponding nodes nodeA and nodeB in A and B such that:

o The text of nodeA differs from the text of nodeB.

o If there is a corresponding node nodeBase in Base, the texts of nodeA and nodeBase,
and the texts of nodeB and nodeBase are unequal.

Since a node in the merged graph can have only one text, it is not possible to preserve the
changed text of this component from both A and B. This can occur either for a node in
NewA (with a corresponding node in NewB), or for a node in ModifiedA (with a
corresponding node in ModifiedB).

Software Maintenance

The main challenges in software maintenance are to understand existing software and to
make changes without introducing new bugs. A decomposition slice [GaL92] is useful in
making a change to a piece of software without unwanted side effects. It captures all
computations of a variable and is independent of a program location. The decomposition
slice for a variable v is the union of slices taken at critical nodes with respect to variable v.
Critical nodes are the nodes that output the value of v and the last node of the program. The
decomposition slices are computed for all variables of the program. The decomposition
slice for variable v partitions the program into three parts:

o The independent part contains all the statements of the decomposition slice (taken
with respect to v) that are not part of any decomposition slice taken with respect to
another variable.

o The dependent part contains all statements of the decomposition slice (taken with
respect to v) that are part of another decomposition slice taken with respect to another
variable.

o The complement contains all statements that are not in the decomposition slice (taken
with respect to v). The statements of the complement may nevertheless be part of
some other decomposition slice taken with respect to another variable. The
complement must remain fixed after changing a statement of the decomposition slice.

Likewise, variable v can be categorized as

o changeable if all assignments to v are within the independent part.
o unchangeable if at least one assignment to v is in a dependent part. If the maintainer

modifies this assignment, the new value will flow out of the decomposition.
o used if it is not used in the dependent or independent parts but in the complement.

The maintainer may not declare new variables with the same name.

29Background Information

Several conclusions can be drawn for modifications:

o Statements of the independent part may be deleted from a decomposition slice since
they do not affect the computation of the complement.

o Assignments to changeable variables may be added anywhere in the decomposition
slice.

o New control statements that surround any statements of the dependent part will cause
the complement to change.

The maintainer who tries to change the code only has to regard the dependent and
independent parts of the program. After the modification, only the dependent and
independent parts will have to be retested. The complement is guaranteed to be unaffected
by the change, it will not have to be retested [Gal91].

Testing

Software maintainers are also faced with the task of regression testing: retesting software
after a modification. Even after the smallest change, extensive tests may be necessary,
running a large number of test cases. While decomposition slicing eliminates the need for
regression testing on the complement, there may still be a substantial number of tests to be
run on the dependent, independent and changed parts. A lot of work has been done in order
to test incrementally [BaH93], to simplify testing [HaD95], to apply program slicing to
regression testing [GuHS96] and to test path selection [Bi95, FoB97].

Software Quality Assurance

Software quality assurance auditors have to locate safety critical code and to ascertain its
effects throughout the system. Program slicing can be used to locate all code that influences
the values of variables that might be part of a safety critical component. But beforehand
these critical components still have to be determined by domain experts.

One possibility to assure high quality is to make the system redundant. If two output
values are critical, then these output values should be computed independently. They
should not depend on the same internal functions, since the same error might manifest in
both output values in the same way, thereby hiding the error. One technique to defend
against such errors is to use functional diversity, where multiple algorithms are used for the
same purpose. Thus the critical output values depend on different internal functions.
Program slicing can be used to determine the logical independence of the slices computed
for the two output values [Ly+95].

30 Background Information

Functional Cohesion

Cohesion measures the relatedness of some component. A highly cohesive software module
is a module that has one function and is indivisible - it is difficult to split a cohesive
module into separate components. Cohesion has been categorized as coincidental (weakest
form), logical, procedural, communicational, sequential and functional (strongest form)
[YoC79].

Bieman and Ott [BiO94] define data slices that consist of data tokens (instead of
statements). Data tokens may be variable and constant definitions and references. A data
slice for a data token v is the sequence of all data tokens in the statements that comprise the
backward and forward slices of v. Fig. 2.21 shows a piece of source code and the data slice
for sum. The parts of the data slice are shown in bold face.

PROCEDURE SumAndProduct (n: INTEGER; VAR sum, prod: INTEGER);
VAR i: INTEGER;

BEGIN
sum := 0;
prod := 1;
FOR i := 0 TO n - 1 DO

sum := sum + i;
prod := prod * i

END
END SumAndProduct;

Fig. 2.21 - A piece of source code and the data slice for sum

Data slices are computed for each output of a procedure (e.g., output to a file, output
parameter, assignment to a global variable). The tokens that are common to more than one
data slice are the connections between the slices, they are the "glue" that binds the slices
together. The tokens that are in every data slice of a function are called super-glue, tokens
that are in more than one slice are called glue. Strong functional cohesion can be expressed
as the ratio of super-glue tokens to the total number of tokens in the slice, whereas weak
functional cohesion may be seen as the ratio of glue tokens to the total number of tokens.
The adhesiveness of a token is another measure expressing how many slices are glued
together by that token.

3 Current Slicing Algorithms

This chapter describes current slicing algorithms together with their data structures ranging
from the original approach where slicing is seen as a data flow problem to the
state-of-the-art where slicing is seen as a graph-reachability problem.

Weiser used a control flow graph as an intermediate representation for his slicing
algorithm. He computed slices by solving the data flow problem of relevant nodes. He gave
algorithms for intraprocedural and interprocedural slicing. However, the interprocedural
version did not account for the calling context and therefore produced imprecise slices.
Ottenstein et al. [OtO84, FeOW87] recognized that intraprocedural backward slices could
be efficiently computed using dependence graphs as intermediate representations by
traversing the dependence edges backwards (from target to source). Horwitz et al.
[HoRB90] introduced system dependence graphs for interprocedural slicing. They also
developed a two-phase algorithm that computes precise interprocedural slices. With the
help of summary edges they accounted for the transitive effects of procedure calls without
descending into called procedures. They computed these summary edges by a variation on
the technique to compute the subordinate characteristic graphs of an attribute grammar's
nonterminals [Ka80]. Livadas et al. [LivC94, LivJ95] proposed a simpler method of
computing the summary edges. In the following sections we will discuss these algorithms
and their data structures in more detail.

3.1 Slicing as a Data Flow Problem

Weiser used a control flow graph as an intermediate representation for his slicing
algorithm. Computing a slice from a control flow graph requires computation of the data
flow information about the set of relevant variables at each node. The sets of relevant
variables for the slice taken with respect to node n and variables V can be computed as
follows:

1. Initialize the relevant sets of all nodes to the empty set.
2. Insert all variables of V into relevant(n).
3. For n's immediate predecessor m, compute relevant(m) as:

relevant(m) := relevant(n) - def(m) (* exclude all variables that
are defined at m *)

if relevant(n) ∩ def(m) # {} then (* if m defines a variable that
is relevant at n *)

relevant(m) := relevant(m) ∪ ref(m) (* include the variables that
are referenced at m *)

include m into the slice
end

32 Current Slicing Algorithms

4. Work backwards in the control flow graph, repeating step 3 for m's immediate
predecessors until the entry node is reached or the relevant set is empty.

Table 3.1 shows an example for the computation of the relevant sets (taken from [BiG96]).
The slice is computed for the last statement and the variable a. The nodes that are finally
part of the slice are shown with bold node numbers.

8 print a a a

7 a = b + c b, c a b, c

6 b = b + 1 b b b, c

5 d = b + d b, d d b, c

4 a = d d a b, c

3 d = 3 d b, c

2 c = 2 c b

1 b = 1 b

n Statement ref(n) def(n) relevant(n)

Table 3.1 - Source code with relevant sets, slice for <8, {a}>

Step 2: relevant(8) = {a}
Step 3: relevant(7) = relevant(8) - def(7) = {a} - {a} = {}

relevant(7) = relevant(7) ∪ ref(7) = {} ∪ {b, c} = {b, c}
Since node 7 defines a variable relevant at node 8, it is included into the slice.

Step 3: relevant(6) = relevant(7) - def(6) = {b, c} - {b} = {c}
relevant(6) = relevant(6) ∪ ref(6) = {c} ∪ {b} = {b, c}
Since node 6 defines a variable relevant at node 7, it is included into the slice.

Step 3: relevant(5) = relevant(6) - def(5) = {b, c} - {d} = {b, c}
Step 3: relevant(4) = relevant(5) - def(4) = {b, c} - {a} = {b, c}
Step 3: relevant(3) = relevant(4) - def(3) = {b, c} - {d} = {b, c}
Step 3: relevant(2) = relevant(3) - def(2) = {b, c} - {c} = {b}

relevant(2) = relevant(2) ∪ ref(2) = {b} ∪ {} = {b}
Since node 2 defines a variable relevant at node 3, it is included into the slice.

Step 3: relevant(1) = relevant(2) - def(1) = {b} - {b} = {}
relevant(1) = relevant(1) ∪ ref(1) = {} ∪ {} = {}
Since node 1 defines a variable relevant at node 2, it is included into the slice.

For structured programs, a statement can have multiple predecessors. The algorithm
outlined above must therefore be extended:

o to compute the control sets for each node,
o to combine the relevant sets at points where the control flow merges (by unioning the

relevant sets), and
o to compute the relevant sets iteratively until there are no further changes.

The control set associates with each node the set of predicate statements that directly
control its execution. Whenever a statement is added to the slice, the members of its control
set are included into the slice. New slices are computed with respect to the nodes that have
been included due to the control set and the variables referenced at these nodes. All
statements of the new slices are considered to be part of the original slice.

33Current Slicing Algorithms

The following example (taken from [BiG96]) shows the computation of the relevant sets.
The slice is computed for node 11 with respect to variable a. Table 3.2 shows the source
code of the example and for each statement the sets of referenced and defined variables as
well as the control set and the relevant set.

11 print a a a

10 a = b + c b, c a b, c

endif b, c

9 d = b + 1 b d 5 b, c

8 b = b + 1 b b 5 b, c

else

7 c = b + d b, d c 5 b, d

6 d = b + d b, d d 5 b, d

5 if a then a b, c, d

4 a = d d a b, c, d

3 d = 3 d b, c

2 c = 2 c b

1 b = 1 b

n Statement ref(n) def(n) control(n) relevant(n)

Table 3.2 - Source code with relevant sets, slice for <11, {a}>

Step 2: relevant(11) = {a}
Step 3: relevant(10) = relevant(11) - def(10) = {a} - {a} = {}

relevant(10) = relevant(10) ∪ ref(10) = {} ∪ {b, c} = {b, c}
Since node 10 defines a variable relevant at node 11, it is included into the slice.

Step 3: relevant(9) = relevant(10) - def(9) = {b, c} - {d} = {b, c}
Step 3: relevant(8) = relevant(9) - def(8) = {b, c} - {b} = {c}

relevant(8) = relevant(8) ∪ ref(8) = {c} ∪ {b} = {b, c}
Since node 8 defines a variable relevant at node 9, it is included into the slice.
Since control(8) = 5, node 5 is included into the slice.
The slice for node 5 with respect to ref(5) is computed below.

Step 3: relevant(7) = relevant(10) - def(7) = {b, c} - {c} = {b}
relevant(7) = relevant(7) ∪ ref(7) = {b} ∪ {b, d} = {b, d}
Since node 7 defines a variable relevant at node 10, it is included into the slice.
Since control(7) = 5, node 5 is included into the slice.
The slice for node 5 with respect to ref(5) is computed below.

Step 3: relevant(6) = relevant(7) - def(6) = {b, d} - {d} = {b}
relevant(6) = relevant(6) ∪ ref(6) = {b} ∪ {b, d} = {b, d}
Since node 6 defines a variable relevant at node 7, it is included into the slice.

Step 3: relevant(5) = relevant(6) ∪ relevant(8) = {b, d} ∪ {b, c} = {b, c, d}
Step 3: relevant(4) = relevant(5) - def(4) = {b, c, d} - {a} = {b, c, d}
Step 3: relevant(3) = relevant(4) - def(3) = {b, c, d} - {d} = {b, c}

relevant(3) = relevant(3) ∪ ref(3) = {b, c} ∪ {} = {b, c}
Since node 3 defines a variable relevant at node 4, it is included into the slice.

Step 3: relevant(2) = relevant(3) - def(2) = {b, c} - {c} = {b}

relevant(2) = relevant(2) ∪ ref(2) = {b} ∪ {} = {b}
Since node 2 defines a variable relevant at node 3, it is included into the slice.

Step 3: relevant(1) = relevant(2) - def(1) = {b} - {b} = {}
relevant(1) = relevant(1) ∪ ref(1) = {} ∪ {} = {}
Since node 1 defines a variable relevant at node 2, it is included into the slice.

34 Current Slicing Algorithms

Table 3.3 shows how the slice is computed for node 5 with respect to variable a:

11 print a a

10 a = b + c b, c a

endif

9 d = b + 1 b d 5

8 b = b + 1 b b 5

else

7 c = b + d b, d c 5

6 d = b + d b, d d 5

5 if a then a {a}

4 a = d d a {d}

3 d = 3 d {}

2 c = 2 c

1 b = 1 b

n Statement ref(n) def(n) control(n) relevant(n)

Table 3.3 - Source code with relevant sets, slice for <5, {a}>

Step 2: relevant(5) = {a}
Step 3: relevant(4) = relevant(5) - def(4) = {a} - {a} = {}

Since node 4 defines a variable relevant at node 5, it is included into the slice.
relevant(4) = relevant(4) ∪ ref(4) = {} ∪ {d} = {d}

Step 3: relevant(3) = relevant(4) - def(3) = {d} - {d} = {}
Since node 3 defines a variable relevant at node 4, it is included into the slice.
relevant(3) = relevant(3) ∪ ref(3) = {} ∪ {} = {}
Since the relevant set is empty, no more nodes will be included into the slice.

The complete slice contains the nodes 10, 8, 7, 6, 5, 4, 3, 2, and 1.
When the program contains loops, iteration over parts of the control flow graph is

necessary until the relevant sets and the slice stabilize. The maximum number of iterations
is the same as the number of assignment statements in the loop. Weiser describes a method
to derive interprocedural slices, essentially by in-line replacement of each procedure with
appropriate substitutions for the parameters. However, his method does not account for the
calling context and yields imprecise slices.

A big disadvantage of computing program slices this way is that the relevant sets have
to be computed for each slice and that this information cannot be reused for other slices.

3.2 Slicing as a Graph-Reachability Problem

Another approach to compute program slices is to first derive an intermediate
representation of the program that models the dependences among the program entities and
to compute slices simply by traversing the dependences of this intermediate representation.
The big advantage of this approach is that data flow analysis only has to be performed once
and that the information can be reused for deriving all kinds of slices, such as forward and
backward slices, as well as intraprocedural and interprocedural slices.

35Current Slicing Algorithms

3.2.1 Program Dependence Graph

Ferrante et al. [FeOW87] introduced program dependence graphs which combine control
dependences and data dependences into a common framework. The nodes of a program
dependence graph represent statements and predicate expressions of the program. Each
node of the graph has references to the nodes that it is control dependent on and to the
nodes that define its operands. The set of all dependences induce a partial ordering on the
statements and predicates in the program that must be followed in order to preserve the
semantics of the original program.

They propose to use program dependence graphs for optimizations. Since both the
essential control relationships and the essential data relationships are present in the
program dependence graph, a single traversal of these dependences is sufficient to perform
many optimizations.

3.2.2 System Dependence Graph

Horwitz et al. [HoRB90] enhance the program dependence graph to facilitate
interprocedural slicing. They add vertices for the program entry, for the initial definition of
variables and for the final use of variables to the graph. They label control dependences
with either true or false, meaning that when the predicate at the origin of the dependence
evaluates to true (or false), the target node of the dependence labeled true (or false) will
eventually be executed. They classify data dependences as loop carried and loop
independent. However, for slicing purposes the distinction between different kinds of data
dependences is not necessary. Fig. 3.1 shows the program dependence graph for a small
program.

entry

i := 1 while i < 11 FinalUse(i)

i := i + 1

T TT

T

T control dependence

labeled true

data dependence

MODULE PDG;

VAR i: INTEGER;

BEGIN

i := 1;

WHILE i < 11 DO

i := i + 1

END

END PDG.

Fig. 3.1 - A small program with its program dependence graph

Using a program dependence graph, program slicing can be seen as a graph reachability
problem. The slice of a dependence graph with respect to a node n of the graph, is the graph
that contains all nodes that (directly or indirectly) reach n via a data dependence or control
dependence. Horwitz et al. [HoRB90] give a simple worklist algorithm for deriving
intraprocedural slices. Fig. 3.2 shows a recursive implementation.

36 Current Slicing Algorithms

PROCEDURE SliceNodeIntraproc (node: Node);
BEGIN

IF node is not marked THEN
mark node as visited
FOR all nodes pred on which node depends DO

SliceNodeIntraproc(pred)
END

END
END SliceNodeIntraproc;

Fig. 3.2 - Intraprocedural backward slicing algorithm

For programs that consist of several procedures, Horwitz et al. define the system

dependence graph that contains one program dependence graph for each procedure of the
program. They introduce several nodes to model procedure calls and parameter passing,
where parameters are passed by value-result and accesses to global variables are modeled
via additional parameters of the procedure:

o Call-site nodes represent the call sites.
o Actual-in and actual-out nodes represent the input and output parameters at the call

sites. They are control dependent on the call-site node.
o Formal-in and formal-out nodes represent the input and output parameters at the

called procedure. They are control dependent on the procedure's entry node.

They also introduce additional edges to link the program dependence graphs together:

o Call edges link the call-site nodes with the procedure entry nodes.
o Parameter-in edges link the actual-in nodes with the formal-in nodes.
o Parameter-out edges link the formal-out nodes with the actual-out nodes.

Finally, summary edges are used to represent the transitive dependences due to calls. A
summary edge is added from an actual-in node A to an actual-out node B, if there exists a
path of control, data and summary edges in the called procedure from the corresponding
formal-in node A' to the formal-out node B'. Fig. 3.3 shows how the summary edges can be
used to simulate the effects of a call without descending into the subgraph of the called
procedure. The graph contains a summary edge from the actual-in node of z at the call site
of Add to the actual-out node of z because there is a path (via data dependences) in the
called procedure from the formal-in node of a to the formal-out node of a. Likewise there is
a summary edge from the second actual-in node to the actual-out node of z. When
computing the slice for the actual-out node of z, it suffices to follow the summary edges
backwards in order to visit the actual-in nodes on which the value of z depends. It is not
necessary to descend into the graph of procedure Add.

37Current Slicing Algorithms

call Add

a-in := z b-in := 1 z := a-out

entry Add

a := a-in b := b-in a-out := aa := a + b

control dependence

call edgec

parameter-in edgein

parameter-out edge

data dependence

summary edge

out

d

s

c

in in

out

d

d

d

s

s

PROCEDURE Add (VAR a: INTEGER; b: INTEGER);

call of Add in Increment: Add(z, 1)

BEGIN

a := a + b

END Add;

Fig. 3.3 - Summary edges

Summary edges permit movement across call sites without having to descend into the
called procedures, while still regarding the effects of the called procedure. It is therefore
not necessary to keep track of the calling context explicitly to ensure that only legal
execution paths are traversed.

Horwitz et al. used a variation on the technique to compute the subordinate
characteristic graphs of an attribute grammar's nonterminals [Ka80] in order to compute
these summary edges. Livadas et al. [LivC94, LivJ95] proposed a simpler method of
computing the summary edges.

Fig. 3.4 shows the system dependence graph of the program shown in Fig. 2.16.
Control dependences are drawn with thin lines and broad arrows, call edges, par-in and
par-out edges with thin lines and small arrows, and data dependences as well as summary
edges are drawn with thick lines and big arrows.

38 Current Slicing Algorithms

entry Main

sum := 0 i := 1 while i < 11 FinalUse(sum) FinalUse(i)

call A

x-in := sum y-in := i sum := x-out i := y-out

entry A

x := x-in y := y-in x-out := x y-out := ycall Add

a-in := x b-in := y x := a-out

call Inc

z-in := y y := z-out

entry Inc

z := z-in z-out := zcall Add

a-in := z b-in := 1 z := a-out

entry Add

a := a-in b := b-in a-out := aa := a + b

control dependence

call, par-in, par-out

data dependence

summary edge

edges

Fig. 3.4 - The system dependence graph for the program shown in Fig. 2.16

Interprocedural slicing can be implemented as a reachability problem over the system
dependence graph. The transitive closure over all dependences yields a slice that does not
regard the calling context and therefore contains irrelevant nodes. Horwitz et al. [HoRB90]
developed a two-phase algorithm that computes precise interprocedural slices. In the
following we give a brief outline of this algorithm (the slice shall be computed with respect
to node n in procedure P):

o In the first phase, all edges except parameter-out edges (i.e., control and data
dependences, summary, parameter-in and call edges) are followed backwards
starting with node n in procedure P. All nodes are marked, that either reach n and are
in P itself or in procedures that (transitively) call P, i.e. the traversal ascends from

39Current Slicing Algorithms

procedure P upwards to the procedures that called P. Since parameter-out edges are
not followed, phase 1 does not "descend" into procedures called by P. The effects of
such procedures are not ignored, however; summary edges from actual-in nodes to
actual-out nodes cause nodes to be included into the slice that would only be reached
through the procedure call, although the graph traversal does not actually descend
into the called procedure (see Fig. 3.3). The marked nodes represent all nodes that
are part of the calling context of P and may influence n.

o In the second phase, all edges except parameter-in and call edges (i.e., control and
data dependences, summary and parameter-out edges) are followed backwards
starting from all nodes that have been marked during phase 1. Because parameter-in
edges and call edges are not followed, the traversal does not "ascend" into calling
procedures. Again, the summary edges simulate the effects of the calling procedures.
The marked nodes represent all nodes in called procedures that induce summary
edges.

Fig. 3.5 shows how the slice is computed for the formal-out parameter z in procedure Inc.
Only the nodes and edges that are traversed during the first phase are shown.

40 Current Slicing Algorithms

entry Main

i := 1 while i < 11

call A

y-in := i i := y-out

entry A

y := y-in call Inc

z-in := y

entry Inc

z := z-in z-out := zcall Add

a-in := z b-in := 1 z := a-out

control dependence

call, par-in, par-out

data dependence

summary edge

edges

Fig. 3.5 - Nodes and edges visited during the first phase of computing the
slice for the formal-out z in procedure Inc

Fig. 3.6 adds the nodes that are marked in the second phase (shown in bold). The complete
slice consists of the nodes and edges visited during the two phases and the edges between
them.

41Current Slicing Algorithms

entry Main

i := 1 while i < 11

call A

y-in := i i := y-out

entry A

y := y-in y-out := ycall Inc

z-in := y y := z-out

entry Inc

z := z-in z-out := zcall Add

a-in: z b-in := 1 z := a-out

entry Add

a := a-in b := b-in a-out := aa := a + b

control dependence

call, par-in, par-out

data dependence

summary edge

edges

Fig. 3.6 - Nodes and edges visited during the second phase (shown in bold)
of computing the slice for the formal-out z in procedure Inc

Fig. 3.7 shows a recursive implementation of the two-phase algorithm.

PROCEDURE SliceNodeInterproc (node: Node; excludeEdges: Set; visitedNodes: NodeSet);
BEGIN

IF node is not marked THEN
mark node as visited
insert node into visitedNodes
FOR all edges e leading from other nodes n to node DO

IF kind of e is not in excludeEdges THEN
SliceNodeInterproc(n, excludeEdges, visitedNodes)

END
END

END
END SliceNodeInterproc;

42 Current Slicing Algorithms

PROCEDURE ComputeSlice (node: Node);
BEGIN

(* phase 1: traverse control and data dependences, follow summary, par-in and call edges *)
SliceNodeInterproc (node, {par-out}, visitedNodes);
(* phase 2: traverse control and data dependences, follow summary, par-out edges *)
FOR all nodes n in visitedNodes DO

SliceNodeInterproc (n, {par-in, call}, visitedNodes)
END

END ComputeSlice;

Fig. 3.7 - Interprocedural backward slicing algorithm

Forward Slicing

Horwitz et al. [HoRB90] showed that interprocedural forward slicing can be implemented
in a very similar way to backward slicing where the edges are traversed from source to
target. The first phase ignores parameter-in and call edges but follows parameter-out edges
(thus ascends into calling procedures), whereas the second phase ignores parameter-out
edges but follows parameter-in and call edges (thus descends into called procedures).

Dynamic Slicing

Agrawal and Horgan presented the first algorithm for finding dynamic slices using
dependence graphs [AgH90]. The first approach to compute dynamic slices is to mark
nodes and edges as the corresponding parts of the program are executed. After execution
the slice is computed by applying the static slicing algorithm restricted to only marked
nodes and the edges that connect them. Since multiple executions of a particular node are
summarized by marking it once for all executions, these executions cannot be distinguished
during analysis which makes the slices not as precise as possible. Another approach is to
produce a dynamic dependence graph from the execution history that contains a node for
each occurrence of a statement in the execution history along with only the executed edges.
However, the dynamic dependence graph may be unbounded in length. Therefore Agrawal
and Horgan also introduced the more economical version of a reduced dynamic dependence
graph.

3.2.3 Computation of Summary Edges

Livadas et al. [LivC94, LivJ95] proposed a simpler method for the computation of
summary edges. The basic idea is that for leaf procedures (procedures that do not call any
other procedures) the summary edges can be computed via intraprocedural slicing, i.e. by
following data dependences and control dependences backwards from the formal-out node.
Summary edges are necessary from all formal-in nodes that are visited by this traversal to
the formal-out node from which the traversal started. As long as there is no recursion, this
idea can be applied to programs with procedure calls by analyzing the procedures

43Current Slicing Algorithms

recursively when they are encountered. The summary edges of a procedure are computed as
soon as the procedure is encountered:

o If a procedure P contains a call to another procedure Q, processing of P is suspended,
and Q is processed. This process is continued until a procedure R is encountered that
is either a leaf procedure or that has already been solved.

o If R is a leaf procedure, summary edges are computed directly via intraprocedural
slicing. The processing of the calling procedure is then resumed.

o If R has already been solved, there is no reason to descend into the procedure again;
subsequent calls to a solved procedure need only have the summary edges reflected
(i.e. copied) to the call site.

We will illustrate this method by considering a program that consists of four procedures M,

A, B, and C with calls as indicated in Fig. 3.8 (M calls A and C, A calls B, B calls C, C is a
leaf procedure).

M A C.

A B.

B C.

C .

=

=

=

=

Fig. 3.8 - Sample program abstraction

The computation of the summary edges starts with processing procedure M. The first call
encountered is the call of procedure A. Since procedure A has not been solved, we descend
into A. During processing A, the call to procedure B is encountered. Therefore we descend
into the unsolved procedure B. Again, procedure B is not a leaf procedure and we descend
into procedure C. But C is a leaf procedure and is solved immediately. The summary edges
from C are reflected onto the call site of C in B. Similarly B can now be solved since it
contains no more calls; its summary edges are reflected back to the call site of B in A. Now
A can be solved and its summary edges are reflected back to the call site of A in M.
Processing of M is resumed until the call to C is encountered. But C has already been
solved; therefore its summary edges are simply reflected. Since M contains no more calls, M

can be solved. Fig. 3.9 shows the call trace for this process.

44 Current Slicing Algorithms

Compute(M)
call A => Compute(A)

call B => Compute(B)
call C => Compute(C)

C is solved
<= reflect information of C

onto call in B
B is solved

<= reflect information of B onto call in A
A is solved

<= reflect information of A onto call in M
call C

<= reflect information of C onto call in M
M is solved

Fig. 3.9 - Call trace of the computation of summary edges
for a program without recursion (shown in Fig. 3.8)

The algorithm just described does not work well in the case of recursive procedures. The
reason is that in the absence of recursion, it is guaranteed that a leaf procedure will be
encountered that can be solved completely and its information can be reflected to its caller.
In the case of recursion, the obtained information may be incomplete even if one processes
a procedure in its entirety.

Therefore, recursion must be detected upon calls. Then only the partial information is
reflected back to the call site and one does not descend into the (only partially solved)
procedure. Finally if a procedure has been processed entirely, its information is reflected
back on all its call sites. If the procedure has been part of a recursion chain, one has to
iterate over the set of procedures that were part of the recursion. An iteration over a
procedure P merely reflects the summary edges of all procedures Q that are called in P but
does not descend into Q. Iteration is performed over the set of procedures until no more
changes to the calculated information are found. At this point, all procedures of the
iteration set are solved. Fig. 3.10 shows the a sample program with recursion.

M A B.

A B D.

B C E.

C

=

=

=

= C A.

D = .

E = F.

F = .

Fig. 3.10 - Sample program abstraction

45Current Slicing Algorithms

Fig. 3.11 shows the call trace of the sample program of Fig. 3.10.

Compute(M)
call A => Compute(A)

call B => Compute(B)
call C => Compute(C)

call C => recursion detected (C)
<= partial information of C

reflected
call A => recursion detected

(A, B, C)
<= partial information of A

reflected
C partially solved

<= (partial) solution of C reflected
call E => Compute(E)

call F => Compute(F)
F solved

<= solution of F reflected
E solved

<= solution of E reflected
<= solution of B reflected

call D => Compute(D)
D solved

<= solution of D reflected
A partially solved
Iterate over all procedures of the recursion (A, B, C) until there are no changes

=> Iterate over A
<= reflect information of B and D

=> Iterate over B
<= reflect information of C and E

=> Iterate over C
<= reflect information of C and A

A, B and C are solved completely
<= complete information of A has been reflected to

all call sites of A
<= complete information of B has been reflected to

all call sites of B
<= complete information of C has been reflected to

all call sites of C
<= solution of A reflected

call B
<= solution of B reflected

M solved

Fig. 3.11 - Call trace of the computation of summary edges
for a program with recursion (shown in Fig. 3.10)

3.2.4 Enhancing Slicing Accuracy

Horwitz et al. [HoRB90] noted that some imprecision is introduced if parameter nodes are
generated for every parameter, regardless of whether it is changed by the called procedure
or not. They use interprocedural data flow analysis to compute the sets of non-local
variables and parameters that are used and modified by a procedure:

46 Current Slicing Algorithms

GMOD(P) is the set of non-local variables and parameters that might be modified by P

itself or by a procedure (transitively) called from P.
GREF(P) is the set of non-local variables and parameters that might be referenced by P

itself or by a procedure (transitively) called from P.

For each procedure P, there is one formal-in and one actual-in node for each variable or
parameter in GMOD(P) ∪ GREF(P), and there is one formal-out and one actual-out node for
each variable or parameter in GMOD(P).

Livadas et al. [LivC94, LivJ95] do not use interprocedural data flow analysis to derive
this information but rather derive it during the construction of the system dependence
graph. They further restrict the number of necessary parameter nodes depending on how the
parameters are used within the called procedure:

o When a reference parameter is never modified (i.e., there is no path where the
variable is defined), no formal-out and actual-out nodes are necessary.

o When a reference parameter is always modified (i.e., the variable is defined on every
path), formal-out and actual-out nodes are necessary. At the call-site, a killing
definition can be generated for the actual-out node.

o When a reference parameter is sometimes modified or when it is not known how it is
used, formal-out and actual-out nodes are necessary. At the call-site a non-killing
definition must be generated for the actual-out node.

o For value parameters no formal-out and actual-out nodes are necessary.

4 Implementation

This chapter describes the implementation of the Oberon Slicing Tool (OST), the
underlying data structures and the algorithms for the computation of control flow and data
flow information and for slicing itself. The computation of precise control flow and data
flow information is a prerequisite of precise interprocedural slicing. In fact, it is the most
difficult part, since slicing itself is simply a traversal of the computed dependences.

4.1 Overview

The OST (see [OST] for information about the OST, and [Ste98a, Ste98b] for a technical
description) can compute static backward slices of Oberon-2 programs. We did not restrict
the language in any kind which means that we had to cope with structured types (records
and arrays), global variables of any type, objects on the heap, side-effects of function calls,
nested procedures, recursion, dynamic binding due to type-bound procedures and
procedure variables, and modules.

The underlying data structures of the OST are the abstract syntax tree (AST) and the
symbol table constructed by the front-end of the Oberon compiler [Cre90]. Additional
information (such as control and data dependences) is added to the nodes of the syntax tree
and the symbol table. The nodes of the AST represent the program at a fine granularity, i.e.
one statement can consist of many nodes (function calls, operators, variable usages,
variable definitions, etc.). The target and origin of control and data dependences are nodes
of the AST, not whole statements. This allows for fine-grained slicing (cf. [Ern94]),
therefore we call our slicing method expression-oriented in contrast to statement-oriented
slicing.

Our slicing algorithm is based on the two-pass slicing algorithm of Horwitz et al.
[HoRB90] where slicing is seen as a graph-reachability problem. This algorithm uses
summary information at call sites to account for the calling context of procedures. We
compute the summary information by a variation of the algorithm of Livadas et al. [LivC94,
LivJ95]. In order to slice the program with respect to the starting node, the graph
representation of the program is traversed backwards from the starting node along control
and data dependence edges. All nodes that could be reached belong to the slice because
they potentially affect the starting node.

We extended the notion of interprocedural slicing to intermodular slicing. Information
that has been computed once can be stored and reused when slicing other modules that
import previously sliced modules. Furthermore, we support object-oriented features such as
inheritance, polymorphism, and dynamic binding. Since the construction of summary

48 Implementation

information at call sites is the most costly computation, it is worthwhile to cache this
information in a repository and to reuse as much information as possible from previous
computations.

Zhang and Ryder showed that alias analysis in the presence of procedure variables is
NP-hard in most cases [ZhR94]. This justifies to use safe approximations since exact
algorithms would be prohibitive for an interactive slicing tool where the maximal response
time must be in the order of seconds. In addition to conservative alias analysis we use
feedback from the user to compute more precise data flow information. The user can for
example restrict the dynamic type of polymorphic variables and thereby disable specific
destinations at polymorphic call sites. He can also restrict the sets of possible aliases at
definitions.

4.2 Algorithm

Before we can derive slices of a program, we have to build up a graph representation of the
program that closely models its semantics. We want to derive precise information about the
possible run-time executions of the program at compile time. This is not possible in
general, since the values of input parameters are not known, just as it is not known which
branches will be taken and how many times loops will be executed. But we can compute
information that is useful for debugging and necessary for slicing, e.g. we can derive the
call destinations of dynamically bound calls, as well as the usage of parameters and precise
reaching definitions.

The following outline shows the necessary steps to compute the information that is
necessary to perform slicing.

1) Build the abstract syntax tree and the symbol table of the program under
consideration.

2) Build its class hierarchy.

3) Compute its control flow information.
3.1) Compute the control dependences.
3.2) Link the call sites with all possible call destinations.

4) Compute its data flow information.
4.1) Compute the used and defined variables.

4.1.1) Compute the used and defined variables of each node and of each
procedure.

4.1.2) Compute the additional parameters of each procedure.
4.1.3) Add parameter edges between the actual and formal parameters.
4.1.4) Handle definitions of possible aliases.

4.2) Compute the reaching definitions.

49Implementation

4.2.1) Compute the definition sets of each variable.
4.2.2) Compute the gen/kill sets of each defining node.
4.2.3) Combine the gen/kill sets of the particular nodes to the gen/kill set of

statement sequences.
4.2.4) Compute the reaching definitions for each using node.
4.2.5) Compute the parameter usage information.
4.2.6) Compute the summary edges for each procedure.

The first step is accomplished by a slightly modified version of the front end of the
Oberon-2 compiler [Cre90]. The second step traverses the symbol table and collects for
each class all its direct extensions, as well as the set of all its fields. The third step
computes control flow information for each procedure of the program. This is explained in
Section 4.4. The fourth step computes data flow information for each procedure of the
program. This is explained in Section 4.5, where Section 4.5.1 describes the computation
of used and defined variables with definitions via assignments and reference parameters at
calls, definitions of record fields and array elements and handling of aliases. Section 4.5.2
describes the computation of reaching definitions by first computing the definition sets of
all variables and the gen/kill sets. Then we explain in detail the data flow equations adapted
for our fine-grained representation. Finally we describe the computation of the parameter
usage information and the computation of summary edges. Section 4.6 describes the
algorithms used for slicing itself. Section 4.7 explains how object-oriented features are
supported. Section 4.8 shows the modularization of the Oberon Slicing Tool and describes
the interfaces of the most important modules.

4.3 Data Structures

The underlying data structures of the OST are the abstract syntax tree and the symbol table
constructed by the front-end of the Oberon compiler (for a technical description see
[Cre90] and [Ste98a]). In the following we will explain the most important internal data
structures:

o Global and local variables, value and reference parameters, constants, record fields,
named types, all kinds of procedures, modules, and scopes are represented by objects
of type Object.

o Named and anonymous type structures are represented by objects of type Struct.

o Nodes of the abstract syntax tree are of type Node.

o Information about procedures is represented by objects of type ProcInfo.

We will not explain the auxiliar data structures Nodes, ObjArr, StructArr, Dependences,

SetArr, NodeArr, HashTable, Definitions, and AccessArr here (see [Ste98a] for details).

50 Implementation

The object declaration is as follows (fields added for slicing purposes are shown in bold
face):

Object = POINTER TO ObjDesc;
ObjDesc = RECORD

left, right: Object; (* for binary search tree structure *)
link, scope: Object; (* link for sequence of objects, declaring scope *)
name: OPS.Name; (* name of the object, under which it is found in the

binary search tree *)
mode: SHORTINT; (* Var for global or local variables and value parameters

VarPar for reference parameters
Con for constants
Fld for record fields
Typ for named types
LProc, XProc, SProc, TProc, CProc for local,

external, standard, type-bound, and code
procedures

Mod for modules
Head for scope anchors *)

vis: SHORTINT; (* internal, external, external read-only *)
typ: Struct; (* type of the object *)
...
nodes: Nodes; (* AST nodes that use or define the object *)
procInfo: ProcInfo; (* for procedure only: additional information,

see below *)
assignedToProcVar: BOOLEAN;
mark: SHORTINT; (* marked during slicing if slice.mark = obj.mark *)
level: SHORTINT; (* 0 for global scope, 1 for scope of local procedures,

etc. *)
mod: Object; (* containing module object *)
expanded: BOOLEAN; (* TRUE for arrays and records that have been

expanded for data flow analysis *)
components: ObjArr; (* expanded components: fields of a record or

elements of an array *)
...

END ;

The symbol table is organized as binary search trees that are linked together. Each scope
(global scope of a module, local scope of procedures) is represented by a scope anchor.
When looking up objects by name, the scopes are traversed from the innermost scope
outwards. Fig. 4.1 shows the scopes with the accessible objects for the local procedure
ProcessStatSeq of procedure Slicer.ControlFlow, beginning with the scope of local variables
of procedure ProcessStatSeq, then the scope of intermediate variables (declared in the outer
procedure ControlFlow) and finally the scope of global variables.

51Implementation

Head

LProc

scope

Head

XProc

ProcessStatSeq

ControlFlow

Var

Var Var

right (first object)

scope

(first variable)

left (nesting scope)

Head

link (owner)

Mod

Slicer

mode

name

rightleft scope

link

link (first parameter)

link (next parameter)

global

intermediate
variables

variables

Fig. 4.1 - Scope of accessible objects of procedure Slicer.ControlFlow.ProcessStatSeq

Named and anonymous types are described by records of type StrDesc (fields added for
slicing purposes are shown in bold face):

StrDesc = RECORD
form: SHORTINT; (* Undef, Byte, Bool, Char, SInt, Int, LInt, Real, LReal,

Set, String, NilTyp, NoTyp, Pointer, ProcTyp, Comp*)
comp: SHORTINT; (* Basic, Array, DynArr, Record *)
BaseTyp: Struct; (* extended type for records, element type for arrays,

base type for pointers, return type for procedures *)
link: Object; (* link for sequence of objects (parameter list or field

list) *)
strobj: Object; (* for named types: object, struct.strobj.typ = struct *)
...
mod: Object; (* containing module object *)
extensions: StructArr; (* direct extensions *)
fields: ObjArr; (* for records: all fields (including fields of base

classes) *)
mark: SHORTINT (* marked during slicing if slice.mark = str.mark *)
...

END ;

Oberon-2 allows single inheritance. Therefore each class can have at most one base class.
The field BaseTyp of a structure node is used to model the inheritance relationship in the
upwards direction. Additionally, each extending type is registered at the extended base
type. The field extensions of a structure holds all direct extensions of the type. The
following methods operate on the extension relation between classes:

PROCEDURE IsExtended (typ: Struct): BOOLEAN;
PROCEDURE FindMethod (name: ARRAY OF CHAR; typ: Struct): Object;
PROCEDURE FindOverriddenMethod (name: ARRAY OF CHAR; typ: Struct): Object;
PROCEDURE IsOverridden (name: ARRAY OF CHAR; typ: Struct): BOOLEAN;

52 Implementation

o IsExtended(t) returns TRUE if there are extensions of type t.
o FindMethod(n, t) returns the method object for the method with the name n of type t. If

such a method does not exist, it returns NIL.

o FindOverriddenMethod(n, t) returns the method object for the method with the name n

of type t or any subtype of t. If such a method does not exist, it returns NIL.

o IsOverridden(n, t) returns TRUE if any extension of type t overrides the method with
the name n.

The front end of the Oberon-2 compiler translates the source code into a binary tree of
elements of type Node, all having the same form (fields added for slicing purposes are
shown in bold face):

NodeDesc = RECORD
left, right: Node; (* for binary tree structure of the AST *)
link: Node; (* for sequence of nodes (statement sequence,

list of parameters) *)
class: SHORTINT; (* Nvar, Nvarpar,... Nifelse, Nwhile,... Nfpar,

NcallSite,... *)
subcl: SHORTINT; (* subclass, e.g. if class = Nassign: incfn, decfn,

newfn,... *)
...
typ: Struct; (* type of the node *)
obj: Object; (* e.g. for Nvar: used or defined object *)
conval: Const (* position in the source code or other constant

value *)
mark: SHORTINT; (* marked during slicing if slice.mark = node.mark *)
procInfo: ProcInfo; (* for procedure entry nodes: additional information *)
usedObjs: ObjArr; (* set of objects used at this node *)
definedObjs: ObjArr; (* set of objects defined at this node *)
dependences: Dependences; (* sets of dependences onto other nodes *)
gen, kill, in: SetArr; (* gen/kill and in sets of the node *)
choice: SetArr; (* set of enabled dynamic types *)
aliases: ObjArr; (* set of aliases *)
enabledAliases: SetArr; (* bitset of enabled aliases *)

END ;

The dependences between nodes are implemented by pointers from the target to the origin,
since they are traversed in this direction for backward slicing.

A ProcInfo object stores additional information about a procedure object:

ProcInfoDesc = RECORD
fpars: Node; (* list of formal parameter nodes (formal-in nodes and

formal-out nodes) *)
callSites: Node; (* list of actual call sites *)
calls: NodeArr; (* calls occurring in the described procedure *)
procExit: Node; (* procedure exit node *)
enter: Node; (* procedure entry node *)
procObj: Object; (* procedure or module object *)
in, out: SetArr; (* reaching definitions before first and after last

statement *)
objs: Objects; (* sets of used and defined variables *)
definitionsHT: HashTable; (* hash table of definitions *)
varDefs: Definitions; (* sets of killing and non-killing definitions per object *)
accesses: AccessArr; (* sets of variable uses and definitions *)

END ;

53Implementation

fpars is the list of formal parameter nodes:

o For ordinary input parameters (value parameters) there is a formal input parameter
node (node.class = Nfpar, node.subcl = inPar).

o For ordinary reference parameters (VAR parameters) there is a pair of two formal
parameter nodes which reference both the same object (node.class = Nfpar, node.subcl

is once inPar and once outPar).
o For additional parameters due to accessed global or intermediate variables there is a

pair of two formal parameter nodes which reference both the same object (node.class

= Nfpar, node.subcl is once additionalInPar and once additionalOutPar). At the call sites,
an additional actual parameter node (node.class = Nvarpar, node.subcl = additionalPar) is
added to the list of actual parameters of the call node. All these nodes refer to the
same symbol table entry for the parameter object.

callSites is the list of call sites calling this procedure (callSite.class = NcallSite). calls is an
array of all calls contained in this procedure (call.class IN {Ncall, Ndyncall}). Fig. 4.2 shows
the bidirectional call relation between procedures.

PROCEDURE Y;

END Y;

PROCEDURE X;

BEGIN

Y

END X;

caller (X) callee (Y)

calls

callSites

Fig. 4.2 - Bidirectional call relation between procedures

In Fig. 4.3, we show a procedure call with the list of actual parameter nodes and the called
procedure with the list of formal parameter nodes. Symbol table entries are shown in
rectangles with rounded corners.

54 Implementation

Ncall

Nproc Nvarpar Nconst

4

str

VarPar

XProc
Print

i

Par

Nfpar
inPar

Nfpar
outPar

Nfpar
inPar

Nfpar
additionalInPar

Nfpar
additionalOutPar

link
(= para-

globalWriter

Var

additional parameters

s

VarPar
Nvarpar

additionalPar

ordinary parameters

PROCEDURE Print* (VAR str: ARRAY OF CHAR; i: INTEGER);

...

Print(s, 4);

meters)

Fig. 4.3 - Procedure call with ordinary and additional parameters

procExit is the procedure exit node of this procedure (procExit.class = NprocExit). enter is the
entry node of this procedure (enter.class = Nenter), i.e. a reference to the syntax tree. procObj

is the procedure or module object (procObj.mode IN {LProc, XProc, CProc, TProc, Mod}), i.e. a
reference to the symbol table. in is the set of definitions that reach the first statement of the
procedure, out is the set of definitions that leave the last statement of the procedure. objs

provides access to two collections: the set of variables that are used by this procedure and
the set of variables that are defined by this procedure. definitionsHT is the hash table of
definitions (each definition in this procedure is entered in this hash table; the elements of
the gen and kill sets as well as the elements of the in and out sets are the indices of the
definitions within this hash table). varDefs is an array of triplets <o mustAssigns mayAssigns>

(representing the sets of killing definitions mustAssigns and the sets of all (killing or
non-killing) definitions mayAssigns of object o). accesses is an array of tuples <o n>

(representing an access to the object o at node n).

4.4 Computation of Control Flow Information

In Oberon-2, the computation of intraprocedural control flow information is - in most cases
- very easy, since Oberon-2 contains mainly constructs for structured control flow. The
control dependences therefore simply reflect the program's nesting structure. In Example
4.1 statements stat are control dependent on the guarding expressions expr. stat2 and stat3

55Implementation

are control dependent on expr2 which itself is again control dependent on expr.

Example 4.1:

IF expr THEN stat ELSIF expr2 THEN stat2 ELSE stat3 END ;
WHILE expr DO stat END ;

During slicing, we usually need to traverse the control dependences backwards, therefore,
they are implemented as pointers from the destination to the source (in the opposite
direction of the arrows of the figures in chapters 2 and 3). Fig. 4.4 shows the AST for the
code in Example 4.2. Every node has 5 pointers. left and right point to the sons of the node.
link points to the next statement in a statement sequence. Control dependences are drawn
with thick lines and big arrows, whereas the other pointers are drawn with thin lines and
small arrows. If a node refers to an object (e.g. Nvar, Nproc, and Nfield nodes), object points
to the respective symbol table entry (e.g., Read, val, p, left, and right). The upward pointer of
a node n points to the node on which n is control dependent.

Example 4.2:

Read(val);
p := tree;
WHILE (p # NIL) & (p.val # val) DO

IF val < p.val THEN p := p.left ELSE p := p.right END
END ;
RETURN p

Ndop
<

class

subclass

left right

link

object

Nvar

p

control

Nvar

p
Nvar

p

Nvar

p

Nvar

p

NderefNderef
Nderef

Nderef

Nvar

p

Nvar

p

Nvar

p

Nvar

p

Nvar

tree

Nvar

val

Nvar

val

Nvar

val

NreturnNwhileNassign

Nproc

Read

Ncall

Nenter

NassignNassign

Nfield

right

Nfield

left
Nfield

val

Nif

Nifelse

Nfield

val

Ndop
#

Ndop
#

Ndop
&

Nconst

NIL

dependence

Fig. 4.4 - AST of the statement sequence in Example 4.2 with control dependences

56 Implementation

We compute control dependences for a statement sequence by a recursively descending
traversal. Each statement is handled in an appropriate way described below. After a short
explanation of the language construct (usually given by a short quotation of the Oberon-2
language report [MöWi91]), a figure shows the syntax tree and control flow graph for a
piece of source code. We do not construct or use the control flow graphs, but only show
them to let the reader compare them with our representation. Finally, a table summarizes
the control dependences.

Assignment

Assignment nodes in the AST represent ordinary assignments but also built-in functions
such as NEW, INC, DEC, INCL, EXCL, COPY, SYSTEM.GET, SYSTEM.PUT, etc. No control
dependences are inserted for assignments.

IF

"If statements specify the conditional execution of guarded statement sequences. The
Boolean expression preceding a statement sequence is called its guard. The guards are
evaluated in sequence of occurrence, until one evaluates to TRUE, whereafter its associated
statement sequence is executed. If no guard is satisfied, the statement sequence following
the symbol ELSE is executed, if there is one."

Example 4.3:

IF expr1 THEN stat1
ELSIF expr2 THEN stat2
ELSIF expr3 THEN stat3
ELSE stat4
END

Nifelse

Nif

Nif

Nif

expr3 stat3

NIL

expr2 stat2

expr1 stat1

stat4

expr1

stat1 expr2

stat2 expr3

stat3 stat4

T F

T F

T F

Syntax Tree Control Flow Graph

1

2

2

23

3

3
4

4

5

Fig. 4.5 - Syntax tree and control flow graph for an IF statement

57Implementation

We insert a control dependence labeled 1 from the Nif node of the first alternative to the
statement node (Nifelse node). The control dependences labeled 2 point from the root of the
expression trees to the Nif node. They are the destinations of the control dependences from
the directly nested statements (labeled 3) and from the Nif node that represents the next
alternative (labeled 4). The directly nested statements of the ELSE branch have also control
dependences (labeled 5) on the last test. When slicing for stat2 of Example 4.3, stat2, expr2,
the guarding Nif node, expr1, the guarding Nif node and the Nifelse node would be reached
via control dependences. Table 4.1 summarizes these control dependences.

5 directly nested statements of ELSE last expr

4 following Nif (representing ELSIF) expr of preceding Nif

3 directly nested statements of THEN guarding expr of Nif

2 expr of Nif Nif

1 Nif Nifelse

From To

Table 4.1 - Control dependences of an IF statement

CASE

"Case statements specify the selection and execution of a statement sequence according to
the value of an expression. First the case expression is evaluated, then that statement
sequence is executed whose case label list contains the obtained value. The case expression
must either be of an integer type that includes the types of all case labels, or both the case
expression and the case labels must be of type CHAR. Case labels are constants, and no
value must occur more than once. If the value of the expression does not occur as a label of
any case, the statement sequence following the symbol ELSE is selected, if there is one,
otherwise the program is aborted."

Example 4.4:

CASE expr OF
case1: stat1

| case2: stat2
ELSE stat3
END

58 Implementation

Ncaselse

stat3

expr

Ncase

Ncasedo

stat1

Ncasedo

stat2

expr

stat1 stat2 stat3

Syntax Tree Control Flow Graph

1

2 2

3

case1

case2

case1 case2 else

Fig. 4.6 - Syntax tree and control flow graph of a CASE statement

We insert a control dependence labeled 1 from the root of the expression of the CASE

statement to the statement node (Ncase node). There are control dependences from the
directly nested statements of all alternatives (labeled 2) and of the ELSE branch (labeled 3)
to the expression of the CASE statement. Table 4.2 summarizes these control dependences.

3 directly nested statements of ELSE expr of Ncase

2 directly nested statements of Ncasedo expr of Ncase

1 expr of Ncase Ncase

From To

Table 4.2 - Control dependences of a CASE statement

WITH

"With statements execute a statement sequence depending on the result of a type test and
apply a type guard to every occurrence of the tested variable within this statement
sequence."

Example 4.5:

WITH test1 DO stat1
| test2 DO stat2
ELSE stat3
END

59Implementation

Nwith

Nif

Nif

test1

stat1 test2

stat2 stat3

T F

T F
stat3

stat2

stat1

Syntax Tree Control Flow Graph

1

2

2

3, 4

3, 5

test1

test2

Fig. 4.7 - Syntax tree and control flow graph of a WITH statement

We insert a control dependence labeled 1 from the Nif node of the first alternative to the
statement node (Nwith node). The control dependences labeled 2 point from the root of the
expression trees to the Nif node. They are the destinations of the control dependences from
the directly nested statements (labeled 3) and from the Nif node that represents the next
alternative (labeled 4). The directly nested statements of the ELSE branch also have control
dependences (labeled 5) on the last test. Table 4.3 summarizes these control dependences.

5 directly nested statements of ELSE last expr

4 following Nif expr of preceding Nif

3 directly nested statements of alternative guarding expr of Nif

2 expr of Nif Nif

1 Nif Nwith

From To

Table 4.3 - Control dependences of an WITH statement

WHILE

"While statements specify the repeated execution of a statement sequence while the
Boolean expression (its guard) yields TRUE. The guard is checked before every execution
of the statement sequence."

Example 4.6:

WHILE expr DO
stat

END

60 Implementation

Nwhile
nextstat

expr

stat nextstat

T F

Syntax Tree Control Flow Graph

1

2

T

3

expr stat

Fig. 4.8 - Syntax tree and control flow graph of a WHILE statement

We insert a control dependence labeled 1 from the root of the expression to the statement
node (Nwhile node). There are control dependences from the directly nested statements
(labeled 2) to the expression. The control dependence labeled 3 points from the statement
node back to the root of the expression. Table 4.4 summarizes these control dependences.

3 Nwhile expr of Nwhile

2 directly nested statements of Nwhile expr of Nwhile

1 expr of Nwhile Nwhile

From To

Table 4.4 - Control dependences of a WHILE statement

REPEAT

"A repeat statement specifies the repeated execution of a statement sequence until a
condition specified by a Boolean expression is satisfied. The statement sequence is
executed at least once."

Example 4.7:

REPEAT
stat

UNTIL expr

Nrepeat
nextstat

Nrepeat

stat expr

T
F

next stat

Syntax Tree Control Flow Graph

12

3

stat expr

Fig. 4.9 - Syntax tree and control flow graph of a REPEAT statement

We insert a control dependence labeled 1 from the root of the expression to the statement
node (Nrepeat node). There are control dependences from the directly nested statements
(labeled 2) to the statement node. The control dependence labeled 3 points from the
statement node back to the root of the expression. Table 4.5 summarizes these control
dependences.

61Implementation

3 Nrepeat expr of Nrepeat

2 directly nested statements of Nrepeat Nrepeat

1 expr of Nrepeat Nrepeat

From To

Table 4.5 - Control dependences of a REPEAT statement

FOR

"A for statement specifies the repeated execution of a statement sequence while a
progression of values is assigned to an integer variable called the control variable of the for
statement."

Since the FOR statement is represented internally by an equivalent WHILE statement, we do
not have to treat it specially.

Call

"A procedure call activates a procedure. It may contain a list of actual parameters which
replace the corresponding formal parameters defined in the procedure declaration."

Procedure calls occur at the statement level. They represent transfers of control from the
call site to the called procedure. In order to represent this transfer of control, the AST
contains references from the call sites (Ncall nodes) to the symbol table entries of the
destination of the call (procedure object which has a reference to its Nenter node).

Functions are procedures that return a result value. Function calls can be used as
factors in expressions. On the other hand, expressions can be used at various places in
Oberon programs, e.g. as operands, as parameters of procedure or function calls, as the
return value of functions, and in the expressions of IF, CASE, WHILE, REPEAT, and FOR

statements.

Example 4.8:

PROCEDURE Print* (VAR str: ARRAY OF CHAR; i: INTEGER);
...

Print(s, 4);

62 Implementation

Ncall
nextstat

Nproc Nvarpar Nconst

Ncall

Nenter

Syntax Tree Control Flow Graph

Print 4s

Nenter

NprocExit

NprocExit

nextstat

1 1

3

4

ProcInfo Nfpar

inparstr

Nfpar

outpar

Nfpar

inpari

Fig. 4.10 - Syntax tree and control flow graph for a call statement

We insert control dependences labeled 1 from the actual parameters to the Ncall node. If the
call is a function call (Ncall.typ # NoTyp), there is a control dependence labeled 2 from the
Ncall node to the statement node. The control dependence labeled 3 from the Nenter node of
the called procedure to the call node and the control dependence labeled 4 from the next
statement to the procedure exit node of the called procedure are not represented explicitly,
but are handled implicitly by the interprocedural slicing algorithm. Table 4.6 summarizes
these control dependences.

4 next statement NprocExit node of called procedure

3 Nenter node of called procedure Ncall

2 for function calls: Ncall statement node

1 actual parameters Ncall

From To

Table 4.6 - Control dependences of a call

For dynamically bound calls, Ndyncall nodes are used to represent all possible call
destinations. Links are inserted from the actual Ncall node to all call destinations (Ndyncall

nodes). Each of these links can be enabled or disabled via user interaction. Fig. 4.11 shows
a call site of a procedure variable whose call destinations have been computed. Of the two
call destinations P and Q only Q is enabled, P has been disabled via user interaction (see
Section 5.2).

63Implementation

Ncall

Ndyncall

Nvar

Ndyncall

Nvar

objectproc

Q

P

AST node

left rightobj

object

left rightobj

link

o

o

o

dyncalls

(enabled or
disabled)

PROCEDURE P (o: Object);

PROCEDURE Q (o: Object);

call site: proc(object)

Fig. 4.11 - Dynamically bound procedure call with Ndyncall nodes

The set of possible call destinations is computed as follows:

o For method calls, one can distinguish between methods that can be bound statically
and methods that must be bound dynamically.
* If the receiver of a method call is a monomorphic variable (a variable that will

always refer to objects of the same class at run time) and the called method can be
determined at compile time (e.g. by Class Hierarchy Analysis [DGC94]), it can be
bound statically. In Oberon-2, the type of the actual receiver can be a record or a
pointer: Pointers can in general refer to different objects at run time, whereas
records can refer to different objects at run time only if they are VAR parameters
(reference parameters); receivers of a record type that are not VAR parameters (e.g.
locally declared records) are known to be monomorphic.

* One can bind method calls statically, if one can guarantee at compile time that
there is only one call destination (this corresponds to an empty Override set of the
method in the terms of [Bac97]). Since the analyzed programs are usually
incomplete programs, one can guarantee this only in the following case: If the
record type is not exported and one determines only one call destination, then this
call destination will always remain the only one since the record type cannot be
extended in another module.

* Otherwise, one has to find all possible destinations of the calls. These are simply
the methods of the statically known class of the receiver and all subclasses (this is
a conservative assumption and can be improved by fast techniques such as Rapid

Type Analysis [Bac97] or by other flow-sensitive techniques [PaR93]). One can
either determine all call destinations (e.g. if the record type is not exported, but
there are several destinations because the record type has been extended within the
same module several times and the method has been overridden more than once)
or not (e.g. if the record type has been exported and will potentially be extended in

64 Implementation

other modules).

o For calls of procedure variables, one can either determine the set of possible
destinations by flow-sensitive analysis (e.g. by propagating the assigned procedures
along all possible paths in the invocation graph [EGH94]) or one can approximate the
set of possible destinations (which can be done much faster) with the following
restrictions:
1. A procedure must be assigned somewhere to a procedure variable. Otherwise it

can never be the destination of a call via a procedure variable.
2. The type of the procedure and the type of the procedure variable must match. This

depends on the semantics of the programming language. In Oberon-2, two
parameter lists only match if (see [MöWi91]),
a) they have the same number of parameters, and
b) they have either the same function result type or none, and
c) parameters at corresponding positions have equal types, and
d) parameters at corresponding positions are both either value or reference

parameters.

RETURN

"A return statement indicates the termination of a procedure. It is denoted by the symbol
RETURN, followed by an expression if the procedure is a function procedure. The type of
the expression must be assignment compatible with the result type specified in the
procedure heading.
Function procedures must be left via a return statement indicating the result value. In
proper procedures, a return statement is implied by the end of the procedure body. Any
explicit return statement therefore appears as an additional (probably exceptional)
termination point."

Nreturn

Nenter

Syntax Tree Control Flow Graph

Nenter

NprocExit

NprocExit

Nreturn

Nreturn Nreturn

2 2
expr

1

expr

1

Fig. 4.12 - Syntax tree and control flow graph of a RETURN statement

65Implementation

We insert control dependences labeled 1 from the roots of the expressions to the statement
node (Nreturn node), if the RETURN statement appears in a function procedure. The control
dependences labeled 2 point from the procedure exit node to all Nreturn nodes of the
procedure. Table 4.7 summarizes these control dependences.

2 NprocExit Nreturn

1 expr of Nreturn Nreturn

From To

Table 4.7 - Control dependences of a RETURN statement

LOOP / EXIT

"A loop statement specifies the repeated execution of a statement sequence. It is terminated
upon execution of an exit statement within that sequence."
"An exit statement is denoted by the symbol EXIT. It specifies termination of the enclosing
loop statement and continuation with the statement following that loop statement. Exit
statements are contextually, although not syntactically associated with the loop statement
which contains them."

Example 4.9:

LOOP
stat1
IF expr THEN EXIT END ;
stat2

END

Nloop
nextstat

Nifelse

Nif

Nexit

loop

stat1

expr

exit

stat2

next stat

F

Syntax Tree Control Flow Graph

NloopExit

1

1 1

2

Tstat2

expr

stat1

Fig. 4.13 - Syntax tree and control flow graph of a LOOP statement

We insert control dependences labeled 1 from the directly nested statements to the
statement node (Nloop node). The control dependences labeled 2 point from the loop exit
node to all Nexit nodes of the LOOP. Table 4.8 summarizes these control dependences.

66 Implementation

2 NloopExit Nexit

1 directly nested statements of Nloop Nloop

From To

Table 4.8 - Control dependences of a LOOP statement

Whenever an exit node is encountered, a control dependence is inserted from the loop exit
node of the enclosing loop to the exit node.

ASSERT and HALT

HALT statements explicitly terminate the program. ASSERT statements test a Boolean
expression at run time. If this expression is not TRUE, the program is terminated. On the
other hand, run-time type checks are performed as type tests, type guards, and as part of the
WITH-statement and the assignment statement (when assigning to a VAR-record parameter).
If these run-time type checks fail, the program is also terminated. In the AST, the HALT

statement is represented by a Ntrap node, the ASSERT statement is resolved by an IF

statement (e.g., ASSERT(b, 55) corresponds to IF ~b THEN HALT(55) END). Control
dependences are inserted from the (global) halt node to all trap nodes of the program.

Other Sources for Traps

Other sources for traps are not handled; these include "division by 0", dereferencing a
NIL-pointer, heap overflow, FPU error etc.

4.5 Computation of Data Flow Information

The goal of data flow analysis is precise information about which variable definitions reach
which points in the program, i.e. we want to derive information about the flow of data at
run time by static analysis. Conservative assumptions must be taken if the program uses
conditional branches and iteration since we do not know at compile time which branches
will be taken at run time and how many iterations there will be.

We insert data dependence edges from a node n1 to a node n2 of the syntax tree of the

program iff all of the following conditions hold (similar to the definition of [HoRB90]):

1) n1 defines variable x.
2) n2 uses x.
3) Control can reach n2 after n1 via a path along which there is no intervening definition

of x.

Additionally, we insert data dependence edges because of the fine granularity of our
program representation

67Implementation

1) for assignment statements from the definition node on the left-hand side to all usage
nodes and function call nodes of the statement,

2) for expressions of conditional and iterative statements from the guarding AST nodes
(e.g., Nif, Nwhile, Nrepeat) to all usage nodes and function call nodes within the
expression tree.

In Fig. 4.14, we show the AST of the statement sequence in Example 4.10 with encircled
definitions of variables and data dependences labeled DD to the reaching definitions. The
left-hand side of an assignment statement (i.e. variable j of the last statement) is data
dependent on all used variables of the right-hand side of the assignment (in this case
variable i). These variable nodes on the right-hand side are again data dependent on all
reaching definitions. Nif nodes are data dependent on all variable usage nodes in the
expression sub-tree.

Example 4.10:

Read(i);
IF i < 0 THEN i := -i END ;
j := i * 3;

Ndop
<

Nvar

Nvar

i

Nassign

Nproc

Read

Ncall

Nassign

Nconst

0

Nif

Nifelse

i

Nvar Nmop
-

Nvar

i

Nvar Ndop

*

Nvar

i

Nconst

3

i

j

DD

DD

DD

DD

DD

DD

Fig. 4.14 - AST of the statement sequence in Example 4.10
with encircled definitions of variables, and data dependences (DD)

4.5.1 Computation of Used and Defined Variables

Before we can compute reaching definitions, we first have to determine the exact sets of
used and defined variables of a procedure. We perform this in the following way:

1) First we compute the used and defined variables per node in the AST. This information
is also collected for the whole procedure. A procedure may use and define a subset of
the variables of its scope (including the additional parameters, see Section 4.2).

2) When we encounter a procedure call, we append additional formal parameter nodes for
accessed intermediate and global variables to the list of formal parameters of the calling

68 Implementation

procedure and corresponding additional actual parameter nodes to the list of actual
parameters at the call site. We add control and data dependences for the actual parameter
nodes and edges for parameter passing.

3) Finally, we handle aliases by inserting non-killing definitions of all possible aliases at
definition nodes.

We compute this information for one procedure at a time. We handle recursion due to static
and dynamic binding similar to the way described in Section 3.2.3.

Definition via Assignments

When a variable is defined by an assignment statement, the AST node representing the
definition of the variable (in the following often called defining node) is given a new value
by evaluating the right-hand side. It is data dependent on all variables and function calls
whose values are used to compute the new value as illustrated by Fig. 4.15. Summary
edges lead from the function call nodes to the input parameters that contribute to the return
value of the function. The nodes upon which the variable is data dependent are collected by
a top-down traversal of the sub-trees. The definition of the variable on the left-hand side is
considered to be a killing definition. Additionally, non-killing definitions are generated for
all variables that may be aliases of the defined variable. In Fig. 4.15, the left-hand side of
the assignment is data dependent on the variable usage node of m and on the function call
node of Sum on the right-hand side. The function call node of Sum has summary edges to
both parameters i and j.

Nassign

Nvar Ndop

+
sum

Nvar
m
DD DD

sum := m + Sum(i, j)

Ncall

Nproc Nvarpar Nvar
Sum i j

summary edges

Fig. 4.15 - Data dependences for an assignment statement

Definition via Reference Parameters at Calls

There are several complications that have to be considered at a call site: First, a call may be
bound statically or dynamically. Second, a call has ordinary parameters (as declared in the
parameter list of the procedure) and additional parameters (see Fig. 4.3).

69Implementation

We combine the parameter usage information over all enabled call destinations in the
following way:

o If a formal parameter is used by any of the call destinations, the value of the actual
parameter is assumed to be used at the call site.

o If a formal reference parameter is defined by any of the call destinations (at least on
some path), the actual parameter is assumed to be non-killingly defined at the call
site.

o If a formal reference parameter is defined by all call destinations on all paths, the
definition of the actual parameter is a killing definition instead of a non-killing
definition.

o If the parameter usage information about a call destination is not available (e.g.
because the procedure is a library function that cannot be processed because we do
not have its source code), we have to take conservative assumptions: all parameters
are assumed to be used, all reference parameters are assumed to be non-killingly
defined.

If a formal parameter is assumed to be used, we traverse the expression tree at the call and
insert data dependences from the variables and function calls used in the expression tree to
all reaching definitions. When a formal reference parameter is modified, a definition is
generated for the corresponding actual parameter. Since killing definitions lead to a more
precise data flow information than non-killing definitions, we use the parameter usage
information in order to generate as few definitions as possible, and if unavoidable as many
killing definitions as possible, see Table 4.9:

defined on some control flow paths non-killing definition

defined on all control flow paths killing definition

not defined no definition at all

Usage of Formal Reference Parameter Kind of Definition of Corresponding Actual Parameter

Table 4.9 - Definitions via reference parameters

Definition of Records and Record Fields

Records can be seen as a whole or as the sum of their fields. Likewise, the definition of a
record can be seen as a definition of the whole record or as the definition of all its fields.
The symbol table stores structural information about records and their fields. Fig. 4.16
shows the symbol table objects for the declarations in Example 4.11. Variables s and t have
the same type, they refer to the same structure node. The record fields s.i, and t.i are
combined to the field T.i. This has the consequence that when field s.i is defined, field t.i is
also considered to be defined.

Example 4.11:

TYPE T = RECORD i, j: INTEGER END ;
VAR s, t: T;

70 Implementation

s

Var

Var

t

Comp

Record

Fld

i

Fld

j

Int

Basic

Typ

T

Typ

INTEGER

strobj typ

strobj typ

typ

typ

typ typ

link link

Object mode

name

form

comp

Structure

link

link

typ

nodes:

nodes:

structure object

Legend

Fig. 4.16 - Symbol table entries for records and their fields

As outlined in Section 2.2.2, assignment to a record field is unambiguous as long as the
address of the record is known at compile time and as long as there are no aliases. We can
exclude the existence for aliases only for locally declared records. For VAR parameter
records and for records that are allocated on the heap, aliases may exist. Therefore, we treat
locally declared records in a different way than other records.

We expand locally declared records by copying the list of fields (including their base
class fields) for each record. The nodes of the abstract syntax tree that formerly accessed
the common fields T.i and T.j are patched to access the expanded fields s.i, s.j, t.i and t.j.
Access to expanded records is handled as follows:

o For a killing/non-killing definition of the record (e.g. "s := ..."), we insert a
killing/non-killing definition of the entire record (i.e. the symbol table object for s)
and killing/non-killing definitions of all its expanded fields (i.e. the symbol table
objects for s.i and s.j).

o For a use of the record (e.g. "... := s"), we insert a use of the entire record (i.e. s) and
uses of all its expanded fields (i.e. s.i and s.j).

o For a killing/non-killing definition of a record field (e.g. "s.i := ..."), we insert a
killing/non-killing definition of the expanded field (i.e. s.i) and a non-killing
definition of the entire record (i.e. s), since the enclosing record is changed by the
assignment.

o For a use of a record field (e.g. "... := s.i"), we insert a use of the expanded field (i.e.
s.i).

71Implementation

Example 4.12 illustrates the handling of access to expanded records. Note that there are
different symbol table objects for the fields s.i and t.i.

Example 4.12:

PROCEDURE ExpandedRecords;
TYPE

T0 = RECORD END ;
T2 = RECORD i, j: INTEGER END ;

VAR s0, t0: T0; s, t: T2; i: INTEGER;
BEGIN

s0 := t0; (* rhs: use of t0, t0.i, and t0.j; initial definitions are reaching
lhs: killing definition of s0, s0.i, and s0.j *)

t0 := s0; (* rhs: use of s0, s0.i, and s0.j; previous definitions are reaching
lhs: killing definition of t0, t0.i, and t0.j *)

i := s.i; (* rhs: use of s.i, initial definition of s.i is reaching *)
s.i := 0; (* lhs: killing definition of s.i, non-killing definition of s *)
s := t; (* rhs: use of t, t.i, and t.j; initial definitions are reaching

lhs: killing definition of s, s.i, and s.j; previous definition of s.i is killed *)
s.i := 1; (* lhs: killing definition of s.i, non-killing definition of s *)
t.i := 1; (* lhs: killing definition of t.i, non-killing definition of t *)
s.j := 2; (* lhs: killing definition of s.j, non-killing definition of s *)
i := s.i + s.j + t.i; (* rhs: use of s.i, s.j and t.i, only last three definitions of fields are

reaching *)
t := s (* rhs: use of s, s.i, and s.j; last definitions of s.i and s.j are reaching.

The definitions due to record assignment s := t are no longer reaching
since all fields have been killingly defined.
lhs: killing definition of t, t.i, and t.j *)

END ExpandedRecords;

We do not expand all other records. Since the fields of those other records are combined by
the fields of the record type, the definitions of the fields must no longer be killing. Access
to non-expanded records is handled as follows:

o For a killing/non-killing definition of the record (e.g. "s := ..."), we insert a
killing/non-killing definition of the entire record (i.e. s) and non-killing definitions of
all fields of the record type (including base class fields; i.e. T.i and T.j), since the
fields are changed by the assignment.

o For a use of the record (e.g. "... := s"), we insert a use of the entire record (i.e. s).
o For a killing/non-killing definition of a record field (e.g. "s.i := ..."), we insert a

non-killing definition of the field of the record type (i.e. T.i) and a non-killing
definition of the entire record (i.e. s), since the enclosing record is changed by the
assignment.

o For a use of a record field (e.g. "... := s.i"), we insert a use of the field of the record
type (i.e. T.i).

72 Implementation

Example 4.13 illustrates the handling of non-expanded records.

Example 4.13:

TYPE T = RECORD i, j: INTEGER END ;

PROCEDURE NonExpandedRecords (VAR s, t: T);
VAR i: INTEGER;

BEGIN
i := s.i; (* rhs: use of T.i, initial definition of T.i is reaching *)
s.i := 0; (* lhs: non-killing definition of T.i and s,

lhs: non-killing definition of t (possible alias) *)
s := t; (* rhs: use of t;

lhs: killing definition of s, non-killing definition of T.i and T.j, previous
definition of T.i is not killed
lhs: non-killing definition of t (possible alias) *)

s.i := 1; (* lhs: non-killing definition of T.i and s
lhs: non-killing definition of t (possible alias) *)

t.i := 1; (* lhs: non-killing definition of T.i and t
lhs: non-killing definition of s (possible alias) *)

s.j := 2; (* lhs: non-killing definition of T.j and s
lhs: non-killing definition of t (possible alias) *)

i := s.i + s.j + t.i; (* rhs: use of T.i, T.j and T.i, all definitions of fields (including initial
definitions) are reaching *)

t := s (* rhs: use of s, all definitions of record fields and records are reaching
lhs: killing definition of t, non-killing definition of T.i and T.j,
lhs: non-killing definition of s (possible alias) *)

END NonExpandedRecords;

Definition of Arrays and Array Elements

Arrays can be seen as a whole or as the sum of their elements. Likewise, the definition of
an array can be seen as a definition of the whole array or as the definition of all its
elements. As outlined in Section 2.2.2, assignments of array elements can be treated as both
an assignment and a use of the entire array. This leads to non-killing definitions of the
entire array for assignments to array elements. However, if the position of the element
within the array is known, the particular array element can be changed and used.

We expand local arrays (including value parameters) of basic types up to a
user-configurable size. The nodes of the abstract syntax tree that formerly accessed an array
element at a constant position are patched to access the expanded array element. Access to
expanded arrays is handled as follows:

o For a killing/non-killing definition of the array (e.g. "a1 := ..."), we insert
killing/non-killing definitions of all its expanded elements (i.e. a1[0] and a1[1]).

o For a use of the array (e.g. "... := a1"), we insert uses of all its expanded elements (i.e.
a1[0] and a1[1]).

o For a killing/non-killing definition of an array element at a constant position (e.g.
"a1[0] := ..."), we insert a killing/non-killing definition of the expanded element (i.e.
a1[0]).

o For a killing/non-killing definition of an array element at an arbitrary position(e.g.
"a1[i] := ..."), we insert non-killing definitions of all expanded elements (i.e. a1[0] and

73Implementation

a1[1]), since any of them may be changed.
o For a use of an array element at a constant position (e.g. "... := a1[0]"), we insert a use

of the expanded array element (i.e. a1[0]).
o For a use of an array element at an arbitrary position (e.g. "... := a1[i]"), we insert uses

of all its expanded elements (i.e. a1[0] and a1[1]).

Example 4.14 illustrates the handling of access to expanded arrays.

Example 4.14:

PROCEDURE ExpandedArrays;
VAR a1, a2: ARRAY 2 OF INTEGER; i: INTEGER;

BEGIN
a1[0] := 0; (* killing definition of a1[0] *)
a1[1] := 1; (* killing definition of a1[1] *)
a2[0] := 2; (* killing definition of a2[0] *)
a2[1] := 3; (* killing definition of a2[1] *)
a2[i] := 4; (* non-killing definition of a2[0] and a2[1] *)
i := a1[0] + a2[1]; (* first definition reaches a1[0], fourth and fifth definitions reach a2[1] *)
a1 := a2; (* the three definitions for a2 are reaching,

kills definitions for a1[0] and a1[1] *)
a2[0] := a1[1] (* use of definition due to last assignment to a1*)

END ExpandedArrays;

We do not expand arrays that are either too big or whose elements are of a structured type.
Access to non-expanded arrays is handled as follows:

o For a killing/non-killing definition of the array (e.g. "a1 := ..."), we insert a
killing/non-killing definition of the entire array (i.e. a1).

o For a use of the array (e.g. "... := a1"), we insert a use of the array (i.e. a1).
o For a killing/non-killing definition of an array element (e.g. "a1[0] := ..."), we insert a

non-killing definition of the array (i.e. a1).
o For a use of an array element (e.g. "... := a1[0]"), we insert a use of the array (i.e. a1).

Example 4.15 illustrates the handling of access to non-expanded arrays. The default limit
for array expansion is 256 elements.

Example 4.15:

PROCEDURE NonExpandedArrays;
VAR a1, a2: ARRAY 1000 OF INTEGER; i: INTEGER;

BEGIN
a1[0] := 0; (* non-killing definition of a1 *)
a1[1] := 1; (* non-killing definition of a1 *)
a2[0] := 2; (* non-killing definition of a2 *)
a2[1] := 3; (* non-killing definition of a2 *)
a2[i] := 4; (* non-killing definition of a2 *)
i := a1[0] + a2[1]; (* use of all previous definitions (including initial definitions) *)
a1 := a2; (* use of all definitions of a2 (including initial ones),

kills definitions for a1 *)
a2[0] := a1[1] (* use of definition due to last assignment *)

END NonExpandedArrays;

74 Implementation

Handling of Aliases

Two variables a and b are aliases if they refer to the same memory cell. Zhang and Ryder
showed that alias analysis in the presence of procedure variables is NP-hard in most cases
[ZhR94]. Exact determination of the sets of variables that are aliases is not possible under
the timing restrictions for an interactive tool where the maximum response time must be in
the order of seconds. However, less precise information can be computed much faster. The
least precise alias information would be that any two variables may be aliases. In the
following we will show how we can use type information and information about the place
of the declaration of the variable in order to restrict the sets of possible aliases. Finally, we
allow feedback from the user to restrict the sets of possible aliases.

When computing the sets of possible aliases for a procedure, we start with the set S of
accessible objects. These include the local variables and parameters, as well as intermediate
and global variables, and additional parameters. When a variable a ∈ S is defined, all other
variables b ∈ S may also be changed. This means that the value of b is either affected by the
definition of a (if a and b are aliases) or not (if a and b are not aliases).

Since Oberon-2 is a statically typed programming language with strong type checking,
we can use type information in order to restrict the set of possible aliases of a. The type
system guarantees that the memory of a variable of type T can only be accessed via
variables of type T. This means that two variables a and b may only refer to the same
memory cell if they have the same type [MöWi91]. In Example 4.16, the set S of accessible
objects of procedure X contains the elements global, i, j, and x. For the assignment to i, all
other objects of S with the same type (i.e., global and j) might be changed. Since the type of
x (LONGINT) and the type of i (INTEGER) are not the same, x and i cannot be aliases. For the
assignment of x there are no possible aliases.

Example 4.16:

MODULE Aliases;

VAR global: INTEGER;

PROCEDURE X (VAR i: INTEGER);
VAR j: INTEGER; x: LONGINT;

BEGIN
i := 0; (* global and j may be changed, too *)
x := i + j

END X;

END Aliases.

However, the sets of possible aliases is still too big, since i and j may never be aliases. We
can deduce that if we consider where the two variables are declared. Therefore, we first
recapitulate the different possibilities for declaring variables:

o Global variables are declared at the module level. They reside within the block of
global data of a module. They are also called static data, since they are allocated
when the module is loaded and they stay in memory until the module is unloaded.

75Implementation

Each global variable is allocated at a different address, no two global variables may
refer to the same memory cell. They are accessible from anywhere within the
declaring module. Additionally, they may be exported by the declaring module and
imported into other modules. This export can be either read-only or read/write
(thereby granting the importing module full access to the object).

o Local variables are declared within a procedure. They are allocated for each
activation of a procedure (in most implementations on the stack). Each local variable
is allocated at a different address, no two local variables may refer to the same
memory cell. They are also called automatic data, since they are allocated when the
procedure is called and their memory is automatically reclaimed when the procedure
returns. They are only accessible within the declaring procedure and procedures that
are nested within the declaring procedure.

o Intermediate variables are local variables of a procedure P that are accessed from
within a procedure Q that is nested in P. When regarding these variables from
procedure P, they are ordinary local variables, when regarding them from procedure
Q, they are intermediate variables, since they are neither local to Q, nor global, but
intermediate.

o Objects and arrays may be allocated on the heap. They are referenced by and
accessible via pointer variables. Two pointers may reference the same object. Heap
data is also called dynamic data, since it is allocated on demand (by a NEW

statement) and its memory is automatically reclaimed by the garbage collector when
it is no longer referenced.

There are two kinds of parameters in Oberon-2:

o Value parameters can be considered as local variables where the values of the
expressions at the call sites are used as initial values of the formal parameters.
Memory is automatically allocated and reclaimed as for local variables.

o Reference parameters can be considered as additional names for the actual
parameters. No new memory is allocated for reference parameters. Reference
parameters are the main source of aliases in Oberon-2.

With the information about the place of the declaration of a variable, one can restrict the
sets of possible aliases. Table 4.10 contains one row and one column for local variables
(including local value parameters), global read-only variables of imported modules,
intermediate variables (including intermediate value parameters), global variables of the
module under consideration, and global variables of imported modules that have been
exported without access restrictions, and reference parameters. In each cell of the table,
"no" indicates that two objects o1 (row) and o2 (column) may not be aliases, whereas "yes"
indicates that the two objects may be aliases. The table is symmetric, i.e. Cell(x1, y1) =
Cell(y1, x1).

76 Implementation

(6) reference par no no yes yes yes yes

(5) global var (other mod.), r/w no no no no no yes

(4) global var (this mod.) no no no no no yes

(3) intermediate var no no no no no yes

(2) global var (other mod.), read-only no no no no no no

(1) local var no no no no no no

o1 \ o2 (1) (2) (3) (4) (5) (6)

Table 4.10 - Possible aliases

Local variables, intermediate and global variables may never be aliases since they are
allocated at different addresses. Reference parameters are aliases of their actual parameters.
At the call site, intermediate variables with smaller nesting level ("yes" in last column of
row 3 in Table 4.10, see Example 4.17), global variables without access restrictions (rows
4 and 5 in Table 4.10), and other reference parameters with smaller nesting level (row 6 in
Table 4.10) may be used as actual parameters.

Example 4.17:

MODULE Aliases;

PROCEDURE X;
VAR i: INTEGER;

PROCEDURE Local (VAR j: INTEGER); (* The reference parameter j is an alias of the
intermediate variable i. *)

VAR x: LONGINT;
BEGIN

j := 0; (* i is changed, too *)
x := i + j (* both i and j, access the same memory cell *)

END Local;

BEGIN
Local(i)

END X;

END Aliases.

With these restrictions, the set of possible aliases at the assignment of i in procedure X of
Example 4.16 is restricted to {global}. For a call of X with global as the actual parameter, i

and global would actually be aliases. Therefore, this is the most precise set of possible
aliases, as long as we do not regard the actual parameters at call sites. For incomplete
programs, such as frameworks, we cannot further restrict the sets of possible aliases. If we
analyze complete programs ("closed-world assumption"), then we could further reduce the
sets of possible aliases.

Structured data types raise another problem: the actual parameter at a call site may be a part
of a structured variable, e.g. a field of a record or an element of an array. The variable may
be allocated statically, automatically, or dynamically. So it is not enough to test whether
two variables a and b have the same type when computing the possible aliases for the
definition of a. We must additionally test whether variable a can be contained in b or

77Implementation

whether b can be contained in a. a can be contained in b in the following cases:

o if b is a record of which a might be a field,
o if b is an array of which a might be an element,
o if b is a pointer that is dereferenced and a might be a field of the referenced record or

an element of the referenced array, or
o if b is a record and its type is an extension of the type of a.

Example 4.18 shows possible calls of procedure X, where the variables that might contain
each other are actual aliases.

Example 4.18:

MODULE Aliases;

TYPE
T = RECORD i: INTEGER END ;
P = POINTER TO T;
T1 = RECORD (T) j: INTEGER END ;
P1 = POINTER TO T1;

VAR
t: T; t1: T1;
p: P; p1: P1;

PROCEDURE X (VAR i: INTEGER);
BEGIN

t.i := 0; (* changes i for the first call of X in the
module body *)

t1.j := 0; (* changes i for the second call of X *)
t := t1; (* changes i for the first call of X *)
p^.i := 0; (* changes i for the third call of X *)
p1^.j := 0; (* changes i for the fourth call of X *)
i := 0; (* changes t.i for the first call of X,

changes t1.j for the second call of X,
changes p^.i for the third call of X,
changes p1^.j for the fourth call of X *)

END X;

BEGIN
X(t.i);
X(t1.j);
X(p^.i);
X(p1^.j)

END Aliases.

When we have narrowed the sets of possible aliases of a variable a, we insert non-killing
definitions for all possible aliases b at the node defining a. These non-killing definitions
lead to additional reaching definitions at places, where b is used.

The user interface of the Oberon Slicing Tool visualizes the sets of possible aliases.
The user can disable some or all of the possible aliases. He can then initiate the
re-computation of data flow information where only the enabled aliases lead to non-killing
definitions.

78 Implementation

4.5.2 Computation of Reaching Definitions

In this section we describe our algorithm for the computation of the definition sets and of
the gen and kill sets of defining nodes. Then we show how these are combined to the gen
and kill sets of the statement sequences, which are then used to compute the reaching
definitions.

Computation of the Definition Sets of Variables and of the Gen and Kill Sets

We have to modify the procedure for the computation of the definition sets and of the gen
and kill sets outlined in Section 2.3.2 for several reasons:

o We use a finer-grained intermediate representation than Aho et al. [ASU86].
o We allow multiple definitions at one node.
o We allow killing and non-killing definitions at one node.

In order to account for these requirements, we have to use a triplet in order to describe a
definition. A definition consists of the defining AST node, the defined object, and the kind
of the definition (killing or non-killing). Each definition must be associated with a number.
Therefore we insert each definition into a hash table and use the index for this definition
within the hash table to represent the definition in the bit sets gen and kill. If the definitions
were simply numbered consecutively by inserting them into an array or a list, looking up a
definition could necessitate a linear scan of all definitions.

ComputeDefinitionSets computes the definition set for each variable that is defined by the
procedure. For each object the killing definitions are collected in a bit set called "must
assigns" and all (killing and non-killing) definitions are collected in a bit set called "may
assigns" (the Definition Set). The loop of ComputeDefinitionSets iterates over all definitions
of the hash table. Initially, the set of killing definitions (must assigns) and the set of all
definitions (may assigns) are empty. The indices of the definitions within the hash table are
inserted into the set "may assigns" and into the set "must assigns" (if the definition is a
killing one).

PROCEDURE ComputeDefinitionSets (varDefs: Definitions);
VAR i: INTEGER; def: HashTableEntry; obj: Object; e: Definition;

BEGIN
FOR i := 0 TO size of hash table of definitions of the current procedure DO

def = definition i of the hash table
obj := object of definition def
IF varDefs does not yet contain an entry e for obj THEN

insert entry e with empty sets "may assigns" and "must assigns" for obj in varDefs
END ;
include i into the set of "may assigns" of e
IF def is a killing definition THEN

include i into the set of "must assigns" of e
END

END
END ComputeDefinitionSets;

79Implementation

Fig. 4.17 shows how the definitions sets are computed for parameter i of procedure X in
Example 4.19. First, an entry for parameter i is inserted into the variable definitions with
empty sets "must assigns" and "may assigns". Whenever a definition is encountered, its
index is included into the "may assigns" (indices 1, 3, 4, and 5). Whenever the definition is
a killing one, its index is included into the "must assigns" (indices 1, 3, and 4).

Example 4.19:

PROCEDURE X (VAR i, j: INTEGER);
(* Assignments for parameter passing:

Nfpar/inPar: i (* 5 *)
Nfpar/inPar: j (* 6 *)

*)
VAR k: LONGINT;
(* Assignments for initialization of local variables:

Nenter: k (* 7 *)
*)

BEGIN
i := 1; (* 1 *)
j := 2; (* 2 *)
i := i * 2; (* 3 *)
k := i + j (* 4 *)

END X;

Insert i

Hash Table of Definitions Variable Definitions

obj must may

i

j

{1}

def

{}

include 1

include 3

include 5

(only in may)

obj node flags

i 1 killing

killingj 20:

1:

6:

2:

3:

4:

5:

non-killing

non-killing

i 3

4

killing

killing

j 1

2

7:

8:

9:

10:

empty

i

3 non-killingj

k

i 5 killing

killingj 6

7 killingk

{0, 10} {0, 2, 8, 10}

{1}

{}

{1, 3} {1, 3}

include 4

{1, 3, 4} {1, 3, 4}

{1, 3, 4, 5}

Fig. 4.17 - Computation of the definition sets of parameter i

ComputeGenKillSets computes for each defining node the gen and kill sets. The loop of
ComputeGenKillSets iterates over all definitions of the hash table. Initially, the gen and kill
sets are empty for each node. The indices of the definitions are included into the node's gen
set. The kill set of the node is the union of the kill sets for each killing definition, where the
kill set for a killing definition d is the definition set (may assigns) of the variable defined at
d without the index of d.

80 Implementation

PROCEDURE ComputeGenKillSets (varDefs: Definitions);
VAR i: INTEGER; def: Definition; node: Node; e: Definition;

BEGIN
FOR i := 0 TO size of hash table of definitions of the current procedure DO

def = definition i of the hash table
node := node of the definition def
IF gen and kill sets of node have not yet been computed THEN

allocate empty gen and kill sets for node
END ;
include i into the gen set of node
IF def is a killing definition THEN

e := entry of varDefs for object defined at def

node.kill := node.kill ∪ ("may assigns" of e - i)
END

END
END ComputeGenKillSets;

Fig. 4.18 shows how the gen and kill sets are computed for the node 3. First, empty gen/kill

sets are allocated for node 3. Whenever a definition at node 3 is encountered, its index is
included in the gen set (indices 4 and 8). Whenever the definition is a killing one, the kill
set is updated by the definition set of the defined object excluding the index of the
definition.

obj node flags

def

Nvarpar

i

gen:

kill:

{}

{}

{4}

allocate gen/kill

include 4 in gen
compute kill

{1, 3, 4, 5} - {4}
include 8 in gen

{4, 8}

Hash Table of Definitions

Defining Nodei 1 killing

killingj 20:

1:

6:

2:

3:

4:

5:

non-killing

non-killing

i 3

4

killing

killing

j 1

2

7:

8:

9:

10:

empty

i

3 non-killingj

k

i 5 killing

killingj 6

7 killingk

= {1, 3, 5}

Fig. 4.18 - Computation of gen and kill for node 3

Data Flow Equations of Iterative Statements

In Section 2.2.3, we gave the data flow equations for iterative statements. For Oberon-2,
the equations have to be adapted to model the WHILE, REPEAT and LOOP statements.
Additionally, side-effects of function calls within expressions must be handled properly.
But let us first examine the data flow equations once more:

81Implementation

S1 S

in(S)

out(S)
out(S1)

in(S1)

out(S)

in(S)

out(S) =

gen(S)

kill(S)

in(S1)

=

=

=

out(S1)

gen(S1)

kill(S1)

in(S) U gen(S1)

Fig. 4.19 - Data flow equations for an iterative statement

We have argued that gen(S) and kill(S) for the compound statement are the same as the gen
and kill sets of the nested statement sequence. The following argument shall serve as an
informal proof:

Let us suppose that the iterative statement S can be unfolded into a sequence of
statements:

S = S1 S2 ... Sn with S1 = S2 = Sn

gen(S) can then be computed by applying the rule for statement sequences:

gen(S1;S2) = gen(S2) ∪ (gen(S1) - kill(S2)) =

= gen(S1) ∪ (gen(S1) - kill(S1)) = since S1 = S2
= gen(S1) since the second term is a subset of the first

Since gen(S1;S2) = gen(S1), we see that executing the same statement several times does
not generate new definitions.

We have further argued that in(S1) = in(S) ∪ gen(S1). The following argument shall serve as
an informal proof:

In general, out(S) can be computed as:
out(S) = gen(S) ∪ (in(S) - kill(S))

For an iterative statement, all definitions that leave the end of the nested statement
sequence S1 are again definitions that reach the beginning of the nested statement
sequence S1. This (seemingly recursive) problem can only be solved by iteration until
no new definitions are generated that leave the compound statement S.

For the Fig. 4.19, out(S) can be computed by the following equation:

Equation 1: out(S1) = gen(S1) ∪ (in(S1) - kill(S1))

Whereas in(S1) can obviously (see Fig. 4.19) be computed as:

Equation 2: in(S1) = in(S) ∪ out(S1)

After substituting in(S1) by I, out(S1) by O, in(S) by J, gen(S1) by G, and kill(S1) by K in
Equations 1 and 2, we get the following two recurrence equations:

I = f(O, J) := J ∪ O

O = f(I, G, K) := G ∪ (I - K)

82 Implementation

I and O can be seen as functions, whereas J, G and K are constants in these two
equations. A solution can be found by starting from a conservative assumption (O0 = {})

and then substituting one equation by the result of the other:

I1 = J ∪ O0 = J

Then I1 can be used to get a better approximation for O:

O1 = G ∪ (I1 - K) = G ∪ (J - K)

Again, we can compute I by using the better approximation for O:

I2 = J ∪ O1 = J ∪ G ∪ (J - K)

= J ∪ G since last term J - K is a subset of J

The next approximation for O is:

O2 = G ∪ (I2 - K) = G ∪ ((J ∪ G) - K)

= G ∪ ((J - K) ∪ (G - K)) since (A ∪ B) - C = (A - C) ∪ (B - C)

= G ∪ (J - K) ∪ (G - K)

= G ∪ (J - K) since the term G - K is a subset of G

But since O1 = O2, further iteration will not produce any new results and we see that the

solution for the two recurrence equations can be written (after backwards substitution)
as:

in(S1) = in(S) ∪ gen(S1)

out(S1) = gen(S1) ∪ (in(S) - kill(S1))

The first of these two equations has already been introduced above, the second one can
be used to compute out(S).

Combination of the Gen and Kill Sets and the Computation of the Reaching
Definitions

Fig. 4.20 shows how the out set can be computed for procedure X of Example 4.19: The
definitions are inserted into the hash table of definitions, the definition sets are computed
for each variable and the gen/kill sets are computed for each defining node. The in set of the
procedure contains the initial definitions of the parameters and the local variables. The out
set is then computed by applying the equation

out = gen ∪ (in - kill)

to every node. The out set of the one node is the in set for the next node. The out set of the
last node is the out set of procedure X.

83Implementation

obj node flags

Hash Table of Definitions

i 1 killing

killingj 20:

1:

6:

2:

3:

4:

5:

non-killing

non-killing

i 3

4

killing

killing

j 1

2

7:

8:

9:

10:

empty

i

3 non-killingj

k

i 5 killing

killingj 6

7 killingk

Nfpar

inPar

i

Nfpar

outPar

i

Nfpar

inPar

j

Nfpar

outPar

j

k

Nenter

5 6

7

Nassign

Nvarpar

i

Nconst

1

Nassign

Nvarpar

j

Nconst

2

Nassign

Nvarpar

i

Ndop

ash

Nvarpar

i

Nconst

1

Nassign

Nvar

k

Ndop

+

Nvarpar

i

Nvarpar

j

1 2 3 4

gen kill

1:

6:

2:

3:

4:

5:

7:

{1, 2} {3, 4, 5}

{0, 5} {2, 8, 10}

{4, 8} {1, 3, 5}

{6} {7}

{3} {1, 4, 5}

{10} {0, 2, 8}

{7} {6}

Definition Sets

obj must may

i

j

k {6, 7}

{1, 3, 4}

{6, 7}

{1, 3, 4, 5}

{0, 2, 8, 10}{0, 10}

in = {3, 7, 10}

out = gen U (in - kill)

out = {1, 2} U

{7, 10}

{1, 2, 7, 10}

out = {0, 5} U

{1, 7}

{0, 1, 5, 7}

out = {4, 8} U

{0, 7}

{0, 4, 7, 8}

out =

{6} U {0, 4, 8}

{0, 4, 6, 8}

Fig. 4.20 - Computation of the out set of procedure X of Example 4.19

At each variable usage node U, links are inserted to the reaching definitions. Therefore the
set in(U) is examined. For each bit included in in(U), the hash table of definitions contains an
entry E. If E defines the object that is used at U, a link is inserted from U to the defining
node of E. Fig. 4.21 shows the links from the usage nodes to all reaching definitions.

84 Implementation

Nfpar

inPar

i

Nfpar

outPar

i

Nfpar

inPar

j

Nfpar

outPar

j

k

Nenter

7

Nassign

Nvarpar

i (j)

Nconst

1

Nassign

Nvarpar

j (i)

Nconst

2

Nassign

Nvarpar

i (j)

Ndop

ash

Nvarpar

i

Nconst

1

Nassign

Nvar

k

Ndop

+

Nvarpar

i

Nvarpar

j

1 2 3 4

in = {3, 7, 10}
{1, 2, 7, 10} {0, 1, 5, 7} {0, 4, 7, 8} {0, 4, 6, 8}

5 6

Fig. 4.21 - Reaching definitions of procedure X of Example 4.19

In the following we show for each language construct how the gen and kill sets can be
computed by a proper traversal of the syntax tree and how the out sets can be computed by
another traversal.

Short-Circuit Evaluation of Boolean Expressions

The language report of Oberon-2 defines that evaluation of Boolean expressions is stopped
when the result is known (short-circuit evaluation, see Table 4.11).

p OR q if p then TRUE, else q

p & q if p then q, else FALSE

Boolean Expression Equivalent

Table 4.11 - Evaluation of Boolean Expressions

In other words, if the first operand of the expression p & q evaluates to FALSE, the second
operand is not evaluated any more, since the result of the whole expression can only be
FALSE. Therefore, definitions in the left sub-tree of a Boolean expression are only killed by
definitions in the right sub-tree if the right sub-tree is at all evaluated. Likewise, the second
operand of the expression p OR q is only evaluated if the first evaluated to FALSE. Example
4.20 shows that exact modeling of short-circuit evaluations is necessary to compute precise
reaching definitions: The expression of the IF contains two function calls, which both
modify the parameter. Since the formal parameter i of function ChangePar is assigned on all

85Implementation

paths, the assignment of the corresponding actual parameter is a killing one. When the
THEN branch of the IF is executed, both parts of the expression must have evaluated to
TRUE, therefore the definitions of i and j before the IF are killed by the evaluation of the
expression. When the ELSE branch of the IF is executed, either the left part of the logical
AND failed (in which case the right part is not evaluated at all) or the right part failed (in
which case both parts are evaluated). In the first case, the initial definition of j is not killed.

Example 4.20:

MODULE ShortCircuitEvaluation;

PROCEDURE ChangePar (VAR i: INTEGER): INTEGER; (* assigns to the parameter,
but does not use it *)

BEGIN
i := 0; RETURN 0

END ChangePar;

PROCEDURE Do;
VAR i, j: INTEGER;

BEGIN
(* 1 *) i := 0;
(* 2 *) j := 2;
(* 3, 4 *) IF (ChangePar(i) < 0) & (ChangePar(j) < 0) THEN (* i and j defined by the function

calls *)
(* 5 *) i := i; (* only def 3 is reaching *)
(* 6 *) j := j (* only def 4 is reaching *)

ELSE (* i defined by the function call,
j may be defined by the
function call *)

(* 7 *) i := i; (* only def 3 is reaching *)
(* 8 *) j := j (* def 2 may be reaching *)

END ;
(* 9 *) i := i; (* only defs 5 and 7 are reaching *)
(* 10 *) j := j (* only defs 6 and 8 are reaching *)

END Do;

END ShortCircuitEvaluation.

Compound Boolean expressions are handled by computing a pair of gen/kill sets for the case
that the expression evaluates to TRUE (genT/killT) and one for the case that it evaluates to
FALSE (genF/killF). If the result of a Boolean expression is merely assigned to a variable,
the two gen/kill sets are combined conservatively. They are only treated separately if they
guide the flow of control (e.g. in the expression of an IF or a WHILE).

A conservative combination of the sets gen1/kill1 and gen2/kill2 (two merging arrows in the
figures below) is implemented as:

gen = gen1 ∪ gen2 kill = kill1 ∩ kill2

A sequence of the sets gen1/kill1 and gen2/kill2 (e.g. "genT/killT → genF/killF" in Fig 4.22) is
implemented as:

gen = gen2 ∪ (gen1 - kill2) kill = kill2 ∪ (kill1 - gen2)

86 Implementation

For a logical AND, the gen/kill sets for the case that the expression evaluates to TRUE

(genT/killT) is computed as the sequence of the genT/killT sets of the left-hand side and the
genT/killT sets of the right-hand side. The gen/kill sets for the case that the expression
evaluates to FALSE (genF/killF) is the conservative combination of the genF/killF sets of the
left-hand side and the sequence of the genT/killT sets of the left-hand side with the genF/killF

sets of the right-hand side as shown in Fig. 4.22.

Ndop

&

genT/killT

genF/killF

genT/killT

genF/killF

genT/killT

genF/killF

Fig. 4.22 - Computation of gen and kill for a logical AND

For a logical OR, the gen/kill sets are computed similarly (with reversed Boolean values) as
shown in Fig. 4.23.

Ndop

OR

genF/killF

genT/killT

genF/killF

genT/killT

genF/killF

genT/killT

Fig. 4.23 - Computation of gen and kill for a logical OR

For a logical negation, the gen/kill sets for the TRUE and FALSE case are simply
interchanged as shown in Fig. 4.24.

Nmop

~

genT/killT

genF/killF

genT/killT

genF/killF

Fig. 4.24 - Computation of gen and kill for a logical NOT

The out set of a logical AND is again split in two parts (see Fig. 4.25): outT for the case that
the expression evaluates to TRUE and outF for the case that the expression evaluates to
FALSE. For the computation of outT, we first feed in into the left sub-tree and then the
TRUE-output of the left sub-tree (outLT) into the right sub-tree. The TRUE-output of the

87Implementation

right sub-tree is then outT of the entire Boolean expression. outF is the union of the
FALSE-outputs of both sub-trees. The out set of a logical OR is computed similarly (see Fig.
4.26). For a logical negation, the sets outT and outF are simply interchanged (see Fig. 4.27).
When a usage node is visited during the traversal of the expression trees, links are inserted
to all reaching definitions.

Ndop

&

outLT
outLF

outRT
outRF

outT
outF

in

Fig. 4.25 - Computation of out for a logical AND

Ndop
OR

outLF

outLT

outF

outRT

outF

outT

in

Fig. 4.26 - Computation of out for a logical OR

Ndop

~

outT

outF

in

outT

outF

Fig. 4.27 - Computation of out for a logical NOT

Assignments

The order of the evaluation of the left-hand side and the right-hand side of an assignment
statement is not defined in Oberon. Therefore, programs must not rely on some particular
evaluation order. Depending on the implementation of the compiler, Example 4.21 may
yield different results.

Example 4.21:

88 Implementation

VAR arr: ARRAY 2 OF INTEGER; i: INTEGER;

PROCEDURE SideEffect (VAR i: INTEGER): INTEGER;
BEGIN i := 1; RETURN 0
END SideEffect;

BEGIN
arr[0] := 1; arr[1] := 1; i := 0;
arr[i] := SideEffect(i)
(* if lhs is evaluated first: arr[0] = 0, if rhs is evaluated first: arr[1] = 0 *)

END

We compute data flow information under the assumption, that the right-hand side of an
assignment statement is evaluated first. Although this assumption is not strictly
conservative, we do not think of it as a source of major inaccuracies. Fig. 4.28 shows that
the right-hand side may be a Boolean expression. Then sets genT/killT and genF/killF are
combined conservatively (indicated by the merge of the two arrows into one arrow). The
result is combined sequentially with the gen/kill sets of the left-hand side which must not be
a Boolean expression.

Nassign

rhslhs

gen/kill
genT/killT

genF/killF

gen/kill

Fig. 4.28 - Computation of gen and kill for an assignment statement

Fig. 4.29 shows how the in set of the assignment statement is "pushed through" the right
sub-tree, giving the out set of the right sub-tree. After combining the two possible results
outT/outF conservatively (indicated by the merge of the two arrows into one arrow), the out

set is used as the in set of the left sub-tree. Pushing it through the left sub-tree yields the out

set of the entire assignment statement.

Nassign

rhslhs

out outT

outF

out

in

Fig. 4.29 - Computation of out for an assignment statement

89Implementation

Calls

The order of evaluation of the parameters is not defined in Oberon-2. The language report
only states that "the component selectors are evaluated when the formal/actual parameter
substitution takes place, i.e. before the execution of the procedure" (Section 9.2 Procedure
calls).
We assume evaluation of the parameters from left to right and give a warning if the order of
the evaluation of the parameters is significant (i.e. would lead to different gen and kill sets).
Evaluation from left to right yields a reasonably small out set where new definitions of a
variable x really kill preceding definitions of x. If we combined the out sets of all
parameters via a union, the out set of the entire call would almost always contain the entire
in set, since a reaching definition must be killed in each branch in order not to leave the
statement as part of the out set.

IF

The data flow equations for conditional statements have to be adapted to properly handle
side-effects due to function calls within expressions and short-circuit evaluation of Boolean
expressions. The following rule describes the possible paths of an IF statement:

IF expr1 THEN stat1
ELSIF expr2 THEN stat2
...
ELSE statElse
END

PathsIF with ELSE = expr1TRUE stat1 |

expr1FALSE expr2TRUE stat2 |

...
expr1FALSE expr2FALSE ... exprNFALSE statElse.

PathsIF without ELSE = expr1TRUE stat1 |

expr1FALSE expr2TRUE stat2 |

...
expr1FALSE expr2FALSE ... exprNFALSE.

These two rules can be combined to one since a non-existing ELSE branch is semantically
equivalent to an empty ELSE branch:

PathsIF = expr1TRUE stat1 |

expr1FALSE expr2TRUE stat2 |

...
expr1FALSE expr2FALSE ... exprNFALSE [statElse].

Fig. 4.30 shows the computation of the gen/kill sets for an IF statement along these paths,
whereas Fig. 4.31 shows the computation of the out set.

90 Implementation

Nifelse

Nif

Nif

stat2genT/killT

stat1

stat3

genF/killF genT/killT

genF/killF

gen/kill

gen/kill

gen/kill

expr1

expr2

gen/kill

Fig. 4.30 - Computation of gen and kill for an IF statement

Nifelse

Nif

Nif

stat2outT

stat1

stat3

outF outT

outF

out

out

out

expr1

expr2

out

in

Fig. 4.31 - Computation of out for an IF statement

CASE

Exactly one branch of the CASE is executed depending on the result of the expression of
the CASE. If none of the constant expressions guarding the respective branches matches,
the ELSE branch is executed. If there is no ELSE branch, the program is aborted. Therefore,
it would not be allowed to treat an empty ELSE branch in the same way as a non-existing
ELSE branch. The gen/kill set of the CASE statement consists only of the gen/kill sets of the
existing branches and the gen/kill set of the ELSE branch (only if it exists). Likewise, the out

set consists of the out sets of the existing branches and the out set of the ELSE branch (only
if it exists). Fig. 4.32 shows the computation of the gen/kill sets for a CASE statement,
whereas Fig. 4.33 shows the computation of the out set.

91Implementation

Ncaselse

stat2

expr

Ncase

Ncasedo

case1 stat1

gen/kill

gen/kill

gen/kill

gen/kill

Fig. 4.32 - Computation of gen and kill for a CASE statement

Ncaselse

stat2

expr

Ncase

Ncasedo

case1 stat1

out

out

out

out

in

Fig. 4.33 - Computation of out for a CASE statement

WITH

If none of the type tests evaluates to TRUE and there is no ELSE branch in the source text of
the program, the program is aborted. Therefore, it would not be allowed to treat an empty
ELSE branch in the same way as a non-existing ELSE branch. The gen/kill set of the WITH

statement consists only of the gen/kill sets of the existing branches and the gen/kill set of the
ELSE branch (only if it exists). Fig. 4.34 shows the computation of the gen/kill sets for a
WITH statement.

92 Implementation

Nwith

Nif

Nif

stat3

stat2

stat1

test2

test1

gen/kill

gen/kill

gen/kill

gen/kill

Fig. 4.34 - Computation of gen and kill for a WITH statement

Likewise, the out set consists of the out sets of the existing branches and the out set of the
ELSE branch (only if it exists). Fig. 4.35 shows the computation of the out set for a WITH

statement. Note that the in set is pushed through the tests although they cannot generate
new definitions. This is necessary to insert links from the variable usage nodes to all
reaching definitions.

Nwith

Nif

Nif

stat3

stat2

stat1

test2

test1

out

in

out

out

out

Fig. 4.35 - Computation of out for a WITH statement
WHILE

The gen/kill set of the nested statement sequence must be computed since it is needed for the
computation of out. The gen/kill set of the entire WHILE loop has to combine the gen/kill sets
of the following three cases (see Fig. 4.36):

o The loop is not entered at all because the guarding expression evaluates to FALSE.
o The loop is entered and executed once.
o The loop is entered and executed several times.

93Implementation

Nwhile

expr statT
F

123

Fig. 4.36 - Iterations of a WHILE loop

One could give the following rule for possible paths of a WHILE loop:

PathsWHILE = {exprTRUE stat} exprFALSE.

Since the gen/kill set for an iteration statement is the same as the gen/kill set of the iterated
statement sequences, we can deduce that the gen/kill set of a WHILE loop only has to
combine the first two cases (the last case does not generate new information), which are
shown in Fig. 4.37.

gen/killWHILE = { genT/killTexpr gen/killstat } genF/killFexpr =

= [genT/killTexpr gen/killstat] genF/killFexpr =

= genF/killFexpr |

genT/killTexpr gen/killstat genF/killFexpr

Nwhile

expr stat

genT/killT
genF/killF

gen/kill

gen/kill

Fig. 4.37 - Computation of gen and kill for a WHILE statement

As we showed during the explanation of the data flow equations of iterative statements, the
in set for the nested statement sequence S1 is computed as in(S) ∪ gen(S1). In order to
consider side-effects of function calls within the expression of the WHILE, S1 is the part of
the loop that is executed for each iteration (i.e., the part of the rule for the gen/kill set of the
WHILE statement that is initially enclosed in curly braces). gen(S1) and kill(S1) are the sets
of definitions that are generated/killed by one iteration of the loop, i.e.

94 Implementation

gen/kill(S1) = genT/killTexpr gen/killstat

In the following informal proofs of the computation of the out sets, we will use the notation

x => S => y

which means that the program fragment S has the in set x and produces the out set y. In this
way program fragments can be concatenated where the output of the first fragment is the
input of the next. Boolean expressions return two out sets, one for the TRUE branch and one
for the FALSE branch. Which of the both is actually used is indicated by the subscript. For
annotation purposes, we insert names into the chain of functions in order to give a name to
the temporary result that is being passed from one function to the next.
The out set of the WHILE loop also has to combine the out sets of the three cases given
above.

1) in(WHILE) => exprFALSE => out1(WHILE)

2) in(WHILE) => exprTRUE stat => out' => exprFALSE => out2(WHILE)

out' could be computed as "gen(S1) ∪ (in(WHILE) - kill(S1))", but instead we compute it
by "pushing" in(WHILE) "through" S1 (i.e. through the AST of the expression and the
statement sequence). During this process, data dependence edges are inserted from
nodes that represent variable usages to all nodes that represent reaching definitions of
these variables.

3) in(WHILE) => exprTRUE stat => out' => { exprTRUE stat } => out'' => exprFALSE =>

out3(WHILE)

out'' could be computed as follows:
out'' = gen(S1) ∪ (out' - kill(S1)) =

= gen(S1) ∪ ((gen(S1) ∪ (in(WHILE) - kill(S1))) - kill(S1)) =

= gen(S1) ∪ (gen(S1) - kill(S1)) ∪ (in(WHILE) - kill(S1) - kill(S1)) =

= gen(S1) ∪ (in(WHILE) - kill(S1)) = out'

Since out'' = out', we could be tempted to ignore the third case (as we did when we
computed the gen/kill set). Although no new definitions are generated and the out set
remains the same, we have to execute at least one iteration because otherwise the
definitions contained in out' would never be used as input to "exprTRUE stat".

Fortunately, one iteration is enough, so we end up with the following formula for the
third case:

in(WHILE) => exprTRUE stat => out' => exprTRUE stat => exprFALSE => out3(WHILE)

This would require two traversals of S1, where the in set is once in(WHILE) and once
out'. Fortunately, these two traversals can be combined by using in(WHILE) ∪ gen(S1)

as the in set of the traversal of S1, since

in(WHILE) ∪ out' = in(WHILE) ∪ gen(S1) ∪ (in(WHILE) - kill(S1)) =

= in(WHILE) ∪ gen(S1)

The combination of the two traversal is legal since it produces the same out set:

Pushing a bit set in1 through a statement sequence S produces the out set
out1 = gen(S) ∪ (in1 - kill(S)).

95Implementation

Pushing a bit set in2 through a statement sequence S produces the out set
out2 = gen(S) ∪ (in2 - kill(S)).

Pushing the bit set in1 ∪ in2 through S produces the out set
out = gen(S) ∪ ((in1 ∪ in2) - kill(S)) =

= gen(S) ∪ (in1 - kill(S)) ∪ (in2 - kill(S)) =

= gen(S) ∪ (in1 - kill(S)) ∪ gen(S) ∪ (in2 - kill(S)) =

= out1 ∪ out2

The in set for the traversal of exprFALSE would have to be in(WHILE) for the first case and

out' for the second and third cases. Again, these two traversals can be combined into one
traversal of exprFALSE with in(WHILE) ∪ gen(S1) as the in set. So we end up with the

following rule for the computation of out(WHILE):

in(WHILE) ∪ gen(S1) => exprTRUE stat => out'

in(WHILE) ∪ gen(S1) => exprFALSE => out(WHILE)

The first rule is needed to insert all necessary data dependences within the expression and
the nested statement sequence. The second rule is used to compute the actual out set of the
WHILE as shown in Fig. 4.38.

Nwhile

expr stat

out

outT
outF

in

genS1

Fig. 4.38 - Computation of out for a WHILE statement

REPEAT

As for the WHILE loop, the gen/kill set of the nested statement sequence must be computed
since it is needed for the computation of out. The gen/kill set of the entire REPEAT loop has
to combine the gen/kill sets of the following two cases (see Fig. 4.39):

o The loop is entered and executed once.
o The loop is entered and executed several times.

96 Implementation

Nrepeat

stat expr

genT/killT

genF/killF

gen/kill

gen/kill

Fig. 4.39 - Computation of gen and kill for a REPEAT statement

The rule for possible paths of a REPEAT loop is:

PathsREPEAT= {stat exprFALSE} stat exprTRUE.

Following the same argument as for the WHILE loop, we can deduce that the gen/kill set of a
REPEAT loop only has to combine the following two cases:

gen/killREPEAT= { gen/killstat genF/killFexpr } gen/killstat genT/killTexpr =

= [gen/killstat genF/killFexpr] gen/killstat genT/killTexpr =

= gen/killstat genT/killTexpr |

gen/killstat genF/killFexpr gen/killstat genT/killTexpr

gen(S1) and kill(S1) are the sets of definitions that are generated/killed by one iteration of the
loop, i.e.

gen/kill(S1) = gen/killstat genF/killFexpr

The out set of the REPEAT loop also has to combine the out sets of the two cases given
above:

1) in(REPEAT) => stat exprTRUE => out1(REPEAT)

2) in(REPEAT) => stat exprFALSE => out' => stat exprTRUE => out2(REPEAT)

out' could be computed as "gen(S1) ∪ (in(REPEAT) - kill(S1))", but we rather compute it
by "pushing" in(REPEAT) "through" the AST of the expression and the statement
sequence. During this process, data dependence edges are inserted from nodes that
represent variable usages to all nodes that represent reaching definitions of these
variables.

For the computation of out(REPEAT), we can simply feed "in(REPEAT) ∪ gen(S1)" into "stat

exprTRUE", since

in(REPEAT) ∪ out' = in(REPEAT) ∪ gen(S1) ∪ (in(REPEAT) - kill(S1)) =

= in(REPEAT) ∪ gen(S1)

Thereby, data dependences will also be inserted. Fig. 4.40 shows the computation of the out

set for a REPEAT statement

97Implementation

Nrepeat

stat expr

outT

outF

out

out

genS1

in

Fig. 4.40 - Computation of out for a REPEAT statement

LOOP

We compute two pairs of gen/kill sets for the LOOP: one represents the definitions
generated/killed by an iteration of the loop, the other one represents the definitions
generated/killed by the execution of the entire LOOP. The first is needed for the
computation of the out set of the LOOP where it is fed as additional input due to one
iteration into the nested statement sequence, the latter is a conservative combination of the
gen/kill sets that reach the directly nested EXITs. The out set of the LOOP conservatively
combines the out sets of all directly nested EXITs.

EXIT

An EXIT statement kills all definitions, i.e. no definitions reach the statements following the
EXIT. But the gen/kill sets reaching the EXITs are combined to the gen/kill set of the enclosing
LOOP. The out set of an EXIT is the same as its in set. It is used to compute the out set of the
enclosing LOOP.

TRAP

Trap nodes are in principle handled in the same way as EXITs. We could collect the
definitions that reach trap nodes. However, we do not think that this information can be
usefully exploited by the user.

RETURN

A RETURN statement kills all definitions, i.e. no definitions reach the statements following
the RETURN.

Computation of Parameter Usage Information

After computing the reaching definitions, the summary information about the usage of
ordinary and additional parameters is computed for later reuse. A parameter may either be
used or it may not be used. It may be not defined, it may be defined on some paths or it

98 Implementation

may be defined on all paths.

Computation of Summary Edges

Summary edges are computed by intraprocedural slicing: for each formal output parameter
(which may be an ordinary parameter or an additional parameter) that has been defined in
the procedure we slice the procedure for this output parameter and insert summary edges to
all input parameters that have been reached during slicing. The values of these input
parameters (which may be ordinary or additional parameters) may influence the output
parameter. For functions, we slice the procedure for the procedure exit node and insert
summary edges from the procedure exit node to the influencing input parameters. The
summary edges are reflected from the called procedure back onto the call sites: A summary
edge from a formal output parameter to a formal input parameter becomes a summary edge
between the corresponding actual parameters (see Fig. 4.41). A summary edge from the
procedure exit node to a formal input parameter becomes a summary edge from the
function call node to the corresponding actual parameter (see Fig. 4.15).
Fig. 4.41 shows the AST of Example 4.22. The formal input parameter node of in is marked
during slicing for the formal output parameter node of out, therefore a summary edge is
inserted from the formal output parameter node of out to the formal input parameter node of
in. This summary edge is reflected onto all call sites. There is a data dependence edge to the
formal input parameter node of in which means that the value of in is used. Therefore, a
parameter-in edge is inserted from the actual parameter node to the formal parameter node.
The formal input parameter node of out is not marked during slicing. This means that the
definition of out at the formal input parameter node does not reach the formal output
parameter node. In other words, out is defined on all paths in procedure Abs. Thus, the
definition of the second parameter is a killing definition at call sites of Abs. There is no data
dependence edge to the formal input parameter node of out. This means that the value of out

is never used. It is therefore not necessary to insert a parameter-in edge between the second
parameter at the call sites of Abs and the formal input parameter of out, but a parameter-out

edge is necessary, since out is defined in Abs.

Example 4.22:

PROCEDURE Abs (in: INTEGER; VAR out: INTEGER);
BEGIN

IF in < 0 THEN out := - in
ELSE out := in
END

END Abs;

...

Abs(i, j)

99Implementation

Abs

Ndop
<

0

Nmop
-

out

Nfpar
inpar

in out out

fpars

DD

used always defined

parIn

DD

DD

parOut

Nvar

i

Nproc

Abs

Ncall

Nvar

Nvar

in
Nvar

in

Nvar Nvar Nvar

in

Nassign
Nassign

Nifelse

Nfpar
inparNenter

Nconst
out

Nfpar
outpar

j

DD

DD

DD

summary

summary

DD

Nif

Fig. 4.41 - Computation of summary edges

4.6 Slicing

Our algorithm for static backward slicing is based on the two-pass slicing algorithm of
Horwitz et al. [HoRB90] described in Section 3.2.2 where slicing is seen as a
graph-reachability problem. This algorithm uses summary information at call sites to
account for the calling context of procedures. We compute the summary information by a
variation of the algorithm of Livadas et al. [LivC94, LivJ95].

Since we use a fine-grained program representation, the nodes that are considered for
inclusion into the slice are the nodes of the abstract syntax tree. This enhances the precision
of the static slices.

Since Oberon-2 is a modular programming language with separate compilation, we
extended interprocedural slicing to intermodular slicing where the slicing information of
modules can be computed separately. Type checking across module boundaries is
implemented by reusing type information about the exported interface of a module when
compiling dependent modules. In analogy, we reuse slicing information when slicing
dependent modules. This slicing information can be stored in a repository.

Since Oberon-2 is an object-oriented programming language, we support inheritance,
polymorphism, and dynamic binding.

100 Implementation

4.6.1 Intraprocedural Slicing

For intraprocedural slicing we use the algorithm outlined in Fig. 3.2, where control and
data dependences as well as summary edges are traversed backwards. When a node is to be
included into the slice, it is marked with procedure MarkNode shown in Fig. 4.42.

PROCEDURE (s: Slice) MarkNode* (node: Node);
VAR obj: Object;

PROCEDURE^ MarkObject (obj: Object);
PROCEDURE MarkStruct (typ: Struct);
BEGIN

IF typ is not yet marked THEN
mark typ
IF typ is a pointer type, a procedure type or composite type THEN

MarkStruct(typ.BaseTyp) (* mark the referenced record type,
the result type, or element type *)

END ;
MarkObject(typ.strobj) (* mark the symbol table object for the type *)

END
END MarkStruct;

PROCEDURE MarkObject (obj: Object);
BEGIN

IF obj is not yet marked THEN
mark obj
MarkStruct(obj.typ); (* mark the type of the object *)
IF obj is imported THEN

MarkObject(obj.mod) (* mark the declaring module *)
END

END
END MarkObject;

BEGIN
IF node is not yet marked THEN

mark node
MarkStruct(node.typ); (* mark the type of the node *)
MarkObject(node.obj); (* mark the object referenced by the node *)
FOR all objects obj used at node DO (* mark all objects used at the node *)

MarkObject(obj)
END ;
FOR all objects obj defined at node DO (* mark all objects defined at the node *)

MarkObject(obj)
END

END
END MarkNode;

Fig. 4.42 - Marking a node

Marking not only syntax tree nodes but also objects of the symbol table allows us to
visualize which declarations are actually needed for the syntax tree nodes that are part of
the slice.

101Implementation

4.6.2 Interprocedural Slicing

For interprocedural slicing we use the algorithm outlined in Fig. 3.7. We will shortly
describe which nodes of our intermediate representation of the program are used to model
the system dependence graph used by Horwitz et al. [HoRB90]:

o For procedure entry nodes we use the Nenter nodes of the abstract syntax tree. They
have references to the symbol table object of the procedure and to additional
information about the procedure.

o For call-site nodes we use the Ncall nodes of the abstract syntax tree. The left sub-tree
denotes the procedure or the procedure variable that is called. For dynamically bound
calls, Ndyncall nodes are used to link the call site with all possible call destinations.

o For the actual-in and actual-out nodes we use the nodes of the abstract syntax tree
representing the actual parameters. For value parameters, the actual parameter may be
an expression tree, for reference parameters, the actual parameter denotes an object
(Nvar, Nvarpar, Nfield nodes). For additional parameters there is a Nvarpar/additionalPar

node.
o For formal-in and formal-out nodes we use Nfpar nodes. For ordinary value

parameters there is a formal input parameter node. For ordinary reference parameters
there is a pair of two formal parameter nodes (Nfpar/inPar and Nfpar/outPar) which
both reference the same object. For additional parameters there is a pair of two
formal parameter nodes (Nfpar/additionalInPar and Nfpar/additionalOutPar) which
reference both the same object.

We use the following kinds of edges to represent the dependences among the nodes of the
abstract syntax tree:

o Control dependences from the depending node to the node controlling its execution.
o Data dependences from the usage node to the reaching definitions.
o Parameter-in edges from the formal-in parameter to the actual parameter node.
o Parameter-out edges from the actual parameter node to the formal-out parameter

node.
o Summary edges from formal-out parameter nodes and procedure exit nodes to all

formal-in parameter nodes that can be reached via intraprocedural dependences.
Corresponding summary edges between the actual parameters and from the function
call node to the actual parameters.

o Call edges are modeled by ascending from Nenter nodes of procedure P to all call
sites that statically and/or dynamically call P. Some of the call destinations of
dynamically bound calls can be disabled via user interaction. The disabled
destinations are not visited during slicing.

102 Implementation

4.6.3 Intermodular Slicing

Without knowledge about the procedures of imported modules, one would have to make
conservative assumptions. The worst case for an external procedure P of module M would
be to assume

o that each value parameter of P is used,
o that each reference parameter of P is possibly defined (leading to non-killing

definitions at the call sites),
o that all global variables of any other module N are used since M might import N and

use N's variables,
o that all global variables of any other module that are exported without access

restriction are possibly defined,
o that all objects and arrays on the heap are used,
o that all objects and arrays on the heap are possibly defined, and
o that each reference parameter of P transitively depends on all other input parameters,

global variables and objects on the heap.

Conservative assumptions about the parameters of imported procedures would lead to
unacceptably large slices. Therefore we allow the user to store the parameter usage
information of every module in the repository after the module has been sliced. When
slicing modules that import previously sliced modules, the information in the repository is
reused to compute more precise slices.

For separate compilation, the compiler uses symbol files to store the interface
information of a module. These symbol files can be reused when compiling other modules
that import previously compiled modules. Strong type checking can be performed across
module boundaries. Fig. 4.43 compares the processes of compilation and slicing. On the
left-hand side we see that the compiler generates an object (e.g. A.Obj) and a symbol file
(e.g. A.Sym) from a source file (e.g. A.Mod). If module A imports module B, the interface of
B with its type information is read from the symbol file B.Sym. This implies that modules
must be compiled before they can be imported by other modules. On the right-hand side we
see that the slicer computes slicing information (e.g. for module A) from the source file
A.Mod. If A imports B, the interface of B with its type information is either extracted from
the symbol file B.Sym or, if the slicing information has already been computed for B before,
from the repository. Object and symbol files are usually stored in the file system, whereas
the slicing information is stored in the repository.

103Implementation

Compiler Slicer

symbol fileobject file

source file

File System

slicing information

Repository

Compilation Slicing

Fig. 4.43 - Compilation versus slicing

The slicing information that is stored in the repository for a module is a superset of the
information that would be contained in the symbol file. The slicing information comprises:

o all exported types,
o all other exported objects (constants, variables, procedures),
o all type-bound procedures, and
o all procedures that have somewhere been assigned to a procedure variable.

For each procedure, the repository stores the parameter usage information for all
parameters and the ProcInfo object with the list of formal parameters and their summary
edges.

Version conflicts are checked by the compiler. When the interface of a module
changes, the compiler generates a new symbol file and a unique number for this version.
This version number is used to detect version conflicts due to changes of the interface.
Changes in the implementation that do not change the interface do not lead to a new symbol
file and a new version number since they do not invalidate clients of the module. Crelier
[Cre94] developed finer-grained methods to extend modules without invalidating clients.
However it was out of the scope of this thesis to integrate his ideas. Fig. 4.44 shows the
import graph for four modules where B imports D, C imports D, and A imports B and C. If
the interface of D changes, all modules depending on D would have to be recompiled. If B is
recompiled, and then A is recompiled, the compiler reports that during the compilation of A,
module D is imported once via B in the new version and once via C in the old version.
Likewise, the loader would detect the version conflict, instead of loading inconsistent
modules.

104 Implementation

A

B C

D

Fig. 4.44 - Import graph of four modules

In the same way, the repository handles version conflicts: If the slicing information for a
module is stored into the repository, it replaces the previously existing version of the
slicing information. If other modules in the repository depend on the existing version, they
are removed from the repository before inserting the new version. Since removal of
modules from the repository is an irrevocable action, it is only done if explicitly requested
by the user. This process of removing invalidated modules continues recursively. E.g., if
modules D, C, B, and A have been placed into the repository and a new version of module B

is checked in, modules B and A are removed from the repository. If a new version of
module D is checked in, all four modules are removed. Fig. 4.45 illustrates this recursive
process of removing invalidated slicing information.

A

B C

D

check-in of

new version

of module B'

remove B
A

C

D

remove
C

D

check-in of

new version

of module D'

A

B C

A

C C

A

remove

B

remove

A

remove

C

remove D

B' B'

D' D' D' D'

Fig. 4.45 - Recursive removal of invalidated slicing information

105Implementation

4.7 Support of Object-Oriented Features

The Oberon Slicing Tool supports the key concepts of object-oriented programming, such
as inheritance, polymorphism and dynamic binding:

o Inheritance: The inheritance relation is modeled as described in Section 4.3. Each
class contains information about the type and visibility of its new and inherited fields
as well as information about its new, overridden and inherited methods.

o Polymorphism: Polymorphic variables are handled during alias analysis. The sets of
possible aliases can be restricted via user feedback. A special problem of alias
analysis is that when a field x of an object o of type T is changed via a pointer p of
type POINTER TO T (e.g. "p.x := ..."), the field x accessed via a pointer q of type
POINTER TO T (e.g. "... := q.x") may as well be changed (if p and q both point to
object o). Since the dynamic type of p may be an extension of T (e.g. T1 which is
assumed to be derived from T), the field x accessed via a pointer q1 of type POINTER

TO T1 may also be changed (if p and q1 both point to object o). To the best of our
knowledge, program slicinig tools make either extremely conservative assumptions
when changing data via pointers (e.g. invalidate all heap-allocated data) or they do
not account for the described problem at all.

o Dynamic binding: All possible call destinations are computed for dynamically bound
call sites. Calls of methods and calls of procedure variables are handled uniformly.
The sets of possible call destinations can be restricted via user feedback.

Information hiding and encapsulation of code and data are not really new features of
object-oriented programming but can already be accomplished with modular programming
languages such as Modula-2. In order to understand programs that exploit abstraction and
information hiding, it is important to make visible to the user which (hidden) data is used
during some calculation. This is even more important for object-oriented programs which
make heavy use of information hiding. Example 4.23 illustrates the problems of
information hiding on a procedural program: Module Random exports function Uniform

which returns a random number and modifies the non-exported variable state. Module
Client imports Random and calls Random.Uniform twice. If we slice for the last statement in
Client.Do (the assignment to z), we have to include the first call of R.Uniform into the slice,
since the last call of R.Uniform depends on the value of the invisible variable R.state which
is assigned during the first call of R.Uniform. This is not obvious to the user unless the
accessed and modified variables are listed in the parameter list of the function call.

Example 4.23:

106 Implementation

END Random;

END Uniform;

state := ...

BEGIN

PROCEDURE Uniform*(): LONGINT;

VAR state: LONGINT;

MODULE Random;

END Client.

END Do;

z := Random.Uniform((*R.state*));

...

z := Random.Uniform((*R.state*));

BEGIN

PROCEDURE Do*;

IMPORT Random;

MODULE Client;

4.8 Modularization

We have implemented the Oberon Slicing Tool in a set of modules. Fig. 4.46 shows the
import graph of the Oberon Slicing Tool. The modules below the dashed line belong to the
Oberon-2 compiler, whereas the modules above belong to the Slicer. Module SlicerOPP

implements a syntax directed top-down recursive-descent parser. Module SlicerOPT is the
symbol table handler which declares the data types for the abstract syntax tree and the
symbol table together with the operations upon them. We have added several auxiliary data
structures directly in module SlicerOPT, but also extracted some into module
SlicerAuxiliaries. Module Repository stores the slicing information. Module Slicer contains the
algorithms for control flow and data flow analysis. Module ParInfoElems implements
parameter information elements of the graphical user interface. Finally, module SlicerFE is
the front end of the Oberon Slicing Tool.

SlicerOPP SlicerOPT

Repository SlicerAuxiliaries

Slicer

ParInfoElems

SlicerFE

Slicer

Compiler

Fig. 4.46 - Import graph of the Oberon Slicing Tool

107Implementation

Table 4.12 shows the sizes of the particular modules in lines of code, the number of
statements, and the bytes of the object code. Module SlicerOPP has only been marginally
changed, two thirds of module SlicerOPT are new, the rest is reused. After subtracting the
parts of the Oberon-2 compiler, the Oberon Slicing Tool consists of approximately 12500
lines of code, 9000 statements and 160000 bytes of object code (compiled for Intel x86
processors).

SlicerFE 3381 2721 51305

ParInfoElems 525 362 6337

Slicer 3916 2585 52002

Repository 1622 1101 23029

SlicerAuxiliaries 208 95 1800

SlicerOPT 2585 1656 33958

SlicerOPP 1309 1180 18046

Module Lines of Code Statements Object Code

Table 4.12 - Modules of the Oberon Slicing Tool

In the following we will shortly describe the interfaces of these modules.

4.8.1 Module Repository

Module Repository stores the slicing information for processed modules.

DEFINITION Repository;

IMPORT SlicerOPT, SlicerOPS;

CONST
version = "Oberon Slicing Tool V1.0 (CS)";
defaultRepository = "Repository.Rep"; (* default file name of the repository *)
optionChar = "\";
unexpectedSituation = 99; (* run-time error number *)
(* kinds of parameter usages *)
parIn = 0; parOut = 1; parUsed = 2; parDefined = 3; parAlwaysDefined = 4; isPar = 5;
unknown = 6;

VAR
modules-: SlicerOPT.ObjArr;

PROCEDURE GetKey (modName: ARRAY OF CHAR): LONGINT;
PROCEDURE MakePersistent (key: LONGINT; mod, topScope: SlicerOPT.Object;

force: BOOLEAN);
PROCEDURE ThisMod (modName: ARRAY OF CHAR; key: LONGINT): SlicerOPT.Object;
PROCEDURE ShowModules;
PROCEDURE ShowModuleInfo;

PROCEDURE SetObjUsage (proc, obj: SlicerOPT.Object; expand: BOOLEAN; usage: SET);
PROCEDURE GetObjUsage (proc, obj: SlicerOPT.Object; VAR usage: SET);
PROCEDURE ChangeObjUsage (proc, obj: SlicerOPT.Object; usage: SHORTINT;

incl: BOOLEAN);

108 Implementation

PROCEDURE RemoveObjUsageForProc (proc: SlicerOPT.Object);
PROCEDURE DumpObjUsage;

PROCEDURE Save;
PROCEDURE Load;
PROCEDURE CompleteComputation;
PROCEDURE Reset;

END Repository.

Variables:

o modules is the array of modules for which slicing information is stored in the
repository.

Operations:

o GetKey(modName) returns the key of the module modName. It is a version number
computed by the compiler when generating the symbol file. Whenever the interface of
the module changes, a new key is generated. This key is used to detect version
conflicts during separate compilation. However, it cannot be used to detect
inconsistencies between different versions if the interface of the module has not
changed.

o MakePersistent(key, mod, topScope, force) makes the slicing information that is stored
in the symbol table topScope of module mod with the version key persistent. If the
repository already contains slicing information for this module and the old
information is not used by other modules, it is simply replaced. If the old information
is used by other modules, it is only replaced if force is TRUE. Then the information
for all dependent modules is recursively deleted (see Fig. 4.45).

o ThisMod(modName, key) returns the root of the symbol table of module modName with
the specified key.

o ShowModules lists all modules for which slicing information is stored in the
repository.

o ShowModuleInfo modName lists the slicing information stored for module modName.

o SetObjUsage(proc, obj, expand, usage) sets the parameter usage information for
parameter obj in procedure proc to the specified usage. usage is a set and may contain
parIn, parOut, parUsed, parDefined, parAlwaysDefined, and isPar as its elements. If
expand is TRUE and the parameter is a record or a pointer to a record, the same usage
information is applied to all its fields.

o GetObjUsage(proc, obj, usage) returns in usage the parameter usage information stored
for parameter obj of procedure proc. usage may be {unknown} if the parameter usage
information is not available.

o ChangeObjUsage(proc, obj, usage, incl) includes or excludes (depending on the Boolean
value incl) the specified usage for parameter obj of procedure proc.

o RemoveObjUsageForProc(proc) removes the parameter usage information for procedure
proc.

o DumpObjUsage outputs all parameter usage information.

109Implementation

o Save [fileName [\options]] stores the repository in the specified file. The default
options are to store the pre-declared data types and built-in functions of Oberon-2,
the object usage information, and the slicing information of all modules. The
following parameters can modify these default options:

s pre-declared data types and built-in functions are not stored
o object usage information is not stored
m slicing information of all modules is not stored

o Load [fileName [\options]] loads the repository from the specified file. The default
options are to load the pre-declared data types and built-in function of Oberon-2, the
object usage information, and the slicing information of all modules. The specified
options must match the options used for storing.

o CompleteComputation removes unnecessary object usage information.

4.8.2 Module Slicer

Module Slicer declares type Slice which implements control flow and data flow analysis
necessary to derive slices.

DEFINITION Slicer;

IMPORT SlicerOPT, SlicerOPS;

CONST
version = "Oberon Slicing Tool V1.0 (CS)";
unexpectedSituation = 99;
(* Notifier op *)
changed = 0; nodeMarked = 1; sliceComputed = 2; controlFlowComputed = 3;
dataFlowComputed = 4; dataFlowInfoReset = 5; markChanged = 6;
compiled = 7;

TYPE
Notifier = PROCEDURE (s: Slice; op: INTEGER);

Slice = POINTER TO SliceDesc;
SliceDesc = RECORD

moduleName-: ARRAY 32 OF CHAR; (* e.g. Test for Test.Obj, if the module
starts with MODULE Test *)

moduleFileName-: ARRAY 256 OF CHAR; (* e.g. TestModule.Mod *)
notify: Notifier; (* called if the slice is changed *)
program: SlicerOPT.Node; (* abstract syntax tree of the slice *)
topScope: SlicerOPT.Object; (* symbol table of the slice *)
moduleNames-: ARRAY 31 OF SlicerOPS.Name; (* names of imported modules *)
Message: PROCEDURE (str: ARRAY OF CHAR; node: SlicerOPT.Node;

kind: SHORTINT);

PROCEDURE (s: Slice) Compile (mod: ARRAY OF CHAR; VAR done: BOOLEAN);
PROCEDURE (s: Slice) BuildClassHierarchy;
PROCEDURE (s: Slice) ControlFlow;
PROCEDURE (s: Slice) DataFlow;
PROCEDURE (s: Slice) SliceProc (node: SlicerOPT.Node; interprocedural: BOOLEAN);

110 Implementation

PROCEDURE (s: Slice) SliceProcForObj (proc: SlicerOPT.Node; obj: SlicerOPT.Object;
interprocedural: BOOLEAN);

PROCEDURE (s: Slice) SliceStat (node: SlicerOPT.Node; interprocedural: BOOLEAN);
PROCEDURE (s: Slice) ResetDataFlowInfo;
PROCEDURE (s: Slice) Statistics;
PROCEDURE (s: Slice) CountMarkedNodes (VAR marked, total: LONGINT);
PROCEDURE (s: Slice) CompleteComputation;

PROCEDURE (s: Slice) IsImported (obj: SlicerOPT.Object): BOOLEAN;
PROCEDURE (s: Slice) MayAlias (o1, o2, proc: SlicerOPT.Object): BOOLEAN;
PROCEDURE (s: Slice) MarkNode (node: SlicerOPT.Node);
PROCEDURE (s: Slice) MarkedNode (node: SlicerOPT.Node): BOOLEAN;
PROCEDURE (s: Slice) MarkedObject (obj: SlicerOPT.Object): BOOLEAN;
PROCEDURE (s: Slice) MarkedStruct (typ: SlicerOPT.Struct): BOOLEAN;
PROCEDURE (s: Slice) SetModuleFileName (str: ARRAY OF CHAR);
PROCEDURE (s: Slice) SetModuleName (str: ARRAY OF CHAR);
PROCEDURE (s: Slice) ThisNode (pos: LONGINT): SlicerOPT.Node;
PROCEDURE (s: Slice) ThisProc (name: ARRAY OF CHAR): SlicerOPT.Node;
PROCEDURE (s: Slice) ThisProcFromObj (obj: SlicerOPT.Object): SlicerOPT.Node;

END ;

SliceFactoryMethodType = PROCEDURE (): Slice;

VAR
arrayExpansionLimit-: INTEGER;
sliceFactoryMethod-: SliceFactoryMethodType;

PROCEDURE InitSlice (s: Slice);
PROCEDURE SliceFactoryMethod (): Slice;
PROCEDURE InstallDefaultSlicer;
PROCEDURE SetSliceFactoryMethod (f: SliceFactoryMethodType);
PROCEDURE SetArrayExpansionLimit (limit: INTEGER);

END Slicer.

Variables:

o arrayExpansionLimit sets the upper limit for the expansion of arrays as described in
Section 4.5.1.

o sliceFactoryMethod is used to allocate new objects of type Slice.

Operations:

o InitSlice(s) initializes a newly allocated object of type Slice.
o SliceFactoryMethod allocates an object of type Slice, initializes it and returns it.
o InstallDefaultSlicer installs SliceFactoryMethod in the procedure variable

sliceFactoryMethod.

o SetSliceFactoryMethod(f) installs the factory method f in the procedure variable
sliceFactoryMethod.

o SetArrayExpansionLimit(limit) sets the variable arrayExpansionLimit to limit.

111Implementation

Types:

o SliceFactoryMethodType is the procedure type for factory methods that can be installed
to allocate slices.

o Notifier is the procedure type for notifiers that can be installed in slices. They will be
called when the slice is changed, when a node is marked, when the slice is computed,
when control flow information or data flow information has been computed, when
data flow information has been reset or when the mark of the slice has changed, or
when the module has been compiled. The parameter op of the notifier indicates the
operation.

o Slice is the main class of the Oberon Slicing Tool.

Methods:

o s.Compile(mod, done) compiles the module mod. done indicates the success of the
operation.

o s.BuildClassHierarchy builds the class hierarchy. This method must be called after the
module is compiled but before control flow and data flow information is computed.

o s.ControlFlow computes control flow information as described in Section 4.4. This
method must be called after method BuildClassHierarchy but before method DataFlow.

o s.DataFlow computes data flow information as described in Section 4.5. This method
must be called after method ControlFlow.

o s.SliceProc(node, interprocedural) derives the slice starting with the specified node. If
interprocedural is TRUE, the slice is computed interprocedurally, otherwise intraproce-
durally.

o s.SliceProcForObj(proc, obj, interprocedural) derives the interprocedural or intraproce-
dural slice for the output parameter obj of procedure proc.

o s.SliceStat(node, interprocedural) derives the interprocedural or intraprocedural slice for
the statement node.

o s.ResetDataFlowinfo resets the data flow information. This method can be called after
the user restricted the sets of possible aliases or the sets of possible call destinations.
Afterwards more precise data flow information can be re-computed by method
DataFlow.

o s.Statistics outputs statistical information.
o s.CountMarkedNodes(marked, total) returns the number of marked nodes (i.e. the

number of nodes that are part of the slice) and the total number of nodes in the
abstract syntax tree of the program.

o s.CompleteComputation removes information from the abstract syntax tree and the
symbol table that is only necessary for computing the slices but not if the slice is to
be stored in the repository. This method is called before the symbol table of the slice
is checked in into the repository. After calling this method, no more slices can be
computed.

o s.IsImported(obj) returns TRUE if the object obj is imported.

o s.MayAlias(o1, o2, proc) returns TRUE if object o1 and o2 may be aliases in procedure

112 Implementation

proc. This method may be overridden to provide more precise alias analysis.
o s.MarkNode(node) marks the specified node as described in Section 4.6.1.
o s.MarkedNode(node) returns TRUE if the specified node is marked, otherwise FALSE.
o s.MarkedObject(obj) returns TRUE if the specified object is marked, otherwise FALSE.
o s.MarkedStruct(typ) returns TRUE if the specified type is marked, otherwise FALSE.
o s.SetModuleFileName(str) sets variable s.moduleFileName to str.

o s.SetModuleName(str) sets variable s.moduleName to str.

o s.ThisNode(pos) returns the node of the abstract syntax tree for the specified source
code position.

o s.ThisProc(name) returns the procedure entry node for the specified procedure.
o s.ThisProcFromObj(obj) returns the procedure entry node for the specified procedure.

The Factory Method design pattern [GaHJV95] has been used to make the process of
allocation of objects of type Slice flexible. Factory methods can be installed to allocate
instances of subclasses of type Slice.

Module MeasuringSlicer uses the Decorator Pattern to add measuring functionality to
the slices. It extends the type Slicer.Slice and overrides the exported methods: Each method
contains a prolog and epilog to measure the time used for the operation. Method
measuringSlicer.Statistics outputs the statistics about the minimum, maximum and average
time used to perform the specific operations. Fig. 4.47 shows the pattern of methods:

PROCEDURE (s: Slice) Method* (parameters)
BEGIN

start measuring
s.Method^(parameters) (* super call *)
stop measuring
remember elapsed time

END Method;

Fig. 4.47 - Pattern for methods of type MeasuringSlicer.Slice

5 User Interface

The user interface of the Oberon Slicing Tool is implemented in a separate module, module
SlicerFE. It displays the source code of the analyzed program in a canonical form by
reconstructing it from the abstract syntax tree and the symbol table. The user can slice for
specific statements of the program by clicking on the line of the statement. The slice is then
computed and visualized by showing all parts of the program that belong to the slice in a
different color. Furthermore, control flow and data flow information is visualized by active
text elements.

5.1 Visual Elements

We extended the Active Text Framework (see [Szy92] and [MöKo96]) of the Oberon
System to visualize control flow and data flow information. This framework allows
arbitrary objects such as pictures, tables or buttons to be inserted into the text like ordinary
characters. These objects are called text elements and are derived from the abstract base
class Texts.Elem. Text elements are active, because they react on mouse clicks. For
example, a text element representing a hypertext link will cause the editor to scroll to
another text position when the user clicks on the link. Another kind of active text elements
are popup elements that represent a menu that pops up in reaction to a click.

5.1.1 Bidirectional Links Between the Caller and the Callee

We visualize the call edges between the call site and the called procedure with hypertext
links. At the call site, we insert a popup element labeled calling. It contains one entry for
each possible call destination. The user can select a call destination from the popup element
upon which the source code is scrolled to the position of the called procedure and the
called procedure is highlighted. At the called procedure, a popup element labeled called at
contains all call sites. The user can select a call site from the popup element upon which
the source code is scrolled to the position of the call site and the call site is highlighted.
Fig. 5.1 shows a small program with popup elements at the call sites and the called
procedures. The numbers at the beginning of the lines indicate the character position within
the original source code.

114 User Interface

Fig. 5.1 - Bidirectional links between the caller and the callee

After selecting the entry 289 from the called at element of procedure ReadParameters, the
call site in procedure Compile is highlighted as shown in Fig. 5.2.

115User Interface

Fig. 5.2 - Navigation from call destination back to call site

5.1.2 Data Dependences

We visualize data dependences with links from the usage of a variable to all definitions of
the same variable that might reach the usage. Popup elements labeled DDs contain one
entry for each reaching definition. The user can select a reaching definition which is then
highlighted in the source code. An exclamation mark in the label of the popup element
indicates potential data flow problems (e.g., usage of a potentially uninitialized variable).
Fig. 5.3 shows a small program with data dependences. The popped up element shows that
all three definitions of p might be reaching.

116 User Interface

Fig. 5.3 - Visualization of data dependences

5.1.3 Parameters

Parameter Usage

Parameter usage information elements visualize the flow of the parameters between the call
sites and the called procedures. Parameters may be used by the called procedure - their
values flow from the caller to the callee. They may be defined by the called procedure, in
which case their values may flow back from the callee to the caller (for reference
parameters only). At the call sites, parameter information elements indicate the flow of
information (for input parameters, for output parameters, for input/output parameters).
At the called procedure, similar elements give additional information about potential
problems (for problems with input parameters, e.g. if a reference parameter is not

assigned a value or if an input parameter is assigned a value). Fig. 5.4 shows a small
program with parameter information elements. At the call site in line with number 357, t is
an input parameter, and min an output parameter. By clicking with the middle mouse button
on the element of the output parameter min of procedure FindMin, the slice is computed for
this output parameter as shown in Fig. 5.4. All parts of the program that are part of the slice
are shown in blue.

117User Interface

Fig. 5.4 - Parameter information elements

By clicking with the middle and the right mouse button on the parameter information
element of a formal reference parameter, information about possible aliases is shown in a
small popup window. Fig. 5.5 shows that parameter j is a possible alias of parameter i.

Fig. 5.5 - Alias information via parameter information elements

Additional information about potential problems is also shown in a small popup window.
Fig. 5.6 shows the information for parameter j whose value is never used in procedure Do

and which is not assigned a value in the procedure.

118 User Interface

Fig. 5.6 - Additional information via parameter information elements

For dynamically bound calls, the parameter elements combine the parameter usage
information from all possible call destinations.

Additional Parameters

Additional parameters are shown in comments in the actual and formal parameter lists.
Fig. 5.7 shows a small example. Procedure Add0 defines the global variable sum, therefore
sum is added as an additional parameter to its formal parameter list. In line with number
258, procedure Add calls procedure Add0 with the ordinary parameter val and the additional
parameter sum. This additional parameter is added as a comment to the formal parameter
list of procedure Add. For additional parameters parameter information elements indicate
their usage as previously described for ordinary parameters.

Fig. 5.7 - Additional parameters

119User Interface

For dynamically bound calls, additional parameters are collected from all possible call
destinations.

5.1.4 Aliases

For each definition of a variable with possible aliases we insert a popup element labeled
aliases. It contains one entry for each variable that might be an alias of the defined
variable. For each possible alias, non-killing definitions are generated. The user can disable
and enable some of the aliases by selecting them. Initially all aliases are enabled. The
popup element shows enabled aliases in black and disabled aliases in grey. After an alias
has been disabled via user interaction, the user can initiate the computation of more precise
data flow information. Fig. 5.8 shows a small example where variables cnt and arr may be
aliases (e.g., for a call like VisualizeAliases.CountZero(arr, arr[i])).

Fig. 5.8 - Possible aliases at definitions

For all enabled aliases non-killing definitions are generated which leads to conservative
data flow information. In Fig. 5.9 we see that the two assignments to cnt in lines with
numbers 123 and 197 are reaching definitions for the usage of arr in line with number 178.

120 User Interface

Fig. 5.9 - Reaching definitions with all aliases enabled

After disabling the aliases at the assignments in lines with numbers 123 and 197, the user
can reset the computed data flow information and initiate its recomputation. Fig. 5.10
shows the more precise data flow information where only the initial values (parameter arr at
position 52) reach the usage node in line with number 178.

Fig. 5.10 - Reaching definitions with all aliases disabled

5.1.5 Dynamic Types

A polymorphic pointer variable may point to objects of its static type (the type specified at
the declaration) or to objects of all extensions of its static type. The type of the object that
the pointer actually refers to at run time is called the dynamic type of the pointer variable.
We have extended the notion of the "dynamic type" of a pointer variable to procedure
variables, where the dynamic types are the procedures that may have been assigned to the

121User Interface

procedure variable. This allows us to treat dynamic binding due to type-bound procedures
and procedure variables uniformly. We insert popup elements labeled dynamic types at
dynamically bound call sites. These elements contain one entry for each possible call
destination. The user can disable and enable some of the dynamic types by selecting them.
Initially all dynamic types are enabled. The popup element shows enabled dynamic types in
black and disabled dynamic types in grey. In Fig. 5.11, procedure ForAll contains a
dynamically bound call with two possible call destinations Inc and PrintNode. They are both
initially enabled, leading to their additional parameters (namely parameter count of
procedure Inc) being shown at the call site in line with number 289.

122 User Interface

Fig. 5.11 - Dynamic types of procedure variables

The user can disable the call destination Inc at the call in line with number 289 and initiate
the computation of more precise data flow information. Fig. 5.12 shows the same program
after disabling the call destination Inc. Only the additional parameters relevant to the test
case Print are shown.

123User Interface

Fig. 5.12 - More precise data flow information after disabling the call destination Inc

124 User Interface

5.2 User Feedback

Static analysis can derive information only from the source code. The information must be
valid for all possible executions of the program. As noted earlier, conservative assumptions
must be taken if the program uses conditional branches and iteration since it is not known
at compile time which branches will be taken at run time and how many iterations there
will be. Dynamic analysis can derive information by monitoring one particular execution of
the program. It can consider the actual values of the variables during this execution.
Therefore, the information is only valid for the particular execution but not in general.
Static information is necessarily more general and less precise than dynamic information.
On the other hand, it can be computed once for all possible executions, whereas dynamic
information must be computed again and again.

Two main sources of imprecision of static analysis are dynamic types of polymorphic
variables and alias definitions. The first lead to unnecessarily big slices because all possible
call destinations are traversed at dynamically bound calls. The latter lead to unnecessarily
big slices because of non-killing definitions for all possible aliases.

The goal of our thesis was to develop a fast, interactive tool for static program slicing.
This ruled out the possibility to use dynamic analysis. Nevertheless we wanted to narrow
the gap between static and dynamic analysis. We achieved that by integrating user feedback
into our algorithms. The user can restrict the dynamic types of polymorphic variables and
the sets of possible aliases since he often has some use case in mind that he wants to
investigate or that has led to an error. In order to find the error faster, it may be very
effective to slice the program for the erroneous statement and then to narrow the program
even further by giving feedback about the intended use case to the slicing tool. The cycle of
slicing and feeding back user input to the slicing tool may continue several times. The user
feedback can be recorded in order to be played back later.

Zhang and Ryder showed that alias analysis in the presence of procedure variables is
NP-hard in most cases [ZhR94]. This justifies the use of safe approximations in the first
place since exact algorithms would be prohibitive for an interactive slicing tool where the
maximum response time must be in the order of seconds. More precise control and data
flow information can be computed after the user has restricted the program to the use case
that he has in mind. The derived information is no longer valid for all possible executions.

When we compare the precision of the information derived by user feedback with that
of dynamic information derived for the same use case and static information, we see that it
lies between the two extremes, narrowing the gap between static and dynamic analysis.

125User Interface

5.3 Module SlicerFE

Module SlicerFE implements the front end of the Oberon Slicing Tool.

DEFINITION SlicerFE;

IMPORT TextFrames, Display, Texts, Slicer, PopupElems, SlicerOPT, SlicerOPS;

CONST
version = "Oberon Slicing Tool V1.0 (CS)";
unexpectedSituation = 99; (* run-time error number *)
withDDElems = 1; (* options *)
withParInfoElems = 2; withActualParElems = 3;
withCallingElems = 4; withCalledAtElems = 5;
withDynTypeElems = 6; withAliasElems = 7;
withParameterSummary = 8; withReachingEnd = 9;
withPosition = 10; interprocedural = 11;
defaultOptions = {withDDElems, withParInfoElems, withActualParElems,

withCallingElems, withCalledAtElems, withDynTypeElems, withAliasElems,
withPosition, interprocedural};

TYPE
AliasElem = POINTER TO RECORD (PopupElems.ElemDesc) END ;
DynTypeElem = POINTER TO RECORD (PopupElems.ElemDesc) END ;
Frame = POINTER TO FrameDesc;
FrameDesc = RECORD (TextFrames.FrameDesc)

slice: Slicer.Slice;
options: SET;

END ;
SliceMsg = RECORD (Display.FrameMsg)

slice: Slicer.Slice;
op: INTEGER;

END ;

...

VAR
forcePersistence: BOOLEAN;
recording: BOOLEAN;

PROCEDURE Open;
PROCEDURE OpenCallHierarchyViewer;
PROCEDURE ControlFlow;
PROCEDURE DataFlow;
PROCEDURE ResetDataFlowInfo;
PROCEDURE ReconstructSource;
PROCEDURE Statistics;
PROCEDURE MakePersistent;
PROCEDURE InspectSlice;
PROCEDURE SetRecording;
PROCEDURE Playback;
PROCEDURE SetAliases;
PROCEDURE SetDynamicTypes;
PROCEDURE SetArrayExpansionLimit;
PROCEDURE SetForcePersistence;

126 User Interface

PROCEDURE SetOption;
PROCEDURE ShowOptions;
PROCEDURE FindNode;
PROCEDURE FindProc;
...

END SlicerFE.

Variables:

o forcePersistence is a Boolean value used as the last parameter for
Repository.MakePersistent.

o recording is a Boolean value indicating whether user input shall be recorded for later
play-back.

Commands:

o Open [^] moduleName compiles the specified module, performs control flow and data
flow computation and opens a slicing viewer.

o OpenCallHierarchyViewer opens a viewer displaying the call hierarchy of the target
slice.

o ControlFlow calls method ControlFlow for the target slice. If the command is executed
from the menu, the target slice is the slice visualized by the viewer. Otherwise, the
target slice is the slice visualized by the star-marked viewer (mark must be visible).

o DataFlow calls method DataFlow for the target slice.
o ResetDataFlowInfo calls method ResetDataFlowInfo for the target slice.
o ReconstructSource reconstructs the source code of the slice visualized by the target

viewer. This can be useful after changing the options used for the visualization or
after recomputing the data flow information.

o Statistics calls method Statistics for the target slice.
o MakePersistent makes the slicing information persistent by first calling method

CompleteComputation for the target slice, and then calling procedures
CompleteComputation and MakePersistent from the Repository.

o InspectSlice opens a viewer that shows the fields of the target slice.
o SetRecording [^] ["Y" | "N"] sets the Boolean variable recording to TRUE or FALSE.
o Playback [^] {recorded user feedback} plays back the previously recorded user feedback

to the target slice.
o SetAliases ("on" | "off" | "toggle") ("all" | variableName) enables, disables or toggles all

aliases or the alias of the specified variable for all alias elements in the current
selection.

o SetDynamicTypes ("on" | "off" | "toggle") ("all" | dynType) enables, disables or toggles all
dynamic types or the specified dynamic type for all dynamic type elements in the
current selection.

o SetArrayExpansionLimit [^] limit calls Slicer.SetArrayExpansionLimit with the specified
limit.

o SetForcePersistence [^] ["Y" | "N"] sets the Boolean variable forcePersistence to TRUE or

127User Interface

FALSE.
o SetOption [^] {(name | number) ("Y" | "N")} | "defaultOptions" sets or resets ("Y" or "N")

the specified options or the default options for the target slice. The option may be
specified by number (e.g., 1 for withDDElems) or by name (e.g., withDDElems).

o ShowOptions outputs the options used to reconstruct the source code of the target
viewer.

o FindNode [^] position calls method ThisNode(position) for the target slice. The return
value is stored in the variable SlicerFE.node which can be inspected via InspectSlice.

o FindProc [^] procName calls method ThisProc(procName) for the target slice. The return
value is stored in the variable SlicerFE.node which can be inspected via InspectSlice.

Types:

o AliasElem is the type of popup elements representing the sets of enabled/disabled
aliases.

o DynTypeElem is the type of popup elements representing the sets of enabled/disabled
dynamic types.

o FrameDesc is the type of frame visualizing the slice with particular options.
o SliceMsg is the type of the message that is broadcast in order to synchronize the views

after the slice has changed. msg.slice refers to the changed slice, msg.op indicates the
performed operation (see explanation of Slicer.Notifier).

5.4 Model-View-Controller Concept

The Oberon Slicing Tool allows the user to display multiple views of the same slice by
separating the model from the views. The model-view-controller concept has been
introduced with Smalltalk. Burbeck [Bur92] describes it as follows:

In the MVC concept the user input, the modeling of the external world, and the
visual feedback to the user are explicitly separated and handled by three types of
object, each specialized for its task. The view manages the graphical and/or
textual output to the display. The controller interprets the mouse and keyboard
inputs from the user, commanding the model and/or the view to change as
appropriate. Finally, the model manages the behavior and data of the application
domain, responds to requests for information about its state (usually from the
view), and responds to instructions to change state (usually from the controller).

The model is represented by an object of type Slicer.Slice. The view and the controller are
combined by an object of type SlicerFE.Frame. At the time of writing this thesis, two kinds
of views have been implemented, the standard view and the call hierarchy view. Additional
views can be implemented. They are kept consistent by broadcasting the SliceMsg into the
"viewer space". Each viewer that displays the changed slice reacts to the indicated
operation properly, e.g. by updating its view. An example shall demonstrate this: Assume

128 User Interface

that two standard viewers (V1 and V2) and one call hierarchy viewer (V3) display the same
slice. The user clicks on a statement in V1, upon which the view orders the model to
compute the slice for the statement. After having computed the slice, the model broadcasts
the message SlicerFE.SliceMsg to all visible viewers. Viewers V1, V2, and V3 react by
updating their view. This is very similar to the way that multiple views of the same text are
kept consistent in the Oberon System.

6 Comparison

In this chapter we describe several program slicing tools. Some of them are available
freely. All of them are written for the programming language C. None of them can handle
object-oriented programs. Most of them have difficulty with dynamic binding, aliases,
structured data types, and side-effects of function calls. Most of them handle access to and
definition of heap-allocated data extremely conservative.

In the literature, some graph representations have been proposed for slicing
object-oriented programs ([Kri94] and [LaH96]). Chen et al. [ChWC97] addressed the
problems of slicing object-oriented programs which make use of abstraction, encapsulation,
inheritance, and polymorphism. Static slicing of Java programs has been described in
[KoMG97]. Several people work on program slicing of object-oriented programs, but to the
best of our knowledge, no program slicers for object-oriented programs are yet available.

6.1 Chopshop

Chopshop [Chop] is a reverse engineering tool to help programmers understand unfamiliar
C code. Its data flow analysis technique is a modular generalization of static program
slicing. The user can select several sources and sinks of information, and Chopshop shows
how data flows from the sources to the sinks. Chopshop accepts full ANSI C and generates
program slices in textual and pictorial form. The tool does alias analysis and handles all
language features of ANSI C. It provides data flow abstractions for procedures and allows
the user to zoom-in and zoom-out by applying different abstraction mechanisms to the
pictures.

We could not evaluate the Chopshop ourselves since it is not freely available. The
description is based on the technical papers and on the Web pages of Chopshop.

6.2 Ghinsu

Ghinsu is an environment [Ghin] that integrates a number of tools that aid the programmer
in a number of software engineering activities, primarily maintenance. Ghinsu supports
static and dynamic forward and backward slicing as well as dicing of programs written in a
large subset of C (including pointers) or in Pascal. It is possible to list all uses of a
definition and to list all definitions reaching a use. Dead code (i.e. code that is unreachable)

130 Comparison

can be highlighted.
We could not evaluate the Ghinsu environment ourselves since it is not freely

available. The description in this thesis is based on the technical papers and on the Web
pages of Ghinsu.

6.3 Spyder

Spyder [Spyd] is a debugging tool that has been prototyped by Hiralal Agrawal [Agr91] at
Purdue University. It can compute interprocedural backward slices that are either static or
dynamic. It implements slicing via graph reachability over dependence graphs. For dynamic
slicing, instrumented code is compiled to an executable program that is executed while
recording the input and output. This information is then used by the debugger to execute
the program and generate a dynamic dependence graph that is finally traversed. The tool
handles almost all of ANSI C, except functions with return values in general and function
pointers in particular which is a big limitation. Arrays are treated as scalars, the indices are
ignored.

An alpha release of Spyder is available for SunOS 4.0 and X11 Release 5 via the Web
pages of Spyder [Spyd]. However, the description in this thesis is based on the technical
papers and on the Web pages of Spyder.

6.4 Unravel

Unravel [Unra] is a prototype program slicing tool that can be used to statically evaluate
ANSI C source code. It has been developed at the National Institute of Standards and
Technology as part of a research project [Ly+95]. There are a few limitations that decrease
the precision of the computed slices:

o Unions are not handled.
o Forks are not handled.
o Pointers to functions are not handled.
o Library functions are handled as follows: If a value is passed, it is assumed to be

referenced, if an address is passed, then the referenced object is assumed to be changed.
Nothing is assumed about global variables.

The tool is divided into three parts: a source code analysis component, a link component
that links flow information from separate source files together and an interactive slicing
component.

A prototype implementation is available for SunOS 4.1 and X11 Release 5 via the Web
pages of Unravel. However, the description in this thesis is based on the technical papers
and on the Web pages of Unravel.

131Comparison

6.5 VALSOFT

VALSOFT (Validating software controlled measuring systems by Program Slicing and
Constraint Solving) [VALS] analyzes the data flow of a program and calculates exact
conditions under which a suspect data flow can take place. The tool handles ANSI C
programs. It can derive forward and backward slices, as well as chops. The nodes of the
dependence graphs can consist of parts of statements in order to account for the side-effects
of function calls. There are a few limitations that decrease the precision of the computed
slices:

o Only flow-insensitive alias analysis is performed for pointers.
o Only structured uses of switch statements are supported.
o Gotos are not supported.
o Unions are handled in the same way as structs.

The system dependence graph can be written to a file for further use. The program slicer
can also be used as a slicing server for clients such as a graph visualizer.

We could not evaluate VALSOFT ourselves since it is not freely available. The
description in this thesis is based on the technical papers and on the Web pages of
VALSOFT.

6.6 Wisconsin Program-Slicing Project

The Wisconsin Program-Slicing Tool [WIPS] supports operations on C programs,
including backward slicing, forward slicing, and chopping. Furthermore, it can show
control and/or flow dependences between program components and the set of global
variables that might be modified by a procedure. There are a few limitations that decrease
the precision of the computed slices:

o Functions that are not found in the program or library functions are handled as follows:
Under the optimistic assumptions that these functions do not use and modify global
variables and heap-allocated data, all possible summary edges are inserted between
parameter nodes. If a library function uses or modifies global data and heap-allocated
data, these effects are not handled properly.

o A call via a procedure variable is considered to be a possible call of every function
whose address is taken somewhere in the program (i.e., it is assigned somewhere to a
procedure variable).

o Every pointer dereference is considered to be a possible access of every piece of
heap-allocated storage, as well as a possible access of every variable to which the
address-of operator is applied somewhere in the program.

o Fields of a structured variable are not distinguished from the variable itself.
o Arrays are treated as a whole, access to array elements with constant indices are not

handled specially.

132 Comparison

The used algorithm can be outlined as follows: In a first pass, the call graph is built
gathering information about global variables and dynamically bound calls. A second pass
builds a control flow graph for each procedure. The program's procedure dependence
graphs are then constructed from their corresponding control flow graphs. The system
dependence graph is constructed by linking together all of the program's procedure
dependence graphs with call-graph information. Additional information that summarizes
transitive dependences due to procedure calls is finally added to the system dependence
graph which can be written to a file for later use.

The Wisconsin Program-Slicing Project can be licensed from the University of
Wisconsin under a distribution fee of US$500 for non-profit research purposes. We did not
license it. The description in this thesis is based on the technical papers and on the Web
pages. The Wisconsin Program-Slicing Project is being integrated into the tools of
GrammaTech [Gram], a company working on innovative software development tools.

7 Conclusions

To use Oberon-2 as a source and target language helped us on the one hand (because we
already had a parser, a compiler and other tools for that language), but made it difficult on
the other hand (e.g., due to reference parameters, dynamic binding, and modules). The
Oberon System was an excellent working tool and an appropriate base for the work
presented in this thesis.

We have implemented the Oberon Slicing Tool, a fully operational program slicing tool
for Oberon-2, with the following features:

o It computes static slices of Oberon-2 programs. There are no restrictions on the
programs, i.e. they may use structured types (records and arrays), global variables of
any type, objects on the heap; functions may have arbitrary side-effects; procedures
may be nested; there may be recursion and dynamic binding due to type-bound
procedures and procedure variables; and the program can consist of several modules.

o It uses a fine-grained program representation: the abstract syntax tree and the symbol
table constructed by the front end of the Oberon-2 compiler, enriched with slicing
information. The targets of the control and data dependences are the nodes of the
abstract syntax tree. The entities that are considered for inclusion into the slice are
nodes of the abstract syntax tree, rather than whole statements. This improves the
precision of the slices significantly.

o Data flow information is computed precisely, taking into account side-effects of
functions and short-circuit evaluation of Boolean expressions. Definition of array
elements and record fields are handled as precisely as possible.

o It computes intraprocedural, interprocedural and intermodular slices. It uses a
repository to store the computed slicing information which can be re-used later when
importing already sliced modules. Thereby, precise knowledge about the parameter
usage of imported functions is available.

o It handles procedural and object-oriented programs. The key concepts of
object-oriented programming, such as inheritance, polymorphism and dynamic
binding, as well as abstraction, information hiding, and encapsulation of data and
code are handled in a natural way. Inheritance, polymorphism and dynamic binding
are considered during control flow and data flow analysis, as well as during alias
analysis.

o It restricts the sets of possible aliases at definitions by exploiting the fact that
Oberon-2 is strongly typed and by exploiting knowledge about the place of the
declaration of the possibly aliasing variables. Additionally the sets of possible aliases
can be restricted by user feedback. The restricted sets of possible aliases are then

134 Conclusions

used to compute more precise slicing information.

o It handles dynamic binding due to type-bound procedures and procedure variables by
computing all call destinations for all call sites. The user may restrict the set of
possible call destinations by user feedback. The restricted sets of possible call
destinations are then used to compute more precise slicing information.

o We narrowed the gap between static and dynamic analysis by starting from
conservative assumptions, having the user restrict the effects of aliases and dynamic
binding and recompute more precise slicing information. The cycle of computing
slicing information, slicing the program, and restricting the effects of aliases and
dynamic binding may continue several times, in order to tailor the slices to the use
case that the programmer has in mind. The user-feedback can be recorded and be
played back later to customize the slice without user interaction.

o The computation of slicing information is very fast: Slicing information is computed
within a few seconds, slices are computed without perceptible delays.

o The front end of the Oberon Slicing Tool uses active text elements to visualize the
computed control flow and data flow information: bidirectional hypertext links
connect the call sites and the called procedures, parameter information elements
indicate how the parameters are used at call sites, the sets of possible aliases and
possible call destinations are represented by popup elements that process
user-feedback and forward it to the slicing algorithm. The Oberon Slicing Tool
implements the Model-View-Controller concept, i.e. it is possible to have multiple
views of the same slice that are kept consistent.

Among these features, the following constitute contributions to the state-of-the-art:

o Combination of state-of-the-art algorithms (slicing as a graph-reachability problem
[HoRB90], computation of summary edges [LivC94, LivJ95]) for a strongly-typed
programming language.

o Natural and efficient support for object-oriented features.

o Uniform handling of dynamic binding due to method calls and due to calls of
procedure variables.

o Precise computation of control flow and data flow information based on the abstract
syntax tree, taking into account side-effects of functions and short-circuit evaluation
of Boolean expressions. Definition of array elements and record fields are handled as
precisely as possible.

o Fast and efficient alias analysis taking into account type information and information
about the place of the declaration.

o Intermodular slicing with a repository to store the computed slicing information for
later reuse.

135Conclusions

o Active text elements for the visualization of control and data flow information.

o User feedback via active text elements in order to restrict the sets of possible aliases
at definitions and the sets of possible call destinations at polymorphic call sites, thus
bridging the gap between static analysis and dynamic analysis.

The Oberon Slicing Tool is freely available under the conditions of the Oberon Slicing
Tool License via the URL http://www.ssw.uni-linz.ac.at/Staff/CS/Slicing.html

8 Future Work

Since many variants of program slicing have been proposed for different applications, our
work could be extended into many different directions. In the following we will only
briefly discuss how the Oberon Slicing Tool could be better integrated into the
programming environment. Furthermore we discuss that other variants of program slicing
could be implemented based on our graph representation and how the derived information
could be used for software metrics.

8.1 Integration into the Programming Environment

At the time of writing this thesis, the Oberon Slicing Tool visualizes the slices in its own
window. The source code is reconstructed from the abstract syntax tree and the symbol
table. There are several advantages of this approach:

o The source code is presented in a canonical form. Each line contains at most one
statement.

o Additional information can be inserted right away during the reconstruction of the
source code.

However, it also has some disadvantages:

o The layout of the original source code is lost.
o The front-end of the compiler skips all comments, so they are lost and cannot be

displayed.
o The front-end of the compiler performs some simple optimizations such as constant

folding, transformation of IF statements with constant conditions, replacement of
integer multiplication by a power of two by arithmetic shifts, etc. These optimizations
cannot be undone, the results are presented to the user. This may give insights, but
may also confuse.

o The reconstruction of the source code is difficult, the module implementing the
reconstruction and the user interface is very big (approximately 3000 lines).

Another problem is that the slicing window cannot be used to edit the program since edit
operations would probably invalidate the computed information. A simple approach would
be to remove all visual elements at the first insert or delete operation performed on the text.
A more sophisticated approach would be to partially invalidate and remove the visual
elements and to recompute the information for the invalidated parts in the background.
Currently slicing information is computed for one module at a time. It might be
advantageous to keep the information more or less up-to-date during editing. This could be

138 Future Work

done by performing control and data flow analysis on a per procedure basis. Additional
conservative assumptions would be necessary, but while editing a procedure,
intraprocedural information might be sufficient. During longer phases without edit
operations, the analysis could be performed for the whole module. Therefore, the error
handling and recovery capabilities of the Oberon compiler would have to be enhanced since
the compiler would have to derive approximate syntax trees for incomplete or erroneous
programs.

The Oberon Slicing Tool could also be integrated with the compiler which could
benefit from the slicing information. Information about reaching definitions and aliases
could be used to generate faster code.

The Oberon Slicing Tool could also be integrated with the Oberon interpreter [Obi98]
and the debugger. Since the interpreter also uses the abstract syntax tree and the symbol
table as its internal data structures, integration might be possible with reasonable effort.
Interpretation of Boolean expressions might help to determine feasible paths. During
debugging, information about the reaching definitions could be very useful. Additionally
run-time information could be used to perform more precise data flow analysis. Gupta et al.
[GuSH97] introduced hybrid slicing. They integrate dynamic information from a specific
execution into a static analysis. They use breakpoint information and the dynamic call
graph to more accurately estimate potential paths taken by the program. Their ideas could
possibly be integrated into the Oberon Slicing Tool.

8.2 Other Variants of Slicing

The Oberon Slicing Tool can only compute static backward slices. This is not a big
limitation for the envisaged fields of application. However, the graph representation of the
program used for backward slicing has also been used by many researchers to implement
other variants of slicing: Horwitz et al. [HoRB90] adapted the algorithms of backward
slicing to forward slicing, Agrawal and Horgan [AgH90] presented algorithms for dynamic
slicing based on dependence graphs.

8.3 Software Metrics

Since the Oberon Slicing Tool computes precise control flow and data flow information, it
could be used to derive structural metrics based on

o the number of call destinations at dynamically bound calls
o the number of ordinary and additional parameters
o the number of aliases per definition
o the number of possible dynamic types per polymorphic variable
o the length of recursion chains due to static and dynamic binding

139Future Work

o the number of reaching definitions per usage
o the number of side-effects of procedures and functions

The resulting metrics could be tested against object-oriented and procedural programs,
investigating the differences.

Appendix: Additional Module Definitions

Module MeasuringSlicer

DEFINITION MeasuringSlicer;

IMPORT Slicer, SlicerOPT, SlicerOPS;

TYPE
Slice = POINTER TO SliceDesc;
SliceDesc = RECORD (Slicer.SliceDesc)

PROCEDURE (s: Slice) BuildClassHierarchy;
PROCEDURE (s: Slice) Compile (mod: ARRAY OF CHAR; VAR done: BOOLEAN);
PROCEDURE (s: Slice) CompleteComputation;
PROCEDURE (s: Slice) ControlFlow;
PROCEDURE (s: Slice) DataFlow;
PROCEDURE (s: Slice) MayAlias (o1, o2, proc: SlicerOPT.Object): BOOLEAN;
PROCEDURE (s: Slice) SliceProc (node: SlicerOPT.Node; interprocedural: BOOLEAN);
PROCEDURE (s: Slice) SliceProcForObj (proc: SlicerOPT.Node; obj: SlicerOPT.Object);
PROCEDURE (s: Slice) SliceStat (node: SlicerOPT.Node; interprocedural: BOOLEAN);
PROCEDURE (s: Slice) Statistics;

END ;

PROCEDURE InitSlice (s: Slice);
PROCEDURE InstallMeasuringSlicer;
PROCEDURE SliceFactoryMethod (): Slicer.Slice;

END MeasuringSlicer.

Module SlicerFE

DEFINITION SlicerFE;

IMPORT TextFrames, Display, Texts, Slicer, PopupElems, SlicerOPT, SlicerOPS;

CONST
unexpectedSituation = 99;
version = "Oberon Slicing Tool V1.0 (CS)";
(* options *)
withDDElems = 1;
withParInfoElems = 2; withActualParElems = 3;
withCallingElems = 4; withCalledAtElems = 5;
withDynTypeElems = 6; withAliasElems = 7;
withParameterSummary = 8; withReachingEnd = 9;

142 Appendix: Additional Module Definitions

withPosition = 10; interprocedural = 11;
defaultOptions = {withDDElems, withParInfoElems, withActualParElems,

withCallingElems, withCalledAtElems, withDynTypeElems, withAliasElems,
withPosition, interprocedural};

(* id of SelectMessage *)
on = 1; off = 2; toggle = 3;

TYPE
AliasElem = POINTER TO RECORD (PopupElems.ElemDesc)
END ;
DynTypeElem = POINTER TO RECORD (PopupElems.ElemDesc)
END ;
Frame = POINTER TO FrameDesc;
FrameDesc = RECORD (TextFrames.FrameDesc)

slice: Slicer.Slice;
options: SET;

END ;
SelectMessage = RECORD (Texts.ElemMsg)

frame: Frame;
id: INTEGER;
name: ARRAY 128 OF CHAR;

END ;
SliceMsg = RECORD (Display.FrameMsg)

slice: Slicer.Slice;
op: INTEGER;

END ;

VAR
forcePersistence: BOOLEAN;
recording: BOOLEAN;

PROCEDURE AllocPopup;
PROCEDURE ControlFlow;
PROCEDURE DataFlow;
PROCEDURE FindNode;
PROCEDURE FindProc;
PROCEDURE Flush;
PROCEDURE Handle (f: Display.Frame; VAR msg: Display.FrameMsg);
PROCEDURE InspectSlice;
PROCEDURE MakePersistent;
PROCEDURE NewFrame (slice: Slicer.Slice; T: Texts.Text; pos: LONGINT): Frame;
PROCEDURE NotifyDisplay (s: Slicer.Slice; op: INTEGER);
PROCEDURE Open;
PROCEDURE OpenCallHierarchyViewer;
PROCEDURE Playback;
PROCEDURE ReconstructSource;
PROCEDURE ResetDataFlowInfo;
PROCEDURE SetAliases;
PROCEDURE SetArrayExpansionLimit;
PROCEDURE SetDynamicTypes;
PROCEDURE SetForcePersistence;
PROCEDURE SetMark;
PROCEDURE SetOption;
PROCEDURE SetRecording;
PROCEDURE ShowOptions;
PROCEDURE ShowPosition;
PROCEDURE Statistics;

END SlicerFE.

143Appendix: Additional Module Definitions

Module ParInfoElems

DEFINITION ParInfoElems;

IMPORT Texts, Slicer, SlicerOPT, SlicerOPS;

CONST
version = "Oberon Slicing Tool V1.0 (CS)";

TYPE
ActualParElem = POINTER TO ActualParElemDesc;
ActualParElemDesc = RECORD (Texts.ElemDesc) END ;
Elem = POINTER TO ElemDesc;
ElemDesc = RECORD (Texts.ElemDesc)
END ;

PROCEDURE Alloc;
PROCEDURE AllocActualPar;
PROCEDURE Handle (e: Texts.Elem; VAR msg: Texts.ElemMsg);
PROCEDURE HandleActualPar (e: Texts.Elem; VAR msg: Texts.ElemMsg);
PROCEDURE NewActualParElem (varpar, used, defined: BOOLEAN): ActualParElem;
PROCEDURE NewElem (slice: Slicer.Slice; proc: SlicerOPT.Object; parIn: SlicerOPT.Node;

sel, abstract: BOOLEAN; col: INTEGER): Elem;
PROCEDURE Track (e: Elem; VAR msg: Texts.ElemMsg);

END ParInfoElems.

Module SlicerOPT

DEFINITION SlicerOPT;

IMPORT SlicerOPS;

CONST
(* kinds of parameter usages *)
parIn = 0; parOut = 1; parUsed = 2; parDefined = 3; parAlwaysDefined = 4; isPar = 5;
(* kinds of dependences *)
(* parIn, parOut *) CD = 2; DD = 3; transDD = 4; call = 5; dynCall = 6;
(* flags for hash table entries *)
empty = 0; filled = 1; deleted = 2; mustAssign = 3; defOfAlias = 4;
(* flags for ProcInfo *)
useDefComputed = 0; solved = 1;
(* nodes classes *)
Nfpar = 29; NcallSite = 30; Ndyncall = 31; NloopExit = 32; NprocExit = 33;
Nhalt = 34;
(* node subclasses *)
(* Nfpar *)
inPar = 0; outPar = 1; additionalInPar = 2; additionalOutPar = 3;
(* Nvarpar *)
additionalPar = 1;
(* Ncall *)
normal = 0; statMeth = 1; superCall = 2;
dynMethAllKnown = 3; dynMethNotAllKnown = 4;
procVarAllKnown = 5; procVarNotAllKnown = 6;

144 Appendix: Additional Module Definitions

MaxConstLen = 256;
unexpectedSituation = 99;

TYPE
Access = POINTER TO AccessDesc;
AccessDesc = RECORD

obj: Object;
node: Node;

END ;
AccessArr = POINTER TO ARRAY OF Access;
AccessIterator = RECORD

PROCEDURE (VAR it: AccessIterator) First (): Access;
PROCEDURE (VAR it: AccessIterator) Next (): Access;

END ;
AliasIterator = RECORD

PROCEDURE (VAR it: AliasIterator) First (): Object;
PROCEDURE (VAR it: AliasIterator) GetSelection (): BOOLEAN;
PROCEDURE (VAR it: AliasIterator) Next (): Object;
PROCEDURE (VAR it: AliasIterator) NextSelected (): Object;
PROCEDURE (VAR it: AliasIterator) SetSelection (sel: BOOLEAN);

END ;
CallIterator = RECORD

end-: BOOLEAN;
PROCEDURE (VAR it: CallIterator) AdditionalAPars (): Node;
PROCEDURE (VAR it: CallIterator) Advance;
PROCEDURE (VAR it: CallIterator) CallNode (): Node;
PROCEDURE (VAR it: CallIterator) ProcObj (): Object;
PROCEDURE (VAR it: CallIterator) Reset;

END ;
ChoiceIterator = RECORD

node-: Node;
PROCEDURE (VAR it: ChoiceIterator) First (): Node;
PROCEDURE (VAR it: ChoiceIterator) GetSelection (): BOOLEAN;
PROCEDURE (VAR it: ChoiceIterator) Next (): Node;
PROCEDURE (VAR it: ChoiceIterator) NextSelected (): Node;
PROCEDURE (VAR it: ChoiceIterator) SetSelection (sel: BOOLEAN);

END ;
Const = POINTER TO ConstDesc;
ConstDesc = RECORD

ext: ConstExt;
intval, intval2: LONGINT;
setval: SET;
realval: LONGREAL;
id: LONGINT;

END ;
ConstExt = POINTER TO SlicerOPS.String;
Definitions = POINTER TO ARRAY OF VarDef;
Dependences = POINTER TO DependencesDesc;
DependencesDesc = RECORD

cds, dds, parIns, parOuts, transdds, dyncalls: NodeArr;
END ;
HashTable = RECORD

size, count: LONGINT;
PROCEDURE (VAR h: HashTable) Found (o: Object; n: Node;

VAR pos: LONGINT): BOOLEAN;
PROCEDURE (VAR h: HashTable) Free;
PROCEDURE (VAR h: HashTable) Init (size: LONGINT);
PROCEDURE (VAR h: HashTable) Insert (o: Object; n: Node; flags: SET);
PROCEDURE (VAR h: HashTable) Reset;

145Appendix: Additional Module Definitions

PROCEDURE (VAR ht: HashTable) SetIterator (VAR it: HashTableIterator);
END ;
HashTableIterator = RECORD

end-: BOOLEAN;
pos-: LONGINT;
PROCEDURE (VAR it: HashTableIterator) CurFlags (): SET;
PROCEDURE (VAR it: HashTableIterator) CurMustAssign (): BOOLEAN;
PROCEDURE (VAR it: HashTableIterator) CurNode (): Node;
PROCEDURE (VAR it: HashTableIterator) CurObj (): Object;
PROCEDURE (VAR it: HashTableIterator) Next;
PROCEDURE (VAR it: HashTableIterator) SetPos (pos: LONGINT);

END ;
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

left, right, link: Node;
class, subcl: SHORTINT;
readonly: BOOLEAN;
mark: SHORTINT;
typ: Struct;
obj: Object;
conval: Const;
procInfo: ProcInfo;
usedObjs, definedObjs: ObjArr;
dependences: Dependences;
gen, kill, in, choice: SetArr;
aliases: ObjArr;
enabledAliases: SetArr;
id: LONGINT;
PROCEDURE (node: Node) SetAliasIterator (VAR it: AliasIterator);
PROCEDURE (node: Node) SetChoiceIterator (VAR it: ChoiceIterator);
PROCEDURE (node: Node) SetDependenceIterator (kind: SHORTINT;

VAR it: NodeIterator);
END ;
NodeArr = POINTER TO ARRAY OF Node;
NodeIterator = RECORD

PROCEDURE (VAR it: NodeIterator) First (): Node;
PROCEDURE (VAR it: NodeIterator) Next (): Node;

END ;
Nodes = POINTER TO NodesDesc;
NodesDesc = RECORD

using, defining: NodeArr;
nofUsing, nofDefining: INTEGER;
PROCEDURE (nodes: Nodes) SetNodeIterator (using: BOOLEAN; VAR it: NodeIterator);

END ;
ObjArr = POINTER TO ARRAY OF Object;
Object = POINTER TO ObjDesc;
ObjDesc = RECORD

left, right, link, scope: Object;
name: SlicerOPS.Name;
leaf: BOOLEAN;
mode, mnolev, vis: SHORTINT;
typ: Struct;
conval: Const;
adr, linkadr: LONGINT;
nodes: Nodes;
procInfo: ProcInfo;
assignedToProcVar: BOOLEAN;
mark, level: SHORTINT;
mod: Object;

146 Appendix: Additional Module Definitions

expanded: BOOLEAN;
components: ObjArr;
containedIn: Object;
id: LONGINT;

END ;
ObjectIterator = RECORD

PROCEDURE (VAR it: ObjectIterator) First (): Object;
PROCEDURE (VAR it: ObjectIterator) IsIn (obj: Object): BOOLEAN;
PROCEDURE (VAR it: ObjectIterator) Next (): Object;

END ;
Objects = POINTER TO ObjectsDesc;
ObjectsDesc = RECORD

used, defined: ObjArr;
nofUsed, nofDefined: INTEGER;
PROCEDURE (objs: Objects) SetObjectIterator (used: BOOLEAN; VAR it: ObjectIterator);

END ;
ProcInfo = POINTER TO ProcInfoDesc;
ProcInfoDesc = RECORD

fpars, callSites: Node;
calls: NodeArr;
accesses: AccessArr;
procExit, enter: Node;
procObj: Object;
in, out: SetArr;
objs: Objects;
definitionsHT: HashTable;
varDefs: Definitions;
flags: SET;
id: LONGINT;
PROCEDURE (procInfo: ProcInfo) AddCall (call, callee: Node; VAR callSite: Node);
PROCEDURE (procInfo: ProcInfo) AddFPar (node: Node);
PROCEDURE (procInfo: ProcInfo) InsertObj (obj: Object; used: BOOLEAN);
PROCEDURE (procInfo: ProcInfo) RegisterAccess (obj: Object; node: Node);
PROCEDURE (procInfo: ProcInfo) SetAccessIterator (VAR it: AccessIterator);
PROCEDURE (procInfo: ProcInfo) SetCallIterator (VAR it: NodeIterator);

END ;
SetArr = POINTER TO ARRAY OF SET;
Struct = POINTER TO StrDesc;
StrDesc = RECORD

form, comp, mno, extlev: SHORTINT;
ref, sysflag: INTEGER;
n, size, tdadr, offset, txtpos: LONGINT;
BaseTyp: Struct;
link, strobj, mod: Object;
extensions: StructArr;
fields: ObjArr;
id: LONGINT;
mark: SHORTINT;

END ;
StructArr = POINTER TO ARRAY OF Struct;
StructIterator = RECORD

PROCEDURE (VAR it: StructIterator) First (): Struct;
PROCEDURE (VAR it: StructIterator) Next (): Struct;

END ;
VarDef = RECORD

mustAssign-, mayAssign-: SetArr;
END ;
WorkProcObject = PROCEDURE (o: Object);

147Appendix: Additional Module Definitions

VAR
GlbMod: ARRAY 31 OF Object;
ModFromRepository: PROCEDURE (name: ARRAY OF CHAR; key: LONGINT): Object;
SYSimported: BOOLEAN;
booltyp: Struct;
bytetyp: Struct;
chartyp: Struct;
currentModule: Object;
forwards: ObjArr;
inttyp: Struct;
linttyp: Struct;
lrltyp: Struct;
niltyp: Struct;
nofForwards: LONGINT;
nofGmod: SHORTINT;
notyp: Struct;
realtyp: Struct;
settyp: Struct;
sinttyp: Struct;
stringtyp: Struct;
syslink: Object;
sysptrtyp: Struct;
topScope: Object;
undftyp: Struct;
universe: Object;

PROCEDURE AppendNode (VAR head: Node; node: Node);
PROCEDURE Close;
PROCEDURE CloseScope;
PROCEDURE ExistsDependence (from, to: Node; kind: SHORTINT): BOOLEAN;
PROCEDURE Export (VAR modName: SlicerOPS.Name; VAR newSF: BOOLEAN;

VAR key: LONGINT);
PROCEDURE Find (VAR res: Object);
PROCEDURE FindField (VAR name: SlicerOPS.Name; typ: Struct; VAR res: Object);
PROCEDURE FindImport (mod: Object; VAR res: Object);
PROCEDURE FindMethod (name: ARRAY OF CHAR; typ: Struct): Object;
PROCEDURE FindOverriddenMethod (name: ARRAY OF CHAR; typ: Struct): Object;
PROCEDURE FirstNode (n: Node; class: SHORTINT; subclasses: SET): Node;
PROCEDURE GetAliasForRealName (realName: ARRAY OF CHAR;

VAR alias: ARRAY OF CHAR);
PROCEDURE GetRealNameForAlias (alias: ARRAY OF CHAR;

VAR realName: ARRAY OF CHAR);
PROCEDURE Import (VAR aliasName, impName, selfName: SlicerOPS.Name);
PROCEDURE IndexOfNode (nodeArr: NodeArr; node: Node): LONGINT;
PROCEDURE IndexOfObject (objArr: ObjArr; obj: Object): LONGINT;
PROCEDURE Init;
PROCEDURE Insert (VAR name: SlicerOPS.Name; VAR obj: Object);
PROCEDURE InsertAlias (at: Node; alias: Object);
PROCEDURE InsertDependence (from, to: Node; kind: SHORTINT);
PROCEDURE InsertDyncall (from, to: Node);
PROCEDURE InsertFwdDecl (proc: Object);
PROCEDURE InsertNew (VAR varDefs: Definitions; obj: Object; size: LONGINT): LONGINT;
PROCEDURE InsertNode (VAR nodeArr: NodeArr; node: Node);
PROCEDURE InsertObject (VAR objArr: ObjArr; obj: Object);
PROCEDURE InsertStruct (VAR arr: StructArr; str: Struct);
PROCEDURE InsertUseDef (node: Node; obj: Object; used: BOOLEAN);
PROCEDURE IsExtended (typ: Struct): BOOLEAN;
PROCEDURE IsGlobal (obj: Object): BOOLEAN;
PROCEDURE IsIntermediate (obj, proc: Object): BOOLEAN;

148 Appendix: Additional Module Definitions

PROCEDURE IsLocal (obj, proc: Object): BOOLEAN;
PROCEDURE IsOverridden (typ: Struct; name: ARRAY OF CHAR): BOOLEAN;
PROCEDURE Lookup (scope: Object; name: ARRAY OF CHAR; VAR obj: Object);
PROCEDURE MatchingParameterLists (par1, par2: Object; ret1, ret2: Struct): BOOLEAN;
PROCEDURE NestingLevel (obj: Object): SHORTINT;
PROCEDURE NewConst (): Const;
PROCEDURE NewExt (): ConstExt;
PROCEDURE NewNode (class: SHORTINT): Node;
PROCEDURE NewObj (): Object;
PROCEDURE NewProcInfo (): ProcInfo;
PROCEDURE NewStr (form, comp: SHORTINT): Struct;
PROCEDURE OpenScope (level: SHORTINT; owner: Object);
PROCEDURE ProcObj (call: Node): Object;
PROCEDURE SameType (t1, t2: Struct): BOOLEAN;
PROCEDURE SetCallIterator (node: Node; VAR it: CallIterator);
PROCEDURE SetNodeIterator (nodes: NodeArr; VAR it: NodeIterator);
PROCEDURE SetObjectIterator (objs: ObjArr; VAR it: ObjectIterator);
PROCEDURE SetStructIterator (structs: StructArr; VAR it: StructIterator);
PROCEDURE SetsClear (s: SetArr);
PROCEDURE SetsCopy (s1, s2: SetArr);
PROCEDURE SetsDifference (s1, s2, s3: SetArr);
PROCEDURE SetsEmpty (s: SetArr): BOOLEAN;
PROCEDURE SetsEqual (s1, s2: SetArr): BOOLEAN;
PROCEDURE SetsExcl (s: SetArr; x: LONGINT);
PROCEDURE SetsFill (s: SetArr);
PROCEDURE SetsIn (s: SetArr; x: LONGINT): BOOLEAN;
PROCEDURE SetsIncl (s: SetArr; x: LONGINT);
PROCEDURE SetsIntersection (s1, s2, s3: SetArr);
PROCEDURE SetsNew (VAR s: SetArr; size: LONGINT);
PROCEDURE SetsPrint (s: SetArr; VAR ht: HashTable);
PROCEDURE SetsUnion (s1, s2, s3: SetArr);
PROCEDURE Statistics;
PROCEDURE ThisAdditionalPar (call: Node; obj: Object): Node;
PROCEDURE ThisFPar (procInfo: ProcInfo; obj: Object): Node;
PROCEDURE ThisFPar2 (procInfo: ProcInfo; kinds: SET; obj: Object): Node;
PROCEDURE ThisVar (name: ARRAY OF CHAR; proc: Node): Object;
PROCEDURE ThisVarDef (varDefs: Definitions; obj: Object): LONGINT;
PROCEDURE TraverseSymbolTable (scope: Object; proc: WorkProcObject);

END SlicerOPT.

Module SlicerAuxiliaries

DEFINITION SlicerAuxiliaries;

IMPORT SlicerOPT, SlicerOPS;

TYPE
CSGNode = POINTER TO CSGNodeDesc;
Fixups = POINTER TO FixupsDesc;
FixupsDesc = RECORD

n: INTEGER;
arr: SlicerOPT.NodeArr;
PROCEDURE (f: Fixups) Fixup (to: SlicerOPT.Node);
PROCEDURE (f: Fixups) Init;

149Appendix: Additional Module Definitions

PROCEDURE (f: Fixups) Insert (n: SlicerOPT.Node);
PROCEDURE (f: Fixups) SetIterator (VAR it: FixupsIterator);

END ;
FixupsIterator = RECORD

PROCEDURE (VAR it: FixupsIterator) First (): SlicerOPT.Node;
PROCEDURE (VAR it: FixupsIterator) Next (): SlicerOPT.Node;

END ;

PROCEDURE FindProc (root: CSGNode; proc: SlicerOPT.Node): CSGNode;
PROCEDURE InsertProc (VAR root: CSGNode; proc: SlicerOPT.Node);
PROCEDURE RemoveProc (VAR root: CSGNode; proc: SlicerOPT.Node): CSGNode;
PROCEDURE ShowECSG (root: CSGNode);
PROCEDURE UpdateExistingProc (VAR root: CSGNode; caller, callee: SlicerOPT.Node);

END SlicerAuxiliaries.

Bibliography

[AgH90] H. Agrawal, J. Horgan: Dynamic Program Slicing.
Proceedings of the ACM SIGPLAN'90 Conference on Programming Language
Design and Implementation, 1990.

[Agr91] H. Agrawal: Towards Automatic Debugging of Computer Programs.
Ph.D. dissertation, Purdue University, West Lafayette, Indiana, 1991.

[ASU86] A. Aho, R. Sethi, J. Ullman: Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[Bac97] D. Bacon: Fast and Effective Optimization of Statically Typed Object-Oriented
Languages.
PhD thesis, University of California at Berkeley.

[BaH93] S. Bates, S. Horwitz: Incremental Program Testing Using Program
Dependence Graphs.
In Conference Record of the Twentieth ACM Symposium on Principles of
Programming Languages, ACM, 1993.

[Be86] V. Berzins: On Merging Software Extensions.
Acta Informatica, 23(6), 1986.

[BiO94] J. Bieman, L. Ott: Measuring Functional Cohesion.
IEEE Transactions on Software Engineering, 20(8), August 1994.

[Bi95] D. Binkley: Reducing the Cost of Regression Testing by Semantics Guided

Test Case Selection.
In IEEE International Conference on Software Maintenance, 1995.

[BiO94] J. M. Bieman, L. M. Ott: Measuring Functional Cohesion.
IEEE Transactions on Software Engineering, 20(8), August 1994.

[BiG96] D. Binkley, K. B. Gallagher: Program Slicing.

Advances in Computers, Volume 43, 1996.

152 Bibliography

[Bra95] M. Brandis: Optimizing Compilers for Structured Programming Languages.

Dissertation, ETH Zürich, 1995.

[BrMö94] M. Brandis, H. Mössenböck: Single-Pass Generation of Static

Single-Assignment Form for Structured Languages.
ACM Transactions on Programming Languages and Systems, 16(6), November
1994.

[Bur92] S. Burbeck: Applications Programming in Smalltalk-80(TM): How to use

Model-View-Controller (MVC).
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

[ChWC97] J.-L. Chen, F.-J. Wang, Y.-L. Chen: Slicing Object-Oriented Programs.
Abstract submitted to Asia-Pacific Enginieering Conference and International
Computer Science Conference, December 1997.
http://www.computer.org/conferen/proceed/8271abs.htm

[Chop] Chopshop Project
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/chopshop/pub/www/home.html

[Cre90] R. Crelier: OP2: A Portable Oberon Compiler.
Technical report 125, ETH Zürich, February 1990.

[Cre94] R. Crelier: Separate Compilation and Module Extension.
Dissertation, ETH Zürich, 1994.

[DGC94] J. Dean, D. Grove, C. Chambers: Optimization of Object-Oriented Programs
Using Static Class Hierarchy Analysis.
In Proceedings of the Ninth European Conference on Object-Oriented
Programming - ECOOP'95 (Aarhus, Denmark), Springer-Verlag, August 1995.

[EGH94] M. Emami, R. Ghiya, L. J. Hendren: Context-Sensitive Interprocedural
Points-to Analysis in the Presence of Function Pointers.
ACM Conference on Programming Language Design and Implementation,
1994.

[Ern94] M. Ernst: Practical Fine-Grained Static Slicing of Optimized Code.
Technical report MSR-TR-94-14, Microsoft Research.

[FeOW87] J. Ferrante, K. Ottenstein, J. Warren: The Program Dependence Graph and its
Use in Optimization.
ACM Transactions on Programming Languages and Systems, 9(3), July 1987.

153Bibliography

[FoB97] I. Forgacs, A. Bertolino: Feasible Test Path Selection by Principal Slicing.
In Proceedings of the Sixth European Software Engineering Conference
(ESEC/FSE 97), LNCS 1301, Springer-Verlag, September 1997.

[Gal91] K. B. Gallagher: Using Program Slicing to Eliminate the Need for Regression
Testing.
In Eighth International Conference on Testing Computer Software, May 1991.

[GaL92] K. B. Gallagher, J. R. Lyle: Using Program Slicing in Software Maintenance.
IEEE Transactions on Software Engineering, 17(8), August 1991.

[GaHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns, Elements of
Reusable Object-Oriented Software.

Addison-Wesley, 1995.

[Ghin] The Ghinsu Environment.
http://www.cis.ufl.edu/~pel/Ghinsu/gghinsu.html

[Gram] GrammaTech
http://www.grammatech.com/

[GuHS96] R. Gupta, M. J. Harrold, M. L. Soffa: Program Slicing-Based Regression
Testing Techniques.
Journal of Software Testing, Verification and Reliability, 6(2), June 1996.

[GuSH97] R. Gupta, M. L. Soffa, J. Howard: Hybrid Slicing: Integrating Dynamic
Information with Static Analysis.
In ACM Transactions on Software Engineering and Methodology, 6(4),
October 1997.

[HaD95] M. Harman, S. Danicic: Using Program Slicing to Simplify Testing.
Software Testing, Verification and Reliability, 5, September 1995.

[HoPR89] S. Horwitz, J. Prins, T. Reps: Integrating Noninterfering Versions of
Programs.
ACM Transactions on Programming Languages and Systems, 11(3), July 1989.

[HoRB90] S. Horwitz, T. Reps, D. Binkley: Interprocedural Slicing Using Dependence
Graphs.
ACM Transactions on Programming Languages and Systems, 12(1), 1990.

[HoR91] S. Horwitz, T. Reps: Efficient Comparison of Program Slices.
Acta Informatica, 1991.

154 Bibliography

[JaR94] D. Jackson, E. J. Rollins: A New Model of Program Dependences for Reverse

Engineering.
In Proceedings of the Second ACM SIGSOFT Symposium on the Foundations
of Software Engineering (New Orleans, LA), December 1994.

[Ka80] U. Kastens: Ordered Attribute Grammars.
Acta Informatica 13, 3, 1980.

[KoL88] B. Korel, J. Laski: Dynamic Program Slicing.
Information Processing Letters, 29(3), October 1988.

[KoMG97] G. Kovács, F. Magyar, T. Gyimóthy: Static Slicing of Java Programs.
In Proceedings of the Fifth Symposium on Programming Languages and
Software Tools, Jyväskylä, Finland, 1997.

[Kri94] Anand Krishnaswamy: Program Slicing: An Application of Object-oriented
Program Dependency Graphs.
Technical report, Department of Computer Science, Clemson University

[LaH96] L. Larsen, M. J. Harrold: Slicing Object-Oriented Software.
Proceedings of the 18th International Conference on Software Engineering,
1996.

[LeTa79] T. Lengauer, R. Tarjan: A Fast Algorithm for Finding Dominators in a
Flowgraph.
In ACM Transactions on Programming Languages and Systems, 1(1), July
1979.

[LivC94] P. E. Livadas, S. Croll: A New Algorithm for the Calculation of Transitive

Dependences.
Technical report, Computer and Information Sciences Department, University
of Florida, 1994.

[LivJ95] P. E. Livadas, T. Johnson: An Optimal Algorithm for the Construction of the

System Dependence Graph.
Technical report, Computer and Information Sciences Department, University
of Florida, 1995.

155Bibliography

[Ly+95] J. R. Lyle, D. R. Wallace, J. R. Graham, K. B. Gallagher, J. E. Poole, D. W.
Binkley: A CASE Tool to Evaluate Functional Diversity in High Integrity

Software.
U.S. Department of Commerce, Technology Administration, National Institute
of Standards and Technology, Computer Systems Laboratory, Gaithersburg,
MD, 1995.

[LyW86] J. R. Lyle, M. D. Weiser: Automatic Program Bug Location by Program

Slicing.
In Proceeding of the Second International Conference on Computers and
Applications, Peking, China, June 1987.

[MöKo96] H. Möossenböck, K. Koskimies: Active Text for Structuring and

Understanding Source Code.

SOFTWARE - Practice and Experience, 26(7), July 1996.

[MöWi91] H. Mössenböck, N. Wirth: The Programming Language Oberon-2.
Structured Programming, 12(4), 1991.

[OST] The Oberon Slicing Tool.
http://www.ssw.uni-linz.ac.at/Staff/CS/Slicing.html

[Obi98] G. Obiltschnig: An Object-Oriented Interpreter Framework for the Oberon-2
Programming Language.
Diploma thesis, Johannes Kepler University Linz, 1998.

[OtO84] K. Ottenstein, L. Ottenstein: The Program Dependence Graph in Software
Development Environments.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, May 1984.

[PaR93] H. D. Pande, B. G. Ryder: Static type determination for C++.
Technical report, LCSR-TR-197, Rutgers University, February 1993.

[Spyd] Spyder

http://www.cs.purdue.edu/homes/spaf/spyder.html

[Ste98a] C. Steindl: Program Slicing (1), Data Structures and Computation of Control

Flow Information.
Technical Report 11, Institut für Praktische Informatik, University Linz, 1998.

[Ste98b] C. Steindl: Program Slicing (2), Computation of Data Flow Information.
Technical Report 12, Institut für Praktische Informatik, University Linz, 1998.

156 Bibliography

[Szy92] C. Szyperski: Write-ing Applications: Designing an Extensible Text Editor as

an Application Framework.
Proceedings of the 7th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS'92), Dortmund, Germany,
Prentice Hall, March 1992.

[Unra] The Unravel Project.
http://hissa.ncsl.nist.gov/~jimmy/unravel.html

[VALS] VALSOFT.
http://www.cs.tu-bs.de/softech/valsoft/

[Wei84] M. D. Weiser: Program Slicing.
IEEE Transactions on Software Engineering, 10, July 1984.

[WIPS] The Wisconsin Program-Slicing Project.
http://www.cs.wisc.edu/wpis/html/

[Yan90] W. Yang: A New Algorithm for Semantics-Based Program Integration.
Ph.D. dissertation, University of Wisconsin, Madison, 1990.

[YoC79] E. Yourdon, L. Constantine: Structured Design.
Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

[ZhR94] S. Zhang, B. G. Ryder: Complexity of Single Level Function Pointer Aliasing
Analysis.
Technical report, LCSR-TR-233, Rutgers University, July 1994.

Curriculum Vitae

Christoph Steindl

1972 Born in Waidhofen an der Thaya
1978-82 Primary School: Volksschule in Ottenschlag
1982-90 Secondary School: BG/BRG in Zwettl

Graduation with first class honors
1990-95 Computer Science at the Johannes Kepler University Linz

Graduation with first class honors
1990-97 Mechatronics at the Johannes Kepler University Linz

Graduation with first class honors
1995-98 Employment as university assistant at the Department of Practical Computer

Science, Johannes Kepler University Linz
1998 Military service
1998-99 University assistant

