
2 Background Information

Since significant parts of this thesis refer to the programming language Oberon-2, Section
2.1 will briefly summarize its features. Then we will concentrate on the main problem when
implementing a program slicing tool: the construction of an intermediate representation of
the program that closely models its semantics. The flow of control and the flow of data are
the two main concepts for modeling the semantics of a program. In sections 2.2 and 2.3 we
will give an overview of the techniques that have been used to model the flow of control and
the flow of data. In Section 2.4 we will give an overview of program slicing and a survey of
the variants and applications of program slicing.

2.1 Oberon-2

Oberon-2 [MöWi91] is a general-purpose programming language in the tradition of Pascal
and Modula-2 with block structure, modularity, separate compilation, static typing with
strong type checking (also across module boundaries), type extension (object-orientation
with single inheritance) and type-bound procedures (methods). In the following subsections
we will give an overview of various language constructs.

Language constructs for structured control flow

There are three language constructs to express selection and three to express iteration:

o The IF statement for conditional execution of statement sequences.

o The CASE statement for the selection and execution of a statement sequence according
to the value of an expression.

o The WITH statement for the execution of a statement sequence depending on the result
of a run-time type test. The tested type is applied to every occurrence of the tested
variable within the guarded statement sequence.

o The WHILE statement for the repeated execution of a statement sequence while a
condition (specified as a Boolean expression, the guard of the loop) is satisfied.

o The REPEAT statement for the repeated execution of a statement sequence until a
condition specified by a Boolean expression is satisfied.

o The FOR statement for a fixed number of executions of a statement sequence while an
integer variable is incremented in every iteration.



6 Background Information

Language constructs for unstructured control flow

There are three language constructs for moderately unstructured control flow:

o The LOOP statement for the repeated execution of a statement sequence with possibly
multiple EXITs from the nested statement sequence.

o The EXIT statement for termination of the enclosing loop statement and continuation
with the statement following that loop statement.

o The RETURN statement for the termination of a procedure (also specifying the return
value of functions).

Language constructs for the declaration of user-declared data types

There are several language constructs for the declaration of user-declared data types:

o Predefined data types include numeric, Boolean and character types. Pointers can
point to arrays and to records. References to objects may be polymorphic (i.e. they
may point to an object whose type is an arbitrary extension of the pointer's static type.
The object's type is then called the pointer's dynamic type.)

o Data types can be defined as arrays or records of other data types.

o Data types can be defined as extensions (subtypes) of other data types (single
inheritance).

o Procedures can be associated with types (type-bound procedures, also called
methods).

Language constructs for abstraction and stepwise refinement

There are several language constructs to support abstraction and stepwise refinement:

o A program (module) can be built out of procedures. Procedures can be (directly or
indirectly) recursive, they can declare and use local procedures. Parameters of
procedures can be passed by value or by reference. Procedures may return values but
these values must not be arrays or records.

o A module defines its interface by exporting items such as constants, types, variables,
and procedures. It can import other modules. Although modules are compiled
separately, strong type-checking is performed across module boundaries.

o A module can have multiple entry points. In an interactive environment, these entry
points (also called commands) can be activated directly by the user.



7Background Information

Further Remarks

Some further remarks are necessary to conclude the overview of the programming language
Oberon-2:

o Short-circuit evaluation is used for Boolean expressions.

o Objects can be allocated on the heap with the predefined function NEW, they can also
be allocated automatically on the stack or statically as global variables of modules.

o A garbage collector finds the blocks of memory that are not used any more and makes
them available for allocation again.

o Run-time type tests and type guards can be used to perform safe casting.

o Modules can be loaded dynamically. The body of a module is guaranteed to be
executed upon loading of the module.

o Reference parameters as well as pointers to dynamically allocated objects on the heap
may introduce aliases.

o Procedure calls can be either statically bound or dynamically bound: ordinary
procedure calls and super calls of methods can be bound statically, calls of type-bound
procedures and calls via procedure variables must be bound dynamically.

2.2 Control Flow

In high-level languages, control structures (such as IF, WHILE and RETURN) express the flow
of control. For example the Boolean expression of an IF decides which branch will be
executed. These control structures can be translated into the conditional and unconditional
jumps in low-level languages. Several data structures have been proposed to model the
semantics of control flow at different levels of abstraction.

The sections about control flow graphs, dominator and post-dominator trees, and
control dependences partly follow the explanations of Brandis [Bra95], Aho et al. [ASU86]
and Ferrante et al. [FeOW87].

2.2.1 Control Flow Graphs

Control flow graphs [ASU86] have been used as a basis for data flow analysis and for many
optimizing code transformations such as common subexpression elimination, copy
propagation, and loop-invariant code motion. The definition of control flow graphs builds on
the concept of basic blocks:

Definition: A basic block is a sequence of consecutive statements in which flow of control



8 Background Information

enters at the beginning and leaves at the end without halt or possibility of branching except
at the end. A basic block is either executed in its entirety or not at all.

Definition: A control flow graph is a directed graph whose nodes are basic blocks with a
unique entry node START and a unique exit node STOP. There is a directed edge from node
A to node B if control may flow from block A directly to block B. This is the case if the last
statement in A is a branch to B, or when B is on the fall-through path from A. We assume that
for any node N in the graph there exists a path from START to N and a path from N to STOP.
If an edge is labeled T (or F), then the target node of the edge will be executed if the
predicate at the origin of the edge evaluates to TRUE (or FALSE).

Fig. 2.1 shows a piece of source code with the corresponding control flow graph.

END

p := p.next

END

INC(cnt)

IF p.val > 0 THEN

WHILE p # NIL DO

p := head; cnt := 0

START

p # NIL

p.val > 0

p := p.next

INC(cnt)

STOP

T

T

F

F

p := head
cnt := 0

Fig. 2.1 - A piece of source code and its corresponding control flow graph

Control flow graphs accurately model the branching structure of the program and collate all
statements between two branches into basic blocks. They can be built while parsing the
source code with algorithms that have linear time complexity in the size of the program.

2.2.2 Dominator and Post-dominator Trees

Dominator trees represent the dominance relation between the nodes of directed graphs.

Definition: In a directed graph with entry node START, we say that a node A dominates
node B, iff for all paths P from START to B, A is a member of P. A is called a dominator of B.

The dominance relation is



9Background Information

o reflexive: Each node dominates itself.
o transitive: If node A dominates node B and node B dominates node C, then node A

dominates node C.
o anti-symmetric: If node A dominates node B and node B dominates node A, then node

A must be equal to B.

Definition: We call A the immediate dominator of B, iff A is a dominator of B, A # B, and
there is no other node C that dominates B and is dominated by A.

Definition: The dominator tree of a directed graph G with entry node START is the tree that
consists of the nodes of G, has the root START, and has an edge between nodes A and B if A

immediatelydominates B.

Each node in the dominator tree has exactly one parent (except for the entry node START).
All nodes being predecessors of some node A are dominators of A. If a basic block A

dominates basic block B, A is on every path from START to B, and thus the statements in A

have always been executed when control reaches B. Fig. 2.2 shows the dominator tree for
the piece of source code shown in Fig. 2.1.

START

p # NIL

p.val > 0

p := p.nextINC(cnt)

STOP

p := head
cnt := 0

Fig. 2.2 - Dominator tree for the source code shown in Fig. 2.1

The dominator tree can be computed from the control flow graph. The algorithm due to
Lengauer and Tarjan [LeTa79] runs in time O(N * α(N)), where N is the number of nodes in
the control flow graph and α is the inverse of the Ackermann function. For structured
languages such as Oberon-2 the dominator tree can be computed in linear time [BrMö94].

Definition: In a directed graph with exit node STOP, we say that a node A post-dominates
node B, iff for all paths P from B to STOP, A is a member of P. We call A a post-dominator of
B.

Definition: We call A the immediate post-dominator of B, iff A is a post-dominator of B,



10 Background Information

A # B, and there is no other node C, for which A is a post-dominator and that is itself a
post-dominator of B.

Definition: The post-dominator tree of a directed graph G with exit node STOP is the tree
that consists of the nodes of G, has the root STOP, and has an edge between nodes A and B if
A immediatelypost-dominates B.

If a basic block A post-dominates basic block B, A is on every path from B to STOP, and thus
the statements in A will always be executed when control reaches B. Fig. 2.3 shows the
post-dominator tree for the piece of source code shown in Fig. 2.1.

STOP

p # NIL

p := p.next

p.val > 0INC(cnt)
START

cnt := 0
p := head

Fig. 2.3 - Post-dominator tree for the source code shown in Fig. 2.1

2.2.3 ControlDependences

Ferrante et al. [FeOW87] introduced the notion of control dependences to represent the
relations between program entities due to control flow.

Definition: Let G be a control flow graph. Let A and B be nodes in G. B is control dependent
on A iff all of the following hold:

1. There exists a directed path P from A to B.

2. B post-dominates any C in P (excluding A and B).
3. B does not post-dominate A.

If B is control-dependent on A, then A must have multiple successors. Following one path
from A results in B being executed, while taking others may result in B not being executed.

Definition: The control dependence graph over the control flow graph G is the graph over
all nodes of G, in which there is a directed edge from node A to node B, iff B is control
dependent on A.

The control dependence graph compactly encodes the required order of execution of the
program's statements due to control flow. A node evaluating a condition on which the



11Background Information

execution of other nodes depends has to be executed first. The latter nodes are therefore
control dependent on the condition node.

The control dependence graph can be built from the control flow graph and the

post-dominator tree using an algorithm with time complexity O(N2), where N is the number
of nodes in the control flow graph [FeOW87].

For structured programming languages, control dependences reflect a program's nesting
structure [HoRB90].

Definition: Let G be an abstract syntax tree of a structured program. The nodes of G

represent statements and expressions of the program as well as pseudo nodes. The control
dependence graph over G contains a control dependence edge from node A to node B iff one
of the following holds:

1. A is the entry node and B represents a component that is not nested within any loop or
conditional. These edges are labeled T.

2. A represents a control predicate and B represents a component immediately nested
within the loop or conditional whose predicate is represented by A. The edge is labeled
T if B is executed if the predicate A evaluates to TRUE, otherwise F.

The direction of the dependence indicates the flow of control. Fig. 2.4 shows the control
dependences according to the latter definition for the piece of source code shown in Fig. 2.1.

START

p := head cnt := 0 p # NIL

p.val > 0 p := p.next

INC(cnt)

T TT

T T

T

STOP

T

Fig. 2.4 - Control dependences for the source code shown in Fig. 2.1



12 Background Information

2.3 Data Flow

Data flow describes the flow of the values of variables from the points of their definitions to
the points where their values are used. In the following sections we describe how data flow
information can be computed for structured programming languages (following [ASU86]).

2.3.1 DataDependences

A data dependence from a node A to another node B means that the program's computation
might be changed if the relative order of the nodes were reversed.

Definition: A data dependence graph over the abstract syntax tree of a program contains a
data dependence (also called flow dependence) from node D to node U iff all of the
following hold:

1. Node D definesvariable x.
2. Node U uses x.
3. Control can reach U after D via an execution path along which there is no intervening

definition of x.

The direction of the data dependence indicates the flow of the value of the defined variable.
The value computed at U depends on all definitions D that may reach U.

Aho et al. [ASU86] use the term reaching definition to express that the value defined at a
node may be used at another node.

Definition: If node U is data dependent on node D then D is a reaching definition for U.

The precise computation of reaching definitions is the goal of data flow analysis.
Fig. 2.5 shows a procedure that computes the greatest common divisor of two numbers

along with its control dependence graph. Control dependences are shown as thin lines with
small arrows.

END GCD;

RETURN v

UNTIL u = 0;

u := u MOD v

END ;

t := u; u := v; v := t

IF u < v THEN

REPEAT

BEGIN

VAR t: INTEGER;

PROCEDURE GCD (u, v: INTEGER): INTEGER;



13Background Information

START

initialu initialv repeat STOP

u = 0

t := u u := v v := t

u < v u := u MOD v

RETURN v

control dependence

Fig. 2.5 - A program and its control dependence graph

Fig. 2.6 shows the data dependence graph. Data dependences are shown as thick lines with
large arrows. The exit node is data dependent on the return value

START

initialu initialv repeat STOP

u = 0

t := u u := v v := t

u < v u := u MOD v

RETURN v

datadependence

Fig. 2.6 - The data dependence graph for the program of Fig. 2.5

Fig. 2.7 shows the program dependence graph with control and data dependences.



14 Background Information

START

initialu initialv repeat STOP

u = 0

t := u u := v v := t

u < v u := u MOD v

RETURN v

datadependence

control dependence

Fig. 2.7 - Program dependence graph for the program of Fig. 2.5

2.3.2 Computation of Used and Defined Variables

A first step in computing reaching definitions is to compute for each statement of the
program the set of variables that are used and the set of variables that are defined by the
statement.

Uses

The set of variables that are used by a statement of the dependence graph is easily computed
by a traversal of the graph representation of the program. Table 2.1 shows a few examples.

p.next.i := a p, next, a i

r.i := 5 r i

a := b + c b, c a

Source code Used Defined

Table 2.1 - Used and defined objects

Definitions

There are only two possibilities for changing a variable's value:

o First, the variable can be assigned a value with an assignment statement. Such a definition
is unambiguous since the variable on the left-hand side is always given a new value. It is
therefore also called a killing definition since the old value of the variable is always



15Background Information

replaced by the new one, illustrated by the following example:

x := 4; (* generates a definition of x *)
y := 5; (* generates a definition of y *)
x := 3; (* generates a new definition of x, kills the first definition of x *)
sum := x + y (* only the definition of y and the last definition of x are reaching *)

o Second, a variable can be passed at a call as a reference parameter (VAR parameter). If
the called procedure assigns to the corresponding formal parameter, the variable that has
been passed as actual parameter is changed. Such a definition is in general uncertain since
the actual parameter is not necessarily changed by the procedure call. It is therefore also
called a non-killing definition since a previous definition is not killed by the new one.

There are some additional problems with definitions of array elements and record fields:

o Definition of Array Elements
A definition of an array element must not be regarded as a killing definition of the entire
array, since only one element is changed. A simple approach is to treat definitions of array
elements as both a definition of the entire array (since one element is changed) and a use
of the entire array (since the other elements remain their old values).

In the following example the definition of the i-th array element is only killed by the
subsequent definition of the j-th array element if i = j. Since one cannot deduce in general
whether i = j or i # j, one has to assume that i may be equal to j. In other words, the second
assignment generates a new definition but does not kill the first one. Both can reach the
usage of the i-th array element in the last assignment. Assignments to array elements must
therefore be considered as non-killing definitions.

a[i] := 0; (* reaches the last statement if i # j *)
a[j] := 1; (* reaches the last statement if i = j *)
y := a[i];

o Definition of Record Fields
A record field has a constant position within the record. When accessing the field, its
offset can be added to the address of the record in order to get the address of the record
field. Therefore, an assignment to a record field is unambiguous as long as the address of
the record is known at compile time and as long as there are no aliases. For statically
allocated records, assignments to record fields can be considered as killing definitions as
long as there are no aliases. In general, assignments to fields of heap-allocated records
must not be considered as killing definitions.

In the following example p and q are pointers to heap-allocated records. The
definition of p^.f is only killed by the subsequent definition of q^.f if p = q. Since one
cannot deduce in general whether p = q or p # q, one has to assume that p may be equal to
q. In other words, the second assignment generates a new definition but does not kill the
first one. Both can reach the usage of the field f in the last assignment.

p^.f := 0; (* reaches the last statement if p # q *)
q^.f := 1; (* reaches the last statement if p = q *)
y := p^.f;



16 Background Information

2.3.3 Computation of Reaching Definitions

Once the sets of used and defined variables have been computed for every statement,
reaching definitions can be computed for each usage of a variable. Therefore, all definitions
are labeled. This label is used to identify the definition. In the following we will use the
notions definition set, gen set, kill set, in set, and out set, which we define as:

Definition: The definition set of variable x contains as its elements the labels of all
definitions that define x.

Definition: The gen set of statement S contains as its elements the labels of all definitions
that are generated by S. The kill set of statement S contains as its elements the labels of all
definitions that are killed by S.

Definition: The in set of statement S contains as its elements the labels of all definitions that
reach S. The out set of statement S contains as its elements the labels of all definitions that
leave S.

Algorithm for the computation of reaching definitions:

o In a first traversal, one computes the definition set of each variable that has been defined
and the gen and kill sets for each statement.

o In another traversal, one computes the reaching definitions in a syntax-directed manner
and inserts links from the usage nodes of variables to all its reaching definitions. (Remark:
This is only possible for languages with structured control flow. For languages with
unconstrained control flow (e.g., with gotos), an iterative approach must be chosen to
compute the reaching definitions rather than a syntax-directed one.)

In order to compute the gen and kill sets as well as the reaching definitions, one has to solve
the data flow equations for all statements of the program.

Data Flow Equations for Assignments

An assignment to a variable generates a definition. If the assignment is unambiguous, the
definition is a killing one with a non-empty kill set, otherwise it is a non-killing one with an
empty kill set. Fig. 2.8 shows a killing assignment with the associated data flow equations.

d: a := b + c
gen(S) = {d}

kill(S) = DefinitionSet(a) - {d}

out(S) = gen(S) U (in(s) - kill(S))

in(S)

out(S)

in(S)

out(S)

S

Fig. 2.8 - Data flow equations for a killing assignment



17Background Information

Each assignment is given a label d. The gen set of the statement has this label as its only
element, meaning that it generates the definition d for variable a. On the other hand, it kills
all other definitions of a. The out set consists of all definitions that are generated by S (i.e.,
gen(S)), since they surely reach the end of the statement. Furthermore, definitions that reach
the statement S (i.e., in(S)) and are not killed by S (i.e., kill(S)) reach the end of the statement.
If the assignment were non-killing, the kill set would be empty.

Data Flow Equations for Statement Sequences

When two statements are executed in sequence, their effects can be combined. Fig. 2.9
shows how the effects of the statements S1 and S2 can be combined to give the effects of the
sequence S.

S1

S2

S

in(S1)

in(S)

out(S)

out(S1) = in(S2)

out(S2)

in(S1)

in(S2)

gen(S)

kill(S)

out(S)

in(S)

out(S1)

gen(S2) U (gen(S1) - kill(S2))

kill(S2) U (kill(S1) - gen(S2))

out(S2)

=

=

=

=

=

Fig. 2.9 - Data flow equations for a sequence of two statements

The compound statement S generates everything that is generated by S2 (i.e. gen(S2)).
Furthermore, all definitions that are generated by S1 (i.e. gen(S1)) and are not killed by S2

(i.e. kill(S2)) are generated by the compound statement S. Likewise, the compound statement
S kills everything that is killed by S2 (i.e. kill(S2)). Furthermore, all definitions that are killed
by S1 (i.e. kill(S1)) and are not generated by S2 (i.e. gen(S2)) are killed by the compound
statement S.

Data Flow Equations for Selective Statements

Fig. 2.10 shows how the effects of the branches of selective statements (such as IF and
CASE) can be combined to the effects of the compound statement S.

S1 S2 S

in(S1) in(S)

out(S)out(S2)

in(S2)

out(S1)

gen(S)

kill(S)

out(S)

=

=

=

union of gen of all branches

intersection of kill of all branches

union of out of all branches

in of each branch = in(S)

Fig. 2.10 - Data flow equations for a selection of two statements



18 Background Information

A definition that is generated by any branch of the selective statement can be thought of as
being generated by the compound statement S. On the other hand, a definition is only killed
by the compound statement S if it is killed by each branch. If a definition is killed in one
branch, but not in the other, the conservative assumption for the compound statement must
be that the definition is not killed (since one cannot determine statically which branch will
actually be executed).

Data Flow Equations for Iterative Statements

Fig. 2.11 shows the data flow equations for iterative statements (such as WHILE and
REPEAT).

S1 S

in(S)

out(S)

out(S1)

in(S1)

out(S)

in(S)

out(S) =

gen(S)

kill(S)

in(S1)

=

=

=

out(S1)

gen(S1)

kill(S1)

in(S) U gen(S1)

Fig. 2.11 - Data flow equations for an iterative statement

The gen and kill sets of the compound statement are the same as for the nested statement
sequence: If a definition is generated during the first iteration of the loop, it will also be
generated during the second iteration and so on. The proof why in(S1) can be regarded as
the union of in(S) and gen(S1) and not (as obvious from the figure) as the union of in(S) and
out(S1) is given in Section 4.5.2

Aho et al. [ASU86] describe a two-phase algorithm that can be used to solve the data flow
equations for structured programming languages:

o The gen and kill sets that have been computed in the previous step for each defining node
can be composed in a bottom-up manner for each statement sequence.

o For each statement, the out set is computed as a function of the gen and kill sets as well
as of the in set by applying the equation

out(S) = gen(S) ∪ (in(S) - kill(S))

Fig. 2.12 will illustrate this algorithm for the computation of reaching definitions with a
smallexample.

MODULEComputeGenKill; DefinitionSets:
u: {0, 3, 6, 8}

VAR u, v, t: INTEGER; v: {1, 4, 7}
(* initialdefinitions: t: {2, 5}

(* 0: *) u := 0;



19Background Information

(* 1: *) v := 0; Node gen kill
(* 2: *) t := 0; 0: {0} {3, 6, 8}

*) 1: {1} {4, 7}
BEGIN 2: {2} {5}

(* 3: *) u := 10; 3: {3} {0, 6, 8}
(* 4: *) v := 2; 4: {4} {1, 7}

IF u < v THEN 5: {5} {2}
(* 5: *) t := u; 6: {6} {0, 3, 8}
(* 6: *) u := v; 7: {7} {1, 4}
(* 7: *) v := t 8: {8} {0, 3, 6}

END ;
(* 8: *) u := u MOD v

END ComputeGenKill.

Fig. 2.12 - Example for the computation of the gen and kill sets

First, the gen and kill sets of the individual statements are composed for each statement
sequence in a bottom-up manner.

Sequence 3-4: gen(3-4) = gen(4) ∪ (gen(3) - kill(4)) = {4} ∪ ({3} - {1, 7})
= {3..4}

kill(3-4) = kill(4) ∪ (kill(3) - gen(4)) = {1, 7} ∪ ({0, 6, 8} - {1, 7})
= {0..1, 6..8}

Sequence 5-6: gen(5-6) = gen(6) ∪ (gen(5) - kill(6)) = {6} ∪ ({5} - {0, 3, 8})
= {5..6}

kill(5-6) = kill(6) ∪ (kill(5) - gen(6)) = {0, 3, 8} ∪ ({2} - {6})
= {0, 2..3, 8}

Sequence 5-7: gen(5-7) = gen(7) ∪ (gen(5-6) - kill(7)) = {7} ∪ ({5..6} - {1, 4})
= {5..7}

kill(5-7) = kill(7) ∪ (kill(5-6) - gen(7)) = {1, 4} ∪ ({0, 2..3, 8} - {7})
= {0..4, 8}

SelectionIF: gen(IF) = gen(5-7) ∪ gen(ELSE) = {5..7} ∪ {}
= {5..7}

kill(IF) = kill(5-7) ∩ kill(ELSE) = {0..4, 8} ∩ {}
= {}

Sequence3-4-IF: gen(3-4-IF) = gen(IF) ∪ (gen(3-4) - kill(IF)) = {5..7} ∪ ({3..4} - {})
= {3..7}

kill(3-4-IF) = kill(IF) ∪ (kill(3-4) - gen(IF)) = {} ∪ ({0..1, 6..8} - {5..7})
= {0..1, 8}

Sequence 3-8: gen(3-8) = gen(8) ∪ (gen(3-4-IF) - kill(8)) = {8} ∪ ({3..7} - {0, 3, 6})
= {4..5, 7..8}

kill(3-8) = kill(8) ∪ (kill(3-4-IF) - gen(8)) = {0, 3, 6} ∪ ({0..1, 8} - {8})
= {0..1, 3, 6}

Then the out sets are computed as a function of the in sets as well as the gen and kill sets

(out = gen ∪ (in - kill). The in set for statement 3 consists of the initial definitions. At each
node U, reaching definitions are inserted to all nodes D whose labels are included in in(U) and
which define the variable that is used at U.

Node 3: in(3) = {0..2}
out(3) = gen(3) ∪ (in(3) - kill(3)) = {3} ∪ ({0..2} - {0, 6, 8}) = {1..3}

Node 4: in(4) = out(3) = {1..3}



20 Background Information

out(4) = gen(4) ∪ (in(4) - kill(4)) = {4} ∪ ({1..3} - {1, 7}) = {2..4}
IF: in(IF) = out(4) = {2..4}

node 3 is a reaching definition for usage of u
node 4 is a reaching definition for usage of v

out(IF) = gen(IF) ∪ (in(IF) - kill(IF) = {5..7} ∪ ({2..4} - {}) = {2..7}
Node 5: in(5) = in(IF) = {2..4}

node 3 is a reaching definition for usage of u
out(5) = gen(5) ∪ (in(5) - kill(5)) = {5} ∪ ({2..4} - {2}) = {3..5}

Node 6: in(6) = out(5) = {3..5}
node 4 is a reaching definition for usage of v

out(6) = gen(6) ∪ (in(6) - kill(6)) = {6} ∪ ({3..5} - {0, 3, 8}) = {4..6}
Node 7: in(7) = out(6) = {4..6}

node 5 is a reaching definition for usage of t
out(7) = gen(7) ∪ (in(7) - kill(7)) = {7} ∪ ({4..6} - {1, 4}) = {5..7}

Node 8: in(8) = out(IF) = {2..7}
node 3 is a reaching definition for usage of u
node 6 is a reaching definition for usage of u
node 4 is a reaching definition for usage of v
node 7 is a reaching definition for usage of v

out(8) = gen(8) ∪ (in(8) - kill(8)) = {8} ∪ ({2..7} - {0, 3, 6}) = {2, 4..5, 7..8}



21Background Information

2.4 Program Slicing

Program slicing [Wei84] is a program analysis and reverse engineering technique that
reduces a program to those statements that are relevant for a particular computation.
Informally, a slice provides the answer to the question "What program statements potentially
affect the value of variable v at statement s?"

Program slicing was originally introduced by Mark Weiser as a "method for
automatically decomposing programs by analyzing their data flow and control flow. Starting
from a subset of a program's behavior, slicing reduces that program to a minimal form which
still produces that behavior. The reduced program, called a slice, is an independent program
guaranteed to represent faithfully the original program within the domain of the specified
subset of behavior." [Wei84] He defined a slice with respect to a program point p and a
subset of the program variables V to consist of all statements in the program that may affect
the values of the variables in V at point p. In other words, a program slice consists of all
parts of the program that (potentially) affect the values of the interesting variables at some
point of the program.

Program slicing usually requires access to the source code of the program, since it can
be seen as a source code to source code transformation. However, program slicing
algorithms work on an internal representation of the program. If this internal representation
can be derived from the object code or bytecode of a compiled program (e.g., via
decompilation), and if the internal representation can again be visualized as program source
code, then access to the source code is not necessary. Fig. 2.13 shows a piece of source
code and three slices computed for different slicing criteria: The first slice is derived for line
12 and variable z, the second for line 9 and variable x, the third for line 12 and variable total.

BEGIN
Read(x, y);

total := 0;

IF x <= 1 THEN

ELSE

Read(z);
total := x * y

END ;
Write(total, sum)

END

sum := 0;

sum := y

1
2

3
4

5
6
7

8
9

10
11

12

12, {z}
BEGIN

Read(x, y);

IF x <= 1 THEN
ELSE

Read(z);
END

END

9, {x}
BEGIN

Read(x, y);
END

12, {total}
BEGIN

Read(x, y);
total := 0;
IF x <= 1 THEN

ELSE
total := x * y

END
END



22 Background Information

Fig. 2.13 - Piece of source code with 3 examples of slices

The following sections describe variants of program slicing and their applications. We partly
follow the survey of Binkley and Gallagher [BiG96].

2.4.1 Variants of Program Slicing

Static Slicing and Dynamic Slicing

Static slicing [Wei84] uses static analysis to derive slices, i.e. the source code of the
program is analyzed and the slices are computed for all possible input values. No
assumptions may be made about the input values, predicates may evaluate either to true or
false. Therefore, conservative assumptions have to be made, which may lead to relatively big
slices. A static slice contains all statements that may effect the value of a variable at a
program point for every possible execution.

Dynamic slicing (introduced by Korel and Laski [KoL88]) makes use of the information
about a particular execution of a program. The execution of the program is monitored, and
the dynamic slices are computed with respect to the execution history. A dynamic slice
contains all statements that actually affect the value of a variable at a program point for that
particular execution.

Fig. 2.14 demonstrates the difference between static and dynamic slicing in a simple
example: Depending on an operation code entered by the user, different values are
computed. The result is printed. In both cases, the slice with respect to the output statement
is shown in bold face.

MODULEStaticSlicing; MODULEDynamicSlicing;

IMPORT Math, In, Out; IMPORT Math, In, Out;

VAR VAR
x, y: REAL; x, y: REAL;
op: ARRAY 10 OF CHAR; op: ARRAY 10 OF CHAR;

BEGIN BEGIN
In.Open; In.Open;
In.String(op);In.Real(x); In.String(op);In.Real(x);
IF op = "sin" THEN IF op = "sin" THEN

y := Math.Sin(x) y := Math.Sin(x)
ELSE ELSE

y := Math.Cos(x) y := Math.Cos(x)
END ; END ;
Out.Real(y) Out.Real(y)

ENDStaticSlicing. ENDDynamicSlicing.

Fig. 2.14 - Static slice computed for the last statement (left) and
dynamic slice for the input op = "sin" (right)



23Background Information

Backward Slicing and Forward Slicing

Program slices, as originally introduced by Weiser [Wei84], are now called backward slices,
because they contain all parts of the program that might have influenced the variable at the
statement under consideration. On the other hand, forward slices contain all parts of the
program that might be influenced by the variable. Fig. 2.15 shows the backward and forward
slices for the statement x := 3.

MODULEBackwardSlicing; MODULEForwardSlicing;

VAR VAR
x, y, z: INTEGER; x, y, z: INTEGER;

BEGIN BEGIN
x := 3; x := 3;
y := x + 4; y := x + 4;
z := y + 3 z := y + 3

END BackwardSlicing. END ForwardSlicing.

Fig. 2.15 - Backward slice and forward slice computed for the statement "y := x + 4"

Intraprocedural Slicing and Interprocedural Slicing

Intraprocedural slicing computes slices within one procedure. Calls to other procedures are
either not handled at all or handled conservatively. If the program consists of more than one
procedure, interprocedural slicing can be used to derive slices that span multiple procedures.

Interprocedural slicing raises a new problem: When a procedure is called at different
places, the calling context must be considered, in order to correctly model the run-time
execution at compile time. Interprocedural data flow analysis has a similar goal to only
consider paths that correspond to legal call/return sequences. Such paths are called
realizable, valid, or feasible. Fig. 2.16 shows a module where procedure Add is called at two
places: once in procedure Increment, another time in procedure A.

MODULECallingContext;

PROCEDURE Add (VAR a: INTEGER; b: INTEGER);
BEGIN a := a + b
END Add; PROCEDUREMain;

VAR sum, i: INTEGER;
PROCEDURE Increment (VAR z: INTEGER); BEGIN
BEGIN Add(z, 1) sum := 0;
END Increment; i := 1;

WHILE i < 11 DO
PROCEDURE A (VAR x, y: INTEGER); A(sum, i)
BEGIN END

Add(x, y); ENDMain;
Increment(y)

END A; ENDCallingContext.



24 Background Information

Fig. 2.16 - Example module with two call sites of procedure Add

Fig. 2.17 shows a trace of the procedure activations during the execution of procedure Main.

Main Main Main Main Main Main

A A A A A

Add Increment Increment

Add

call

A call
Add call

Add

return call
Increment

Main

A

Increment

Main

A

Main

returnreturn

return

call

A

to A

to Incrementto A

toMain

Fig. 2.17 - Trace of procedure activations (activations of Add are shaded)

When computing the slice, "regarding the calling context" means that the slicing algorithm
correctly models the execution. When the call of Add in procedure Increment is encountered,
it is necessary to continue the analysis with procedure Add, but when returning from
procedure Add, analysis of procedure Increment must be continued. It would not be a precise
model of the run-time execution to call Add in procedure Increment but to return to procedure
A, as shown in Fig. 2.18.

Main Main

A A

Increment Increment

Addcall

Add

Main

A

return

to A

Fig. 2.18 - Trace of procedure activations equivalent to wrong handling of calling context

If procedure Increment is sliced for the output parameter z without regarding the calling
context, the slice will contain the whole program. This is imprecise, if one allows not only
the deletion of entire statements from the original program but also of smaller parts such as
individual parameters: the call of Add within procedure A, the first actual parameter of A at
its call in procedure Main and the initialization of sum are not relevant. The imprecision is
introduced because Add is (necessarily) included into the slice (since it is called in Increment)
and all call sites of Add are then (unnecessarily) included into the slice. The call of Add in
Increment must be included into the slice, but the call of Add in A should not be included into
the slice. The inclusion of the call of Add within A into the slice necessitates the inclusion of
the formal parameter x of A, the corresponding actual parameter sum and the initialization of
sum. On the other hand, if the calling context is regarded, the run-time execution of the
program is modeled correctly and the slice will only contain the relevant parts, as shown in



25Background Information

Fig. 2.19.

MODULECallingContext;

PROCEDURE Add (VAR a: INTEGER; b: INTEGER);
BEGIN a := a + b
END Add; PROCEDURE Main;

VAR sum, i: INTEGER;
PROCEDURE Increment (VAR z: INTEGER); BEGIN
BEGIN Add(z, 1) sum := 0;
ENDIncrement; i := 1;

WHILE i < 11 DO
PROCEDURE A (VAR x, y: INTEGER); A(sum, i)
BEGIN END

Add(x, y); END Main;
Increment(y)

END A; ENDCallingContext.

Fig. 2.19 - Slice computed for the output parameter z of procedure Increment
with regarding the calling context

Slicing Granularity

Program slices can be computed at different abstraction levels. The parts of the program that
are considered to be included into the slice can be as big as procedures or as small as nodes
of the syntax tree of the program (e.g., statements, expressions, variables, parameters, etc.).
Slicing at the level of syntax tree nodes (also called at the expression level) gives the most
detailed and precise information. However, the resulting slices are no longer executable
programs. In Fig. 2.20 we show the slice for the last statement computed either by
expression-oriented slicing or by statement-oriented slicing.

MODULEExpressionSlicing; MODULEStatementSlicing;

IMPORT Out; IMPORT Out;

VAR i, j, k, l: INTEGER; VAR i, j, k, l: INTEGER;

PROCEDURE F (VAR i: INTEGER): INTEGER; PROCEDURE F (VAR i: INTEGER): INTEGER;
BEGIN INC(i); RETURN i BEGIN INC(i); RETURN i
END F; END F;

BEGIN BEGIN
i := 1; j := 2; k := 3; i := 1; j := 2; k := 3;
l := i + F(j) * k; l := i + F(j) * k;
Out.Int(j, 0) Out.Int(j, 0)

ENDExpressionSlicing. ENDStatementSlicing.

Fig. 2.20 - Slicing at the expression level (left) and at the statement level (right)
computed for the last statement



26 Background Information

2.4.2 Applications

Program slicing can be used to assist the programmer in a lot of tedious and error prone
tasks. In the following we give a brief survey.

Debugging

During debugging, a programmer usually has a test case in mind which causes the program
to fail. A program slicer that is integrated into the debugger can be very useful in discovering
the reason for the error by visualizing control and data dependences and by highlighting the
statements that are part of the slice. Variants of program slicing have been developed to
further assist the programmer: Program dicing [LyW86] identifies statements that are likely
to contain bugs by using information that some variables fail some tests while others pass all
tests. Several slices are combined with each other in different ways: e.g. the intersection of
two slices contains all statements that lead to an error in both test cases; the intersection of
slice a with the complement of slice b excludes from slice a all statements that do not lead to
an error in the second test case. Another variant of program slicing is program chopping
[JaR94]. It identifies statements that lie between two points a and b in the program and will
be affected by a change at a. This can be useful when a change at a causes an incorrect result
at b. Debugging should be focused on the statements between a and b that transmit the
change of a to b.

Program Integration

Programmers frequently face the problem of integrating several variants of a base program.
It is only a first step to simply look for textual differences. Semantics-based program
integration is a technique that attempts to create an integrated program that incorporates the
changed computations of the variants as well as the computations of the base program that
are preserved in all variants.

Berzins [Be86] addresses a part of the program-integration problem from the semantic
perspective. Given two programs, his method attempts to find a merged program that is the
least (semantic) extension that subsumes both versions, that is, a merged program that
incorporates the whole behavior of the two versions. However, as software evolves, not
only extensions but also modifications (such as bug fixes) are made to the base program.
Modifications are not addressed by his method.

Horwitz et al. [HoPR89] presented an algorithm for semantics-based program
integration that creates the integrated program by merging certain program slices of the
variants. Their integration algorithm takes as input three programs Base, A, and B, where A
and B are variants of Base. The integrated program is produced by (1) building graphs that
represent Base, A, and B, (2) combining program slices of the program dependence graphs
of Base, A, and B to form a merged graph, (3) testing the merged graph for certain
interference criteria, and (4) reconstituting a program from the merged graph.



27Background Information

Yang [Yan90] extends the algorithm of Horwitz et al.: The new algorithm is extendible
in that it can incorporate any techniques for detecting program components with equivalent
behaviors (components with isomorphic slices, see [HoR91]) and it can accommodate
semantics-preserving transformations. He classifies the nodes of A into the classes:

o NewA is the class of all nodes of A that have no corresponding nodes in Base. These
nodes represent program components that have been added to Base to create A, or
have been moved to a context that has changed their execution behaviors (similar for
NewB).

o ModifiedA is the class of all nodes of A that have a corresponding node in Base, but
the node's text in A differs from the text of the corresponding node in Base. These
nodes represent components of A whose texts have been changed but whose execution
behaviors remain the same.

o ModifiedB is the class of all nodes of A that have corresponding nodes in Base and B,
for which the node's text in A is the same as the text of the corresponding node in
Base, but whose text differs from the text of the corresponding node in B.

o IntermediateA is the class of all nodes of A that have a corresponding node in Base
and whose text in A is the same as the text of the corresponding node in Base, but
there is no corresponding node in B (either because the node was deleted from B, or
because the node's execution behavior was changed, or because the node assigns to a
different variable in B).

o Unchanged is the class of all nodes of A that have corresponding nodes in Base and B.
All three nodes have the same text. These nodes represent components whose texts
and behaviors are identical in all three programs.

Likewise, the nodes of B are classified into the sets NewB, ModfiedB, ModifiedA,
Unchanged, and IntermediateB. The nodes of Base are similarly classified into the sets
ModifiedA, ModifiedB, IntermediateA, IntermediateB, Unchanged, and Deleted. A node in
Base is in Deleted if neither A nor B contains a corresponding node. The classification
process may discover that A and B interfere with respect to Base by identifying
corresponding nodes nodeA and nodeB in A and B such that:

o The text of nodeA differs from the text of nodeB.

o If there is a corresponding node nodeBase in Base, the texts of nodeA and nodeBase,
and the texts of nodeB and nodeBase are unequal.

Since a node in the merged graph can have only one text, it is not possible to preserve the
changed text of this component from both A and B. This can occur either for a node in
NewA (with a corresponding node in NewB), or for a node in ModifiedA (with a
corresponding node in ModifiedB).

Software Maintenance



28 Background Information

The main challenges in software maintenance are to understand existing software and to
make changes without introducing new bugs. A decomposition slice [GaL92] is useful in
making a change to a piece of software without unwanted side effects. It captures all
computations of a variable and is independent of a program location. The decomposition
slice for a variable v is the union of slices taken at critical nodes with respect to variable v.
Critical nodes are the nodes that output the value of v and the last node of the program. The
decomposition slices are computed for all variables of the program. The decomposition slice
for variable v partitions the program into three parts:

o The independent part contains all the statements of the decomposition slice (taken
with respect to v) that are not part of any decomposition slice taken with respect to
another variable.

o The dependent part contains all statements of the decomposition slice (taken with
respect to v) that are part of another decomposition slice taken with respect to another
variable.

o The complement contains all statements that are not in the decomposition slice (taken
with respect to v). The statements of the complement may nevertheless be part of
some other decomposition slice taken with respect to another variable. The
complement must remain fixed after changing a statement of the decomposition slice.

Likewise, variable v can be categorized as

o changeable if all assignments to v are within the independent part.
o unchangeable if at least one assignment to v is in a dependent part. If the maintainer

modifies this assignment, the new value will flow out of the decomposition.
o used if it is not used in the dependent or independent parts but in the complement. The

maintainer may not declare new variables with the same name.

Several conclusions can be drawn for modifications:

o Statements of the independent part may be deleted from a decomposition slice since
they do not affect the computation of the complement.

o Assignments to changeable variables may be added anywhere in the decomposition
slice.

o New control statements that surround any statements of the dependent part will cause
the complement to change.

The maintainer who tries to change the code only has to regard the dependent and
independent parts of the program. After the modification, only the dependent and
independent parts will have to be retested. The complement is guaranteed to be unaffected
by the change, it will not have to be retested [Gal91].

Testing

Software maintainers are also faced with the task of regression testing: retesting software
after a modification. Even after the smallest change, extensive tests may be necessary,
running a large number of test cases. While decomposition slicing eliminates the need for



29Background Information

regression testing on the complement, there may still be a substantial number of tests to be
run on the dependent, independent and changed parts. A lot of work has been done in order
to test incrementally [BaH93], to simplify testing [HaD95], to apply program slicing to
regression testing [GuHS96] and to test path selection [Bi95, FoB97].

Software Quality Assurance

Software quality assurance auditors have to locate safety critical code and to ascertain its
effects throughout the system. Program slicing can be used to locate all code that influences
the values of variables that might be part of a safety critical component. But beforehand
these critical components still have to be determined by domain experts.

One possibility to assure high quality is to make the system redundant. If two output
values are critical, then these output values should be computed independently. They should
not depend on the same internal functions, since the same error might manifest in both
output values in the same way, thereby hiding the error. One technique to defend against
such errors is to use functional diversity, where multiple algorithms are used for the same
purpose. Thus the critical output values depend on different internal functions. Program
slicing can be used to determine the logical independence of the slices computed for the two
output values [Ly+95].



30 Background Information

Functional Cohesion

Cohesion measures the relatedness of some component. A highly cohesive software module
is a module that has one function and is indivisible - it is difficult to split a cohesive module
into separate components. Cohesion has been categorized as coincidental (weakest form),
logical, procedural, communicational, sequential and functional (strongest form) [YoC79].

Bieman and Ott [BiO94] define data slices that consist of data tokens (instead of
statements). Data tokens may be variable and constant definitions and references. A data
slice for a data token v is the sequence of all data tokens in the statements that comprise the
backward and forward slices of v. Fig. 2.21 shows a piece of source code and the data slice
for sum. The parts of the data slice are shown in bold face.

PROCEDURE SumAndProduct (n: INTEGER; VAR sum, prod: INTEGER);
VAR i: INTEGER;

BEGIN
sum := 0;
prod := 1;
FOR i := 0 TO n - 1 DO

sum := sum + i;
prod := prod * i

END
ENDSumAndProduct;

Fig. 2.21 - A piece of source code and the data slice for sum

Data slices are computed for each output of a procedure (e.g., output to a file, output
parameter, assignment to a global variable). The tokens that are common to more than one
data slice are the connections between the slices, they are the "glue" that binds the slices
together. The tokens that are in every data slice of a function are called super-glue, tokens
that are in more than one slice are called glue. Strong functional cohesion can be expressed
as the ratio of super-glue tokens to the total number of tokens in the slice, whereas weak
functional cohesion may be seen as the ratio of glue tokens to the total number of tokens.
The adhesiveness of a token is another measure expressing how many slices are glued
together by that token.


