
8 Future Work

Since many variants of program slicing have been proposed for different applications, our
work could be extended into many different directions. In the following we will only briefly
discuss how the Oberon Slicing Tool could be better integrated into the programming
environment. Furthermore we discuss that other variants of program slicing could be
implemented based on our graph representation and how the derived information could be
used for software metrics.

8.1 Integration into the Programming Environment

At the time of writing this thesis, the Oberon Slicing Tool visualizes the slices in its own
window. The source code is reconstructed from the abstract syntax tree and the symbol
table. There are several advantages of this approach:

o The source code is presented in a canonical form. Each line contains at most one
statement.

o Additional information can be inserted right away during the reconstruction of the
source code.

However, it also has some disadvantages:

o The layout of the original source code is lost.
o The front-end of the compiler skips all comments, so they are lost and cannot be

displayed.
o The front-end of the compiler performs some simple optimizations such as constant

folding, transformation of IF statements with constant conditions, replacement of
integer multiplication by a power of two by arithmetic shifts, etc. These optimizations
cannot be undone, the results are presented to the user. This may give insights, but
may also confuse.

o The reconstruction of the source code is difficult, the module implementing the
reconstruction and the user interface is very big (approximately 3000 lines).

Another problem is that the slicing window cannot be used to edit the program since edit
operations would probably invalidate the computed information. A simple approach would
be to remove all visual elements at the first insert or delete operation performed on the text.
A more sophisticated approach would be to partially invalidate and remove the visual
elements and to recompute the information for the invalidated parts in the background.
Currently slicing information is computed for one module at a time. It might be
advantageous to keep the information more or less up-to-date during editing. This could be



138 Future Work

done by performing control and data flow analysis on a per procedure basis. Additional
conservative assumptions would be necessary, but while editing a procedure, intraprocedural
information might be sufficient. During longer phases without edit operations, the analysis
could be performed for the whole module. Therefore, the error handling and recovery
capabilities of the Oberon compiler would have to be enhanced since the compiler would
have to derive approximate syntax trees for incomplete or erroneous programs.

The Oberon Slicing Tool could also be integrated with the compiler which could benefit
from the slicing information. Information about reaching definitions and aliases could be
used to generate faster code.

The Oberon Slicing Tool could also be integrated with the Oberon interpreter [Obi98]
and the debugger. Since the interpreter also uses the abstract syntax tree and the symbol
table as its internal data structures, integration might be possible with reasonable effort.
Interpretation of Boolean expressions might help to determine feasible paths. During
debugging, information about the reaching definitions could be very useful. Additionally
run-time information could be used to perform more precise data flow analysis. Gupta et al.
[GuSH97] introduced hybrid slicing. They integrate dynamic information from a specific
execution into a static analysis. They use breakpoint information and the dynamic call graph
to more accurately estimate potential paths taken by the program. Their ideas could possibly
be integrated into the Oberon Slicing Tool.

8.2 Other Variants of Slicing

The Oberon Slicing Tool can only compute static backward slices. This is not a big
limitation for the envisaged fields of application. However, the graph representation of the
program used for backward slicing has also been used by many researchers to implement
other variants of slicing: Horwitz et al. [HoRB90] adapted the algorithms of backward
slicing to forward slicing, Agrawal and Horgan [AgH90] presented algorithms for dynamic
slicing based on dependence graphs.

8.3 Software Metrics

Since the Oberon Slicing Tool computes precise control flow and data flow information, it
could be used to derive structural metrics based on

o the number of call destinations at dynamically bound calls
o the number of ordinary and additional parameters
o the number of aliases per definition
o the number of possible dynamic types per polymorphic variable
o the length of recursion chains due to static and dynamic binding
o the number of reaching definitions per usage



139Future Work

o the number of side-effects of procedures and functions

The resulting metrics could be tested against object-oriented and procedural programs,
investigating the differences.


