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Many compilers translate a source program into an abstract syntax tree (AST), which serves 
as an internal program representation on which optimizations can be performed and from 
which target code can be generated. An abstract syntax tree differs from a concrete syntax 
tree (or parse tree) in that it does not reflect the parsed productions but rather the logical 
structure of the compiled program. Its inner nodes are operators and its leaves are operands. 
An AST for the statement x = 3 * x + 1; could look as follows: 

 

= 
x + 

* 
3 x 
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Some compiler generators use special notations for describing the transformation of the 
source program into an AST. In Coco/R1 we deliberately decided to avoid such special 
notations and rather build the AST with ordinary semantic actions. This simplifies the 
compiler description and gives the compiler writer more flexibility. The following tutorial 
shows how to build an AST for programs of a simple Java-like language. 

Basic Idea 
The general idea is that every nonterminal symbol has an output attribute which returns the 
AST of this nonterminal. The AST of a production's left-hand-side nonterminal is built from 
the ASTs obtained from the right-hand-side nonterminals. In a simplified pseudo-notation the 
production 
 Expr ↑e = Term ↑e1 "+" Term ↑e2  (. e = new BinExpr(e1, Operator.PLUS, e2); .). 

obtains the subtrees e1 and e2 from the Terms and creates from it a new subtree e with the 
operator "+" as its root and e1 and e2 as its children. 

 

+ 

e1 e2  
The nodes of the AST are objects of classes derived from a common base class Node. For the 
above example we could have the following types (here denoted in Java): 

class Node {} // base class of all nodes 

class Expr extends Node {} // base class of nodes that form (sub-) expressions 

class BinExpr extends Expr { // class describing binary expressions 
 Operator op; 
 Expr left; // left sub-expression 
 Expr right; // right sub-expression 
 BinExpr (Expr e1, Operator o, Expr e2) { op = o; left = e1; right = e2; } 
} 

enum Operator { PLUS, MINUS, TIMES, DIV, ... } 

                                                 
1 http://ssw.jku.at/coco/ 
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The full Coco/R production for Expr would read as follows: 
Expr <out BinExpr e> (. Operator op; Expr e2; .) 
= Term <out e> 
 {  AddOp <out op> 
  Term <out e2> (. e = new BinExpr(e, op, e2); .) 
 }. 

Note, that no special notation is necessary for describing the construction of the AST. 
Everything can be done with the familiar Coco/R notation for productions, attributes and 
semantic actions. 
In the following sections we first introduce our sample language Taste and then show how to 
build abstract syntax trees for expressions, statements, declarations and procedures of this 
language. 

The Input Language Taste 
In order to explain the construction of an AST we introduce a simple Java-like language that 
we call Taste. It features programs with global variables and parameterless procedures. 
Procedures can have local variables. The only two types in Taste are int and bool. The 
language has been kept simple in order to make this tutorial short. Readers should find it 
straightforward to extend the language with more sophisticated features. 

Taste  = "program" ident "{" { VarDecl | ProcDecl } "}". 
VarDecl  = Type ident { "," ident } ";". 
Type = "int" | "bool". 
ProcDecl = "void" ident "(" ")" Block. 
Block = "{" { Stat | VarDecl } "}". 
Stat = ident "=" Expr ";" 
 | ident "(" ")" ";" 
 | "if" "(" Expr ")" Stat [ "else" Stat ] 
 | "while" "(" Expr ")" Stat 
 | "read" ident ";" 
 | "write" Expr ";" 
 | Block. 
Expr = SimExpr [ RelOp SimExpr ]. 
SimExpr = Term { AddOp Term }. 
Term = Factor { MulOp Factor }. 
Factor = ident | number | "-" Factor | "true" | "false". 
RelOp = "==" | "<" | ">". 
AddOp = "+" | "-". 
MulOp = "*" | "/". 

Abstract Syntax Trees for Expressions 
When designing the AST for a language we first have to think about the kinds of nodes that 
we need and how to create and link those nodes. Each node type is implemented as a class 
that has fields for the children of this node as well as a constructor for creating the node and 
linking it with its children. All nodes are derived from a common base class Node that can 
contain general information about the node (e.g., position information). In order to keep our 
example simple, however, our node class is empty. 

class Node {} 

Since we are designing abstract syntax trees for expressions we introduce a class Expr, which 
is the base class of more specific expression nodes. For reasons of simplicity, again, this class 
is empty in our example. 

class Expr extends Node {} 
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Now we have to think about which kinds of expressions we have in Taste and how we want to 
represent them in the AST. In Taste there are binary expressions 

 

== < > + - * / 

 
unary expressions 

 

- 

 
and leaf expressions (identifiers, numbers and boolean constants). 

 ident intCon boolCon  
Therefore we design classes that represent binary expressions, unary expressions and leaf 
expressions: 

class BinExpr extends Expr { 
 Operator op; 
 Expr left, right; 
 BinExpr (Expr e1, Operator o, Expr e2) { op = o; left = e1; right = e2; } 
} 

class UnaryExpr extends Expr { 
 Operator op; 
 Expr e; 
 UnaryExpr (Operator x, Expr y) { op = x; e = y; } 
} 

class Ident extends Expr { 
 Obj obj; 
 Ident (Obj o) { obj = o; } 
} 

class IntCon extends Expr { 
 int val; 
 IntCon (int x) { val = x; } 
} 

class BoolCon extends Expr { 
 boolen val; 
 BoolCon (boolean x) { val = x; } 
} 

The type Obj that is used in class Ident denotes the declaration of a named object in the 
symbol table (see later). The type Operator is defined as follows: 

enum Operator { EQU, LSS, GTR, ADD, SUB, MUL, DIV } 

Finally, we write a Coco/R attributed grammar in which we build the abstract syntax trees for 
expressions: 

Expr <out Expr e> (. Operator op; Expr e2; .) 
= SimExpr <out e> 
   [ RelOp <out op> 
     SimExpr <out e2> (. e = new BinExpr(e, op, e2); .) 
 ]. 

SimExpr <out Expr e> (. Operator op; Expr e2; .) 
= Term <out e> 
 { AddOp <out op> 
  Term <out e2> (. e = new BinExpr(e, op, e2); .) 
 }. 
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Term <out Expr e> (. Operator op; Expr e2; .) 
= Factor <out e> 
 { MulOp <out op> 
  Factor <out e2> (. e = new BinExpr(e, op, e2); .) 
 }. 

Factor <out Expr e> (. String name; .) 
=   (. e = null; .) 
( Ident <out name> (. e = new Ident(curProc.find(name)); .) 
| number (. e = new IntCon(Integer.parseInt(t.val)); .) 
| "-" Factor <out e> (. e = new UnaryExpr(Operator.SUB, e); .) 
| "true" (. e = new BoolCon(true); .) 
| "false" (. e = new BoolCon(false); .) 
 ). 

Ident <out String name> 
= ident (. name = t.val; .). 

AddOp <out Operator op> 
=   (. op = Operator.ADD; .) 
( "+" 
| "-"  (. op = Operator.SUB; .) 
). 

MulOp <out Operator op> 
=   (. op = Operator.MUL; .) 
( "*" 
| "/"  (. op = Operator.DIV; .) 
). 

RelOp <out Operator op> 
=   (. op = Operator.EQU; .) 
( "==" 
| "<"  (. op = Operator.LSS; .) 
| ">"  (. op = Operator.GTR; .) 
). 

The method curProc.find(name) looks up a name in the local declarations of the current 
procedure and its enclosing program and returns the Obj that represents the declaration of this 
name (see later). 
For example, the expression -3 * x + y is translated to the following AST: 
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Abstract Syntax Trees for Statements 
Like for expressions, we have to think about which kinds of statements we have in our 
language and how we want to represent them as abstract syntax trees. In Taste, we have 
assignments, procedure calls, if statements (with and without else part), while statements, read 
statements, write statements and blocks. These should be represented as follows: 

 

Assignment 

Ident Expr 

Call 

Ident 

If 

Expr Stat 

IfElse 

Stat If 

Expr Stat 

Read 

Ident 

While 

Expr Stat 

Write 

Expr 

Block 

Stat0 Statn ... 

 
Note, that an if statement with an else part is represented as an IfElse node whose left son is 
an if statement without else part and whose right son is the statement of the else part. A block 
is represented as a list of statements. 
Again we design classes that represent these statement nodes: 

class Stat extends Node {} 

class Assignment extends Stat { 
 Obj  left; 
 Expr right; 
 Assignment (Obj o, Expr e) { left = o; right = e; } 
} 

class Call extends Stat { 
 Obj proc; 
 Call (Obj o) { proc = o; } 
} 

class If extends Stat { 
 Expr cond; 
 Stat stat; 
 If (Expr e, Stat s) { cond = e; stat = s; } 
} 

class IfElse extends Stat { 
 Stat ifPart; 
 Stat elsePart; 
 IfElse (Stat i, Stat e) { ifPart = i; elsePart = e; } 
} 

class While extends Stat { 
 Expr cond; 
 Stat stat; 
 While (Expr e, Stat s) { cond = e; stat = s; } 
} 

class Read extends Stat { 
 Obj obj; 
 Read (Obj o) { obj = o; } 
} 

class Write extends Stat { 
 Expr e; 
 Write (Expr x) { e = x; } 
} 

class Block extends Stat { 
 List<Stat> stats = new ArrayList<Stat>(); 
 void add (Stat s) { stats.add(s); } 
} 
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Finally we write an attributed grammar that builds abstract syntax trees for statements: 
Block <out Block b> (. Stat s; .) 
= "{"  (.b = new Block(); .) 
 { Stat <out s> (. b.add(s); .) 
 | VarDecl  
 } 
 "}" . 

Stat <out Stat s> (. String name; Expr e; Stat s2; Block b; .) 
=   (. s = null; .) 
( Ident <out name> (. Obj obj = curProc.find(name); .) 
 ( "=" Expr <out e> ";" (. s = new Assignment(obj, e); .) 
 | "("  ")"  ";" (. s = new Call(obj); .) 
 ) 

| "if" "(" Expr<out e> ")" 
 Stat <out s> (. s = new If(e, s); .) 
 [ "else" Stat <out s2> (. s = new IfElse(s, s2); .) 
 ] 

| "while" "(" Expr <out e> ")" 
 Stat<out s> (. s = new While(e, s); .) 

| "read" Ident <out name> ";" (. s = new Read(curProc.find(name)); .) 

| "write" Expr <out e> ";" (. s = new Write(e); .) 

| Block <out b> (. s = b; .) 
) . 

For example, the Taste statement block 
{ if (x > y) max = x; else max = y; 
 while (max > 0) { 
  z = max / 10; 
  write max - 10 * z; 
  max = z; 
 } 
} 

is translated to the following AST: 
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Abstract Syntax Trees for Declarations and Procedures 
Declarations introduce names and associate them with properties such as a type or an address. 
Every declaration belongs to the program unit in which it appears, i.e., a procedure contains 
the declarations of its local variables and a program contains the declarations of the global 
variables and procedures. All declarations together form the symbol table of the compiled 
program. 
In Taste, we store the symbol table as part of the AST although it could be kept as a separate 
data structure as well. Every declaration creates a Var node or a Proc node which are 
subclasses of Obj nodes. The program itself is also represented as a Proc node. A Proc node 
maintains a list of its local declarations using the methods add(obj) and find(name). 

enum Type { UNDEF, INT, BOOL } 

class Obj extends Node { // any declared object that has a name 
 String name; // name of this object 
 Type type; // type of this object (UNDEF for procedures) 
 Obj (String s, Type t) { name = s; type = t; } 
} 

class Var extends Obj {   // variable 
 int adr; // address in memory 
 Var (String name, Type type) { super(name, type); } 
} 

class Proc extends Obj {  // procedure (also used for the program) 
 List<Obj> locals; // objects declared in this procedure 
 Block block; // block of this procedure (null for the main program) 
 int nextAdr; // next free address in this procedure 
 Proc program; // link to the Proc node of the main program or null 

 Proc (String name, Proc program) { 
  super(name, Type.UNDEF); 
  locals = new ArrayList<Obj>(); 
  this.program = program; 
 } 

 void add (Obj obj) { 
  for (Obj o: locals) { 
   if (o.name.equals(obj.name)) SemErr(obj.name + " declared twice"); 
  } 
  locals.add(obj); 
  if (obj instanceofVar) ((Var)obj).adr = nextAdr++; 
 } 

 Obj find (String name) { 
  for (Obj o: locals) { if (o.name.equals(name)) return o; } 
  if (program != null) { 
   for (Obj o: program.locals) { if (o.name.equals(name)) return o; } 
  } 
  SemErr(name + " undeclared"); 
  return new Obj("_undef", Type.INT); // dummy 
 } 
} 
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The AST of a procedure has two subtrees, one for its local declarations and one for its block. 
For example, the Taste program 

program Sample { 
 int x; 
 bool y; 
 void foo() { int a, b; ... } 
 void bar() { int c, d; ... } 
} 

is translated to the following AST: 
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Here is the attributed grammar that processes the Taste declarations: 

Taste  (. String name; .) 
= "program" Ident <out name> (. curProc = new Proc(name, null); .) 
 "{" 
 { VarDecl | ProcDecl } 
 "}" . 

VarDecl (. String name; Type type; .) 
= Typ <out type> 
 Ident <out name> (. curProc.add(new Var(name, type)); .) 
 { "," Ident <out name> (. curProc.add(new Var(name, type)); .) 
 } ";" . 

Typ <out Type type> 
=   (. type = Type.INT; .) 
 ( "int" 
 | "bool" (. type = Type.BOOL; .) 
 ) . 

ProcDecl (. String name; .) 
= "void" Ident <out name> (. Proc oldProc = curProc; 
    curProc = new Proc(name, oldProc); 
    oldProc.add(curProc); .) 
 "("  ")" 
 Block <out curProc.block> (. curProc = oldProc; .) . 

This concludes our tutorial. We have shown that it is straightforward to build an abstract 
syntax tree with Coco/R by just using attributes and semantic actions. No special notation was 
necessary to specify the AST and its construction. The nodes of the AST are declared as 
classes that are linked with their children in their constructors. If the AST should store 
additional information such as types or optimization hints this information can easily be added 
in the form of additional fields of the node classes. This gives the compiler writer full control 
over the contents of the AST nodes and how the nodes are linked into a tree. 
The full source code of this example including the attributed grammar can be obtained from 
http://ssw.jku.at/coco/Doc/AST.zip. 


