
Handling Multiple Language Contexts by
Subtractive Context Switching

M. Löberbauer*
* Johannes Kepler University/Institute for System Software, Linz, Austria

Loeberbauer@ssw.jku.at

Abstract—We propose a solution for analyzing programs
with multiple language contexts as they occur, for example,
in C# 3.0. C# 3.0 has two contexts: the normal C# context
and the language integrated query (Linq) context, which are
basically the same, but Linq has some additional keywords
that are treated as identifiers in the C# context. We
demonstrate our solution by using the compiler generator
Coco/R, which provides no support for enabling or disabling
tokens in a grammar, as tokens are a global property of a
programming language. We show how to handle additional
tokens on top of the infrastructure provided by Coco/R.

Context C

Figure 1. Three contexts, two intersecting

I. INTRODUCTION
This paper shows how to parse C# 3.0 programs [3].

The focus is on the language integrated query (Linq) part
of C#. Linq provides a type-safe and flexible way to query
various data sources. We present a solution based on the
compiler generator Coco/R [4]. Coco/R takes an attributed
grammar for a language and generates a scanner and a
top-down parser. The scanner works as a deterministic
finite automaton and the parser uses recursive descent.
Parsers can be generated for all context-free grammars
meeting the LL(1) property [1], i.e. the parser works from
left to right, derives the left most symbol, and decides for
an alternative with one look-ahead symbol. LL(1)
conflicts can be solved as described in [6]. Coco/R
generates grammar-dependent code when executed, and
embeds it into code templates taken from so-called frame
files. These files influence the behavior of the scanner
(Scanner.frame) and the parser (Parser.frame) to some
degree.

The problem with C# 3.0 arises because additional
keywords such as from, where and select can be
used in a Linq expression. Outside of a Linq expression,
these keywords must be recognized as identifiers.
Keywords, or tokens in general, are a global property of a
language. Thus C# and Linq are basically two intertwined
languages. Whenever a Linq expression gets analyzed, the
analysis must switch to a mode where Linq keywords are
known, and back as soon as the Linq expression is
completed. In a case where two languages are intertwined,
the common solution is to write two attributed grammars
and switch between them when necessary. In the concrete
case, the two grammars are similar. A two-grammar-
solution is possible, but would result in code duplication.
Therefore, we suggest a lightweight context-based
approach. A language context consists of productions and
a set of known tokens. Productions of one language
context do not complicate parsing of another language
context, and can therefore co-exist in a grammar. Disjoint
tokens on the other hand must be transformed according to
the current language context. A context in our terminology

means the set of known tokens in a language context.
Fig. [1] shows three contexts, two partial intersecting and
one disjoint.

We divide C# into two contexts, the normal context
(C#) and the embedded context (Linq). The Linq context
consists of a few simple productions with C# expressions
and some additional keywords. No new token classes are
needed and white spaces remain unchanged. The only
difference is that certain identifiers are treated as
additional keywords. Token boundaries remain the same,
i.e. there is no need to split a token or merge tokens when
switching contexts.

The switch into the Linq context occurs at a single
position in the grammar, namely in the expression
production. Linq itself is an expression, therefore
embedded Linq expressions can occur. Thus our solution
must only switch back to the C# context when the
outermost Linq expression is finished. To solve the
problem of the additional Linq keywords the following
solutions are possible:

• Write a context-aware scanner. However, this
would void the advantages of using Coco/R
for the scanner.

• Write multiple scanners and switch between
them. However, Coco/R offers no support for
doing so.

• Change tokens after the scanner delivers them.
In this case Coco/R can be used to generate the
full scanner.

We use the third solution, i.e. we add the context
switching to the parser. The outcome of this is a
maintainable solution integrated into the grammar
specification.

II. SUBTRACTIVE CONTEXT SWITCHING
The normal C# context has less keywords then the

embedded Linq context. Our Coco/R generated scanner is
not context-aware and always treats identifiers such as
from or where as Linq keywords. The context switch
itself takes place in the parser. When the parser is in the
normal context it replaces Linq keywords with identifiers.

k
l

a
b

c
d

e
f g

h

i j

Context A Context B

In other words, it reduces the amount of known keywords
in the normal context, i.e. it subtracts keywords.

The architecture of our solution can be separated into a
collection of tokens that are to be replaced, a function to
replace the tokens, a function to check for a context switch
for every context, and a function to set up as well as a
function to tear down the context switch. For each context,
the context-related parts are encapsulated into a decorator
(filter) around the full scanner. The demonstration is
implemented in Java [2], using Coco/R for Java. The
solution is constrained to the grammar, i.e. no changes to
Coco/R are necessary.

In case of a recursive production such as a Linq
expression in C#, we must keep track of the recursion. A
Linq expression may contain an expression, which is a
Linq expression itself. Therefore we must leave the Linq
context only if the whole recursion has been left. The Linq
context is directly recursive. In general indirect recursive
contexts can appear, e.g. the parser starts in context A,
switches to context B, from there to context C and again
into context B. In that case, when leaving context B the
parser must switch back to context C, not A. The
presented solution handles this with a stack. When
entering a context, the current filter is put on a stack, and
when leaving a context the last filter gets restored.

A. Example
We show the proposed solution using a simple language

(SimLang). The grammar is given in Fig. [2] (the notation
is EBNF [5]). Quoted words represent keywords; ident
denotes an identifier consisting of one or more letters.
Blanks, tabs, and line feeds are considered as white
spaces. Comments start with a # character and reach until
the end of the line. The language consists of three
productions. The entry point SimLang derives to one or
more statements. A Statement can either be an
identifier, or an EmbeddedContext structure.
EmbeddedContext serves as the embedded context. It
adds the keywords begin, end, if and then, which
have to be treated as identifiers in the normal context. The
two contexts are shown in Fig. [3]. An example for a valid
sentence of this language is given in Fig. [4]. Keywords
are set italic, identifiers normal.

B. Filter

To successfully parse the example sentence, we must
provide a facility to map tokens of one kind to another as
needed in a context. We encapsulate the token switching
in a filter, which is a context specific decorator around the
Coco/R generated scanner. A filter must be generated for
every context in a grammar. To provide a common
interface every filter extends the class Filter (see
Fig. [5]). The implemented filters must be initialized
before the method Parser.Parse is called. We do this
in a dedicated method, which must be called before
Parser.Parse (see Fig [6]). Init sets up the filters,
chooses the filter to start parsing with and creates a stack
to keep track of recursive contexts.

A filter for a context must implement the methods

Scan, Check and Filter. Scan queries the next token
from the Coco/R generated scanner, remembers the token
kind and replaces it according to the context. The original
token kind must be remembered in case the context is left.
Check must implement a test for a context switch, e.g. by
a syntactic look-ahead or a semantic check. In case a
context switch occurs Check must set the kind of the
look-ahead token to the according token in this context.
This can be done by calling Filter, which replaces the

if

ident
begin
then
end

embedded context normal context

Figure 3. Contexts of SimLang

SimLang = Statement { Statement }.
Statement =
 (ident | EmbeddedContext)
.
EmbeddedContext =
 "begin"
 { Statement
 | "if" ident "then" Statement }
 "end"
.

Figure 2. Example grammar

abcd
if end then a
enter embedded context
begin
 b c
 if a then e
 if f then
 # enter embedded context recursively
 begin
 g
 # leave inner embedded context
 end
 # leave embedded context
end
end

Figure 4. Example sentence

abstract class Filter extends Scanner {
 Scanner cocoScanner;
 Filter(Scanner cocoScanner) {
 super(new ByteArrayInputStream(new
 byte[0]));
 this.cocoScanner = cocoScanner;
 }
 void Enter() {
 contextStack.addFirst(current);
 scanner = current = this;
 }
 void Leave() {
 scanner = current = contextStack
 .removeFirst();
 current.Filter(la);
 }
 abstract Token Scan();
 abstract void Check();
 abstract void Filter(Token t);
}

Figure 5. Base class of all filter classes

Deque<Filter> contextStack;
Filter current, embedded, normal;
int lastKind;
public void Init() {
 contextStack = new LinkedList<Filter>();
 embedded = new EmbeddedFilter(scanner);
 normal = new NormalFilter(scanner);
 scanner = current = normal;
}

Figure 6. Initialize context switching

kind of the given token with the according kind in the
context. The methods Enter and Leave must be called
when a context gets entered respectively left. Enter puts
the currently active filter on a stack and sets the called
filter as the new current filter and scanner. Leave takes
the last filter from the stack and sets it as the current filter
and scanner. Then it calls the method Filter from the
new current filter to allow it to replace the kind of the
look-ahead token accordingly.

The methods Scan, Check and Filter depend on
the information how to replace tokens. We keep this
information in the filter, in a dictionary of type Map.
Coco/R stores the token kind as an int value, and defines
constants for all named tokens. We use these constants to
fill the map. The filter for the normal context is shown in
Fig. [7]. The normal context in our example is the default
and has no entry point, thus the method Check is never
called and therefore empty.

The embedded context in our example uses all

keywords, thus no token needs to be replaced. Still we
must implement a filter for the embedded context, so
Scan can save the token kind into lastKind, Filter
can restore the token kind from lastKind, and Check
can setup a context switch (see Fig. [8]). For the
embedded context in SimLang Check tests for the
keyword begin in the look-ahead token. In a more
complex case a longer look-ahead or even a semantic
check might be necessary. If this check indicates a context
switch, we must restore the token kind. By restoring the
token kind, we allow the parser to decide between the
given alternatives.

C. Application of the Semantic Actions
To enable the solution, the semantic actions must be put

in the grammar. The fully augmented grammar is given in
Fig. [9]. The method to check for a context switch must be
called in front of the alternative in Statement. The
methods Enter and Leave must be called at the start
respectively the end of the entry point to the embedded
context

D. Pitfalls

In this section, we discuss pitfalls of an implementation
based on the proposed pattern. The following problems
may occur: a necessary semantic action may be missing,
redundant, or at a wrong position.

Coco/R cannot help with these problems, because
conflicts between identifiers and subtracted keywords are
unknown at compile time as we manipulate the tokens at
run time. Thus it is important not to miss any entry point
into the embedded context, and restore the keyword from
the embedded context if needed. Otherwise the parser can
enter the wrong alternative.

It is crucial that the semantic actions are not part of an
alternative, i.e. they must be called all the time. This can
be ensured with parenthesis around alternatives, as we did
in the SimLang example. An erroneous example is given
in Fig. [10]. The semantic action gets only executed if the
first alternative is taken. If the check action is placed in
such a way, the parser can never enter the alternative to
the embedded context. The same error on the enter or
leave action causes wrong context information in the
parser. If the parser is not aware of the context, the wrong
Scan method is called and therefore the tokens are not
modified as expected.

class NormalFilter extends Filter {
 Map<Integer, Integer> filter;
 NormalFilter(Scanner scanner) {
 super(scanner);
 filter = new HashMap<Integer, Integer>();
 filter.put(_begin, _ident);
 filter.put(_end, _ident);
 filter.put(_if, _ident);
 filter.put(_then, _ident);
 }
 Token Scan() {
 Token t = scanner.Scan();
 lastKind = t.kind;
 Filter(t);
 return t;
 }
 void Check() { }
 void Filter(Token t) {
 if (filter.containsKey(lastKind)) {
 t.kind = filter.get(lastKind);
 } else {
 t.kind = lastKind;
 }
 }
}

Figure 7. Filter for the normal context

class EmbeddedFilter extends Filter {
 public EmbeddedFilter(Scanner cocoScanner) {
 super(cocoScanner);
 }
 public void Check() {
 if (scanner != this && lastKind == _begin)
 {
 // not already in this context,
 // and context switch found
 Filter(la);
 }
 }
 public Token Scan() {
 Token t = cocoScanner.Scan();
 lastKind = t.kind;
 return t;
 }
 public void Filter(Token t) {
 t.kind = lastKind;
 }
}

Figure 8. Filter for the embedded context

SimLang = Statement { Statement }.
Statement = (. embedded.Check(); .)
 (ident | EmbeddedContext)
.
EmbeddedContext = (. embedded.Enter(); .)
 "begin"
 { Statement
 | "if" ident "then" Statement }
 "end" (. embedded.Leave(); .)
.

Figure 9. Augmented example grammar

X =
 (. This semantic action takes place in the
 ident branch, not before the alternative.
 .)
 ident
 | "if"
 | "BEGIN"
.

Figure 10. Wrongly positioned semantic action

E. Conclusions
The presented solution is elegant for the given problem

and environment. We could easily apply the proposed
pattern to C# 3.0 including Linq.

REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:

Principles, Techniques, & Tools (Second Edition). Pearson,
Addison-Wesley, 2007.

[2] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java™ Language
Specification (Third Edition). Addison-Wesley, May 2005.

[3] Microsoft, C# Language Specification version 3.0,
http://download.microsoft.com/download/3/8/8/388e7205-bc10-
4226-b2a8-75351c669b09/CSharp Language Specification.doc
- last checked 2008-07-14

[4] H. Mössenböck, The compiler generator Coco/R.
http://ssw.jku.at/coco/ - last checked 2008-07-14

[5] N. Wirth, “What can we do about the unnecessary diversity of
notation for syntactic definitions?,” Commun. ACM, 20 (11):822-
823, 1977.

[6] A Wöß, M. Löberbauer, and H. Mössenböck, “LL(1) conflict
resolution in a recursive descent compiler generator.,” JMLC’03,
2003.

	I. Introduction
	II. Subtractive Context Switching
	A. Example
	B. Filter
	C. Application of the Semantic Actions
	D. Pitfalls
	E. Conclusions
	References

