
5 User Interface

The user interface of the Oberon Slicing Tool is implemented in a separate module, module
SlicerFE. It displays the source code of the analyzed program in a canonical form by
reconstructing it from the abstract syntax tree and the symbol table. The user can slice for
specific statements of the program by clicking on the line of the statement. The slice is then
computed and visualized by showing all parts of the program that belong to the slice in a
different color. Furthermore, control flow and data flow information is visualized by active
text elements.

5.1 Visual Elements

We extended the Active Text Framework (see [Szy92] and [MöKo96]) of the Oberon
System to visualize control flow and data flow information. This framework allows arbitrary
objects such as pictures, tables or buttons to be inserted into the text like ordinary
characters. These objects are called text elements and are derived from the abstract base
class Texts.Elem. Text elements are active, because they react on mouse clicks. For example,
a text element representing a hypertext link will cause the editor to scroll to another text
position when the user clicks on the link. Another kind of active text elements are popup
elements that represent a menu that pops up in reaction to a click.

5.1.1 Bidirectional Links Between the Caller and the Callee

We visualize the call edges between the call site and the called procedure with hypertext
links. At the call site, we insert a popup element labeled calling. It contains one entry for
each possible call destination. The user can select a call destination from the popup element
upon which the source code is scrolled to the position of the called procedure and the called
procedure is highlighted. At the called procedure, a popup element labeled called at contains
all call sites. The user can select a call site from the popup element upon which the source
code is scrolled to the position of the call site and the call site is highlighted. Fig. 5.1 shows
a small program with popup elements at the call sites and the called procedures. The
numbers at the beginning of the lines indicate the character position within the original
source code.

114 User Interface

Fig. 5.1 - Bidirectional links between the caller and the callee

After selecting the entry 289 from the called at element of procedure ReadParameters, the
call site in procedure Compile is highlighted as shown in Fig. 5.2.

115User Interface

Fig. 5.2 - Navigation from call destination back to call site

5.1.2 DataDependences

We visualize data dependences with links from the usage of a variable to all definitions of
the same variable that might reach the usage. Popup elements labeled DDs contain one entry
for each reaching definition. The user can select a reaching definition which is then
highlighted in the source code. An exclamation mark in the label of the popup element
indicates potential data flow problems (e.g., usage of a potentially uninitialized variable).
Fig. 5.3 shows a small program with data dependences. The popped up element shows that
all three definitions of p might be reaching.

116 User Interface

Fig. 5.3 - Visualization of data dependences

5.1.3 Parameters

Parameter Usage

Parameter usage information elements visualize the flow of the parameters between the call
sites and the called procedures. Parameters may be used by the called procedure - their
values flow from the caller to the callee. They may be defined by the called procedure, in
which case their values may flow back from the callee to the caller (for reference parameters
only). At the call sites, parameter information elements indicate the flow of information (
for input parameters, for output parameters, for input/output parameters). At the called
procedure, similar elements give additional information about potential problems (for
problems with input parameters, e.g. if a reference parameter is not assigned a value or if an
input parameter is assigned a value). Fig. 5.4 shows a small program with parameter
information elements. At the call site in line with number 357, t is an input parameter, and
min an output parameter. By clicking with the middle mouse button on the element of the
output parameter min of procedure FindMin, the slice is computed for this output parameter
as shown in Fig. 5.4. All parts of the program that are part of the slice are shown in blue.

117User Interface

Fig. 5.4 - Parameter information elements

By clicking with the middle and the right mouse button on the parameter information
element of a formal reference parameter, information about possible aliases is shown in a
small popup window. Fig. 5.5 shows that parameter j is a possible alias of parameter i.

Fig. 5.5 - Alias information via parameter information elements

Additional information about potential problems is also shown in a small popup window.
Fig. 5.6 shows the information for parameter j whose value is never used in procedure Do

and which is not assigned a value in the procedure.

118 User Interface

Fig. 5.6 - Additional information via parameter information elements

For dynamically bound calls, the parameter elements combine the parameter usage
information from all possible call destinations.

Additional Parameters

Additional parameters are shown in comments in the actual and formal parameter lists.
Fig. 5.7 shows a small example. Procedure Add0 defines the global variable sum, therefore
sum is added as an additional parameter to its formal parameter list. In line with number 258,
procedure Add calls procedure Add0 with the ordinary parameter val and the additional
parameter sum. This additional parameter is added as a comment to the formal parameter list
of procedure Add. For additional parameters parameter information elements indicate their
usage as previously described for ordinary parameters.

Fig. 5.7 - Additional parameters

119User Interface

For dynamically bound calls, additional parameters are collected from all possible call
destinations.

5.1.4 Aliases

For each definition of a variable with possible aliases we insert a popup element labeled
aliases. It contains one entry for each variable that might be an alias of the defined variable.
For each possible alias, non-killing definitions are generated. The user can disable and enable
some of the aliases by selecting them. Initially all aliases are enabled. The popup element
shows enabled aliases in black and disabled aliases in grey. After an alias has been disabled
via user interaction, the user can initiate the computation of more precise data flow
information. Fig. 5.8 shows a small example where variables cnt and arr may be aliases (e.g.,
for a call like VisualizeAliases.CountZero(arr,arr[i])).

Fig. 5.8 - Possible aliases at definitions

For all enabled aliases non-killing definitions are generated which leads to conservative data
flow information. In Fig. 5.9 we see that the two assignments to cnt in lines with numbers
123 and 197 are reaching definitions for the usage of arr in line with number 178.

120 User Interface

Fig. 5.9 - Reaching definitions with all aliases enabled

After disabling the aliases at the assignments in lines with numbers 123 and 197, the user can
reset the computed data flow information and initiate its recomputation. Fig. 5.10 shows the
more precise data flow information where only the initial values (parameter arr at position
52) reach the usage node in line with number 178.

Fig. 5.10 - Reaching definitions with all aliases disabled

5.1.5 DynamicTypes

A polymorphic pointer variable may point to objects of its static type (the type specified at
the declaration) or to objects of all extensions of its static type. The type of the object that
the pointer actually refers to at run time is called the dynamic type of the pointer variable.
We have extended the notion of the "dynamic type" of a pointer variable to procedure
variables, where the dynamic types are the procedures that may have been assigned to the

121User Interface

procedure variable. This allows us to treat dynamic binding due to type-bound procedures
and procedure variables uniformly. We insert popup elements labeled dynamic types at
dynamically bound call sites. These elements contain one entry for each possible call
destination. The user can disable and enable some of the dynamic types by selecting them.
Initially all dynamic types are enabled. The popup element shows enabled dynamic types in
black and disabled dynamic types in grey. In Fig. 5.11, procedure ForAll contains a
dynamically bound call with two possible call destinations Inc and PrintNode. They are both
initially enabled, leading to their additional parameters (namely parameter count of procedure
Inc) being shown at the call site in line with number 289.

122 User Interface

Fig. 5.11 - Dynamic types of procedure variables

The user can disable the call destination Inc at the call in line with number 289 and initiate
the computation of more precise data flow information. Fig. 5.12 shows the same program
after disabling the call destination Inc. Only the additional parameters relevant to the test
case Print are shown.

123User Interface

Fig. 5.12 - More precise data flow information after disabling the call destination Inc

124 User Interface

5.2 User Feedback

Static analysis can derive information only from the source code. The information must be
valid for all possible executions of the program. As noted earlier, conservative assumptions
must be taken if the program uses conditional branches and iteration since it is not known at
compile time which branches will be taken at run time and how many iterations there will be.
Dynamic analysis can derive information by monitoring one particular execution of the
program. It can consider the actual values of the variables during this execution. Therefore,
the information is only valid for the particular execution but not in general. Static
information is necessarily more general and less precise than dynamic information. On the
other hand, it can be computed once for all possible executions, whereas dynamic
information must be computed again and again.

Two main sources of imprecision of static analysis are dynamic types of polymorphic
variables and alias definitions. The first lead to unnecessarily big slices because all possible
call destinations are traversed at dynamically bound calls. The latter lead to unnecessarily big
slices because of non-killing definitions for all possible aliases.

The goal of our thesis was to develop a fast, interactive tool for static program slicing.
This ruled out the possibility to use dynamic analysis. Nevertheless we wanted to narrow the
gap between static and dynamic analysis. We achieved that by integrating user feedback into
our algorithms. The user can restrict the dynamic types of polymorphic variables and the sets
of possible aliases since he often has some use case in mind that he wants to investigate or
that has led to an error. In order to find the error faster, it may be very effective to slice the
program for the erroneous statement and then to narrow the program even further by giving
feedback about the intended use case to the slicing tool. The cycle of slicing and feeding
back user input to the slicing tool may continue several times. The user feedback can be
recorded in order to be played back later.

Zhang and Ryder showed that alias analysis in the presence of procedure variables is
NP-hard in most cases [ZhR94]. This justifies the use of safe approximations in the first
place since exact algorithms would be prohibitive for an interactive slicing tool where the
maximum response time must be in the order of seconds. More precise control and data flow
information can be computed after the user has restricted the program to the use case that he
has in mind. The derived information is no longer valid for all possible executions.

When we compare the precision of the information derived by user feedback with that of
dynamic information derived for the same use case and static information, we see that it lies
between the two extremes, narrowing the gap between static and dynamic analysis.

125User Interface

5.3 Module SlicerFE

Module SlicerFE implements the front end of the Oberon Slicing Tool.

DEFINITIONSlicerFE;

IMPORT TextFrames, Display, Texts, Slicer, PopupElems, SlicerOPT, SlicerOPS;

CONST
version = "Oberon Slicing Tool V1.0 (CS)";
unexpectedSituation=99; (* run-time error number *)
withDDElems = 1; (* options *)
withParInfoElems = 2; withActualParElems = 3;
withCallingElems = 4; withCalledAtElems = 5;
withDynTypeElems = 6; withAliasElems = 7;
withParameterSummary = 8; withReachingEnd = 9;
withPosition = 10; interprocedural = 11;
defaultOptions={withDDElems,withParInfoElems,withActualParElems,

withCallingElems,withCalledAtElems,withDynTypeElems,withAliasElems,
withPosition,interprocedural};

TYPE
AliasElem = POINTER TO RECORD (PopupElems.ElemDesc) END ;
DynTypeElem = POINTER TO RECORD (PopupElems.ElemDesc) END ;
Frame = POINTER TO FrameDesc;
FrameDesc = RECORD (TextFrames.FrameDesc)

slice:Slicer.Slice;
options:SET;

END ;
SliceMsg = RECORD (Display.FrameMsg)

slice:Slicer.Slice;
op: INTEGER;

END ;

...

VAR
forcePersistence:BOOLEAN;
recording:BOOLEAN;

PROCEDURE Open;
PROCEDUREOpenCallHierarchyViewer;
PROCEDUREControlFlow;
PROCEDURE DataFlow;
PROCEDUREResetDataFlowInfo;
PROCEDUREReconstructSource;
PROCEDUREStatistics;
PROCEDUREMakePersistent;
PROCEDUREInspectSlice;
PROCEDURESetRecording;
PROCEDURE Playback;
PROCEDURESetAliases;
PROCEDURESetDynamicTypes;
PROCEDURESetArrayExpansionLimit;
PROCEDURESetForcePersistence;

126 User Interface

PROCEDURESetOption;
PROCEDUREShowOptions;
PROCEDUREFindNode;
PROCEDUREFindProc;
...

END SlicerFE.

Variables:

o forcePersistence is a Boolean value used as the last parameter for
Repository.MakePersistent.

o recording is a Boolean value indicating whether user input shall be recorded for later
play-back.

Commands:

o Open [^] moduleName compiles the specified module, performs control flow and data
flow computation and opens a slicing viewer.

o OpenCallHierarchyViewer opens a viewer displaying the call hierarchy of the target slice.
o ControlFlow calls method ControlFlow for the target slice. If the command is executed

from the menu, the target slice is the slice visualized by the viewer. Otherwise, the
target slice is the slice visualized by the star-marked viewer (mark must be visible).

o DataFlow calls method DataFlow for the target slice.
o ResetDataFlowInfo calls method ResetDataFlowInfo for the target slice.
o ReconstructSource reconstructs the source code of the slice visualized by the target

viewer. This can be useful after changing the options used for the visualization or after
recomputing the data flow information.

o Statistics calls method Statistics for the target slice.
o MakePersistent makes the slicing information persistent by first calling method

CompleteComputation for the target slice, and then calling procedures
CompleteComputation and MakePersistent from the Repository.

o InspectSlice opens a viewer that shows the fields of the target slice.
o SetRecording [^] ["Y" | "N"] sets the Boolean variable recording to TRUE or FALSE.
o Playback [^] {recorded user feedback} plays back the previously recorded user feedback

to the target slice.
o SetAliases ("on" | "off" | "toggle") ("all" | variableName) enables, disables or toggles all

aliases or the alias of the specified variable for all alias elements in the current
selection.

o SetDynamicTypes ("on" | "off" | "toggle") ("all" | dynType) enables, disables or toggles all
dynamic types or the specified dynamic type for all dynamic type elements in the
current selection.

o SetArrayExpansionLimit[^]limit calls Slicer.SetArrayExpansionLimit with the specified limit.
o SetForcePersistence [^] ["Y" | "N"] sets the Boolean variable forcePersistence to TRUE or

FALSE.
o SetOption [^] {(name | number) ("Y" | "N")} | "defaultOptions" sets or resets ("Y" or "N") the

127User Interface

specified options or the default options for the target slice. The option may be
specified by number (e.g., 1 for withDDElems) or by name (e.g., withDDElems).

o ShowOptions outputs the options used to reconstruct the source code of the target
viewer.

o FindNode [^] position calls method ThisNode(position) for the target slice. The return
value is stored in the variable SlicerFE.node which can be inspected via InspectSlice.

o FindProc [^] procName calls method ThisProc(procName) for the target slice. The return
value is stored in the variable SlicerFE.node which can be inspected via InspectSlice.

Types:

o AliasElem is the type of popup elements representing the sets of enabled/disabled
aliases.

o DynTypeElem is the type of popup elements representing the sets of enabled/disabled
dynamic types.

o FrameDesc is the type of frame visualizing the slice with particular options.
o SliceMsg is the type of the message that is broadcast in order to synchronize the views

after the slice has changed. msg.slice refers to the changed slice, msg.op indicates the
performed operation (see explanation of Slicer.Notifier).

5.4 Model-View-Controller Concept

The Oberon Slicing Tool allows the user to display multiple views of the same slice by
separating the model from the views. The model-view-controller concept has been
introduced with Smalltalk. Burbeck [Bur92] describes it as follows:

In the MVC concept the user input, the modeling of the external world, and the
visual feedback to the user are explicitly separated and handled by three types of
object, each specialized for its task. The view manages the graphical and/or textual
output to the display. The controller interprets the mouse and keyboard inputs
from the user, commanding the model and/or the view to change as appropriate.
Finally, the model manages the behavior and data of the application domain,
responds to requests for information about its state (usually from the view), and
responds to instructions to change state (usually from the controller).

The model is represented by an object of type Slicer.Slice. The view and the controller are
combined by an object of type SlicerFE.Frame. At the time of writing this thesis, two kinds of
views have been implemented, the standard view and the call hierarchy view. Additional
views can be implemented. They are kept consistent by broadcasting the SliceMsg into the
"viewer space". Each viewer that displays the changed slice reacts to the indicated operation
properly, e.g. by updating its view. An example shall demonstrate this: Assume that two
standard viewers (V1 and V2) and one call hierarchy viewer (V3) display the same slice. The
user clicks on a statement in V1, upon which the view orders the model to compute the slice

128 User Interface

for the statement. After having computed the slice, the model broadcasts the message
SlicerFE.SliceMsg to all visible viewers. Viewers V1, V2, and V3 react by updating their view.
This is very similar to the way that multiple views of the same text are kept consistent in the
Oberon System.

