
4 Implementation

This chapter describes the implementation of the Oberon Slicing Tool (OST), the underlying
data structures and the algorithms for the computation of control flow and data flow
information and for slicing itself. The computation of precise control flow and data flow
information is a prerequisite of precise interprocedural slicing. In fact, it is the most difficult
part, since slicing itself is simply a traversal of the computed dependences.

4.1 Overview

The OST (see [OST] for information about the OST, and [Ste98a, Ste98b] for a technical
description) can compute static backward slices of Oberon-2 programs. We did not restrict
the language in any kind which means that we had to cope with structured types (records
and arrays), global variables of any type, objects on the heap, side-effects of function calls,
nested procedures, recursion, dynamic binding due to type-bound procedures and procedure
variables, and modules.

The underlying data structures of the OST are the abstract syntax tree (AST) and the
symbol table constructed by the front-end of the Oberon compiler [Cre90]. Additional
information (such as control and data dependences) is added to the nodes of the syntax tree
and the symbol table. The nodes of the AST represent the program at a fine granularity, i.e.
one statement can consist of many nodes (function calls, operators, variable usages, variable
definitions, etc.). The target and origin of control and data dependences are nodes of the
AST, not whole statements. This allows for fine-grained slicing (cf. [Ern94]), therefore we
call our slicing method expression-oriented in contrast to statement-oriented slicing.

Our slicing algorithm is based on the two-pass slicing algorithm of Horwitz et al.
[HoRB90] where slicing is seen as a graph-reachability problem. This algorithm uses
summary information at call sites to account for the calling context of procedures. We
compute the summary information by a variation of the algorithm of Livadas et al. [LivC94,
LivJ95]. In order to slice the program with respect to the starting node, the graph
representation of the program is traversed backwards from the starting node along control
and data dependence edges. All nodes that could be reached belong to the slice because they
potentially affect the starting node.

We extended the notion of interprocedural slicing to intermodular slicing. Information
that has been computed once can be stored and reused when slicing other modules that
import previously sliced modules. Furthermore, we support object-oriented features such as
inheritance, polymorphism, and dynamic binding. Since the construction of summary
information at call sites is the most costly computation, it is worthwhile to cache this

48 Implementation

information in a repository and to reuse as much information as possible from previous
computations.

Zhang and Ryder showed that alias analysis in the presence of procedure variables is
NP-hard in most cases [ZhR94]. This justifies to use safe approximations since exact
algorithms would be prohibitive for an interactive slicing tool where the maximal response
time must be in the order of seconds. In addition to conservative alias analysis we use
feedback from the user to compute more precise data flow information. The user can for
example restrict the dynamic type of polymorphic variables and thereby disable specific
destinations at polymorphic call sites. He can also restrict the sets of possible aliases at
definitions.

4.2 Algorithm

Before we can derive slices of a program, we have to build up a graph representation of the
program that closely models its semantics. We want to derive precise information about the
possible run-time executions of the program at compile time. This is not possible in general,
since the values of input parameters are not known, just as it is not known which branches
will be taken and how many times loops will be executed. But we can compute information
that is useful for debugging and necessary for slicing, e.g. we can derive the call destinations
of dynamically bound calls, as well as the usage of parameters and precise reaching
definitions.

The following outline shows the necessary steps to compute the information that is
necessary to perform slicing.

1) Build the abstract syntax tree and the symbol table of the program under
consideration.

2) Build its class hierarchy.

3) Compute its control flow information.
3.1) Compute the control dependences.
3.2) Link the call sites with all possible call destinations.

4) Compute its data flow information.
4.1) Compute the used and defined variables.

4.1.1) Compute the used and defined variables of each node and of each
procedure.

4.1.2) Compute the additional parameters of each procedure.
4.1.3) Add parameter edges between the actual and formal parameters.
4.1.4) Handle definitions of possible aliases.

4.2) Compute the reaching definitions.
4.2.1) Compute the definition sets of each variable.
4.2.2) Compute the gen/kill sets of each defining node.
4.2.3) Combine the gen/kill sets of the particular nodes to the gen/kill set of

49Implementation

statement sequences.
4.2.4) Compute the reaching definitions for each using node.
4.2.5) Compute the parameter usage information.
4.2.6) Compute the summary edges for each procedure.

The first step is accomplished by a slightly modified version of the front end of the Oberon-2
compiler [Cre90]. The second step traverses the symbol table and collects for each class all
its direct extensions, as well as the set of all its fields. The third step computes control flow
information for each procedure of the program. This is explained in Section 4.4. The fourth
step computes data flow information for each procedure of the program. This is explained in
Section 4.5, where Section 4.5.1 describes the computation of used and defined variables
with definitions via assignments and reference parameters at calls, definitions of record fields
and array elements and handling of aliases. Section 4.5.2 describes the computation of
reaching definitions by first computing the definition sets of all variables and the gen/kill sets.
Then we explain in detail the data flow equations adapted for our fine-grained
representation. Finally we describe the computation of the parameter usage information and
the computation of summary edges. Section 4.6 describes the algorithms used for slicing
itself. Section 4.7 explains how object-oriented features are supported. Section 4.8 shows
the modularization of the Oberon Slicing Tool and describes the interfaces of the most
important modules.

4.3 Data Structures

The underlying data structures of the OST are the abstract syntax tree and the symbol table
constructed by the front-end of the Oberon compiler (for a technical description see [Cre90]
and [Ste98a]). In the following we will explain the most important internal data structures:

o Global and local variables, value and reference parameters, constants, record fields,
named types, all kinds of procedures, modules, and scopes are represented by objects
of type Object.

o Named and anonymous type structures are represented by objects of type Struct.

o Nodes of the abstract syntax tree are of type Node.

o Information about procedures is represented by objects of type ProcInfo.

We will not explain the auxiliar data structures Nodes, ObjArr, StructArr, Dependences, SetArr,

NodeArr,HashTable,Definitions, and AccessArr here (see [Ste98a] for details).
The object declaration is as follows (fields added for slicing purposes are shown in bold
face):

Object = POINTER TO ObjDesc;
ObjDesc = RECORD

left, right: Object; (* for binary search tree structure *)
link, scope: Object; (* link for sequence of objects, declaring scope *)

50 Implementation

name: OPS.Name; (* name of the object, under which it is found in the
binary search tree *)

mode: SHORTINT; (* Var for global or local variables and value parameters
VarPar for reference parameters
Con for constants
Fld for record fields
Typ for named types
LProc, XProc, SProc, TProc, CProc for local,

external, standard, type-bound, and code
procedures

Mod formodules
Head for scope anchors *)

vis: SHORTINT; (* internal, external, external read-only *)
typ:Struct; (* type of the object *)
...
nodes: Nodes; (* AST nodes that use or define the object *)
procInfo:ProcInfo; (* for procedure only: additional information,

see below *)
assignedToProcVar: BOOLEAN;
mark: SHORTINT; (* marked during slicing if slice.mark = obj.mark *)
level: SHORTINT; (* 0 for global scope, 1 for scope of local procedures,

etc. *)
mod: Object; (* containingmoduleobject *)
expanded: BOOLEAN; (* TRUE for arrays and records that have been

expanded for data flow analysis *)
components: ObjArr; (* expanded components: fields of a record or

elements of an array *)
...

END ;

The symbol table is organized as binary search trees that are linked together. Each scope
(global scope of a module, local scope of procedures) is represented by a scope anchor.
When looking up objects by name, the scopes are traversed from the innermost scope
outwards. Fig. 4.1 shows the scopes with the accessible objects for the local procedure
ProcessStatSeq of procedure Slicer.ControlFlow, beginning with the scope of local variables of
procedure ProcessStatSeq, then the scope of intermediate variables (declared in the outer
procedure ControlFlow) and finally the scope of global variables.

51Implementation

Head

LProc

scope

Head

XProc

ProcessStatSeq

ControlFlow

Var

Var Var

right (first object)

scope

(firstvariable)

left (nesting scope)

Head

link (owner)

Mod

Slicer

mode

name

rightleft scope

link

link (first parameter)

link (next parameter)

global

intermediate
variables

variables

Fig. 4.1 - Scope of accessible objects of procedure Slicer.ControlFlow.ProcessStatSeq

Named and anonymous types are described by records of type StrDesc (fields added for
slicing purposes are shown in bold face):

StrDesc = RECORD
form: SHORTINT; (* Undef, Byte, Bool, Char, SInt, Int, LInt, Real, LReal,

Set, String, NilTyp, NoTyp, Pointer, ProcTyp, Comp *)
comp: SHORTINT; (* Basic, Array, DynArr, Record *)
BaseTyp:Struct; (* extended type for records, element type for arrays,

base type for pointers, return type for procedures *)
link: Object; (* link for sequence of objects (parameter list or field

list) *)
strobj: Object; (* for named types: object, struct.strobj.typ = struct *)
...
mod: Object; (* containingmoduleobject *)
extensions: StructArr; (* directextensions *)
fields: ObjArr; (* for records: all fields (including fields of base

classes) *)
mark: SHORTINT (* marked during slicing if slice.mark = str.mark *)
...

END ;

Oberon-2 allows single inheritance. Therefore each class can have at most one base class.
The field BaseTyp of a structure node is used to model the inheritance relationship in the
upwards direction. Additionally, each extending type is registered at the extended base type.
The field extensions of a structure holds all direct extensions of the type. The following
methods operate on the extension relation between classes:

PROCEDURE IsExtended (typ: Struct): BOOLEAN;
PROCEDURE FindMethod (name: ARRAY OF CHAR; typ: Struct): Object;
PROCEDURE FindOverriddenMethod (name: ARRAY OF CHAR; typ: Struct): Object;
PROCEDURE IsOverridden (name: ARRAY OF CHAR; typ: Struct): BOOLEAN;

52 Implementation

o IsExtended(t) returns TRUE if there are extensions of type t.
o FindMethod(n, t) returns the method object for the method with the name n of type t. If

such a method does not exist, it returns NIL.

o FindOverriddenMethod(n, t) returns the method object for the method with the name n of
type t or any subtype of t. If such a method does not exist, it returns NIL.

o IsOverridden(n, t) returns TRUE if any extension of type t overrides the method with the
name n.

The front end of the Oberon-2 compiler translates the source code into a binary tree of
elements of type Node, all having the same form (fields added for slicing purposes are shown
in bold face):

NodeDesc = RECORD
left, right: Node; (* for binary tree structure of the AST *)
link: Node; (* for sequence of nodes (statement sequence,

list of parameters) *)
class: SHORTINT; (* Nvar, Nvarpar,... Nifelse, Nwhile,... Nfpar,

NcallSite,... *)
subcl: SHORTINT; (* subclass, e.g. if class = Nassign: incfn, decfn,

newfn,... *)
...
typ:Struct; (* type of the node *)
obj: Object; (* e.g. for Nvar: used or defined object *)
conval: Const (* position in the source code or other constant

value *)
mark: SHORTINT; (* marked during slicing if slice.mark = node.mark *)
procInfo:ProcInfo; (* for procedure entry nodes: additional information *)
usedObjs: ObjArr; (* set of objects used at this node *)
definedObjs: ObjArr; (* set of objects defined at this node *)
dependences:Dependences; (* sets of dependences onto other nodes *)
gen, kill, in: SetArr; (* gen/kill and in sets of the node *)
choice: SetArr; (* set of enabled dynamic types *)
aliases: ObjArr; (* set of aliases *)
enabledAliases: SetArr; (* bitset of enabled aliases *)

END ;

The dependences between nodes are implemented by pointers from the target to the origin,
since they are traversed in this direction for backward slicing.

A ProcInfo object stores additional information about a procedure object:

ProcInfoDesc = RECORD
fpars: Node; (* list of formal parameter nodes (formal-in nodes and

formal-outnodes) *)
callSites: Node; (* list of actual call sites *)
calls: NodeArr; (* calls occurring in the described procedure *)
procExit: Node; (* procedure exit node *)
enter: Node; (* procedure entry node *)
procObj: Object; (* procedure or module object *)
in, out: SetArr; (* reaching definitions before first and after last

statement *)
objs: Objects; (* sets of used and defined variables *)
definitionsHT: HashTable; (* hash table of definitions *)
varDefs:Definitions; (* sets of killing and non-killing definitions per object *)
accesses: AccessArr; (* sets of variable uses and definitions *)

END ;

53Implementation

fpars is the list of formal parameter nodes:

o For ordinary input parameters (value parameters) there is a formal input parameter
node (node.class = Nfpar, node.subcl = inPar).

o For ordinary reference parameters (VAR parameters) there is a pair of two formal
parameter nodes which reference both the same object (node.class = Nfpar, node.subcl is
once inPar and once outPar).

o For additional parameters due to accessed global or intermediate variables there is a
pair of two formal parameter nodes which reference both the same object (node.class =

Nfpar, node.subcl is once additionalInPar and once additionalOutPar). At the call sites, an
additional actual parameter node (node.class = Nvarpar, node.subcl = additionalPar) is
added to the list of actual parameters of the call node. All these nodes refer to the
same symbol table entry for the parameter object.

callSites is the list of call sites calling this procedure (callSite.class = NcallSite). calls is an array
of all calls contained in this procedure (call.class IN {Ncall, Ndyncall}). Fig. 4.2 shows the
bidirectional call relation between procedures.

PROCEDURE Y;

END Y;

PROCEDURE X;
BEGIN

Y
END X;

caller (X) callee (Y)
calls

callSites

Fig. 4.2 - Bidirectional call relation between procedures

In Fig. 4.3, we show a procedure call with the list of actual parameter nodes and the called
procedure with the list of formal parameter nodes. Symbol table entries are shown in
rectangles with rounded corners.

54 Implementation

Ncall

Nproc Nvarpar Nconst
4

str
VarPar

XProc

Print

i
Par

Nfpar

inPar

Nfpar

outPar

Nfpar

inPar

Nfpar

additionalInPar

Nfpar

additionalOutPar

link

(= para-

globalWriter
Var

additionalparameters

s

VarPar
Nvarpar
additionalPar

ordinaryparameters

PROCEDURE Print* (VAR str: ARRAY OF CHAR; i: INTEGER);

...

Print(s, 4);

meters)

Fig. 4.3 - Procedure call with ordinary and additional parameters

procExit is the procedure exit node of this procedure (procExit.class = NprocExit). enter is the
entry node of this procedure (enter.class = Nenter), i.e. a reference to the syntax tree. procObj

is the procedure or module object (procObj.mode IN {LProc, XProc, CProc, TProc, Mod}), i.e. a
reference to the symbol table. in is the set of definitions that reach the first statement of the
procedure, out is the set of definitions that leave the last statement of the procedure. objs

provides access to two collections: the set of variables that are used by this procedure and
the set of variables that are defined by this procedure. definitionsHT is the hash table of
definitions (each definition in this procedure is entered in this hash table; the elements of the
gen and kill sets as well as the elements of the in and out sets are the indices of the definitions
within this hash table). varDefs is an array of triplets <o mustAssigns mayAssigns>

(representing the sets of killing definitions mustAssigns and the sets of all (killing or
non-killing) definitions mayAssigns of object o). accesses is an array of tuples <o n>

(representing an access to the object o at node n).

4.4 Computation of Control Flow Information

In Oberon-2, the computation of intraprocedural control flow information is - in most cases
- very easy, since Oberon-2 contains mainly constructs for structured control flow. The
control dependences therefore simply reflect the program's nesting structure. In Example 4.1
statements stat are control dependent on the guarding expressions expr. stat2 and stat3 are

55Implementation

control dependent on expr2 which itself is again control dependent on expr.

Example 4.1:

IF expr THEN stat ELSIF expr2 THEN stat2 ELSE stat3 END ;
WHILE expr DO stat END ;

During slicing, we usually need to traverse the control dependences backwards, therefore,
they are implemented as pointers from the destination to the source (in the opposite
direction of the arrows of the figures in chapters 2 and 3). Fig. 4.4 shows the AST for the
code in Example 4.2. Every node has 5 pointers. left and right point to the sons of the node.
link points to the next statement in a statement sequence. Control dependences are drawn
with thick lines and big arrows, whereas the other pointers are drawn with thin lines and
small arrows. If a node refers to an object (e.g. Nvar, Nproc, and Nfield nodes), object points
to the respective symbol table entry (e.g., Read, val, p, left, and right). The upward pointer of a
node n points to the node on which n is control dependent.

Example 4.2:

Read(val);
p := tree;
WHILE (p # NIL) & (p.val # val) DO

IF val < p.val THEN p := p.left ELSE p := p.right END
END ;
RETURN p

Ndop
<

class

subclass

left right

link

object

Nvar

p

control

Nvar

p
Nvar

p

Nvar

p

Nvar

p

NderefNderef
Nderef

Nderef

Nvar

p

Nvar

p

Nvar

p

Nvar

p

Nvar

tree

Nvar

val

Nvar

val

Nvar

val

NreturnNwhileNassign

Nproc

Read

Ncall

Nenter

NassignNassign

Nfield

right

Nfield

left
Nfield

val

Nif

Nifelse

Nfield

val

Ndop
#

Ndop
#

Ndop

&

Nconst

NIL

dependence

Fig. 4.4 - AST of the statement sequence in Example 4.2 with control dependences

56 Implementation

We compute control dependences for a statement sequence by a recursively descending
traversal. Each statement is handled in an appropriate way described below. After a short
explanation of the language construct (usually given by a short quotation of the Oberon-2
language report [MöWi91]), a figure shows the syntax tree and control flow graph for a
piece of source code. We do not construct or use the control flow graphs, but only show
them to let the reader compare them with our representation. Finally, a table summarizes the
control dependences.

Assignment

Assignment nodes in the AST represent ordinary assignments but also built-in functions such
as NEW, INC, DEC, INCL, EXCL, COPY, SYSTEM.GET, SYSTEM.PUT, etc. No control
dependences are inserted for assignments.

IF

"If statements specify the conditional execution of guarded statement sequences. The
Boolean expression preceding a statement sequence is called its guard. The guards are
evaluated in sequence of occurrence, until one evaluates to TRUE, whereafter its associated
statement sequence is executed. If no guard is satisfied, the statement sequence following
the symbol ELSE is executed, if there is one."

Example 4.3:

IF expr1 THEN stat1
ELSIF expr2 THEN stat2
ELSIF expr3 THEN stat3
ELSE stat4
END

Nifelse

Nif

Nif

Nif

expr3 stat3

NIL

expr2 stat2

expr1 stat1

stat4

expr1

stat1 expr2

stat2 expr3

stat3 stat4

T F

T F

T F

Syntax Tree Control Flow Graph

1

2

2

23

3

3
4

4

5

Fig. 4.5 - Syntax tree and control flow graph for an IF statement

57Implementation

We insert a control dependence labeled 1 from the Nif node of the first alternative to the
statement node (Nifelse node). The control dependences labeled 2 point from the root of the
expression trees to the Nif node. They are the destinations of the control dependences from
the directly nested statements (labeled 3) and from the Nif node that represents the next
alternative (labeled 4). The directly nested statements of the ELSE branch have also control
dependences (labeled 5) on the last test. When slicing for stat2 of Example 4.3, stat2, expr2,
the guarding Nif node, expr1, the guarding Nif node and the Nifelse node would be reached via
control dependences. Table 4.1 summarizes these control dependences.

5 directlynested statements of ELSE last expr

4 following Nif (representing ELSIF) expr of preceding Nif

3 directlynested statements of THEN guarding expr of Nif

2 expr of Nif Nif

1 Nif Nifelse

From To

Table 4.1 - Control dependences of an IF statement

CASE

"Case statements specify the selection and execution of a statement sequence according to
the value of an expression. First the case expression is evaluated, then that statement
sequence is executed whose case label list contains the obtained value. The case expression
must either be of an integer type that includes the types of all case labels, or both the case
expression and the case labels must be of type CHAR. Case labels are constants, and no value
must occur more than once. If the value of the expression does not occur as a label of any
case, the statement sequence following the symbol ELSE is selected, if there is one,
otherwise the program is aborted."

Example 4.4:

CASE expr OF
case1: stat1

| case2: stat2
ELSE stat3
END

58 Implementation

Ncaselse

stat3

expr

Ncase

Ncasedo

stat1

Ncasedo

stat2

expr

stat1 stat2 stat3

Syntax Tree Control Flow Graph

1

2 2

3

case1

case2

case1 case2 else

Fig. 4.6 - Syntax tree and control flow graph of a CASE statement

We insert a control dependence labeled 1 from the root of the expression of the CASE

statement to the statement node (Ncase node). There are control dependences from the
directly nested statements of all alternatives (labeled 2) and of the ELSE branch (labeled 3) to
the expression of the CASE statement. Table 4.2 summarizes these control dependences.

3 directlynested statements of ELSE expr of Ncase

2 directlynested statements of Ncasedo expr of Ncase

1 expr of Ncase Ncase

From To

Table 4.2 - Control dependences of a CASE statement

WITH

"With statements execute a statement sequence depending on the result of a type test and
apply a type guard to every occurrence of the tested variable within this statement
sequence."

Example 4.5:

WITH test1 DO stat1
| test2 DO stat2
ELSE stat3
END

59Implementation

Nwith

Nif

Nif

test1

stat1 test2

stat2 stat3

T F

T F
stat3

stat2

stat1

Syntax Tree Control Flow Graph

1

2
2

3, 4

3, 5

test1

test2

Fig. 4.7 - Syntax tree and control flow graph of a WITH statement

We insert a control dependence labeled 1 from the Nif node of the first alternative to the
statement node (Nwith node). The control dependences labeled 2 point from the root of the
expression trees to the Nif node. They are the destinations of the control dependences from
the directly nested statements (labeled 3) and from the Nif node that represents the next
alternative (labeled 4). The directly nested statements of the ELSE branch also have control
dependences (labeled 5) on the last test. Table 4.3 summarizes these control dependences.

5 directlynested statements of ELSE last expr

4 following Nif expr of preceding Nif

3 directlynested statementsof alternative guarding expr of Nif

2 expr of Nif Nif

1 Nif Nwith

From To

Table 4.3 - Control dependences of an WITH statement

WHILE

"While statements specify the repeated execution of a statement sequence while the Boolean
expression (its guard) yields TRUE. The guard is checked before every execution of the
statement sequence."

Example 4.6:

WHILE expr DO
stat

END

60 Implementation

Nwhile
nextstat

expr

stat nextstat

T F

Syntax Tree Control Flow Graph

1

2

T

3

expr stat

Fig. 4.8 - Syntax tree and control flow graph of a WHILE statement

We insert a control dependence labeled 1 from the root of the expression to the statement
node (Nwhile node). There are control dependences from the directly nested statements
(labeled 2) to the expression. The control dependence labeled 3 points from the statement
node back to the root of the expression. Table 4.4 summarizes these control dependences.

3 Nwhile expr of Nwhile

2 directlynested statements of Nwhile expr of Nwhile

1 expr of Nwhile Nwhile

From To

Table 4.4 - Control dependences of a WHILE statement

REPEAT

"A repeat statement specifies the repeated execution of a statement sequence until a
condition specified by a Boolean expression is satisfied. The statement sequence is executed
at least once."

Example 4.7:

REPEAT
stat

UNTIL expr

Nrepeat
nextstat

Nrepeat

stat expr

T
F

next stat

Syntax Tree Control Flow Graph

12

3

stat expr

Fig. 4.9 - Syntax tree and control flow graph of a REPEAT statement

We insert a control dependence labeled 1 from the root of the expression to the statement
node (Nrepeat node). There are control dependences from the directly nested statements
(labeled 2) to the statement node. The control dependence labeled 3 points from the
statement node back to the root of the expression. Table 4.5 summarizes these control
dependences.

61Implementation

3 Nrepeat expr of Nrepeat

2 directlynested statements of Nrepeat Nrepeat

1 expr of Nrepeat Nrepeat

From To

Table 4.5 - Control dependences of a REPEAT statement

FOR

"A for statement specifies the repeated execution of a statement sequence while a
progression of values is assigned to an integer variable called the control variable of the for
statement."

Since the FOR statement is represented internally by an equivalent WHILE statement, we do
not have to treat it specially.

Call

"A procedure call activates a procedure. It may contain a list of actual parameters which
replace the corresponding formal parameters defined in the procedure declaration."

Procedure calls occur at the statement level. They represent transfers of control from the call
site to the called procedure. In order to represent this transfer of control, the AST contains
references from the call sites (Ncall nodes) to the symbol table entries of the destination of
the call (procedure object which has a reference to its Nenter node).

Functions are procedures that return a result value. Function calls can be used as factors
in expressions. On the other hand, expressions can be used at various places in Oberon
programs, e.g. as operands, as parameters of procedure or function calls, as the return value
of functions, and in the expressions of IF, CASE, WHILE, REPEAT, and FOR statements.

Example 4.8:

PROCEDURE Print* (VAR str: ARRAY OF CHAR; i: INTEGER);
...

Print(s, 4);

62 Implementation

Ncall
nextstat

Nproc Nvarpar Nconst

Ncall

Nenter

Syntax Tree Control Flow Graph

Print 4s

Nenter

NprocExit

NprocExit

nextstat

1 1

3

4

ProcInfo Nfpar
inparstr

Nfpar
outpar

Nfpar
inpari

Fig. 4.10 - Syntax tree and control flow graph for a call statement

We insert control dependences labeled 1 from the actual parameters to the Ncall node. If the
call is a function call (Ncall.typ # NoTyp), there is a control dependence labeled 2 from the
Ncall node to the statement node. The control dependence labeled 3 from the Nenter node of
the called procedure to the call node and the control dependence labeled 4 from the next
statement to the procedure exit node of the called procedure are not represented explicitly,
but are handled implicitly by the interprocedural slicing algorithm. Table 4.6 summarizes
these control dependences.

4 nextstatement NprocExit node of called procedure

3 Nenter node of called procedure Ncall

2 for function calls: Ncall statementnode

1 actual parameters Ncall

From To

Table 4.6 - Control dependences of a call

For dynamically bound calls, Ndyncall nodes are used to represent all possible call
destinations. Links are inserted from the actual Ncall node to all call destinations (Ndyncall

nodes). Each of these links can be enabled or disabled via user interaction. Fig. 4.11 shows a
call site of a procedure variable whose call destinations have been computed. Of the two call
destinations P and Q only Q is enabled, P has been disabled via user interaction (see Section
5.2).

63Implementation

Ncall

Ndyncall

Nvar

Ndyncall

Nvar

objectproc

Q

P

AST node

left rightobj

object

left rightobj

link

o

o

o

dyncalls
(enabled or

disabled)

PROCEDURE P (o: Object);

PROCEDURE Q (o: Object);

call site: proc(object)

Fig. 4.11 - Dynamically bound procedure call with Ndyncall nodes

The set of possible call destinations is computed as follows:

o For method calls, one can distinguish between methods that can be bound statically
and methods that must be bound dynamically.
* If the receiver of a method call is a monomorphic variable (a variable that will

always refer to objects of the same class at run time) and the called method can be
determined at compile time (e.g. by Class Hierarchy Analysis [DGC94]), it can be
bound statically. In Oberon-2, the type of the actual receiver can be a record or a
pointer: Pointers can in general refer to different objects at run time, whereas
records can refer to different objects at run time only if they are VAR parameters
(reference parameters); receivers of a record type that are not VAR parameters (e.g.
locally declared records) are known to be monomorphic.

* One can bind method calls statically, if one can guarantee at compile time that there
is only one call destination (this corresponds to an empty Override set of the
method in the terms of [Bac97]). Since the analyzed programs are usually
incomplete programs, one can guarantee this only in the following case: If the
record type is not exported and one determines only one call destination, then this
call destination will always remain the only one since the record type cannot be
extended in another module.

* Otherwise, one has to find all possible destinations of the calls. These are simply the
methods of the statically known class of the receiver and all subclasses (this is a
conservative assumption and can be improved by fast techniques such as Rapid
Type Analysis [Bac97] or by other flow-sensitive techniques [PaR93]). One can
either determine all call destinations (e.g. if the record type is not exported, but
there are several destinations because the record type has been extended within the
same module several times and the method has been overridden more than once) or
not (e.g. if the record type has been exported and will potentially be extended in

64 Implementation

other modules).

o For calls of procedure variables, one can either determine the set of possible
destinations by flow-sensitive analysis (e.g. by propagating the assigned procedures
along all possible paths in the invocation graph [EGH94]) or one can approximate the
set of possible destinations (which can be done much faster) with the following
restrictions:
1. A procedure must be assigned somewhere to a procedure variable. Otherwise it can

never be the destination of a call via a procedure variable.
2. The type of the procedure and the type of the procedure variable must match. This

depends on the semantics of the programming language. In Oberon-2, two
parameter lists only match if (see [MöWi91]),
a) they have the same number of parameters, and
b) they have either the same function result type or none, and
c) parameters at corresponding positions have equal types, and
d) parameters at corresponding positions are both either value or reference

parameters.

RETURN

"A return statement indicates the termination of a procedure. It is denoted by the symbol
RETURN, followed by an expression if the procedure is a function procedure. The type of the
expression must be assignment compatible with the result type specified in the procedure
heading.
Function procedures must be left via a return statement indicating the result value. In proper
procedures, a return statement is implied by the end of the procedure body. Any explicit
return statement therefore appears as an additional (probably exceptional) termination
point."

Nreturn

Nenter

Syntax Tree Control Flow Graph

Nenter

NprocExit

NprocExit

Nreturn

Nreturn Nreturn

2 2
expr

1

expr

1

Fig. 4.12 - Syntax tree and control flow graph of a RETURN statement

65Implementation

We insert control dependences labeled 1 from the roots of the expressions to the statement
node (Nreturn node), if the RETURN statement appears in a function procedure. The control
dependences labeled 2 point from the procedure exit node to all Nreturn nodes of the
procedure. Table 4.7 summarizes these control dependences.

2 NprocExit Nreturn

1 expr of Nreturn Nreturn

From To

Table 4.7 - Control dependences of a RETURN statement

LOOP / EXIT

"A loop statement specifies the repeated execution of a statement sequence. It is terminated
upon execution of an exit statement within that sequence."
"An exit statement is denoted by the symbol EXIT. It specifies termination of the enclosing
loop statement and continuation with the statement following that loop statement. Exit
statements are contextually, although not syntactically associated with the loop statement
which contains them."

Example 4.9:

LOOP
stat1
IF expr THEN EXIT END ;
stat2

END

Nloop
nextstat

Nifelse

Nif

Nexit

loop

stat1

expr

exit

stat2

next stat

F

Syntax Tree Control Flow Graph

NloopExit
1

1 1

2

Tstat2

expr

stat1

Fig. 4.13 - Syntax tree and control flow graph of a LOOP statement

We insert control dependences labeled 1 from the directly nested statements to the statement
node (Nloop node). The control dependences labeled 2 point from the loop exit node to all
Nexit nodes of the LOOP. Table 4.8 summarizes these control dependences.

66 Implementation

2 NloopExit Nexit

1 directlynested statements of Nloop Nloop

From To

Table 4.8 - Control dependences of a LOOP statement

Whenever an exit node is encountered, a control dependence is inserted from the loop exit
node of the enclosing loop to the exit node.

ASSERT and HALT

HALT statements explicitly terminate the program. ASSERT statements test a Boolean
expression at run time. If this expression is not TRUE, the program is terminated. On the
other hand, run-time type checks are performed as type tests, type guards, and as part of the
WITH-statement and the assignment statement (when assigning to a VAR-record parameter).
If these run-time type checks fail, the program is also terminated. In the AST, the HALT

statement is represented by a Ntrap node, the ASSERT statement is resolved by an IF

statement (e.g., ASSERT(b, 55) corresponds to IF ~b THEN HALT(55) END). Control
dependences are inserted from the (global) halt node to all trap nodes of the program.

Other Sources for Traps

Other sources for traps are not handled; these include "division by 0", dereferencing a
NIL-pointer, heap overflow, FPU error etc.

4.5 Computation of Data Flow Information

The goal of data flow analysis is precise information about which variable definitions reach
which points in the program, i.e. we want to derive information about the flow of data at run
time by static analysis. Conservative assumptions must be taken if the program uses
conditional branches and iteration since we do not know at compile time which branches will
be taken at run time and how many iterations there will be.

We insert data dependence edges from a node n1 to a node n2 of the syntax tree of the

program iff all of the following conditions hold (similar to the definition of [HoRB90]):

1) n1 definesvariable x.
2) n2 uses x.
3) Control can reach n2 after n1 via a path along which there is no intervening definition

of x.

Additionally, we insert data dependence edges because of the fine granularity of our
program representation

67Implementation

1) for assignment statements from the definition node on the left-hand side to all usage
nodes and function call nodes of the statement,

2) for expressions of conditional and iterative statements from the guarding AST nodes
(e.g., Nif, Nwhile, Nrepeat) to all usage nodes and function call nodes within the
expression tree.

In Fig. 4.14, we show the AST of the statement sequence in Example 4.10 with encircled
definitions of variables and data dependences labeled DD to the reaching definitions. The
left-hand side of an assignment statement (i.e. variable j of the last statement) is data
dependent on all used variables of the right-hand side of the assignment (in this case variable
i). These variable nodes on the right-hand side are again data dependent on all reaching
definitions. Nif nodes are data dependent on all variable usage nodes in the expression
sub-tree.

Example 4.10:

Read(i);
IF i < 0 THEN i := -i END ;
j := i * 3;

Ndop

<

Nvar

Nvar

i

Nassign

Nproc

Read

Ncall

Nassign

Nconst

0

Nif

Nifelse

i

Nvar Nmop

-

Nvar

i

Nvar Ndop

*

Nvar

i

Nconst

3

i

j

DD

DD

DD

DD

DD

DD

Fig. 4.14 - AST of the statement sequence in Example 4.10
with encircled definitions of variables, and data dependences (DD)

4.5.1 Computation of Used and Defined Variables

Before we can compute reaching definitions, we first have to determine the exact sets of
used and defined variables of a procedure. We perform this in the following way:

1) First we compute the used and defined variables per node in the AST. This information is
also collected for the whole procedure. A procedure may use and define a subset of the
variables of its scope (including the additional parameters, see Section 4.2).

2) When we encounter a procedure call, we append additional formal parameter nodes for
accessed intermediate and global variables to the list of formal parameters of the calling

68 Implementation

procedure and corresponding additional actual parameter nodes to the list of actual
parameters at the call site. We add control and data dependences for the actual parameter
nodes and edges for parameter passing.

3) Finally, we handle aliases by inserting non-killing definitions of all possible aliases at
definition nodes.

We compute this information for one procedure at a time. We handle recursion due to static
and dynamic binding similar to the way described in Section 3.2.3.

Definition via Assignments

When a variable is defined by an assignment statement, the AST node representing the
definition of the variable (in the following often called defining node) is given a new value
by evaluating the right-hand side. It is data dependent on all variables and function calls
whose values are used to compute the new value as illustrated by Fig. 4.15. Summary edges
lead from the function call nodes to the input parameters that contribute to the return value
of the function. The nodes upon which the variable is data dependent are collected by a
top-down traversal of the sub-trees. The definition of the variable on the left-hand side is
considered to be a killing definition. Additionally, non-killing definitions are generated for all
variables that may be aliases of the defined variable. In Fig. 4.15, the left-hand side of the
assignment is data dependent on the variable usage node of m and on the function call node
of Sum on the right-hand side. The function call node of Sum has summary edges to both
parameters i and j.

Nassign

Nvar Ndop
+

sum

Nvar
m

DD DD
sum := m + Sum(i, j)

Ncall

Nproc Nvarpar Nvar
Sum i j

summary edges

Fig. 4.15 - Data dependences for an assignment statement

Definition via Reference Parameters at Calls

There are several complications that have to be considered at a call site: First, a call may be
bound statically or dynamically. Second, a call has ordinary parameters (as declared in the
parameter list of the procedure) and additional parameters (see Fig. 4.3).

69Implementation

We combine the parameter usage information over all enabled call destinations in the
following way:

o If a formal parameter is used by any of the call destinations, the value of the actual
parameter is assumed to be used at the call site.

o If a formal reference parameter is defined by any of the call destinations (at least on
some path), the actual parameter is assumed to be non-killingly defined at the call site.

o If a formal reference parameter is defined by all call destinations on all paths, the
definition of the actual parameter is a killing definition instead of a non-killing
definition.

o If the parameter usage information about a call destination is not available (e.g.
because the procedure is a library function that cannot be processed because we do
not have its source code), we have to take conservative assumptions: all parameters
are assumed to be used, all reference parameters are assumed to be non-killingly
defined.

If a formal parameter is assumed to be used, we traverse the expression tree at the call and
insert data dependences from the variables and function calls used in the expression tree to
all reaching definitions. When a formal reference parameter is modified, a definition is
generated for the corresponding actual parameter. Since killing definitions lead to a more
precise data flow information than non-killing definitions, we use the parameter usage
information in order to generate as few definitions as possible, and if unavoidable as many
killing definitions as possible, see Table 4.9:

defined on some control flow paths non-killingdefinition

defined on all control flow paths killingdefinition

notdefined no definition at all

Usage of Formal Reference Parameter Kind of Definition of Corresponding Actual Parameter

Table 4.9 - Definitions via reference parameters

Definition of Records and Record Fields

Records can be seen as a whole or as the sum of their fields. Likewise, the definition of a
record can be seen as a definition of the whole record or as the definition of all its fields. The
symbol table stores structural information about records and their fields. Fig. 4.16 shows the
symbol table objects for the declarations in Example 4.11. Variables s and t have the same
type, they refer to the same structure node. The record fields s.i, and t.i are combined to the
field T.i. This has the consequence that when field s.i is defined, field t.i is also considered to
be defined.

Example 4.11:

TYPE T = RECORD i, j: INTEGER END ;
VAR s, t: T;

70 Implementation

s

Var

Var

t

Comp

Record

Fld

i

Fld

j

Int

Basic

Typ

T

Typ

INTEGER

strobj typ

strobj typ

typ

typ

typ typ

link link

Object mode

name

form

comp

Structure

link

link
typ

nodes:

nodes:

structure object

Legend

Fig. 4.16 - Symbol table entries for records and their fields

As outlined in Section 2.2.2, assignment to a record field is unambiguous as long as the
address of the record is known at compile time and as long as there are no aliases. We can
exclude the existence for aliases only for locally declared records. For VAR parameter
records and for records that are allocated on the heap, aliases may exist. Therefore, we treat
locally declared records in a different way than other records.

We expand locally declared records by copying the list of fields (including their base
class fields) for each record. The nodes of the abstract syntax tree that formerly accessed the
common fields T.i and T.j are patched to access the expanded fields s.i, s.j, t.i and t.j. Access to
expanded records is handled as follows:

o For a killing/non-killing definition of the record (e.g. "s := ..."), we insert a
killing/non-killing definition of the entire record (i.e. the symbol table object for s) and
killing/non-killing definitions of all its expanded fields (i.e. the symbol table objects for
s.i and s.j).

o For a use of the record (e.g. "... := s"), we insert a use of the entire record (i.e. s) and
uses of all its expanded fields (i.e. s.i and s.j).

o For a killing/non-killing definition of a record field (e.g. "s.i := ..."), we insert a
killing/non-killing definition of the expanded field (i.e. s.i) and a non-killing definition
of the entire record (i.e. s), since the enclosing record is changed by the assignment.

o For a use of a record field (e.g. "... := s.i"), we insert a use of the expanded field (i.e.
s.i).

71Implementation

Example 4.12 illustrates the handling of access to expanded records. Note that there are
different symbol table objects for the fields s.i and t.i.

Example 4.12:

PROCEDUREExpandedRecords;
TYPE

T0 = RECORD END ;
T2 = RECORD i, j: INTEGER END ;

VAR s0, t0: T0; s, t: T2; i: INTEGER;
BEGIN

s0 := t0; (* rhs: use of t0, t0.i, and t0.j; initial definitions are reaching
lhs: killing definition of s0, s0.i, and s0.j *)

t0 := s0; (* rhs: use of s0, s0.i, and s0.j; previous definitions are reaching
lhs: killing definition of t0, t0.i, and t0.j *)

i := s.i; (* rhs: use of s.i, initial definition of s.i is reaching *)
s.i := 0; (* lhs: killing definition of s.i, non-killing definition of s *)
s := t; (* rhs: use of t, t.i, and t.j; initial definitions are reaching

lhs: killing definition of s, s.i, and s.j; previous definition of s.i is killed *)
s.i := 1; (* lhs: killing definition of s.i, non-killing definition of s *)
t.i := 1; (* lhs: killing definition of t.i, non-killing definition of t *)
s.j := 2; (* lhs: killing definition of s.j, non-killing definition of s *)
i := s.i + s.j + t.i; (* rhs: use of s.i, s.j and t.i, only last three definitions of fields are

reaching *)
t := s (* rhs: use of s, s.i, and s.j; last definitions of s.i and s.j are reaching.

The definitions due to record assignment s := t are no longer reaching
since all fields have been killingly defined.
lhs: killing definition of t, t.i, and t.j *)

ENDExpandedRecords;

We do not expand all other records. Since the fields of those other records are combined by
the fields of the record type, the definitions of the fields must no longer be killing. Access to
non-expanded records is handled as follows:

o For a killing/non-killing definition of the record (e.g. "s := ..."), we insert a
killing/non-killing definition of the entire record (i.e. s) and non-killing definitions of
all fields of the record type (including base class fields; i.e. T.i and T.j), since the fields
are changed by the assignment.

o For a use of the record (e.g. "... := s"), we insert a use of the entire record (i.e. s).
o For a killing/non-killing definition of a record field (e.g. "s.i := ..."), we insert a

non-killing definition of the field of the record type (i.e. T.i) and a non-killing definition
of the entire record (i.e. s), since the enclosing record is changed by the assignment.

o For a use of a record field (e.g. "... := s.i"), we insert a use of the field of the record
type (i.e. T.i).

72 Implementation

Example 4.13 illustrates the handling of non-expanded records.

Example 4.13:

TYPE T = RECORD i, j: INTEGER END ;

PROCEDURE NonExpandedRecords (VAR s, t: T);
VAR i: INTEGER;

BEGIN
i := s.i; (* rhs: use of T.i, initial definition of T.i is reaching *)
s.i := 0; (* lhs: non-killing definition of T.i and s,

lhs: non-killing definition of t (possible alias) *)
s := t; (* rhs: use of t;

lhs: killing definition of s, non-killing definitionof T.i and T.j, previous
definitionof T.i is not killed
lhs: non-killing definition of t (possible alias) *)

s.i := 1; (* lhs: non-killing definition of T.i and s
lhs: non-killing definition of t (possible alias) *)

t.i := 1; (* lhs: non-killing definition of T.i and t
lhs: non-killing definition of s (possible alias) *)

s.j := 2; (* lhs: non-killing definition of T.j and s
lhs: non-killing definition of t (possible alias) *)

i := s.i + s.j + t.i; (* rhs: use of T.i, T.j and T.i, all definitions of fields (including initial
definitions) are reaching *)

t := s (* rhs: use of s, all definitions of record fields and records are reaching
lhs: killing definition of t, non-killing definitionof T.i and T.j,
lhs: non-killing definition of s (possible alias) *)

ENDNonExpandedRecords;

Definition of Arrays and Array Elements

Arrays can be seen as a whole or as the sum of their elements. Likewise, the definition of an
array can be seen as a definition of the whole array or as the definition of all its elements. As
outlined in Section 2.2.2, assignments of array elements can be treated as both an assignment
and a use of the entire array. This leads to non-killing definitions of the entire array for
assignments to array elements. However, if the position of the element within the array is
known, the particular array element can be changed and used.

We expand local arrays (including value parameters) of basic types up to a
user-configurable size. The nodes of the abstract syntax tree that formerly accessed an array
element at a constant position are patched to access the expanded array element. Access to
expanded arrays is handled as follows:

o For a killing/non-killing definition of the array (e.g. "a1 := ..."), we insert
killing/non-killing definitions of all its expanded elements (i.e. a1[0] and a1[1]).

o For a use of the array (e.g. "... := a1"), we insert uses of all its expanded elements (i.e.
a1[0] and a1[1]).

o For a killing/non-killing definition of an array element at a constant position (e.g.
"a1[0] := ..."), we insert a killing/non-killing definition of the expanded element (i.e.
a1[0]).

o For a killing/non-killing definition of an array element at an arbitrary position(e.g. "a1[i]

:= ..."), we insert non-killing definitions of all expanded elements (i.e. a1[0] and a1[1]),

73Implementation

since any of them may be changed.
o For a use of an array element at a constant position (e.g. "... := a1[0]"), we insert a use

of the expanded array element (i.e. a1[0]).
o For a use of an array element at an arbitrary position (e.g. "... := a1[i]"), we insert uses

of all its expanded elements (i.e. a1[0] and a1[1]).

Example 4.14 illustrates the handling of access to expanded arrays.

Example 4.14:

PROCEDUREExpandedArrays;
VAR a1, a2: ARRAY 2 OF INTEGER; i: INTEGER;

BEGIN
a1[0] := 0; (* killing definition of a1[0] *)
a1[1] := 1; (* killing definition of a1[1] *)
a2[0] := 2; (* killing definition of a2[0] *)
a2[1] := 3; (* killing definition of a2[1] *)
a2[i] := 4; (* non-killing definitionof a2[0] and a2[1] *)
i := a1[0] + a2[1]; (* first definition reaches a1[0], fourth and fifth definitions reach a2[1] *)
a1 := a2; (* the three definitions for a2 are reaching,

kills definitions for a1[0] and a1[1] *)
a2[0] := a1[1] (* use of definition due to last assignment to a1*)

ENDExpandedArrays;

We do not expand arrays that are either too big or whose elements are of a structured type.
Access to non-expanded arrays is handled as follows:

o For a killing/non-killing definition of the array (e.g. "a1 := ..."), we insert a
killing/non-killing definition of the entire array (i.e. a1).

o For a use of the array (e.g. "... := a1"), we insert a use of the array (i.e. a1).
o For a killing/non-killing definition of an array element (e.g. "a1[0] := ..."), we insert a

non-killing definition of the array (i.e. a1).
o For a use of an array element (e.g. "... := a1[0]"), we insert a use of the array (i.e. a1).

Example 4.15 illustrates the handling of access to non-expanded arrays. The default limit for
array expansion is 256 elements.

Example 4.15:

PROCEDURENonExpandedArrays;
VAR a1, a2: ARRAY 1000 OF INTEGER; i: INTEGER;

BEGIN
a1[0] := 0; (* non-killing definitionof a1 *)
a1[1] := 1; (* non-killing definitionof a1 *)
a2[0] := 2; (* non-killing definitionof a2 *)
a2[1] := 3; (* non-killing definitionof a2 *)
a2[i] := 4; (* non-killing definitionof a2 *)
i := a1[0] + a2[1]; (* use of all previous definitions (including initial definitions) *)
a1 := a2; (* use of all definitions of a2 (including initial ones),

kills definitions for a1 *)
a2[0] := a1[1] (* use of definition due to last assignment *)

ENDNonExpandedArrays;

74 Implementation

Handling of Aliases

Two variables a and b are aliases if they refer to the same memory cell. Zhang and Ryder
showed that alias analysis in the presence of procedure variables is NP-hard in most cases
[ZhR94]. Exact determination of the sets of variables that are aliases is not possible under
the timing restrictions for an interactive tool where the maximum response time must be in
the order of seconds. However, less precise information can be computed much faster. The
least precise alias information would be that any two variables may be aliases. In the
following we will show how we can use type information and information about the place of
the declaration of the variable in order to restrict the sets of possible aliases. Finally, we
allow feedback from the user to restrict the sets of possible aliases.

When computing the sets of possible aliases for a procedure, we start with the set S of
accessible objects. These include the local variables and parameters, as well as intermediate
and global variables, and additional parameters. When a variable a ∈ S is defined, all other
variables b ∈ S may also be changed. This means that the value of b is either affected by the
definition of a (if a and b are aliases) or not (if a and b are not aliases).

Since Oberon-2 is a statically typed programming language with strong type checking,
we can use type information in order to restrict the set of possible aliases of a. The type
system guarantees that the memory of a variable of type T can only be accessed via variables
of type T. This means that two variables a and b may only refer to the same memory cell if
they have the same type [MöWi91]. In Example 4.16, the set S of accessible objects of
procedure X contains the elements global, i, j, and x. For the assignment to i, all other objects
of S with the same type (i.e., global and j) might be changed. Since the type of x (LONGINT)
and the type of i (INTEGER) are not the same, x and i cannot be aliases. For the assignment of
x there are no possible aliases.

Example 4.16:

MODULEAliases;

VAR global: INTEGER;

PROCEDURE X (VAR i: INTEGER);
VAR j: INTEGER; x: LONGINT;

BEGIN
i := 0; (* global and j may be changed, too *)
x := i + j

END X;

END Aliases.

However, the sets of possible aliases is still too big, since i and j may never be aliases. We
can deduce that if we consider where the two variables are declared. Therefore, we first
recapitulate the different possibilities for declaring variables:

o Global variables are declared at the module level. They reside within the block of
global data of a module. They are also called static data, since they are allocated when
the module is loaded and they stay in memory until the module is unloaded. Each

75Implementation

global variable is allocated at a different address, no two global variables may refer to
the same memory cell. They are accessible from anywhere within the declaring
module. Additionally, they may be exported by the declaring module and imported into
other modules. This export can be either read-only or read/write (thereby granting the
importing module full access to the object).

o Local variables are declared within a procedure. They are allocated for each activation
of a procedure (in most implementations on the stack). Each local variable is allocated
at a different address, no two local variables may refer to the same memory cell. They
are also called automatic data, since they are allocated when the procedure is called
and their memory is automatically reclaimed when the procedure returns. They are
only accessible within the declaring procedure and procedures that are nested within
the declaring procedure.

o Intermediate variables are local variables of a procedure P that are accessed from
within a procedure Q that is nested in P. When regarding these variables from
procedure P, they are ordinary local variables, when regarding them from procedure Q,
they are intermediate variables, since they are neither local to Q, nor global, but
intermediate.

o Objects and arrays may be allocated on the heap. They are referenced by and
accessible via pointer variables. Two pointers may reference the same object. Heap
data is also called dynamic data, since it is allocated on demand (by a NEW statement)
and its memory is automatically reclaimed by the garbage collector when it is no
longer referenced.

There are two kinds of parameters in Oberon-2:

o Value parameters can be considered as local variables where the values of the
expressions at the call sites are used as initial values of the formal parameters. Memory
is automatically allocated and reclaimed as for local variables.

o Reference parameters can be considered as additional names for the actual parameters.
No new memory is allocated for reference parameters. Reference parameters are the
main source of aliases in Oberon-2.

With the information about the place of the declaration of a variable, one can restrict the sets
of possible aliases. Table 4.10 contains one row and one column for local variables
(including local value parameters), global read-only variables of imported modules,
intermediate variables (including intermediate value parameters), global variables of the
module under consideration, and global variables of imported modules that have been
exported without access restrictions, and reference parameters. In each cell of the table, "no"
indicates that two objects o1 (row) and o2 (column) may not be aliases, whereas "yes"
indicates that the two objects may be aliases. The table is symmetric, i.e. Cell(x1, y1) =
Cell(y1, x1).

76 Implementation

(6) reference par no no yes yes yes yes

(5) global var (other mod.), r/w no no no no no yes

(4) global var (this mod.) no no no no no yes

(3) intermediate var no no no no no yes

(2) global var (other mod.), read-only no no no no no no

(1) local var no no no no no no

o1 \ o2 (1) (2) (3) (4) (5) (6)

Table 4.10 - Possible aliases

Local variables, intermediate and global variables may never be aliases since they are
allocated at different addresses. Reference parameters are aliases of their actual parameters.
At the call site, intermediate variables with smaller nesting level ("yes" in last column of row
3 in Table 4.10, see Example 4.17), global variables without access restrictions (rows 4 and
5 in Table 4.10), and other reference parameters with smaller nesting level (row 6 in Table
4.10) may be used as actual parameters.

Example 4.17:

MODULEAliases;

PROCEDURE X;
VAR i: INTEGER;

PROCEDURE Local (VAR j: INTEGER); (* The reference parameter j is an alias of the
intermediatevariable i. *)

VAR x: LONGINT;
BEGIN

j := 0; (* i is changed, too *)
x := i + j (* both i and j, access the same memory cell *)

END Local;

BEGIN
Local(i)

END X;

END Aliases.

With these restrictions, the set of possible aliases at the assignment of i in procedure X of
Example 4.16 is restricted to {global}. For a call of X with global as the actual parameter, i

and global would actually be aliases. Therefore, this is the most precise set of possible aliases,
as long as we do not regard the actual parameters at call sites. For incomplete programs,
such as frameworks, we cannot further restrict the sets of possible aliases. If we analyze
complete programs ("closed-world assumption"), then we could further reduce the sets of
possible aliases.

Structured data types raise another problem: the actual parameter at a call site may be a part
of a structured variable, e.g. a field of a record or an element of an array. The variable may
be allocated statically, automatically, or dynamically. So it is not enough to test whether two
variables a and b have the same type when computing the possible aliases for the definition
of a. We must additionally test whether variable a can be contained in b or whether b can be

77Implementation

contained in a. a can be contained in b in the following cases:

o if b is a record of which a might be a field,
o if b is an array of which a might be an element,
o if b is a pointer that is dereferenced and a might be a field of the referenced record or

an element of the referenced array, or
o if b is a record and its type is an extension of the type of a.

Example 4.18 shows possible calls of procedure X, where the variables that might contain
each other are actual aliases.

Example 4.18:

MODULEAliases;

TYPE
T = RECORD i: INTEGER END ;
P = POINTER TO T;
T1 = RECORD (T) j: INTEGER END ;
P1 = POINTER TO T1;

VAR
t: T; t1: T1;
p: P; p1: P1;

PROCEDURE X (VAR i: INTEGER);
BEGIN

t.i := 0; (* changes i for the first call of X in the
modulebody *)

t1.j := 0; (* changes i for the second call of X *)
t := t1; (* changes i for the first call of X *)
p^.i := 0; (* changes i for the third call of X *)
p1^.j := 0; (* changes i for the fourth call of X *)
i := 0; (* changes t.i for the first call of X,

changes t1.j for the second call of X,
changes p .̂i for the third call of X,
changes p1^.j for the fourth call of X *)

END X;

BEGIN
X(t.i);
X(t1.j);
X(p^.i);
X(p1^.j)

END Aliases.

When we have narrowed the sets of possible aliases of a variable a, we insert non-killing
definitions for all possible aliases b at the node defining a. These non-killing definitions lead
to additional reaching definitions at places, where b is used.

The user interface of the Oberon Slicing Tool visualizes the sets of possible aliases. The
user can disable some or all of the possible aliases. He can then initiate the re-computation of
data flow information where only the enabled aliases lead to non-killing definitions.

78 Implementation

4.5.2 Computation of Reaching Definitions

In this section we describe our algorithm for the computation of the definition sets and of
the gen and kill sets of defining nodes. Then we show how these are combined to the gen
and kill sets of the statement sequences, which are then used to compute the reaching
definitions.

Computation of the Definition Sets of Variables and of the Gen and Kill Sets

We have to modify the procedure for the computation of the definition sets and of the gen
and kill sets outlined in Section 2.3.2 for several reasons:

o We use a finer-grained intermediate representation than Aho et al. [ASU86].
o We allow multiple definitions at one node.
o We allow killing and non-killing definitions at one node.

In order to account for these requirements, we have to use a triplet in order to describe a
definition. A definition consists of the defining AST node, the defined object, and the kind of
the definition (killing or non-killing). Each definition must be associated with a number.
Therefore we insert each definition into a hash table and use the index for this definition
within the hash table to represent the definition in the bit sets gen and kill. If the definitions
were simply numbered consecutively by inserting them into an array or a list, looking up a
definition could necessitate a linear scan of all definitions.

ComputeDefinitionSets computes the definition set for each variable that is defined by the
procedure. For each object the killing definitions are collected in a bit set called "must
assigns" and all (killing and non-killing) definitions are collected in a bit set called "may
assigns" (the Definition Set). The loop of ComputeDefinitionSets iterates over all definitions of
the hash table. Initially, the set of killing definitions (must assigns) and the set of all
definitions (may assigns) are empty. The indices of the definitions within the hash table are
inserted into the set "may assigns" and into the set "must assigns" (if the definition is a killing
one).

PROCEDUREComputeDefinitionSets(varDefs:Definitions);
VAR i: INTEGER; def: HashTableEntry; obj: Object; e: Definition;

BEGIN
FOR i := 0 TO size of hash table of definitions of the current procedure DO

def = definition i of the hash table
obj := object of definition def
IF varDefs does not yet contain an entry e for obj THEN

insert entry e with empty sets "may assigns" and "must assigns" for obj in varDefs
END ;
include i into the set of "may assigns" of e
IF def is a killing definition THEN

include i into the set of "must assigns" of e
END

END
ENDComputeDefinitionSets;

79Implementation

Fig. 4.17 shows how the definitions sets are computed for parameter i of procedure X in
Example 4.19. First, an entry for parameter i is inserted into the variable definitions with
empty sets "must assigns" and "may assigns". Whenever a definition is encountered, its index
is included into the "may assigns" (indices 1, 3, 4, and 5). Whenever the definition is a killing
one, its index is included into the "must assigns" (indices 1, 3, and 4).

Example 4.19:

PROCEDURE X (VAR i, j: INTEGER);
(* Assignments forparameter passing:

Nfpar/inPar: i (* 5 *)
Nfpar/inPar: j (* 6 *)

*)
VAR k: LONGINT;
(* Assignments for initialization of local variables:

Nenter: k (* 7 *)
*)

BEGIN
i := 1; (* 1 *)
j := 2; (* 2 *)
i := i * 2; (* 3 *)
k := i + j (* 4 *)

END X;

Insert i

Hash Table of Definitions VariableDefinitions

obj must may

i

j

{1}

def

{}

include 1

include 3

include 5
(only in may)

obj node flags

i 1 killing

killingj 20:

1:

6:

2:

3:

4:

5:

non-killing

non-killing

i 3

4

killing

killing

j 1

2

7:

8:

9:

10:

empty

i

3 non-killingj

k

i 5 killing

killingj 6

7 killingk

{0, 10} {0, 2, 8, 10}

{1}

{}

{1, 3} {1, 3}

include 4

{1, 3, 4} {1, 3, 4}
{1, 3, 4, 5}

Fig. 4.17 - Computation of the definition sets of parameter i

ComputeGenKillSets computes for each defining node the gen and kill sets. The loop of
ComputeGenKillSets iterates over all definitions of the hash table. Initially, the gen and kill
sets are empty for each node. The indices of the definitions are included into the node's gen
set. The kill set of the node is the union of the kill sets for each killing definition, where the
kill set for a killing definition d is the definition set (may assigns) of the variable defined at d

without the index of d.

80 Implementation

PROCEDUREComputeGenKillSets(varDefs:Definitions);
VAR i: INTEGER; def: Definition; node: Node; e: Definition;

BEGIN
FOR i := 0 TO size of hash table of definitions of the current procedure DO

def = definition i of the hash table
node := node of the definition def
IF gen and kill sets of node have not yet been computed THEN

allocateempty gen and kill sets for node
END ;
include i into the gen set of node
IF def is a killing definition THEN

e := entry of varDefs for object defined at def

node.kill := node.kill ∪ ("may assigns" of e - i)
END

END
ENDComputeGenKillSets;

Fig. 4.18 shows how the gen and kill sets are computed for the node 3. First, empty gen/kill

sets are allocated for node 3. Whenever a definition at node 3 is encountered, its index is
included in the gen set (indices 4 and 8). Whenever the definition is a killing one, the kill set
is updated by the definition set of the defined object excluding the index of the definition.

obj node flags

def

Nvarpar

i

gen:

kill:

{}

{}

{4}

allocate gen/kill

include 4 in gen
compute kill

{1, 3, 4, 5} - {4}
include 8 in gen

{4, 8}

Hash Table of Definitions

Defining Nodei 1 killing

killingj 20:

1:

6:

2:

3:

4:

5:

non-killing

non-killing

i 3

4

killing

killing

j 1

2

7:

8:

9:

10:

empty

i

3 non-killingj

k

i 5 killing

killingj 6

7 killingk
= {1, 3, 5}

Fig. 4.18 - Computation of gen and kill for node 3

Data Flow Equations of Iterative Statements

In Section 2.2.3, we gave the data flow equations for iterative statements. For Oberon-2, the
equations have to be adapted to model the WHILE, REPEAT and LOOP statements.
Additionally, side-effects of function calls within expressions must be handled properly. But
let us first examine the data flow equations once more:

81Implementation

S1 S

in(S)

out(S)
out(S1)

in(S1)

out(S)

in(S)

out(S) =

gen(S)

kill(S)

in(S1)

=

=

=

out(S1)

gen(S1)

kill(S1)

in(S) U gen(S1)

Fig. 4.19 - Data flow equations for an iterative statement

We have argued that gen(S) and kill(S) for the compound statement are the same as the gen
and kill sets of the nested statement sequence. The following argument shall serve as an
informal proof:

Let us suppose that the iterative statement S can be unfolded into a sequence of
statements:

S = S1 S2 ... Sn with S1 = S2 = Sn

gen(S) can then be computed by applying the rule for statement sequences:

gen(S1;S2) = gen(S2) ∪ (gen(S1) - kill(S2)) =

= gen(S1) ∪ (gen(S1) - kill(S1)) = since S1 = S2
= gen(S1) since the second term is a subset of the first

Since gen(S1;S2) = gen(S1), we see that executing the same statement several times does
not generate new definitions.

We have further argued that in(S1) = in(S) ∪ gen(S1). The following argument shall serve as
an informal proof:

In general, out(S) can be computed as:
out(S) = gen(S) ∪ (in(S) - kill(S))

For an iterative statement, all definitions that leave the end of the nested statement
sequence S1 are again definitions that reach the beginning of the nested statement
sequence S1. This (seemingly recursive) problem can only be solved by iteration until no
new definitions are generated that leave the compound statement S.

For the Fig. 4.19, out(S) can be computed by the following equation:

Equation 1: out(S1) = gen(S1) ∪ (in(S1) - kill(S1))

Whereas in(S1) can obviously (see Fig. 4.19) be computed as:

Equation 2: in(S1) = in(S) ∪ out(S1)

After substituting in(S1) by I, out(S1) by O, in(S) by J, gen(S1) by G, and kill(S1) by K in
Equations 1 and 2, we get the following two recurrence equations:

I = f(O, J) := J ∪ O

O = f(I, G, K) := G ∪ (I - K)

82 Implementation

I and O can be seen as functions, whereas J, G and K are constants in these two
equations. A solution can be found by starting from a conservative assumption (O0 = {})

and then substituting one equation by the result of the other:

I1 = J ∪ O0 = J

Then I1 can be used to get a better approximation for O:

O1 = G ∪ (I1 - K) = G ∪ (J - K)

Again, we can compute I by using the better approximation for O:

I2 = J ∪ O1 = J ∪ G ∪ (J - K)

= J ∪ G since last term J - K is a subset of J

The next approximation for O is:

O2 = G ∪ (I2 - K) = G ∪ ((J ∪ G) - K)

= G ∪ ((J - K) ∪ (G - K)) since (A ∪ B) - C = (A - C) ∪ (B - C)

= G ∪ (J - K) ∪ (G - K)

= G ∪ (J - K) since the term G - K is a subset of G

But since O1 = O2, further iteration will not produce any new results and we see that the

solution for the two recurrence equations can be written (after backwards substitution)
as:

in(S1) = in(S) ∪ gen(S1)

out(S1) = gen(S1) ∪ (in(S) - kill(S1))

The first of these two equations has already been introduced above, the second one can
be used to compute out(S).

Combination of the Gen and Kill Sets and the Computation of the Reaching
Definitions

Fig. 4.20 shows how the out set can be computed for procedure X of Example 4.19: The
definitions are inserted into the hash table of definitions, the definition sets are computed for
each variable and the gen/kill sets are computed for each defining node. The in set of the
procedure contains the initial definitions of the parameters and the local variables. The out
set is then computed by applying the equation

out = gen ∪ (in - kill)

to every node. The out set of the one node is the in set for the next node. The out set of the
last node is the out set of procedure X.

83Implementation

obj node flags

Hash Table of Definitions

i 1 killing

killingj 20:

1:

6:

2:

3:

4:

5:

non-killing

non-killing

i 3

4

killing

killing

j 1

2

7:

8:

9:

10:

empty

i

3 non-killingj

k

i 5 killing

killingj 6

7 killingk

Nfpar

inPar

i

Nfpar

outPar

i

Nfpar

inPar

j

Nfpar

outPar

j

k

Nenter

5 6

7

Nassign

Nvarpar

i

Nconst

1

Nassign

Nvarpar

j

Nconst

2

Nassign

Nvarpar

i

Ndop
ash

Nvarpar

i

Nconst

1

Nassign

Nvar

k

Ndop
+

Nvarpar

i

Nvarpar

j

1 2 3 4

gen kill

1:

6:

2:

3:

4:

5:

7:

{1, 2} {3, 4, 5}

{0, 5} {2, 8, 10}

{4, 8} {1, 3, 5}

{6} {7}

{3} {1, 4, 5}

{10} {0, 2, 8}

{7} {6}

Definition Sets

obj must may

i

j

k {6, 7}

{1, 3, 4}

{6, 7}

{1, 3, 4, 5}

{0, 2, 8, 10}{0, 10}

in = {3, 7, 10}

out = gen U (in - kill)

out = {1, 2} U

{7, 10}

{1, 2, 7, 10}

out = {0, 5} U

{1, 7}

{0, 1, 5, 7}

out = {4, 8} U
{0, 7}

{0, 4, 7, 8}

out =

{6} U {0, 4, 8}

{0, 4, 6, 8}

Fig. 4.20 - Computation of the out set of procedure X of Example 4.19

At each variable usage node U, links are inserted to the reaching definitions. Therefore the
set in(U) is examined. For each bit included in in(U), the hash table of definitions contains an
entry E. If E defines the object that is used at U, a link is inserted from U to the defining node
of E. Fig. 4.21 shows the links from the usage nodes to all reaching definitions.

84 Implementation

Nfpar

inPar

i

Nfpar

outPar

i

Nfpar

inPar

j

Nfpar

outPar

j

k

Nenter

7

Nassign

Nvarpar

i (j)

Nconst

1

Nassign

Nvarpar

j (i)

Nconst

2

Nassign

Nvarpar

i (j)

Ndop
ash

Nvarpar

i

Nconst

1

Nassign

Nvar

k

Ndop
+

Nvarpar

i

Nvarpar

j

1 2 3 4

in = {3, 7, 10}
{1, 2, 7, 10} {0, 1, 5, 7} {0, 4, 7, 8} {0, 4, 6, 8}

5 6

Fig. 4.21 - Reaching definitions of procedure X of Example 4.19

In the following we show for each language construct how the gen and kill sets can be
computed by a proper traversal of the syntax tree and how the out sets can be computed by
another traversal.

Short-Circuit Evaluation of Boolean Expressions

The language report of Oberon-2 defines that evaluation of Boolean expressions is stopped
when the result is known (short-circuit evaluation, see Table 4.11).

p OR q if p then TRUE, else q

p & q if p then q, else FALSE

BooleanExpression Equivalent

Table 4.11 - Evaluation of Boolean Expressions

In other words, if the first operand of the expression p & q evaluates to FALSE, the second
operand is not evaluated any more, since the result of the whole expression can only be
FALSE. Therefore, definitions in the left sub-tree of a Boolean expression are only killed by
definitions in the right sub-tree if the right sub-tree is at all evaluated. Likewise, the second
operand of the expression p OR q is only evaluated if the first evaluated to FALSE. Example
4.20 shows that exact modeling of short-circuit evaluations is necessary to compute precise
reaching definitions: The expression of the IF contains two function calls, which both modify
the parameter. Since the formal parameter i of function ChangePar is assigned on all paths,

85Implementation

the assignment of the corresponding actual parameter is a killing one. When the THEN

branch of the IF is executed, both parts of the expression must have evaluated to TRUE,
therefore the definitions of i and j before the IF are killed by the evaluation of the expression.
When the ELSE branch of the IF is executed, either the left part of the logical AND failed (in
which case the right part is not evaluated at all) or the right part failed (in which case both
parts are evaluated). In the first case, the initial definition of j is not killed.

Example 4.20:

MODULEShortCircuitEvaluation;

PROCEDURE ChangePar (VAR i: INTEGER): INTEGER; (* assigns to the parameter,
but does not use it *)

BEGIN
i := 0; RETURN 0

END ChangePar;

PROCEDURE Do;
VAR i, j: INTEGER;

BEGIN
(* 1 *) i := 0;
(* 2 *) j := 2;
(* 3, 4 *) IF (ChangePar(i) < 0) & (ChangePar(j) < 0) THEN (* i and j defined by the function

calls *)
(* 5 *) i := i; (* only def 3 is reaching *)
(* 6 *) j := j (* only def 4 is reaching *)

ELSE (* i defined by the function call,
j may be defined by the
functioncall *)

(* 7 *) i := i; (* only def 3 is reaching *)
(* 8 *) j := j (* def 2 may be reaching *)

END ;
(* 9 *) i := i; (* only defs 5 and 7 are reaching *)
(* 10 *) j := j (* only defs 6 and 8 are reaching *)

END Do;

ENDShortCircuitEvaluation.

Compound Boolean expressions are handled by computing a pair of gen/kill sets for the case
that the expression evaluates to TRUE (genT/killT) and one for the case that it evaluates to
FALSE (genF/killF). If the result of a Boolean expression is merely assigned to a variable, the
two gen/kill sets are combined conservatively. They are only treated separately if they guide
the flow of control (e.g. in the expression of an IF or a WHILE).

A conservative combination of the sets gen1/kill1 and gen2/kill2 (two merging arrows in the
figures below) is implemented as:

gen = gen1 ∪ gen2 kill = kill1 ∩ kill2

A sequence of the sets gen1/kill1 and gen2/kill2 (e.g. "genT/killT → genF/killF" in Fig 4.22) is
implementedas:

gen = gen2 ∪ (gen1 - kill2) kill = kill2 ∪ (kill1 - gen2)

86 Implementation

For a logical AND, the gen/kill sets for the case that the expression evaluates to TRUE

(genT/killT) is computed as the sequence of the genT/killT sets of the left-hand side and the
genT/killT sets of the right-hand side. The gen/kill sets for the case that the expression
evaluates to FALSE (genF/killF) is the conservative combination of the genF/killF sets of the
left-hand side and the sequence of the genT/killT sets of the left-hand side with the genF/killF

sets of the right-hand side as shown in Fig. 4.22.

Ndop

&

genT/killT
genF/killF

genT/killT
genF/killF

genT/killT
genF/killF

Fig. 4.22 - Computation of gen and kill for a logical AND

For a logical OR, the gen/kill sets are computed similarly (with reversed Boolean values) as
shown in Fig. 4.23.

Ndop

OR

genF/killF

genT/killT

genF/killF

genT/killT

genF/killF

genT/killT

Fig. 4.23 - Computation of gen and kill for a logical OR

For a logical negation, the gen/kill sets for the TRUE and FALSE case are simply interchanged
as shown in Fig. 4.24.

Nmop
~

genT/killT

genF/killF

genT/killT

genF/killF

Fig. 4.24 - Computation of gen and kill for a logical NOT

The out set of a logical AND is again split in two parts (see Fig. 4.25): outT for the case that
the expression evaluates to TRUE and outF for the case that the expression evaluates to
FALSE. For the computation of outT, we first feed in into the left sub-tree and then the
TRUE-output of the left sub-tree (outLT) into the right sub-tree. The TRUE-output of the

87Implementation

right sub-tree is then outT of the entire Boolean expression. outF is the union of the
FALSE-outputs of both sub-trees. The out set of a logical OR is computed similarly (see Fig.
4.26). For a logical negation, the sets outT and outF are simply interchanged (see Fig. 4.27).
When a usage node is visited during the traversal of the expression trees, links are inserted
to all reaching definitions.

Ndop
&

outLT
outLF

outRT
outRF

outT
outF

in

Fig. 4.25 - Computation of out for a logical AND

Ndop

OR

outLF

outLT

outF

outRT

outF

outT

in

Fig. 4.26 - Computation of out for a logical OR

Ndop

~

outT
outF

in

outT
outF

Fig. 4.27 - Computation of out for a logical NOT

Assignments

The order of the evaluation of the left-hand side and the right-hand side of an assignment
statement is not defined in Oberon. Therefore, programs must not rely on some particular
evaluation order. Depending on the implementation of the compiler, Example 4.21 may yield
different results.

Example 4.21:

88 Implementation

VAR arr: ARRAY 2 OF INTEGER; i: INTEGER;

PROCEDURE SideEffect (VAR i: INTEGER): INTEGER;
BEGIN i := 1; RETURN 0
ENDSideEffect;

BEGIN
arr[0] := 1; arr[1] := 1; i := 0;
arr[i] :=SideEffect(i)
(* if lhs is evaluated first: arr[0] = 0, if rhs is evaluated first: arr[1] = 0 *)

END

We compute data flow information under the assumption, that the right-hand side of an
assignment statement is evaluated first. Although this assumption is not strictly conservative,
we do not think of it as a source of major inaccuracies. Fig. 4.28 shows that the right-hand
side may be a Boolean expression. Then sets genT/killT and genF/killF are combined
conservatively (indicated by the merge of the two arrows into one arrow). The result is
combined sequentially with the gen/kill sets of the left-hand side which must not be a Boolean
expression.

Nassign

rhslhs

gen/kill
genT/killT
genF/killF

gen/kill

Fig. 4.28 - Computation of gen and kill for an assignment statement

Fig. 4.29 shows how the in set of the assignment statement is "pushed through" the right
sub-tree, giving the out set of the right sub-tree. After combining the two possible results
outT/outF conservatively (indicated by the merge of the two arrows into one arrow), the out

set is used as the in set of the left sub-tree. Pushing it through the left sub-tree yields the out

set of the entire assignment statement.

Nassign

rhslhs

out outT
outF

out

in

Fig. 4.29 - Computation of out for an assignment statement

89Implementation

Calls

The order of evaluation of the parameters is not defined in Oberon-2. The language report
only states that "the component selectors are evaluated when the formal/actual parameter
substitution takes place, i.e. before the execution of the procedure" (Section 9.2 Procedure
calls).
We assume evaluation of the parameters from left to right and give a warning if the order of
the evaluation of the parameters is significant (i.e. would lead to different gen and kill sets).
Evaluation from left to right yields a reasonably small out set where new definitions of a
variable x really kill preceding definitions of x. If we combined the out sets of all parameters
via a union, the out set of the entire call would almost always contain the entire in set, since
a reaching definition must be killed in each branch in order not to leave the statement as part
of the out set.

IF

The data flow equations for conditional statements have to be adapted to properly handle
side-effects due to function calls within expressions and short-circuit evaluation of Boolean
expressions. The following rule describes the possible paths of an IF statement:

IF expr1 THEN stat1
ELSIF expr2 THEN stat2
...
ELSEstatElse
END

PathsIF with ELSE = expr1TRUE stat1 |

expr1FALSE expr2TRUE stat2 |

...
expr1FALSE expr2FALSE ... exprNFALSE statElse.

PathsIF without ELSE = expr1TRUE stat1 |

expr1FALSE expr2TRUE stat2 |

...
expr1FALSE expr2FALSE ... exprNFALSE.

These two rules can be combined to one since a non-existing ELSE branch is semantically
equivalent to an empty ELSE branch:

PathsIF = expr1TRUE stat1 |

expr1FALSE expr2TRUE stat2 |

...
expr1FALSE expr2FALSE ... exprNFALSE [statElse].

Fig. 4.30 shows the computation of the gen/kill sets for an IF statement along these paths,
whereas Fig. 4.31 shows the computation of the out set.

90 Implementation

Nifelse

Nif

Nif

stat2genT/killT
stat1

stat3

genF/killF genT/killT
genF/killF

gen/kill

gen/kill

gen/kill

expr1
expr2

gen/kill

Fig. 4.30 - Computation of gen and kill for an IF statement

Nifelse

Nif
Nif

stat2outT

stat1

stat3

outF outT
outF

out
out

out

expr1

expr2

out

in

Fig. 4.31 - Computation of out for an IF statement

CASE

Exactly one branch of the CASE is executed depending on the result of the expression of the
CASE. If none of the constant expressions guarding the respective branches matches, the
ELSE branch is executed. If there is no ELSE branch, the program is aborted. Therefore, it
would not be allowed to treat an empty ELSE branch in the same way as a non-existing ELSE

branch. The gen/kill set of the CASE statement consists only of the gen/kill sets of the existing
branches and the gen/kill set of the ELSE branch (only if it exists). Likewise, the out set
consists of the out sets of the existing branches and the out set of the ELSE branch (only if it
exists). Fig. 4.32 shows the computation of the gen/kill sets for a CASE statement, whereas
Fig. 4.33 shows the computation of the out set.

91Implementation

Ncaselse

stat2

expr

Ncase

Ncasedo

case1 stat1

gen/kill

gen/kill

gen/kill

gen/kill

Fig. 4.32 - Computation of gen and kill for a CASE statement

Ncaselse

stat2

expr

Ncase

Ncasedo

case1 stat1

out

out

out

out

in

Fig. 4.33 - Computation of out for a CASE statement

WITH

If none of the type tests evaluates to TRUE and there is no ELSE branch in the source text of
the program, the program is aborted. Therefore, it would not be allowed to treat an empty
ELSE branch in the same way as a non-existing ELSE branch. The gen/kill set of the WITH

statement consists only of the gen/kill sets of the existing branches and the gen/kill set of the
ELSE branch (only if it exists). Fig. 4.34 shows the computation of the gen/kill sets for a
WITH statement.

92 Implementation

Nwith

Nif

Nif

stat3

stat2

stat1

test2

test1

gen/kill

gen/kill

gen/kill

gen/kill

Fig. 4.34 - Computation of gen and kill for a WITH statement

Likewise, the out set consists of the out sets of the existing branches and the out set of the
ELSE branch (only if it exists). Fig. 4.35 shows the computation of the out set for a WITH

statement. Note that the in set is pushed through the tests although they cannot generate new
definitions. This is necessary to insert links from the variable usage nodes to all reaching
definitions.

Nwith

Nif

Nif

stat3

stat2

stat1

test2

test1

out

in

out

out

out

Fig. 4.35 - Computation of out for a WITH statement
WHILE

The gen/kill set of the nested statement sequence must be computed since it is needed for the
computation of out. The gen/kill set of the entire WHILE loop has to combine the gen/kill sets
of the following three cases (see Fig. 4.36):

o The loop is not entered at all because the guarding expression evaluates to FALSE.
o The loop is entered and executed once.
o The loop is entered and executed several times.

93Implementation

Nwhile

expr statT
F

123

Fig. 4.36 - Iterations of a WHILE loop

One could give the following rule for possible paths of a WHILE loop:

PathsWHILE = {exprTRUE stat} exprFALSE.

Since the gen/kill set for an iteration statement is the same as the gen/kill set of the iterated
statement sequences, we can deduce that the gen/kill set of a WHILE loop only has to combine
the first two cases (the last case does not generate new information), which are shown in
Fig. 4.37.

gen/killWHILE = { genT/killTexpr gen/killstat } genF/killFexpr =

= [genT/killTexpr gen/killstat] genF/killFexpr =

= genF/killFexpr |

genT/killTexpr gen/killstat genF/killFexpr

Nwhile

expr stat

genT/killT
genF/killF

gen/kill

gen/kill

Fig. 4.37 - Computation of gen and kill for a WHILE statement

As we showed during the explanation of the data flow equations of iterative statements, the
in set for the nested statement sequence S1 is computed as in(S) ∪ gen(S1). In order to
consider side-effects of function calls within the expression of the WHILE, S1 is the part of
the loop that is executed for each iteration (i.e., the part of the rule for the gen/kill set of the
WHILE statement that is initially enclosed in curly braces). gen(S1) and kill(S1) are the sets of
definitions that are generated/killed by one iteration of the loop, i.e.

94 Implementation

gen/kill(S1) = genT/killTexpr gen/killstat

In the following informal proofs of the computation of the out sets, we will use the notation

x => S => y

which means that the program fragment S has the in set x and produces the out set y. In this
way program fragments can be concatenated where the output of the first fragment is the
input of the next. Boolean expressions return two out sets, one for the TRUE branch and one
for the FALSE branch. Which of the both is actually used is indicated by the subscript. For
annotation purposes, we insert names into the chain of functions in order to give a name to
the temporary result that is being passed from one function to the next.
The out set of the WHILE loop also has to combine the out sets of the three cases given above.

1) in(WHILE) => exprFALSE => out1(WHILE)

2) in(WHILE) => exprTRUE stat => out' => exprFALSE => out2(WHILE)

out' could be computed as "gen(S1) ∪ (in(WHILE) - kill(S1))", but instead we compute it
by "pushing" in(WHILE) "through" S1 (i.e. through the AST of the expression and the
statement sequence). During this process, data dependence edges are inserted from
nodes that represent variable usages to all nodes that represent reaching definitions of
these variables.

3) in(WHILE) => exprTRUE stat => out' => { exprTRUE stat } => out'' => exprFALSE =>

out3(WHILE)

out'' could be computed as follows:
out'' = gen(S1) ∪ (out' - kill(S1)) =

= gen(S1) ∪ ((gen(S1) ∪ (in(WHILE) - kill(S1))) - kill(S1)) =

= gen(S1) ∪ (gen(S1) - kill(S1)) ∪ (in(WHILE) - kill(S1) - kill(S1)) =

= gen(S1) ∪ (in(WHILE) - kill(S1)) = out'

Since out'' = out', we could be tempted to ignore the third case (as we did when we
computed the gen/kill set). Although no new definitions are generated and the out set
remains the same, we have to execute at least one iteration because otherwise the
definitions contained in out' would never be used as input to "exprTRUE stat".

Fortunately, one iteration is enough, so we end up with the following formula for the
third case:

in(WHILE) => exprTRUE stat => out' => exprTRUE stat => exprFALSE => out3(WHILE)

This would require two traversals of S1, where the in set is once in(WHILE) and once
out'. Fortunately, these two traversals can be combined by using in(WHILE) ∪ gen(S1) as
the in set of the traversal of S1, since

in(WHILE) ∪ out' = in(WHILE) ∪ gen(S1) ∪ (in(WHILE) - kill(S1)) =

= in(WHILE) ∪ gen(S1)

The combination of the two traversal is legal since it produces the same out set:

Pushing a bit set in1 through a statement sequence S produces the out set
out1 = gen(S) ∪ (in1 - kill(S)).

Pushing a bit set in2 through a statement sequence S produces the out set
out2 = gen(S) ∪ (in2 - kill(S)).

95Implementation

Pushing the bit set in1 ∪ in2 through S produces the out set
out = gen(S) ∪ ((in1 ∪ in2) - kill(S)) =

= gen(S) ∪ (in1 - kill(S)) ∪ (in2 - kill(S)) =

= gen(S) ∪ (in1 - kill(S)) ∪ gen(S) ∪ (in2 - kill(S)) =

= out1 ∪ out2

The in set for the traversal of exprFALSE would have to be in(WHILE) for the first case and out'

for the second and third cases. Again, these two traversals can be combined into one
traversal of exprFALSE with in(WHILE) ∪ gen(S1) as the in set. So we end up with the

following rule for the computation of out(WHILE):

in(WHILE) ∪ gen(S1) => exprTRUE stat => out'

in(WHILE) ∪ gen(S1) => exprFALSE =>out(WHILE)

The first rule is needed to insert all necessary data dependences within the expression and
the nested statement sequence. The second rule is used to compute the actual out set of the
WHILE as shown in Fig. 4.38.

Nwhile

expr stat

out

outT
outF

in

genS1

Fig. 4.38 - Computation of out for a WHILE statement

REPEAT

As for the WHILE loop, the gen/kill set of the nested statement sequence must be computed
since it is needed for the computation of out. The gen/kill set of the entire REPEAT loop has to
combine the gen/kill sets of the following two cases (see Fig. 4.39):

o The loop is entered and executed once.
o The loop is entered and executed several times.

96 Implementation

Nrepeat

stat expr
genT/killT
genF/killF

gen/kill

gen/kill

Fig. 4.39 - Computation of gen and kill for a REPEAT statement

The rule for possible paths of a REPEAT loop is:

PathsREPEAT= {stat exprFALSE} stat exprTRUE.

Following the same argument as for the WHILE loop, we can deduce that the gen/kill set of a
REPEAT loop only has to combine the following two cases:

gen/killREPEAT= { gen/killstat genF/killFexpr } gen/killstat genT/killTexpr =

= [gen/killstat genF/killFexpr] gen/killstat genT/killTexpr =

= gen/killstat genT/killTexpr |

gen/killstat genF/killFexpr gen/killstat genT/killTexpr

gen(S1) and kill(S1) are the sets of definitions that are generated/killed by one iteration of the
loop, i.e.

gen/kill(S1) = gen/killstat genF/killFexpr

The out set of the REPEAT loop also has to combine the out sets of the two cases given
above:

1) in(REPEAT) => stat exprTRUE => out1(REPEAT)

2) in(REPEAT) => stat exprFALSE => out' => stat exprTRUE => out2(REPEAT)

out' could be computed as "gen(S1) ∪ (in(REPEAT) - kill(S1))", but we rather compute it
by "pushing" in(REPEAT) "through" the AST of the expression and the statement
sequence. During this process, data dependence edges are inserted from nodes that
represent variable usages to all nodes that represent reaching definitions of these
variables.

For the computation of out(REPEAT), we can simply feed "in(REPEAT) ∪ gen(S1)" into "stat

exprTRUE", since

in(REPEAT) ∪ out' = in(REPEAT) ∪ gen(S1) ∪ (in(REPEAT) - kill(S1)) =

= in(REPEAT) ∪ gen(S1)

Thereby, data dependences will also be inserted. Fig. 4.40 shows the computation of the out

set for a REPEAT statement

97Implementation

Nrepeat

stat expr

outT
outF

out

out

genS1

in

Fig. 4.40 - Computation of out for a REPEAT statement

LOOP

We compute two pairs of gen/kill sets for the LOOP: one represents the definitions
generated/killed by an iteration of the loop, the other one represents the definitions
generated/killed by the execution of the entire LOOP. The first is needed for the computation
of the out set of the LOOP where it is fed as additional input due to one iteration into the
nested statement sequence, the latter is a conservative combination of the gen/kill sets that
reach the directly nested EXITs. The out set of the LOOP conservatively combines the out sets
of all directly nested EXITs.

EXIT

An EXIT statement kills all definitions, i.e. no definitions reach the statements following the
EXIT. But the gen/kill sets reaching the EXITs are combined to the gen/kill set of the enclosing
LOOP. The out set of an EXIT is the same as its in set. It is used to compute the out set of the
enclosing LOOP.

TRAP

Trap nodes are in principle handled in the same way as EXITs. We could collect the
definitions that reach trap nodes. However, we do not think that this information can be
usefully exploited by the user.

RETURN

A RETURN statement kills all definitions, i.e. no definitions reach the statements following
the RETURN.

Computation of Parameter Usage Information

After computing the reaching definitions, the summary information about the usage of
ordinary and additional parameters is computed for later reuse. A parameter may either be
used or it may not be used. It may be not defined, it may be defined on some paths or it may

98 Implementation

be defined on all paths.

Computation of Summary Edges

Summary edges are computed by intraprocedural slicing: for each formal output parameter
(which may be an ordinary parameter or an additional parameter) that has been defined in
the procedure we slice the procedure for this output parameter and insert summary edges to
all input parameters that have been reached during slicing. The values of these input
parameters (which may be ordinary or additional parameters) may influence the output
parameter. For functions, we slice the procedure for the procedure exit node and insert
summary edges from the procedure exit node to the influencing input parameters. The
summary edges are reflected from the called procedure back onto the call sites: A summary
edge from a formal output parameter to a formal input parameter becomes a summary edge
between the corresponding actual parameters (see Fig. 4.41). A summary edge from the
procedure exit node to a formal input parameter becomes a summary edge from the function
call node to the corresponding actual parameter (see Fig. 4.15).
Fig. 4.41 shows the AST of Example 4.22. The formal input parameter node of in is marked
during slicing for the formal output parameter node of out, therefore a summary edge is
inserted from the formal output parameter node of out to the formal input parameter node of
in. This summary edge is reflected onto all call sites. There is a data dependence edge to the
formal input parameter node of in which means that the value of in is used. Therefore, a
parameter-in edge is inserted from the actual parameter node to the formal parameter node.
The formal input parameter node of out is not marked during slicing. This means that the
definition of out at the formal input parameter node does not reach the formal output
parameter node. In other words, out is defined on all paths in procedure Abs. Thus, the
definition of the second parameter is a killing definition at call sites of Abs. There is no data
dependence edge to the formal input parameter node of out. This means that the value of out

is never used. It is therefore not necessary to insert a parameter-in edge between the second
parameter at the call sites of Abs and the formal input parameter of out, but a parameter-out

edge is necessary, since out is defined in Abs.

Example 4.22:

PROCEDURE Abs (in: INTEGER; VAR out: INTEGER);
BEGIN

IF in < 0 THEN out := - in
ELSE out := in
END

END Abs;

...

Abs(i, j)

99Implementation

Abs

Ndop
<

0

Nmop
-

out

Nfpar
inpar

in out out

fpars

DD

used always defined

parIn

DD

DD

parOut

Nvar

i

Nproc

Abs

Ncall

Nvar

Nvar

in
Nvar

in

Nvar Nvar Nvar

in

Nassign
Nassign

Nifelse

Nfpar
inparNenter

Nconst
out

Nfpar
outpar

j

DD

DD

DD

summary

summary

DD

Nif

Fig. 4.41 - Computation of summary edges

4.6 Slicing

Our algorithm for static backward slicing is based on the two-pass slicing algorithm of
Horwitz et al. [HoRB90] described in Section 3.2.2 where slicing is seen as a
graph-reachability problem. This algorithm uses summary information at call sites to account
for the calling context of procedures. We compute the summary information by a variation
of the algorithm of Livadas et al. [LivC94, LivJ95].

Since we use a fine-grained program representation, the nodes that are considered for
inclusion into the slice are the nodes of the abstract syntax tree. This enhances the precision
of the static slices.

Since Oberon-2 is a modular programming language with separate compilation, we
extended interprocedural slicing to intermodular slicing where the slicing information of
modules can be computed separately. Type checking across module boundaries is
implemented by reusing type information about the exported interface of a module when
compiling dependent modules. In analogy, we reuse slicing information when slicing
dependent modules. This slicing information can be stored in a repository.

Since Oberon-2 is an object-oriented programming language, we support inheritance,
polymorphism, and dynamic binding.

100 Implementation

4.6.1 IntraproceduralSlicing

For intraprocedural slicing we use the algorithm outlined in Fig. 3.2, where control and data
dependences as well as summary edges are traversed backwards. When a node is to be
included into the slice, it is marked with procedure MarkNode shown in Fig. 4.42.

PROCEDURE (s: Slice) MarkNode* (node: Node);
VAR obj: Object;

PROCEDURE^ MarkObject (obj: Object);
PROCEDURE MarkStruct (typ: Struct);
BEGIN

IF typ is not yet marked THEN
mark typ
IF typ is a pointer type, a procedure type or composite type THEN

MarkStruct(typ.BaseTyp) (* mark the referenced record type,
the result type, or element type *)

END ;
MarkObject(typ.strobj) (* mark the symbol table object for the type *)

END
ENDMarkStruct;

PROCEDURE MarkObject (obj: Object);
BEGIN

IF obj is not yet marked THEN
mark obj
MarkStruct(obj.typ); (* mark the type of the object *)
IF obj is imported THEN

MarkObject(obj.mod) (* mark the declaring module *)
END

END
END MarkObject;

BEGIN
IF node is not yet marked THEN

mark node
MarkStruct(node.typ); (* mark the type of the node *)
MarkObject(node.obj); (* mark the object referenced by the node *)
FOR all objects obj used at node DO (* mark all objects used at the node *)

MarkObject(obj)
END ;
FOR all objects obj defined at node DO (* mark all objects defined at the node *)

MarkObject(obj)
END

END
END MarkNode;

Fig. 4.42 - Marking a node

Marking not only syntax tree nodes but also objects of the symbol table allows us to
visualize which declarations are actually needed for the syntax tree nodes that are part of the
slice.

101Implementation

4.6.2 InterproceduralSlicing

For interprocedural slicing we use the algorithm outlined in Fig. 3.7. We will shortly
describe which nodes of our intermediate representation of the program are used to model
the system dependence graph used by Horwitz et al. [HoRB90]:

o For procedure entry nodes we use the Nenter nodes of the abstract syntax tree. They
have references to the symbol table object of the procedure and to additional
information about the procedure.

o For call-site nodes we use the Ncall nodes of the abstract syntax tree. The left sub-tree
denotes the procedure or the procedure variable that is called. For dynamically bound
calls, Ndyncall nodes are used to link the call site with all possible call destinations.

o For the actual-in and actual-out nodes we use the nodes of the abstract syntax tree
representing the actual parameters. For value parameters, the actual parameter may be
an expression tree, for reference parameters, the actual parameter denotes an object
(Nvar, Nvarpar, Nfield nodes). For additional parameters there is a Nvarpar/additionalPar

node.
o For formal-in and formal-out nodes we use Nfpar nodes. For ordinary value

parameters there is a formal input parameter node. For ordinary reference parameters
there is a pair of two formal parameter nodes (Nfpar/inPar and Nfpar/outPar) which both
reference the same object. For additional parameters there is a pair of two formal
parameter nodes (Nfpar/additionalInPar and Nfpar/additionalOutPar) which reference both
the same object.

We use the following kinds of edges to represent the dependences among the nodes of the
abstract syntax tree:

o Control dependences from the depending node to the node controlling its execution.
o Data dependences from the usage node to the reaching definitions.
o Parameter-in edges from the formal-in parameter to the actual parameter node.
o Parameter-out edges from the actual parameter node to the formal-out parameter

node.
o Summary edges from formal-out parameter nodes and procedure exit nodes to all

formal-in parameter nodes that can be reached via intraprocedural dependences.
Corresponding summary edges between the actual parameters and from the function
call node to the actual parameters.

o Call edges are modeled by ascending from Nenter nodes of procedure P to all call sites
that statically and/or dynamically call P. Some of the call destinations of dynamically
bound calls can be disabled via user interaction. The disabled destinations are not
visited during slicing.

102 Implementation

4.6.3 IntermodularSlicing

Without knowledge about the procedures of imported modules, one would have to make
conservative assumptions. The worst case for an external procedure P of module M would
be to assume

o that each value parameter of P is used,
o that each reference parameter of P is possibly defined (leading to non-killing

definitions at the call sites),
o that all global variables of any other module N are used since M might import N and use

N's variables,
o that all global variables of any other module that are exported without access

restriction are possibly defined,
o that all objects and arrays on the heap are used,
o that all objects and arrays on the heap are possibly defined, and
o that each reference parameter of P transitively depends on all other input parameters,

global variables and objects on the heap.

Conservative assumptions about the parameters of imported procedures would lead to
unacceptably large slices. Therefore we allow the user to store the parameter usage
information of every module in the repository after the module has been sliced. When slicing
modules that import previously sliced modules, the information in the repository is reused to
compute more precise slices.

For separate compilation, the compiler uses symbol files to store the interface
information of a module. These symbol files can be reused when compiling other modules
that import previously compiled modules. Strong type checking can be performed across
module boundaries. Fig. 4.43 compares the processes of compilation and slicing. On the
left-hand side we see that the compiler generates an object (e.g. A.Obj) and a symbol file (e.g.
A.Sym) from a source file (e.g. A.Mod). If module A imports module B, the interface of B with
its type information is read from the symbol file B.Sym. This implies that modules must be
compiled before they can be imported by other modules. On the right-hand side we see that
the slicer computes slicing information (e.g. for module A) from the source file A.Mod. If A

imports B, the interface of B with its type information is either extracted from the symbol file
B.Sym or, if the slicing information has already been computed for B before, from the
repository. Object and symbol files are usually stored in the file system, whereas the slicing
information is stored in the repository.

103Implementation

Compiler Slicer

symbol fileobject file

source file

File System

slicinginformation

Repository

Compilation Slicing

Fig. 4.43 - Compilation versus slicing

The slicing information that is stored in the repository for a module is a superset of the
information that would be contained in the symbol file. The slicing information comprises:

o all exported types,
o all other exported objects (constants, variables, procedures),
o all type-bound procedures, and
o all procedures that have somewhere been assigned to a procedure variable.

For each procedure, the repository stores the parameter usage information for all parameters
and the ProcInfo object with the list of formal parameters and their summary edges.

Version conflicts are checked by the compiler. When the interface of a module changes,
the compiler generates a new symbol file and a unique number for this version. This version
number is used to detect version conflicts due to changes of the interface. Changes in the
implementation that do not change the interface do not lead to a new symbol file and a new
version number since they do not invalidate clients of the module. Crelier [Cre94] developed
finer-grained methods to extend modules without invalidating clients. However it was out of
the scope of this thesis to integrate his ideas. Fig. 4.44 shows the import graph for four
modules where B imports D, C imports D, and A imports B and C. If the interface of D

changes, all modules depending on D would have to be recompiled. If B is recompiled, and
then A is recompiled, the compiler reports that during the compilation of A, module D is
imported once via B in the new version and once via C in the old version. Likewise, the
loader would detect the version conflict, instead of loading inconsistent modules.

104 Implementation

A

B C

D

Fig. 4.44 - Import graph of four modules

In the same way, the repository handles version conflicts: If the slicing information for a
module is stored into the repository, it replaces the previously existing version of the slicing
information. If other modules in the repository depend on the existing version, they are
removed from the repository before inserting the new version. Since removal of modules
from the repository is an irrevocable action, it is only done if explicitly requested by the user.
This process of removing invalidated modules continues recursively. E.g., if modules D, C,
B, and A have been placed into the repository and a new version of module B is checked in,
modules B and A are removed from the repository. If a new version of module D is checked
in, all four modules are removed. Fig. 4.45 illustrates this recursive process of removing
invalidated slicing information.

A

B C

D

check-in of

newversion
of module B'

remove B
A

C

D

remove
C

D

check-in of
newversion

of module D'

A

B C

A

C C

A

remove

B

remove

A

remove

C

remove D

B' B'

D' D' D' D'

Fig. 4.45 - Recursive removal of invalidated slicing information

105Implementation

4.7 Support of Object-Oriented Features

The Oberon Slicing Tool supports the key concepts of object-oriented programming, such as
inheritance, polymorphism and dynamic binding:

o Inheritance: The inheritance relation is modeled as described in Section 4.3. Each class
contains information about the type and visibility of its new and inherited fields as well
as information about its new, overridden and inherited methods.

o Polymorphism: Polymorphic variables are handled during alias analysis. The sets of
possible aliases can be restricted via user feedback. A special problem of alias analysis
is that when a field x of an object o of type T is changed via a pointer p of type
POINTER TO T (e.g. "p.x := ..."), the field x accessed via a pointer q of type POINTER TO

T (e.g. "... := q.x") may as well be changed (if p and q both point to object o). Since the
dynamic type of p may be an extension of T (e.g. T1 which is assumed to be derived
from T), the field x accessed via a pointer q1 of type POINTER TO T1 may also be
changed (if p and q1 both point to object o). To the best of our knowledge, program
slicinig tools make either extremely conservative assumptions when changing data via
pointers (e.g. invalidate all heap-allocated data) or they do not account for the
described problem at all.

o Dynamic binding: All possible call destinations are computed for dynamically bound
call sites. Calls of methods and calls of procedure variables are handled uniformly. The
sets of possible call destinations can be restricted via user feedback.

Information hiding and encapsulation of code and data are not really new features of
object-oriented programming but can already be accomplished with modular programming
languages such as Modula-2. In order to understand programs that exploit abstraction and
information hiding, it is important to make visible to the user which (hidden) data is used
during some calculation. This is even more important for object-oriented programs which
make heavy use of information hiding. Example 4.23 illustrates the problems of information
hiding on a procedural program: Module Random exports function Uniform which returns a
random number and modifies the non-exported variable state. Module Client imports Random

and calls Random.Uniform twice. If we slice for the last statement in Client.Do (the assignment
to z), we have to include the first call of R.Uniform into the slice, since the last call of
R.Uniform depends on the value of the invisible variable R.state which is assigned during the
first call of R.Uniform. This is not obvious to the user unless the accessed and modified
variables are listed in the parameter list of the function call.

Example 4.23:

106 Implementation

END Random;

END Uniform;

state := ...

BEGIN

PROCEDURE Uniform*(): LONGINT;

VAR state: LONGINT;

MODULE Random;

END Client.

END Do;

z := Random.Uniform((*R.state*));

...

z := Random.Uniform((*R.state*));

BEGIN

PROCEDURE Do*;

IMPORT Random;

MODULE Client;

4.8 Modularization

We have implemented the Oberon Slicing Tool in a set of modules. Fig. 4.46 shows the
import graph of the Oberon Slicing Tool. The modules below the dashed line belong to the
Oberon-2 compiler, whereas the modules above belong to the Slicer. Module SlicerOPP

implements a syntax directed top-down recursive-descent parser. Module SlicerOPT is the
symbol table handler which declares the data types for the abstract syntax tree and the
symbol table together with the operations upon them. We have added several auxiliary data
structures directly in module SlicerOPT, but also extracted some into module SlicerAuxiliaries.
Module Repository stores the slicing information. Module Slicer contains the algorithms for
control flow and data flow analysis. Module ParInfoElems implements parameter information
elements of the graphical user interface. Finally, module SlicerFE is the front end of the
Oberon Slicing Tool.

SlicerOPP SlicerOPT

Repository SlicerAuxiliaries

Slicer

ParInfoElems

SlicerFE

Slicer

Compiler

Fig. 4.46 - Import graph of the Oberon Slicing Tool

107Implementation

Table 4.12 shows the sizes of the particular modules in lines of code, the number of
statements, and the bytes of the object code. Module SlicerOPP has only been marginally
changed, two thirds of module SlicerOPT are new, the rest is reused. After subtracting the
parts of the Oberon-2 compiler, the Oberon Slicing Tool consists of approximately 12500
lines of code, 9000 statements and 160000 bytes of object code (compiled for Intel x86
processors).

SlicerFE 3381 2721 51305

ParInfoElems 525 362 6337

Slicer 3916 2585 52002

Repository 1622 1101 23029

SlicerAuxiliaries 208 95 1800

SlicerOPT 2585 1656 33958

SlicerOPP 1309 1180 18046

Module Lines of Code Statements Object Code

Table 4.12 - Modules of the Oberon Slicing Tool

In the following we will shortly describe the interfaces of these modules.

4.8.1 ModuleRepository

Module Repository stores the slicing information for processed modules.

DEFINITIONRepository;

IMPORT SlicerOPT, SlicerOPS;

CONST
version = "Oberon Slicing Tool V1.0 (CS)";
defaultRepository="Repository.Rep"; (* default file name of the repository *)
optionChar = "\";
unexpectedSituation=99; (* run-time error number *)
(* kinds of parameter usages *)
parIn = 0; parOut = 1; parUsed = 2; parDefined = 3; parAlwaysDefined = 4; isPar = 5;
unknown = 6;

VAR
modules-: SlicerOPT.ObjArr;

PROCEDURE GetKey (modName: ARRAY OF CHAR): LONGINT;
PROCEDURE MakePersistent (key: LONGINT; mod, topScope: SlicerOPT.Object;

force: BOOLEAN);
PROCEDURE ThisMod (modName: ARRAY OF CHAR; key: LONGINT): SlicerOPT.Object;
PROCEDUREShowModules;
PROCEDUREShowModuleInfo;

PROCEDURE SetObjUsage (proc, obj: SlicerOPT.Object; expand: BOOLEAN; usage: SET);
PROCEDURE GetObjUsage (proc, obj: SlicerOPT.Object; VAR usage: SET);
PROCEDURE ChangeObjUsage (proc, obj: SlicerOPT.Object; usage: SHORTINT;

incl:BOOLEAN);

108 Implementation

PROCEDURE RemoveObjUsageForProc (proc: SlicerOPT.Object);
PROCEDURE DumpObjUsage;

PROCEDURE Save;
PROCEDURE Load;
PROCEDURECompleteComputation;
PROCEDURE Reset;

ENDRepository.

Variables:

o modules is the array of modules for which slicing information is stored in the
repository.

Operations:

o GetKey(modName) returns the key of the module modName. It is a version number
computed by the compiler when generating the symbol file. Whenever the interface of
the module changes, a new key is generated. This key is used to detect version
conflicts during separate compilation. However, it cannot be used to detect
inconsistencies between different versions if the interface of the module has not
changed.

o MakePersistent(key, mod, topScope, force) makes the slicing information that is stored in
the symbol table topScope of module mod with the version key persistent. If the
repository already contains slicing information for this module and the old information
is not used by other modules, it is simply replaced. If the old information is used by
other modules, it is only replaced if force is TRUE. Then the information for all
dependent modules is recursively deleted (see Fig. 4.45).

o ThisMod(modName, key) returns the root of the symbol table of module modName with
the specified key.

o ShowModules lists all modules for which slicing information is stored in the repository.
o ShowModuleInfomodName lists the slicing information stored for module modName.

o SetObjUsage(proc, obj, expand, usage) sets the parameter usage information for
parameter obj in procedure proc to the specified usage. usage is a set and may contain
parIn, parOut, parUsed, parDefined, parAlwaysDefined, and isPar as its elements. If expand

is TRUE and the parameter is a record or a pointer to a record, the same usage
information is applied to all its fields.

o GetObjUsage(proc, obj, usage) returns in usage the parameter usage information stored
for parameter obj of procedure proc. usage may be {unknown} if the parameter usage
information is not available.

o ChangeObjUsage(proc, obj, usage, incl) includes or excludes (depending on the Boolean
value incl) the specified usage for parameter obj of procedure proc.

o RemoveObjUsageForProc(proc) removes the parameter usage information for procedure
proc.

o DumpObjUsage outputs all parameter usage information.
o Save [fileName [\options]] stores the repository in the specified file. The default options

109Implementation

are to store the pre-declared data types and built-in functions of Oberon-2, the object
usage information, and the slicing information of all modules. The following
parameters can modify these default options:

s pre-declared data types and built-in functions are not stored
o object usage information is not stored
m slicing information of all modules is not stored

o Load [fileName [\options]] loads the repository from the specified file. The default
options are to load the pre-declared data types and built-in function of Oberon-2, the
object usage information, and the slicing information of all modules. The specified
options must match the options used for storing.

o CompleteComputation removes unnecessary object usage information.

4.8.2 Module Slicer

Module Slicer declares type Slice which implements control flow and data flow analysis
necessary to derive slices.

DEFINITIONSlicer;

IMPORT SlicerOPT, SlicerOPS;

CONST
version = "Oberon Slicing Tool V1.0 (CS)";
unexpectedSituation=99;
(* Notifier op *)
changed = 0; nodeMarked = 1; sliceComputed = 2; controlFlowComputed = 3;
dataFlowComputed = 4; dataFlowInfoReset = 5; markChanged = 6;
compiled = 7;

TYPE
Notifier = PROCEDURE (s: Slice; op: INTEGER);

Slice = POINTER TO SliceDesc;
SliceDesc = RECORD

moduleName-: ARRAY 32 OF CHAR; (* e.g. Test for Test.Obj, if the module
starts with MODULE Test *)

moduleFileName-: ARRAY 256 OF CHAR; (* e.g. TestModule.Mod *)
notify:Notifier; (* called if the slice is changed *)
program: SlicerOPT.Node; (* abstract syntax tree of the slice *)
topScope:SlicerOPT.Object; (* symbol table of the slice *)
moduleNames-: ARRAY 31 OF SlicerOPS.Name; (* names of imported modules *)
Message: PROCEDURE (str: ARRAY OF CHAR; node: SlicerOPT.Node;

kind: SHORTINT);

PROCEDURE (s: Slice) Compile (mod: ARRAY OF CHAR; VAR done: BOOLEAN);
PROCEDURE (s: Slice) BuildClassHierarchy;
PROCEDURE (s: Slice) ControlFlow;
PROCEDURE (s: Slice) DataFlow;
PROCEDURE (s: Slice) SliceProc (node: SlicerOPT.Node; interprocedural: BOOLEAN);
PROCEDURE (s: Slice) SliceProcForObj (proc: SlicerOPT.Node; obj: SlicerOPT.Object;

interprocedural:BOOLEAN);

110 Implementation

PROCEDURE (s: Slice) SliceStat (node: SlicerOPT.Node; interprocedural: BOOLEAN);
PROCEDURE (s: Slice) ResetDataFlowInfo;
PROCEDURE (s: Slice) Statistics;
PROCEDURE (s: Slice) CountMarkedNodes (VAR marked, total: LONGINT);
PROCEDURE (s: Slice) CompleteComputation;

PROCEDURE (s: Slice) IsImported (obj: SlicerOPT.Object): BOOLEAN;
PROCEDURE (s: Slice) MayAlias (o1, o2, proc: SlicerOPT.Object): BOOLEAN;
PROCEDURE (s: Slice) MarkNode (node: SlicerOPT.Node);
PROCEDURE (s: Slice) MarkedNode (node: SlicerOPT.Node): BOOLEAN;
PROCEDURE (s: Slice) MarkedObject (obj: SlicerOPT.Object): BOOLEAN;
PROCEDURE (s: Slice) MarkedStruct (typ: SlicerOPT.Struct): BOOLEAN;
PROCEDURE (s: Slice) SetModuleFileName (str: ARRAY OF CHAR);
PROCEDURE (s: Slice) SetModuleName (str: ARRAY OF CHAR);
PROCEDURE (s: Slice) ThisNode (pos: LONGINT): SlicerOPT.Node;
PROCEDURE (s: Slice) ThisProc (name: ARRAY OF CHAR): SlicerOPT.Node;
PROCEDURE (s: Slice) ThisProcFromObj (obj: SlicerOPT.Object): SlicerOPT.Node;

END ;

SliceFactoryMethodType = PROCEDURE (): Slice;

VAR
arrayExpansionLimit-:INTEGER;
sliceFactoryMethod-:SliceFactoryMethodType;

PROCEDURE InitSlice (s: Slice);
PROCEDURE SliceFactoryMethod (): Slice;
PROCEDUREInstallDefaultSlicer;
PROCEDURESetSliceFactoryMethod(f:SliceFactoryMethodType);
PROCEDURESetArrayExpansionLimit (limit: INTEGER);

END Slicer.

Variables:

o arrayExpansionLimit sets the upper limit for the expansion of arrays as described in
Section 4.5.1.

o sliceFactoryMethod is used to allocate new objects of type Slice.

Operations:

o InitSlice(s) initializes a newly allocated object of type Slice.
o SliceFactoryMethod allocates an object of type Slice, initializes it and returns it.
o InstallDefaultSlicer installs SliceFactoryMethod in the procedure variable

sliceFactoryMethod.

o SetSliceFactoryMethod(f) installs the factory method f in the procedure variable
sliceFactoryMethod.

o SetArrayExpansionLimit(limit) sets the variable arrayExpansionLimit to limit.

111Implementation

Types:

o SliceFactoryMethodType is the procedure type for factory methods that can be installed
to allocate slices.

o Notifier is the procedure type for notifiers that can be installed in slices. They will be
called when the slice is changed, when a node is marked, when the slice is computed,
when control flow information or data flow information has been computed, when
data flow information has been reset or when the mark of the slice has changed, or
when the module has been compiled. The parameter op of the notifier indicates the
operation.

o Slice is the main class of the Oberon Slicing Tool.

Methods:

o s.Compile(mod, done) compiles the module mod. done indicates the success of the
operation.

o s.BuildClassHierarchy builds the class hierarchy. This method must be called after the
module is compiled but before control flow and data flow information is computed.

o s.ControlFlow computes control flow information as described in Section 4.4. This
method must be called after method BuildClassHierarchy but before method DataFlow.

o s.DataFlow computes data flow information as described in Section 4.5. This method
must be called after method ControlFlow.

o s.SliceProc(node, interprocedural) derives the slice starting with the specified node. If
interprocedural is TRUE, the slice is computed interprocedurally, otherwise intraproce-
durally.

o s.SliceProcForObj(proc, obj, interprocedural) derives the interprocedural or intraproce-
dural slice for the output parameter obj of procedure proc.

o s.SliceStat(node, interprocedural) derives the interprocedural or intraprocedural slice for
the statement node.

o s.ResetDataFlowinfo resets the data flow information. This method can be called after
the user restricted the sets of possible aliases or the sets of possible call destinations.
Afterwards more precise data flow information can be re-computed by method
DataFlow.

o s.Statistics outputs statistical information.
o s.CountMarkedNodes(marked, total) returns the number of marked nodes (i.e. the number

of nodes that are part of the slice) and the total number of nodes in the abstract syntax
tree of the program.

o s.CompleteComputation removes information from the abstract syntax tree and the
symbol table that is only necessary for computing the slices but not if the slice is to be
stored in the repository. This method is called before the symbol table of the slice is
checked in into the repository. After calling this method, no more slices can be
computed.

o s.IsImported(obj) returns TRUE if the object obj is imported.

o s.MayAlias(o1, o2, proc) returns TRUE if object o1 and o2 may be aliases in procedure

112 Implementation

proc. This method may be overridden to provide more precise alias analysis.
o s.MarkNode(node) marks the specified node as described in Section 4.6.1.
o s.MarkedNode(node) returns TRUE if the specified node is marked, otherwise FALSE.
o s.MarkedObject(obj) returns TRUE if the specified object is marked, otherwise FALSE.
o s.MarkedStruct(typ) returns TRUE if the specified type is marked, otherwise FALSE.
o s.SetModuleFileName(str) sets variable s.moduleFileName to str.

o s.SetModuleName(str) sets variable s.moduleName to str.

o s.ThisNode(pos) returns the node of the abstract syntax tree for the specified source
code position.

o s.ThisProc(name) returns the procedure entry node for the specified procedure.
o s.ThisProcFromObj(obj) returns the procedure entry node for the specified procedure.

The Factory Method design pattern [GaHJV95] has been used to make the process of
allocation of objects of type Slice flexible. Factory methods can be installed to allocate
instances of subclasses of type Slice.

Module MeasuringSlicer uses the Decorator Pattern to add measuring functionality to the
slices. It extends the type Slicer.Slice and overrides the exported methods: Each method
contains a prolog and epilog to measure the time used for the operation. Method
measuringSlicer.Statistics outputs the statistics about the minimum, maximum and average
time used to perform the specific operations. Fig. 4.47 shows the pattern of methods:

PROCEDURE (s: Slice) Method* (parameters)
BEGIN

start measuring
s.Method (̂parameters) (* super call *)
stop measuring
remember elapsed time

ENDMethod;

Fig. 4.47 - Pattern for methods of type MeasuringSlicer.Slice

