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ABSTRACT

Whenever an array element is accessed, Java virtual ma-
chines execute a compare instruction to ensure that the in-
dex value is within the valid bounds. This reduces the exe-
cution speed of Java programs. Array bounds check elimina-
tion identifies situations in which such checks are redundant
and can be removed. We present an array bounds check
elimination algorithm for the Java HotSpot™ VM based
on static analysis in the just-in-time compiler.

The algorithm works on an intermediate representation in
static single assignment form and maintains conditions for
index expressions. It fully removes bounds checks if it can
be proven that they never fail. Whenever possible, it moves
bounds checks out of loops. The static number of checks
remains the same, but a check inside a loop is likely to be
executed more often. If such a check fails, the executing pro-
gram falls back to interpreted mode, avoiding the problem
that an exception is thrown at the wrong place.

The evaluation shows a speedup near to the theoretical
maximum for the scientific SciMark benchmark suite (40%
on average). The algorithm also improves the execution
speed for the SPECjvm98 benchmark suite (2% on aver-
age, 12% maximum).
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1. INTRODUCTION

To ensure safe execution of programs within a virtual ma-
chine, every illegal memory access must be intercepted. For
field accesses, this is done by type checking and verification
of the field offset at compile time. Array accesses, however,
require a run-time check to verify that the specified index is
within the bounds of the array. In case of Java, the lower
bound of an array is always zero, while the upper bound is
the length of the array minus one. If the index is not within
this range, an ArrayIndexOutOfBoundsException must be
thrown. The overhead introduced by such checks can be sig-
nificant, especially for mathematical applications, but checks
fail only in rare cases. When it can be proven at compile
time that a check never fails, it can be omitted. Such a
check is said to be fully redundant.

There can also be situations where checks are not fully
redundant, but the total number of executed checks can be
reduced by moving checks or combining several checks into
a single one. For example, a check performed within a loop
is likely to be executed more often than a check before the
loop. The total number of dynamically performed checks
can be reduced by replacing such a check with another one.
In this case, the check is said to be partially redundant.

One important property that must be kept in mind when
eliminating or moving checks in Java programs is that the
semantics must stay the same. When a check fails, the ex-
ception must be thrown at the correct code position of the
failing array access. It is not allowed to just stop the pro-
gram when an array is accessed out of its valid bounds.

This paper describes our array bounds check elimination
algorithm that tries to minimize the total number of dynam-
ically executed checks in average Java programs. It works
as an additional optimization step on the just-in-time com-
piler’s intermediate language, which is in static single as-
signment form. It eliminates checks that can be proven to
be fully redundant and inserts additional instructions to be
able to remove partially redundant checks by grouping mul-
tiple checks or moving checks out of loops.

To avoid loop versioning, i.e. the duplication of code, and
nevertheless retain the exception semantics of Java, we use
the facilities of the Java HotSpot™ VM to switch back
from compiled to interpreted code. Our algorithm focuses
on program structures that are common to Java programs
and eliminates the checks with a low impact on the compile
time. This is important because it is integrated into a fast
just-in-time compiler where the additional time needed for
compilation decreases the total execution speed.



We integrated our analysis in the client compiler of the
Java HotSpot ™ VM. This paper contributes the following:

e We present a fast algorithm for array bounds check
elimination that is suitable for a just-in-time compiler.

e We preserve the exception semantics of Java by using
deoptimization.

e We show how to handle integer overflow when checking
bound conditions.

e The evaluation shows the impacts of our algorithm
on several benchmarks. We compare our results to
the speedup theoretically achievable by array bounds
check elimination.

2. SYSTEM OVERVIEW

The main components of the Java HotSpot™ VM in-
clude the run-time system, the garbage collector and the
interpreter. Furthermore, two different just-in-time compil-
ers are available, called the client compiler and the server
compiler. The server compiler [12] performs aggressive op-
timizations and produces fast machine code, however the
time needed to compile a method is high. This is acceptable
for long-running server applications, but not for interactive
desktop applications where response time is more important
than peak performance. The client compiler [4, 10] achieves
a high compilation speed by omitting time-consuming opti-
mizations.

Both compilers can apply optimizations on optimistic as-
sumptions. If an optimization is invalidated later, e.g. be-
cause of dynamic class loading, the VM can deoptimize the
machine code [7] at discrete points, called safepoints. Exe-
cution is stopped and reverted back to the interpreter. The
local variables and the current operand stack of the inter-
preter are reconstructed from the values of the registers and
the memory.

Figure 1 shows the main components of the client com-
piler. The compiler is invoked only for frequently executed
methods. It transforms the Java bytecodes of the input
method to machine code with the help of two intermediate
data structures, called the high-level intermediate represen-
tation (HIR) and the low-level intermediate representation
(LIR). The instructions are organized in basic blocks, which
are groups of sequentially executed instructions.

Only at the end of a basic block, control flow instructions
like goto or if are allowed. A block is linked with all its
predecessors and successors. The HIR is in static single as-
signment (SSA) form [3], i.e. there is always only a single
point of assignment for each instruction. When control flow
merges, phi instructions are inserted to merge different val-
ues of a variable. Data dependencies replace the local vari-
ables and the operand stack used by the Java bytecodes.

After the HIR is constructed, various global optimiza-
tions are performed, including global value numbering [2]
and elimination of null checks. Our new bounds check elim-
ination algorithm operates on the HIR just before the gen-
eration of the LIR. It is applied after all other optimizations
on the HIR were performed because it can profit from them.

The LIR is close to a three operand machine code, but
still platform-independent. It is used for linear scan register
allocation [17]. From the LIR, the final platform-dependent
machine code is generated.
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Figure 1: Structure of the client compiler.

Two LIR instructions are necessary to perform the bounds
check for every HIR instruction that accesses an array: a
compare instruction of the array index and the array length,
and a conditional branch to an out-of-line code stub that
throws the exception if the check fails. As the lower bound
of an array is always 0, the check whether the index is within
the valid range can be reduced to a single unsigned compare.
The comparison if a is greater or equal 0 and smaller than
b can be checked by regarding a as an unsigned value and
testing only whether it is smaller than b.

The current production version of the client compiler does
not perform any kind of sophisticated array bounds check
elimination. A bounds check is only eliminated when both
the index and the length of the array are compile-time con-
stants. This is however a rare case.

The algorithm is implemented as a separate optimization
phase just before LIR generation. It marks those array ac-
cess instructions with a flag whose bounds checks are re-
dundant and adds additional HIR instructions in case of
partially redundant checks. When generating the LIR for
an array access instruction, the flag is used to decide if the
bounds check must be emitted.

We do not perform an interprocedural analysis. This
would require checking the bytecodes of all methods, also
of those that never get compiled. Additionally, dynamic
class loading could invalidate interprocedural information
and therefore lead to additional deoptimizations.

3. ALGORITHM

Our array bounds check elimination algorithm maintains
conditions for index variables to decide whether a given in-
dex is within the correct bounds. We keep the kind of condi-
tions as simple as possible without significantly reducing the
number of eliminated checks in average Java programs. In
comparison to other approaches [1, 14], we do not build an
inequality graph. Instead, the algorithm keeps a condition
of the following form for every instruction x that computes
an integer value:



ilower + Clower <= T <= iupper + Cupper

The variables iower and iypper refer to HIR instructions
(i-e. the values produced by them), while cjower and cupper
are integer constants. If the instruction parts of a condition
are missing, the bounds are compile-time constants. Ini-
tially, when nothing about the bounds is known yet, every
instruction has the bounds

MIN <=z <= MAX

where MIN and MAX denote the minimum and maximum
possible values of a 32-bit signed integer. When two or more
bounds are known for a variable, the algorithm tries to cal-
culate the conjunction of them. The algorithm needs to be
conservative, e.g. if the bounds involve values that are not
compile-time constants, only one part of the conjunction is
saved. When the algorithm knows that x is smaller or equal
to a and it is smaller or equal to b, it can only save one
of the two conditions. This is a loss of information, but a
practical simplification in most cases.

3.1 Fully Redundant Checks

Our algorithm benefits from the SSA form of the HIR
where each variable is assigned only at a single place in the
program, i.e. its value does not change after its definition.
But even if a method is in SSA form, the conditions for a
variable are not the same at different points of the method.
Control flow instructions like if do not modify the value of
the operands, but do modify their possible bounds in the
succeeding basic blocks.

The algorithm processes the blocks in a dominator-based
order and maintains a stack of conditions for each variable,
where the topmost stack element is the current valid condi-
tion. A dominator of a block is a block that is always exe-
cuted before the block itself is executed. A range condition
that holds in one of the dominators also holds in the block it-
self. It can only get stronger. Therefore, the algorithm uses
a pre-order traversal of the dominator tree. When a block
is processed, the condition for a variable is the conjunction
of all conditions on the variable in the parent blocks in the
dominator tree. Using this approach the algorithm avoids
building an extended SSA form like in [1].

Figure 2 presents the HIR of the Java method get shown
in Listing 1. The method is split into four blocks. At the end
of block 1, an if instruction checks whether p <= a.length,
and an if instruction in block 2 checks whether p > 0. If
both conditions hold, the array load is performed in block 3
and the value is returned. The last block, which returns 0
if a condition does not hold, is omitted for simplicity.

int get(int a[l, int p) {
if (p <= a.length && p > 0) {
return alp - 1];
}
return O;

}

Listing 1: Example method get.

In this example, the root of the dominator tree is block 1
as this block is the start of the method. Block 2 is an im-
mediate child of block 1 and also the parent of block 3. The
bounds check elimination algorithm therefore processes the
blocks in the same order as they are numbered.
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Figure 2: HIR of method get.

Figure 3 shows how the conditions for the expressions p
and p-1 are derived. At every if instruction, new conditions
for the affected expressions are combined with previously
obtained conditions using an and-operation. In case of two-
operand operations like additions or subtractions where one
operand is constant, the conditions are modified to reflect
this operation. In Figure 3, for example, the condition for
p is converted to a condition for p-1 by subtracting 1 from
the constant part of both the lower and the upper bound.

Using the condition of the index expression p-1, it can
be proven that the index is always in the valid range. The
lower bound is positive and the upper bound is smaller than
the array length, therefore the array bounds check is fully
redundant and can be omitted.

Blocks that do not dominate a block with an array access
in it are not processed because conditions derived in these
blocks cannot be used to eliminate a bounds check. When
building the basic blocks from the Java bytecode, a flag for
the corresponding block is set when such an instruction is
added. Blocks that need not be processed are removed from
the dominator tree before the analysis.

When executing the SPECjvm98 benchmark suite, 72%
of all methods do not contain an array access at all, so they
are not processed by the algorithm. Additionally, 64% of
the blocks can be eliminated because they do not dominate
blocks containing bounds checks. In contrast to other ap-
proaches such as [5], we do not reduce the whole instruction
graph to contain only instructions used as array indices be-
cause this would require disproportionally many changes of
the HIR and the runtime cost for maintaining the conditions
for all integer instructions is low.



At start of block 2:

Initial bounds of p (p <= alength) is true

MIN <= p <= MAX

MIN <= p <= a.length

At start of block 3:
(p > 0) is true

MIN <= p <= a.length

1<=p<=MAX

1 <= p <= a.length

Derived initial bounds of p-1

0 <=p-1<=a.length -1

Figure 3: Conditions for the values of method get.

3.2 Loop-Invariant Checks

The number of fully redundant checks in an average Java
program is not high because it is required that the array
length is compared with the index expression before the ar-
ray access. In contrast, the method clear shown in Listing 2
uses a frequent code pattern where an array is accessed in a
loop, but the array length is not checked explicitly.

int x) {
i++) {

void clear (int[] a,
for(int i = 0; i < x;
ali] = 0;

Listing 2: Example method clear.

The loop variable is used as the array index. The array
and the variable x are not changed within the loop, i.e. they
are loop-invariant. At the point of the array access, the
upper bound of the variable i is known when looking at the
loop condition i <= x-1. The lower bound can be inferred
from the fact that the start value of i is 0 and i is only
increased.

Figure 4 shows the HIR of the method. The important
part for proving that i only increases is the phi function.
Phi functions are necessary in the SSA form to merge differ-
ent values of the same variable when control flow joins. In
the example, the phi function merges the values of i that
come from the two predecessor blocks 1 and 3.

When processing block 2, our algorithm detects that the
phi and the add instruction form a cycle with no other in-
structions involved. It derives from this construct that the
value of i is always increased within the loop. Therefore
only the upper bound of the phi instruction must be set to
MAX, while the lower bound is the start value of i before the
loop, i.e. the constant 0.

At the beginning of block 3, the preceding if instruction
has been evaluated, so an upper bound for the phi instruc-
tion is known too. The two conditions are combined using a
conjunction, so the resulting condition on the index variable
at the array access instruction is

O<=1<=2—-1
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Figure 4: HIR of method clear.

This condition is not sufficient to fully eliminate the check,
because it does not incorporate the actual array length. The
upper bound of the index as well as the array are parameters,
so the method could be called with the parameter x being
bigger than the length of the array a and the method could
throw an exception. The check is not fully redundant, so it
cannot be eliminated by an intraprocedural analysis.

Because the length of the array and the bounds of the
index do not change within the loop, the check is partially
redundant. It can be replaced with a check before the loop.
While an instruction in a loop is likely to be executed multi-
ple times, the instruction before the loop is executed exactly
once. Only if the loop is never executed because the param-
eter x is 0, the new bounds check is unnecessary, but this
overhead can be neglected.

In the example, the variable x as well as the constant 0
are both loop-invariant. The bounds check can be replaced
by a check before the loop whether x does not exceed the
array length.

Finding out whether an instruction is loop-invariant can
be done in constant time using the dominator tree. Any
currently referenced instruction must be defined in a block
that lies on the path between the current block and the root
of the dominator tree. When the block of the instruction
lies between the loop header block and the root block, then
the instruction is loop-invariant.

A problem however arises because of the exception seman-
tics of Java. Even in optimized machine code, an exception
must be thrown at the same point during program execution
as the interpreter would throw it. So we must not throw the
exception before the loop even if we know that a bounds
check fails at some point during the loop execution. If the
exception would be thrown for example after 10 iterations,
then these 10 iterations must be executed. It is therefore not
allowed to insert a normal bounds check before the loop.



A common solution to this problem uses loop versioning
(see for example [11]). An optimized version of the loop
without bounds checks is executed when it is known that
the checks are unnecessary, and the unmodified loop with
bounds checks is executed otherwise. However, this solu-
tion duplicates the code of the loop and therefore bloats
the method with backup code that is rarely or even never
executed.

To avoid this, our algorithm inserts an instruction that
triggers deoptimization if the check in front of the loop fails.
The optimized machine code without the bounds check is
then discarded and the method is executed in the interpreter
instead, which will throw the exception at the correct point.
In the example, the algorithm adds an instruction that trig-
gers deoptimization if the parameter x is bigger than the
array length.

Figure 5 shows the HIR after the insertion of the deopti-
mization instruction. If the condition is true, the compiled
machine code is thrown away and the interpreter continues
executing the method.

(Parameter x> (Parameter a)

Block 1 A 4
( Length )

(Deoptimize if greater)——) to interpreter

Const 0

—>» Data flow
—» Phiinput
= Control flow

L{ Goto

v Vv

to block 2 and 3
(see Figure 4)

Figure 5: After insertion of instructions.

We may even deoptimize when the program would have
executed completely without an exception. This can be the
case when the loop body is more complex and contains addi-
tional loop exits. The execution in the interpreter is slower,
but after some time the method is recompiled again. To
prevent cycles of compilation and deoptimization, we use a
flag to ensure that the aggressive optimizations that caused
a deoptimization are not applied again when a method is
recompiled. So there is a benefit when the optimistic as-
sumptions expressed by the deoptimize instructions at the
beginning of the loop hold, but only a small penalty when
they fail.

The analysis that determines if a variable of a Java pro-
gram is always increasing within a loop must take integer
overflow into account: The result of an addition that would
be bigger than the maximum integer value is a negative
value. Therefore, we need not only proof that the added
value is bigger or equal to zero, but also that no overflow
can occur. As our algorithm only processes the addition of
constant values to loop variables, checking the first part is
trivial.
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Proving the second part, however, is impossible in most
cases. Therefore we need to make sure that deoptimization
is called when the loop variable can overflow. This could
be done by the following explicit check before the loop. As
defined in Listing 2, x denotes the value never reached by
the loop variable and c the constant that is added to the
loop variable in each iteration:

deoptimize if z > MAX —c+1

However, when the condition for the index variable is used
to eliminate a bounds check, then the following deoptimize
instruction is already inserted before the loop:

deoptimize if =z > a.length

So the algorithm can safely assume that the loop variable
cannot overflow if the condition

a.length <= MAX —c+1

is always true. If the variable can overflow, deoptimization
is called anyway, so we do not need to bother about this
case. As the length of an array must fit into a 32-bit signed
integer value, this condition holds for sure if c is equal to 1.
The maximum length of an array is also bound by the max-
imum heap size divided by the size of a single array element
in bytes. So in most cases higher values for c are also ac-
ceptable.

The opposite case, when we want to show that a value is
always decreasing, is simpler. The lower bound of the loop
variable is checked to be greater or equal to zero by the de-
optimize instruction. If this check succeeds, no subtraction
of any positive value can cause an underflow.

3.3 Grouping Checks

Another way of reducing the number of executed bounds
checks is to group multiple checks that affect the same array
into a single one. We apply this optimization for bounds
checks that are not removed by the previously discussed
techniques. To simplify the analysis, it is limited to checks
that occur within the same basic block and where the index
expressions only differ by constants. Listing 3 shows the
method triple with three array stores. The bounds checks
of all three stores can be folded to one check before the first
store. Again, deoptimization is needed to ensure that the
exception is thrown at the correct position.

void triple(int[] a, int i) {
ali] = 0;
ali+1] = 1;
ali+2] = 2;

}

Listing 3: Example method triple.

Figure 6 shows the HIR representation of the method.
The algorithm needs a single pass over the instructions of
each basic block. For all arrays and index variables, it main-
tains the minimum and the maximum constants that are
added to the index variable when the array is accessed. In-
stead of the bounds checks, two deoptimize instructions are
inserted. They check whether the index variable plus the
minimum constant and the index variable plus the maxi-
mum constant are within the bounds of the array.




Parameter a) Parameter i ‘ —) Data flow

Store Indexed

Store Indexed

Figure 6: HIR of method triple.

When this condition holds, also all other array accesses in-
volving the same index variable and the same array are safe.
Checks of multiple array accesses with different constant in-
dices are replaced by a single deoptimization instruction that
checks whether the maximum constant is smaller than the
array length.

Grouping bounds checks is only profitable if more than
two checks can be grouped together. This is because in
Java the lower bound of an array is always 0 and there-
fore a normal bounds check can be done with a single un-
signed compare instruction. For a grouped bounds check,
however, separate compare instructions for the lower and
the upper bound are necessary. In the example, the three
bounds checks are replaced by the following two deoptimize
instructions at the start of the basic block:

deoptimize if <0

deoptimize if ¢+ 2 >=a.length

It is possible that the calculation of i 4+ 2 results in an
overflow. However, this case can be handled without any ad-
ditional costs by using an unsigned >= comparison, so that
deoptimization is called when ¢ + 2 overflows. The compar-
ison for < 0 of the first deoptimization instruction can also
be performed by an unsigned comparison for >= a.length.
This automatically handles the case when the addition of
the index variable and the minimum constant leads to an
underflow.

3.4 Supporting Optimizations

The array bounds check elimination algorithm is applied
as one of the last optimization steps before the HIR is con-
verted to the LIR. Other optimizations applied prior to our
algorithm can lead to more bounds checks being eliminated.
The built-in optimizations of the client compiler like con-
stant folding and global value numbering help to identify
stronger conditions on the index variables.
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To increase the probability that a check can be moved
out of a loop, we added a simple form of loop-invariant code
motion. Constant expressions are moved out of loops. For
arithmetic operations, additionally both operands need to
be loop-invariant.

Because of possible aliasing effects, we need to be conser-
vative when moving field loads or array accesses. A field
load is only moved out of the loop when there is no field
store to a field of the same type within the loop. An array
access is moved, when the array and the index expressions
are loop-invariant and there is no array store to an array of
the same type within the loop.

When moving instructions, we need to care about excep-
tions to occur at the correct code position. A field load or an
array load can cause a NullPointerException. We added
an instruction flag to mark instructions that must not throw
an exception immediately, but call deoptimization instead to
fulfill the exception semantics.

3.5 On-Stack-Replacement

The Java HotSpot™ VM normally compiles a method
only when it is frequently executed, i.e. when its invocation
counter reaches a certain threshold. If a method contains a
long-running loop, however, it is also possible to switch from
interpreted to compiled code while the method is running.
This is called on-stack-replacement (OSR) [8]. Such meth-
ods are compiled with an additional entry point that jumps
directly into a loop to the point where the compilation was
triggered. The local variables and the operand stack of the
interpreter are transferred to the machine code in the OSR
entry block.

Figure 7 shows an example of the HIR when a method is
compiled with an OSR entry. In this case, the phi instruc-
tions for loop values in the loop header have three inputs.
The third one is coming from the OSR block and represents
the result of the loop iterations that were executed in the in-
terpreter. Block 1 is never executed when the OSR entry is
used. When on-stack-replacement occurs in a nested loop,
additional phi instructions are also required for all outer
loops. After a method is compiled with an OSR entry, the
next invocation of the method causes a normal compilation
without the OSR entry.

OSR Block —) Data flow
<L003| 1) --» Phiinput
=9 Control flow
Goto

Block 2

Figure 7: HIR example for on-stack-replacement.



When our algorithm is applied to OSR methods without
any changes, it is only capable of removing few array bounds
checks. It cannot assume any conditions on the values com-
ing from the OSR entry block. Therefore, all conditions for
them need to be cleared.

We enhanced the algorithm such that it takes benefit of
the fact that the values of the OSR entry are coming from
the execution of the method in the interpreter. This is done
by ignoring a value from an OSR entry when updating the
conditions of a phi instruction. The algorithm can assume
that the conditions for the value coming from the interpreter
are the same as for the phi instruction itself. Special care
must be taken when a bounds check is moved out of a loop
that has an OSR entry. The deoptimize instructions must
be inserted twice: once as usual before the loop and a second
time at the end of the OSR block.

4. EVALUATION

This section evaluates our implementation of the algo-
rithm in the Java HotSpot™ VM. It is currently integrated
into the early access build b04 of the JDK 7 [16]. We mea-
sure the percentage of removed dynamic bounds checks, the
impact on the compilation speed, and the impact on the
execution speed.

All measurements were performed on an Intel Pentium 4
processor 540 with 3.2 GHz and 1 GByte of main memory.
The operating system was Windows XP Professional with
Service Pack 2 installed. We did not modify the default
configuration of the HotSpot™ VM, so the standard sizes
for the heap are used.

For the evaluation we executed the two benchmark suites
SPECjvm98 [15] and SciMark 2.0 [13]. The first one includes
benchmarks with few array accesses like javac or jack, while
the second one performs scientific computations that operate
mostly on large arrays.

4.1 Eliminated Bounds Checks

When comparing bounds check elimination algorithms,
the percentage of removed checks is the most important
criteria. We instrumented the generated machine code to
increment counters before each array access and also before
each newly inserted deoptimization instruction. Figure 8
shows the results of our algorithm when only fully redun-
dant checks are removed, when the loop invariant motion
of checks is enabled and finally also with the grouping of
checks enabled. One deoptimization instruction is counted
as if one bounds check was performed. A bounds check and
a check for deoptimization are expressed both by a compare
instruction, a conditional branch, and in some cases also by
an instruction that loads the length of an array.

The removal of partially redundant checks by inserting
a deoptimization instruction before the loop increases the
removed bounds checks significantly for nearly all bench-
marks. The grouping of checks is effective only in special
cases, mainly because there is only an improvement if more
than two checks are grouped and the number of additionally
inserted deoptimize instructions is quite high. The bench-
mark mpegaudio is the only one where this optimization
yields significantly better results.

In mathematical benchmarks that perform array opera-
tions within loops like mpegaudio, FFT, SOR, SMM and
LU, our algorithm eliminates the majority of the checks.
For the other benchmarks, the bounds checks that can not
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be eliminated are mostly checks of array accesses that are
outside of loops, not fully redundant and cannot be grouped.
As the overhead of a method invocation is quite high, such
bounds checks are not worth being eliminated. Section 4.3
shows that the theoretically possible speedup achievable by
bounds check elimination for such applications is low.

In the MC benchmark, none of the array bounds checks
can be eliminated because the indices are fields and an in-
terprocedural analysis would be necessary to prove that an
exception cannot occur.

4.2 Impact on Compile Time

One important design goal of our algorithm is to have a
small impact on the overall compilation time. The algorithm
is designed for the use in a fast just-in-time compiler, so the
time needed for bounds check elimination adds to the run
time of an application.

When enabling bounds check elimination, the time spent
in the compiler is increased by 1.8% when executing the
SPECjvm98 benchmark suite and increased by 5.6% when
executing SciMark. The overhead for SciMark is higher be-
cause the relative number of array accesses is higher and
more bounds checks are eliminated.

For all executed benchmarks, deoptimization because of
a loop-invariant or grouped array bounds check is never
needed. So in the common case there is no additional com-
pilation overhead introduced by recompiling deoptimized
methods.

4.3 Impact on Run Time

The speedup obtained by array bounds check elimination
depends on the type of application. If the most frequently
executed methods contain array access instructions, elimi-
nation of bounds checks is very effective. On the contrary,
no speedup can be expected if only a low percentage of the
execution time is spent accessing arrays. Therefore we did
not only measure the speedup achieved by our algorithm,
but also the theoretically possible speedup reachable with
bounds check elimination by generating no bounds checks
at all. With this change, the Java VM does not conform to
the specification, as an ArrayIndexOutOfBoundsException
will never be thrown and a program could freely access the
memory and disable all security mechanisms by accessing
an array with an incorrect index. However, the benchmarks
are not affected by this change as the indices of all array
accesses are within the correct bounds.

When executing the SPECjvm98 benchmarks for the first
time, the compilation time is relevant in comparison to the
total execution time. Therefore we executed each bench-
mark several times and measured the slowest and the fastest
execution time. The slowest and the fastest runs are shown
on top of each other relative to the same baseline. For
SciMark, the compilation time is insignificantly low. Fig-
ure 9 shows the achieved speedup reached by our algorithm
and the theoretically possible speedup of array bounds check
elimination.

Only for four of the twelve benchmarks, the achievable
speedup is above five percent. Even if an algorithm elimi-
nates all bounds checks, it cannot cross this limit. For ex-
ample, even though our algorithm eliminates 96% of the
bounds checks in the SOR benchmark, there is no measur-
able speedup because the array accesses are only responsible
for a small fraction of the total execution time.
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Figure 9: Speedup when using the bounds check elimination algorithm (taller bars are better).

The slowest runs of SPECjvm98 show that the slightly in-
creased compilation time does not affect the start-up perfor-
mance of an application. The benefit outweighs the analysis
overhead. Bounds check elimination has no significant neg-
ative impact on the run time of any benchmark. The mpe-
gaudio is the only benchmark of the SPECjvm98 suite that
has a theoretically possible speedup of more than 5%. This
is because the benchmarks carries out calculations based on
arrays, e.g. the discrete cosine transformation. The other
SPECjvm98 benchmarks rarely access arrays, so their per-
formance can hardly be improved by removing array bounds
checks.

The best results are achieved for the LU benchmark. The
theoretically possible speedup is 201%. Because our algo-
rithm eliminates 99% of all bounds checks, the benchmark
executes nearly twice as fast as before. Significant perfor-
mance improvements are also achieved for the benchmarks
SMM (146%), FFT (125%) and mpegaudio (112%).

5. RELATED WORK

Gupta presents algorithms for bounds check elimination
based on bound conditions [5, 6]. One important difference
to our algorithm is the way the case of an index being out
of bounds is handled. While we must adhere to the Java ex-
ception semantics, Gupta does not care about throwing the
exception at the correct place and therefore does not require
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a concept similar to our deoptimization. The basic ideas of
grouping multiple checks into a single one as well as moving
checks out of loops are similar to our algorithm. However,
his algorithm does not take advantage of conditions intro-
duced by conditional branches.

To reduce the execution time, Gupta’s algorithm works
on a reduced control flow graph, which contains only in-
structions that are involved in array accesses. While Gupta
differentiates between the lower and the upper bound check,
this does not make sense for our algorithm, as the costs for
applying both or only one of them are the same in the Java
HotSpot™ VM.

Bodik et al. present an algorithm that allows bounds check
elimination for Java to be performed on demand [1]. This
way it is possible to use the algorithm only for array accesses
that are frequently executed. The input to their algorithm
is a representation similar to the HIR which is also in SSA
form. They convert it to an extended SSA form in such a
way that the conditions do not change within the lifetime
of a value. Therefore they need to insert additional pi in-
structions to represent new conditions for certain values, e.g.
after if conditions.

Our algorithm does not need to insert such instructions
and solves the problem by the special pre-order traversal of
the dominator tree. They use a full inequality graph in-
stead of maintaining simplified conditions and perform an
adapted shortest path algorithm to check whether an index



is within the correct bounds or not. In case of conditional
branches, our algorithm updates the bounds of the instruc-
tions, while their algorithm adds additional edges to the
inequality graph.

Qian et al. perform an intraprocedural analysis and build
inequality graphs for important points in a method [14].
They update the inequality graph of a block by merging
the graphs of its predecessors. When processing loops, they
do a fix-point calculation. They further improve their algo-
rithm by doing an interprocedural field analysis and a special
analysis for finding rectangular arrays. However, their algo-
rithm is not capable of handling partially redundant checks.
They integrated their algorithm into the Kaffee Java VM
and into IBM’s HPCJ and provide evaluation results for the
mpegaudio benchmark and the SciMark benchmark suite.

Some approaches eliminate bounds checks by annotating
Java bytecodes [9, 18]. The advantage of this method is
that the just-in-time compiler does not need to perform the
elimination. A more complex analysis can be applied as
the analysis time does not add to the execution time of the
Java program. The disadvantages are larger class files and
the need for verification of the annotations in the virtual
machine.

6. CONCLUSIONS

We presented an array bounds check elimination algo-
rithm for Java and evaluated our implementation in the Java
HotSpot™ VM. Our algorithm is based on an intermediate
representation in SSA form and performs an intraprocedu-
ral constraint analysis on the index instructions. We remove
partially redundant bounds checks and retain the correct ex-
ception semantics by using deoptimization. The algorithm
is designed to eliminate bounds checks for typical Java pro-
grams. While having a low impact on the compilation time,
it succeeds to eliminate the majority of all bounds checks
and leads to a speedup close to the theoretical maximum
for the scientific SciMark benchmark. There are plans to
integrate the algorithm in one of the upcoming releases of
the Java HotSpot™ virtual machine.
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