Automatic Feedback-Directed Object Fusing

CHRISTIAN WIMMER and HANSPETER MOSSENBOCK
Johannes Kepler University Linz

Object fusing is an optimization that embeds certain referenced objects into their referencing
object. The order of objects on the heap is changed in such a way that objects that are accessed
together are placed next to each other in memory. Their offset is then fixed, i.e., the objects
are colocated, allowing field loads to be replaced by address arithmetic. Array fusing specifically
optimizes arrays, which are frequently used for the implementation of dynamic data structures.
Therefore, the length of arrays often varies, and fields referencing such arrays have to be changed.
An efficient code pattern detects these changes and allows the optimized access of such fields.

We integrated these optimizations into Sun Microsystems’ Java HotSpotT™ VM. The analysis
is performed automatically at run time, requires no actions on the part of the programmer, and
supports dynamic class loading. To safely eliminate a field load, the colocation of the object
that holds the field and the object that is referenced by the field must be guaranteed. Two
preconditions must be satisfied: the objects must be allocated at the same time, and the field must
not be overwritten later. These preconditions are checked by the just-in-time compiler to avoid an
interprocedural data-flow analysis. The garbage collector ensures that groups of colocated objects
are not split by copying groups as a whole. The evaluation shows that the dynamic approach
successfully identifies and optimizes frequently accessed fields for several benchmarks with a low
compilation and analysis overhead. It leads to a speedup of up to 76% for simple benchmarks and
up to 6% for complex workloads.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Incremen-
tal compilers, Memory management, Optimization

General Terms: Algorithms, Languages, Performance
Additional Key Words and Phrases: Java, object fusing, object inlining, object colocation, just-
in-time compilation, garbage collection, optimization, cache performance

1. INTRODUCTION

Java source code [Gosling et al. 2005] is compiled to platform-independent byte-
codes that are executed by a virtual machine [Lindholm and Yellin 1999]. Modern
Java VMs then translate the bytecodes of frequently executed methods to opti-
mized machine code using a just-in-time compiler. A garbage collector may move
live objects to new memory locations while reclaiming unreferenced objects. Both
the just-in-time compiler and the garbage collector impose a run-time overhead,
but they can be used to implement novel feedback-directed optimizations [Arnold
et al. 2005] inside the VM that are not possible in a static compiler.
Object-oriented programming encourages developers to decompose applications
into multiple classes with well-understood and well-tested functionality. This im-

This work was supported by Sun Microsystems, Inc.

Authors’ addresses: C. Wimmer and H. Mossenbock, Institute for System Software, Christian
Doppler Laboratory for Automated Software Engineering, Johannes Kepler University Linz, Aus-
tria; email: {wimmer, moessenboeck}@ssw.jku.at

C. Wimmer is now with the Department of Computer Science, University of California, Irvine.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

2 : Christian Wimmer and Hanspeter Mossenbock

proves the code quality, but can have a negative impact on performance. It leads to
a large number of objects on the heap that are linked together by field references.
This increases the number of loads for referencing fields, i.e., the number of memory
accesses of the application. In particular, this is evident in Java because Java does
not support value objects at the language level. Object colocation places objects
that are accessed together next to each other on the heap. When the offset between
such objects is fixed, object fusing replaces field loads by address arithmetic. We
describe two different levels of optimization: instance fusing deals with fields that
reference class instances, and array fusing expands the concept to fields that refer-
ence arrays. Object colocation requires support from the garbage collector, while
object fusing is performed by the just-in-time compiler.

Figure 1 illustrates the idea. A Polyline object uses the Java collection class
ArrayList to maintain a dynamic list of points. Internally, the ArrayList stores
its data in an Object[] array. When new points are added and the size of the
array does not suffice, the array is replaced by a larger copy. The array elements
reference the points that store the actual coordinates. Several memory accesses are
necessary to load a single point. When the objects are scattered on the heap, the
cache performance is also negatively affected. Object fusing combines the objects
to a larger group so that all fields and array elements can be loaded or stored with
a memory access relative to the beginning of the Polyline object.

—>»| Polyline
lineColor Object[] [|€--
points [3 length :
|
0 [5
ArrayList :] H ._: :
modCount :
. |
size - I
ArrayList

elementData @ rayLls (—} :
:] modCount 1
Object[] size o
length elementData & |-’

[0] o> —»{Polyline |

1] > lineColor |

points ol -

(a) Unoptimized objects (b) After object fusing

Fig. 1. Motivating example for our optimization approach

To allow Polyline to have subclasses with additional fields, we place the fused
objects in front of the Polyline object. This complicates the access of fused ar-
rays, but we present an efficient code pattern to handle this case. Our solution
addresses the time overhead of field accesses, but not the space overhead. We keep
all headers of objects and require the duplication of the array length, which in-
creases the memory footprint. The memory layout shown in Figure 1 reflects our
actual implementation. It is not necessary to use this layout for object fusing, so
other approaches can use different layouts as long as objects are combined on the
heap.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 3

In programming languages like C++ [[SO/IEC 2003], the merging of objects
can be performed by the programmer using value objects. However, this is error-
prone because reference objects and value objects have different semantics, e.g.,
when variables are assigned. Fusing arrays whose size can change at run time, such
as the Object [] array in our example, is not possible at all in C++ because it is
necessary to move objects on the heap. Additionally, value objects are incompatible
with polymorphism and dynamic dispatch.

Implementing object fusing as a feedback-directed optimization at run time has
several advantages over a static compile-time optimization. First, the optimization
can be applied optimistically, i.e., it is possible to revoke the optimization if a
precondition is invalidated later on. This also simplifies the data-flow analysis
that checks the preconditions. Secondly, modular applications that are compiled,
deployed, and installed as several parts are optimized as a whole. There is no
distinction between application classes and library classes such as collections, i.e.,
an object of a library class can be fused with an application object and vice versa.
Code that is loaded dynamically or even generated at run time is also optimized.
Thirdly, code that exists in libraries but is never actually executed does not affect
the optimization because unused classes are not loaded into the VM.

This paper presents results for an implementation that is integrated into Sun Mi-
crosystems’ Java HotSpot™ VM. The approach, however, can be generally applied
to all languages that are executed using a virtual machine with just-in-time compi-
lation and garbage collection, such as the common intermediate language [ISO/IEC
2006] that is part of the standardized common language infrastructure and used,
for example, by the Microsoft .NET framework.

To the best of our knowledge, our approach is the first that applies object fusing
at run time in a virtual machine without requiring actions on the part of the pro-
grammer. Additionally, we are not aware of any system that allows fusing of arrays
whose length can change at run time. This paper summarizes the algorithms that
we presented in earlier publications [Wimmer and Méssenbock 2006; 2007; 2008]
and illustrates them with an example. In addition to these previous publications,
this paper contributes the following novel parts:

—We handle class hierarchies by reversing the fusing order such that field offsets
are constant even if a parent class has subclasses.

—We present a code pattern for the optimized access of fused arrays that supports
the reverse object order. The address arithmetic for the array access is integrated
into the array bounds check.

—We evaluate our implementation, which is integrated into a production-quality
Java VM, using several standard benchmarks and report results for different
configurations of object colocation, instance fusing, and array fusing. It leads to
a speedup of up to 76% for simple benchmarks of the SPECjvm98 benchmark
suite (up to 30% when not considering the db benchmark, which is commonly
considered as a too easy target for optimizations), as well as up to 6% for complex
workloads of the DaCapo benchmark suite.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

4 : Christian Wimmer and Hanspeter Mossenbock

2. SYSTEM OVERVIEW

Object fusing operates on groups of heap objects that are in a parent-child rela-
tionship. A fusing parent contains a reference to the fusing child. A child has
exactly one fusing parent. A parent can have references to multiple children, i.e.,
it is possible to fuse more than one child with a single parent. Additionally, fus-
ing hierarchies can exist, i.e., a fusing child can in turn be another fusing parent.
Consequently, a fusing parent, its direct children, and all its indirect children form
a single group of objects. In the example shown in Figure 1, the ArrayList object
is both the child of the Polyline object and the parent of the Object[] array.

The reference from the fusing parent to the fusing child is a field declared in the
class of the fusing parent. Such a field is called a fused field. Based on the declared
type of the field, we distinguish between a field referencing a class instance (we
write only instance for abbreviation) and referencing an array. An optimized field
load of a fused field uses address arithmetic to yield the same result as a normal
field load, i.e., it does not require a memory access.

In previous publications, we referred to object fusing as object inlining [Wim-
mer and Méssenbock 2007; 2008; Wimmer 2008]. The term inlining is however
not precise for our approach because the parent and its children remain separate
entities. They are only located in a certain defined order so that field accesses can
be eliminated.

2.1 Design Principles

Our object fusing system is based on the following design principles. We believe that
many of these principles are important not only for object fusing, but are generally
applicable for feedback-directed optimizations inside a Java virtual machine.

—Automatic: The optimization neither requires any actions on the part of the pro-
grammer nor any special tools at compile time or deployment time. All analysis
and optimization steps are performed automatically at run time.

—Dynamic: We fully support dynamic class loading because it is a key feature of
modular Java applications.

— Feedback-directed: To decide which fields should be optimized, we collect profiling
data at run time using read barriers that increment field access counters.

—No interprocedural data-flow analysis: An interprocedural analysis, e.g., build-
ing a call graph, is complicated in Java because most methods are dynamically
bound and new classes can be loaded at a later time. Instead, we perform only
intraprocedural analyses of methods.

—Optimization on a per-class basis: All analysis and optimization steps operate on
a per-class basis, i.e., either all or no instances of a certain class are optimized.
This reduces the overhead as it is not necessary to distinguish between optimized
and unoptimized instances of the same class.

2.2 Memory Layout

When objects are grouped together by object fusing, the header for child objects
can be either eliminated or preserved. Similarly, the alignment of child objects is
optional. Figure 2(a) and Figure 2(b) illustrate the differences between these two

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 5

—»{Polyline —»{Polyline —»{Polyline
lineColor lineColor lineColor
points o points o modCount
ArrayList <’ modCount <« size
modCount size length
size elementData @ -
elementData @ - length «’
(padding) |
Object]] [«’
length
(a) Unmodified layout (b) Without headers (c) Without headers and fields

Fig. 2. Possible memory layouts for fused objects

cases. We assume that the header size and the object alignment are both 8 bytes
and that a pointer requires 4 bytes, which are the usual numbers on 32-bit virtual
machines. On 64-bit VMs, the header size and pointer size are even bigger. Elimi-
nating the object headers of the two child objects saves 16 bytes. Eliminating the
alignment padding of the ArrayList object saves another 4 bytes, so the optimized
group of objects is 20 bytes smaller than the original objects.

When the children do not conform to the standard object layout, there is no
reason to keep the internal pointers to them. Removing the fields points and
elementData reduces the size of the object group by additional 8 bytes. In total,
object fusing can save 28 bytes of memory for each Polyline object group. Fig-
ure 2(c) shows the resulting memory layout. Reducing the object size improves the
cache behavior and reduces the pressure on the garbage collector. Nevertheless, we
use the unmodified layout for object fusing because it has several advantages:

—Object locking: The object header is used for synchronization. If the header of a
child object were removed, we would have to guarantee that the object is never
used for synchronization.

—Side pointers to children: External references to the child object, e.g., from other
objects, expect the header to be there. Removing the object header would change
the field offsets and thus disallow such references.

—No new kind of heap elements: The elimination of object headers and fields would
lead to a new kind of heap elements that are a mixture of instances and arrays.
For example, the Polyline object would consist of an instance part with three
fields and an array part whose array length is stored at the unusual offset 20.

—No change of unoptimized field loads: If the pointer between parent and child
were removed, it would be necessary to distinguish between normal and fused
fields also in code that is rarely executed and thus not worth the optimization.

—Smooth transition to optimized code: Our system performs the optimization steps
asynchronously. Changing the object layout would require a distinct transition
phase where all affected objects are rewritten and the accessing methods are
transformed.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

6 : Christian Wimmer and Hanspeter Mossenbock

—Smooth deoptimization: A newly loaded class can invalidate preconditions of
already optimized fields. It would be necessary to restore the removed object
headers and field pointers when object fusing is revoked.

—Support for reverse object fusing: To support subclasses of the parent object’s
class, we place fusing children in front of the parent (our actual memory layout is
shown in Figure 1). Removing the headers of child objects would lead to objects
that do not start with a header.

—Support for dynamic array fusing: For fields referencing arrays where the field is
changed at run time, fusing requires a pointer to the newly allocated (resized)
array. The array is accessed via this pointer until the next run of the garbage
collector fuses the parent and the array again.

In summary, we believe that changing the memory layout is not compatible with
our dynamic fusing approach. In order to reduce the object size at run time, it
would be necessary to have a distinct transition phase where objects are rewritten,
leading to a more static approach of object fusing that we do not explore here.

2.3 Preconditions for a Field

Before loads of a certain field can be replaced by address arithmetic, it must be
guaranteed that all fusing parents containing this field are correctly colocated with
their children, i.e., the fused field must always point to a location that can also be
computed by address arithmetic. We define the following preconditions that a field
must satisfy for a safe application of object fusing:

(1) The parent and all of its fusing children must be allocated at the same time,
and the field stores that install references to the children into the parent must
occur immediately after the allocation.

(2) The field referencing a child must not be modified after allocation. If the field
were overwritten later with a new value, the new object would not be colocated
to the parent and an optimized field load would access the old child.

The second precondition is necessary because detecting that a field has been
changed is equally or even more expensive than the normal unoptimized field access.
A check whether the field has been changed would be necessary before each load,
which would require a read barrier consisting of at least two machine instructions
to guard an optimized field load. However, object fusing is only beneficial if a fused
object can be accessed via address arithmetic without further checks. For references
to arrays, this constraint can be relaxed. It is possible to integrate the check for a
changed field into the array bounds check (see Section 5), which is required by the
Java language specification. The modified bounds check does not need additional
machine instructions in the common case.

2.4 Optimization Phases

To detect whether a field is worth being optimized and to guarantee the precondi-
tions for object fusing, each field runs through the optimization phases shown in
Figure 3. Assume that the field f links a parent object of the class P to a child
object of class C.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 7

(Initial)

I
insert read barriers

(Counting ———field not hot

[
field considered hot (Not Optimized)
v
e Colocated N
Insert Co-allocations ~}———co-allocation

+ not possible
Insert Field Store Guards) \

AN\ M

¢ Fusing Failed)
Garbage Collection) reconditon /
invalidated field store guard
Fused

executed at run time /

-

Fig. 3. Optimization phases for a field

—Counting: In order to collect a field access profile, read barriers, i.e., increments
of a per-field and per-class counter, are inserted for all loads of f£. If the field
counter exceeds a certain threshold, the field is considered to be hot and is entered
into the hot-field table of P.

—Colocated: When the garbage collector moves objects, it processes a P object and
its C object as a group so that the objects are placed next to each other. This
ensures that objects that were placed next to each other during allocation are
still next to each other after garbage collection.

—Insert co-allocations: To prohibit P objects that are not followed by a C object,
methods that allocate a P object must be transformed. We combine the allocation
of P, the allocation of C, and the field store of f to a single co-allocation. This
ensures that the newly allocated objects are placed next to each other in the
correct order. If co-allocation is not possible, then object fusing of f fails. This
includes situations where C is not allocated in all cases, i.e., where £ can be null
for some code paths. Co-allocation guarantees the first precondition for object
fusing.

—Insert field store guards: Field stores that modify f after the co-allocation are
not allowed, so guards are inserted in front of such field stores. When a guard is
executed later, object fusing of f fails and the optimization of field loads must be
undone. This guarantees the second precondition for object fusing. For references
to arrays that are allowed to change, the field store guard marks the old array as
invalid so that it is no longer accessed.

—Garbage collection: After co-allocations and field store guards have been inserted,
the two preconditions are satisfied for all objects that will be allocated in the
future. However, the heap can still contain objects that were previously allocated.
Such objects are colocated by the garbage collector.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

8 : Christian Wimmer and Hanspeter Mossenbock

—Fused: When the two preconditions are satisfied, loads of f are optimized, i.e.,
the memory access is replaced by address arithmetic. Dynamic type checks can
be optimized because the exact type of the object referenced by £ is known.

If a precondition for a hot field cannot be guaranteed, object fusing is not possible
and the field loads must be preserved. However, it is still possible to colocate the
objects during garbage collection in order to improve the cache behavior. Therefore,
object colocation in the garbage collector processes all hot fields regardless of their
fusing state.

The list of methods where co-allocation and field store guards are needed is
available from the method table, a table filled by the class loader. It maps class
names to methods that allocate instances of the class, as well as field names to
methods that modify the field. The preconditions for object fusing can only be
guaranteed for the currently loaded classes. Dynamic class loading can introduce
additional methods that allocate parent objects in such a way that co-allocation is
not possible. In this case, object fusing has been too optimistic and must be undone
by falling back to a version of the methods where field loads are not optimized.

When examining the preconditions, we consider only methods that allocate ob-
jects or store fields using normal bytecodes. However, Java offers several other and
more dynamic ways for this. Objects can be allocated and fields can be modified
using reflection or the Java Native Interface. Because these cases are difficult to
handle and rather rare, we are conservative and disable fusing for all fields affected
by such operations.

2.5 Example

Figure 4 shows the Java source code for the example introduced in Figure 1, which
is used as the running example in this paper. The class Polyline uses the collection
class ArrayList of the package java.util to manage a list of points. The source
code of the class ArrayList is reduced to the parts relevant for the example. It
uses an Object [] array for the data, referenced by the field elementData. The field
size contains the number of array elements currently in use. When a new element
is added using the method add () and the capacity of the array does not suffice, the
array is replaced by a larger copy, i.e., the field elementData is changed.

The field points of the class Polyline is declared using the interface type List
instead of the implementation class ArrayList. This allows the list implementation
to be exchanged by modifying only one line of the source code. For our object
fusing algorithm, the declared type is irrelevant and only the implementation class
is considered. The generic parameter <Point> improves the type safety of the Java
code, but the ArrayList still uses an Object [] array.

2.6 The Java HotSpot™ VM

Our implementation is based on the Java HotSpot™ VM of Sun Microsystems [Sun
Microsystems, Inc. 2009]. The default configuration for interactive desktop appli-
cations uses a fast just-in-time compiler, called the client compiler [Griesemer and
Mitrovic 2000; Kotzmann et al. 2008], and a generational garbage collector with
two generations. It is available for Intel’s IA-32 and Sun’s SPARC architecture,
but object fusing is currently only implemented for the IA-32 architecture.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 9

class Polyline { class ArraylList<E> implements List<E> {

int lineColor; int modCount, size;
List<Point> points; Object[] elementData;
Polyline() { ArraylList() {

points = new ArrayList<Point>(); elementData = new Object[10];
} }
int getNumPoints() { int size() {

return points.size(); return size;

}

3

E get(int index) {
if (index >= size) throw new ...
return (E) elementData[index];

Point getPoint(int index) {
return points.get(index);

} }
void addPoint(Point newPoint) { void add(E e) {
points.add(newPoint); modCount++:
} if (size+l > elementData.length) {
} int newCapacity = ...

elementData = Arrays.copyOf(

class Test { elementData, newCapacity);

void allocate() { }
Polyline poly = new Polyline(); elementData[size++] = e;
// Do something with poly }

} }

}

Fig. 4. Java source code of the example classes

After the bytecodes of a method have been loaded by the class loader, they be-
gin execution in the interpreter. If the invocation counter of a method reaches
a certain threshold, the bytecodes are compiled to optimized machine code. The
compiler uses a high-level intermediate representation (HIR) in static single as-
signment (SSA) form [Cytron et al. 1991] with explicit data-flow and control-flow
graphs for global optimizations, and a low-level intermediate representation (LIR)
for linear scan register allocation [Wimmer and Mé&ssenbock 2005]. Compilation is
done in the background while the method continues to run in the interpreter. The
compiler performs aggressive optimizations such as inlining of dynamically bound
methods. If an optimization is invalidated later, e.g., because of dynamic class
loading, the VM can deoptimize [Holzle et al. 1992] the machine code and continue
the execution of the current method in the interpreter.

The heap is divided into a young and an old generation. The young generation
is collected using a stop-and-copy algorithm that copies live objects between alter-
nating spaces. Objects that survive a certain number of collections are promoted
to the larger old generation. If the old generation fills up, a full collection of both
generations is done using a mark-and-compact algorithm [Jones and Lins 1996]. All
objects have a header of 8 bytes and are aligned at 8-byte boundaries.

The structure of the Java HotSpot™ VM is similar to most modern VM im-
plementations, even though the just-in-time compilers and the garbage collection
algorithms vary greatly. Our implementation does not rely on special features of the
compiler, so the algorithms presented in Section 4 and Section 5 can be integrated

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

10 : Christian Wimmer and Hanspeter Mossenbock

tid__instruction
al parameter this
a2 al._12 // Polyline.points

read barrier: inc counter at 5000h
i3 a2._12 // ArraylList.size
i4 return i3

Fig. 5. Read barrier in method Polyline.getNumPoints()

into any just-in-time compiler. The ideas presented in Section 3 can be generalized
to any garbage collector that moves objects during collection. The only feature of
the Java HotSpot™ VM that is not common in other VMs is deoptimization. De-
optimization is a simple and convenient way to undo optimistic optimizations when
preconditions of the optimizations change. It can be emulated using code dupli-
cation and code patching, however deoptimization simplifies all kinds of aggressive
compiler optimizations.

3. OBJECT COLOCATION

Object colocation places related objects next to each other on the heap so that
spatial locality is improved. In order to know which objects should be colocated,
we detect fields that are frequently loaded and optimize only objects connected by
such fields. Read barriers are used to collect the field access statistics.

3.1 Read Barriers

The read barriers are handled by the compiler. When it generates code for loading
a reference field, it emits a read barrier that increments a counter. The compiler
instruction for a field load contains the class that declares the field, the field offset,
and the type of the field. With this information, a unique per-field and per-class
counter is created, and the counter address is embedded into the machine code.
The low number of field accesses performed by the interpreter are not counted.

Figure 5 shows the high-level intermediate representation (HIR) of the client
compiler for the method getNumPoints (). The method size() is inlined, so the
loads of the two fields points and size end up in the same method. Each instruc-
tion has a type ¢ (a for object and 4 for integer) and a unique id number. For
example, the first instruction of Figure 5 loads the this parameter into the value
al (an object with the id 1).

The field load instruction a2 loads the field at offset 12 from the object al, i.e.,
the field Polyline.points. When code is generated for this field load, a counter
increment is emitted. Assume that the counter for this field is located at the address
5000h. No read barrier is needed for the field load i3 because it loads a field of a
primitive type, which is not of interest for object fusing.

3.2 Hot-Field Tables

The field counters of all read barrier entries are checked at regular intervals. If
a counter exceeds the threshold explained below, the field is considered hot and
recorded in the hot-field table of the parent class. If the counter does not cross
the threshold in several successive measurement intervals, the field is considered
unimportant and ignored in all further optimization steps. In most cases, we use

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 11

the time between two garbage collections as the measurement interval. Only if this
timeframe is too long, we check the counters using timer interrupts.

As a heuristic, a field is considered hot if it accounts for more than 5% of all field
loads within a single interval. This mechanism fills the tables iteratively. When
processing the counters for the first time, fields with an exceptionally high access
frequency are added to the hot-field tables. Their read barrier counters are then
deactivated and ignored when computing the percentages in successive runs of the
algorithm, so the next fields with still a high access frequency are added. This
is repeated until a stable state is reached in which most fields have similar access
frequencies, i.e., no single access frequency is above 5%.

Incrementing a counter for each field load involves a run-time overhead. There-
fore, it is necessary to remove read barriers as soon as they are no longer needed,
i.e., when it is known that a field is either hot or when the access count has been low
for a long time. This is done by recompiling all methods that increment the counter
of the read barrier. No counter increments are emitted in the new code. Because
of this pattern, read barriers do not have an impact on the peak performance, but
only affect the startup time of an application. They produce field access statistics
of a sufficient quality to guide our optimizations, so it is not necessary to use more
advanced but also more complex profiling techniques like edge profiling and path
profiling [Ball et al. 1998].

The hot-field tables are a VM-global data structure with a table for every class
that has hot fields. This table is registered in the class descriptor. The table stores
a list of entries for the hot fields of the class. Each entry holds the offset of the
field as well as the field’s declared type, which points to another class descriptor.
The entries are sorted in decreasing field-access frequency. This is automatically
accomplished by the iterative processing algorithm for the field counters that detects
hot fields in the order of their importance.

For array classes such as Object [], the marker value -1 is stored instead of the
field offset. A single read barrier counter is used for all elements of an array. For
instance classes, a hot-field table does not contain entries for fields declared in a
superclass or a subclass. Instead, these classes have their own hot-field tables.
Classes without frequently accessed reference fields do not have a hot-field table.

3.3 Modifications of the Garbage Collector

Object colocation is an optimization that groups heap objects together and sorts
them so that their order in memory matches their access order in the program. Our
implementation uses the information in the hot-field tables to adapt the order of
objects in the garbage collector. Object colocation has two goals:

(1) Improve the cache behavior: If objects that are accessed together are placed
next to each other on the heap, the spatial locality is improved. It is more likely
that objects end up in the same cache line. This is a statistical optimization,
so a small ratio of unoptimized objects for a certain class does not impact the
performance significantly.

(2) Guarantee preconditions for object fusing: Memory loads can be replaced by
address arithmetic only if the colocation of a parent with its children is guar-
anteed for all instances of the parent class. If a single parent object cannot

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

12 : Christian Wimmer and Hanspeter Mossenbock

be colocated with its children, the optimized access for all objects of this class
must be revoked.

To achieve both goals, we distinguish between fields that should be colocated
to improve the cache behavior and fields that must be colocated for object fusing.
Such fused fields are preferred if not all hot fields can be optimized.

We use a modified stop-and-copy algorithm for the young generation to copy
groups of objects instead of individual objects. This ensures that a parent object
is copied together with all its child objects. If the parent and the children are not
consecutive, they are moved together and the grouping is established. The object
groups are also promoted as a whole to the old generation if they survive a certain
number of copying cycles.

The mark-and-compact algorithm is used to collect the entire heap. Object
colocation in the stop-and-copy algorithm also affects the old generation because
colocated objects are promoted together, i.e., they end up colocated in the old
generation. The basic mark-and-compact algorithm does not change the order of
objects and therefore preserves this optimized order. Therefore, modifications of
the mark-and-compact algorithm are only necessary for the second goal of our ob-
ject colocation algorithm: guaranteeing the preconditions for object fusing. Before
optimized field loads are possible, one full garbage collection cycle is necessary to
colocate objects that were promoted before the field was detected as hot, i.e., before
object colocation was activated in the stop-and-copy algorithm (see Section 4.4).
This run of the mark-and-compact algorithm can change the object order to estab-
lish the colocation.

4. INSTANCE FUSING

Object fusing is an optimization that replaces memory loads by address arithmetic
when a field of an object is known to point to another object that is colocated with
the first one. This section deals only with class instances (instance fusing), while
the Section 5 extends the concepts to arrays. Section 2.1 defined two preconditions
for optimizing a field. We use the just-in-time compiler to guarantee these precon-
ditions. Methods that are relevant for a field are compiled with additional compiler
phases.

4.1 Object Layout

Intuitively, one would place a child so that it immediately follows its parent in
memory. However, this order is not possible if the parent’s class has subclasses. In
this case, the child would end up at different offsets from the parent, depending on
how many additional fields the subclasses have. Conceptually, fusing also adds fields
to a parent, namely the fields of the children. All field offsets must be compile-time
constants, otherwise field accesses would be inefficient. Using the intuitive object
order, fields of subclasses and fields of fused objects would compete for the same
offsets.

Figure 6 illustrates the problem. Assume that the class Polygon is a subclass of
Polyline that adds the field £i11Color, i.e., instances of the subclass are 8 bytes
larger. If the intuitive object order were used, this would affect the offsets of the
fused children. For example, the increased size of Polygon objects would change

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing 13
—>»| Polyline —» Polygon
81lineColor 8]lineColor
12| points [Al 12 points -,
16 ArrayList <’ 16 [fillColor :
24| 8|modCount 2% ArrayList <’
28| 12|size 321 8|modCount
32| 16|elementData @ -, 36| 12|size
v 40| 16|elementData @ -
v
Fig. 6. Inconsistent fusing offsets with class hierarchies
A A
2 ArrayList €, | 2 ArrayList €, |
-6 8/modCount ol 16| 8] modCount o
2| 12| size ol 12| 12|size o
8| 16|clementData @ -’ 8| 16|clementData @} -’
—»{Polyline | —»{Polygon |
8lineColor : 8 lineColor :
12| points o - 12| points o -
16| fillColor

Fig. 7. Reverse object order to support class hierarchies

the offset for the optimized field access of the field size from 28 to 36. Since a
variable of type Polyline can also refer to a Polygon object, the offset would no
longer be fixed.

We solve this problem by reversing the object order, i.e., we place the child
objects in front of the parent object on the heap. With this reverse order, the
offsets of the children become fixed negative values. Figure 7 shows the offsets used
to access fields of fused objects. For example, the optimized field access of the field
size uses the offset -12, which is equal for Polyline and Polygon objects.

Subclasses of a child object’s class do not incur problems because the exact class
is known from the co-allocation. If different co-allocation sites allocate different
classes of child objects, our optimization is not possible.

The reverse order affects object colocation slightly. It changes the order of ob-
jects on the heap and therefore the cache performance. However, our measure-
ments indicate that no order is particularly better than the other—depending on
the benchmark characteristics, reverse order either degrades or improves the per-
formance. Modern processors that perform automatic memory prefetching can also
handle memory access patterns in both directions [Hegde 2008].

4.2 Co-allocation of Objects

Object colocation during garbage collection ensures that a parent object and its
child objects are consecutive after the first garbage collection run following their al-
location. For object fusing, however, the first precondition requires that the objects
are already consecutive immediately after their allocation. Therefore, co-allocation
combines the allocations for a group of objects, and object colocation ensures that

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

14 : Christian Wimmer and Hanspeter Mossenbock

tid__instruction
al new Polyline

a7 co-allocation of al, a2, a4

a2 new ArraylList

i3 10

a4 new Object[i3]

a5 a2._16 := a4 // ArraylList.elementData
a6 al. 8 := a2 // Polyline.points

// Do something with al

Fig. 8. Co-allocation in method Test.allocate()

the groups are not separated during garbage collection. Our co-allocation is inte-
grated into the just-in-time compiler. Therefore, all methods that allocate parent
objects must be compiled. The list of methods is retrieved from the method table.
In our example, the method Test.allocate() must be compiled for the fusing of
the field points, and the method Polyline.<init>() must be compiled for the
fusing of the field elementData.

To detect all allocation instructions that are applicable for co-allocation, we it-
erate over the field store instructions of a method because field stores connect the
allocations. A field store instruction has a reference to two other instructions as
its parameters: the object that is modified and the new value of the field. Co-
allocation is possible if the object and the value are both allocation instructions,
i.e., both refer to objects allocated within the same compiled method. Additionally,
the resulting structure must be acyclic, a child object must only have one parent,
and the field store must be executed in all possible code paths.

A new HIR instruction for co-allocation is inserted after the first allocation. For
this instruction, the back end of the compiler generates LIR operations that allocate
a single chunk of memory at once. The original allocation instructions are omitted.

Figure 8 shows the HIR for the method Test.allocate (). The instructions refer
to the state after all constructors were fused, so there are no more method calls.
The allocations of Polyline, ArrayList, and Object[] are in the same method,
together with the field stores that install the fusing children into the parent objects.
The single co-allocation instruction a7 is inserted by the additional compiler phase.
It allocates only one chunk of memory large enough for all objects and then installs
the object headers and field pointers appropriately.

Object fusing for a field requires that all methods that allocate instances of the
parent class are compiled with co-allocation. If the co-allocation in one method
fails, the field is not optimized and the analysis stops. The compiler reports this
information as feedback data to the object fusing system. This avoids a full data-
flow analysis during object fusing.

4.3 Guards for Field Stores

The second precondition for object fusing specifies that a field referencing an in-
stance must not be modified after co-allocation. Therefore, we compile all methods
that modify the fused field and instrument the field store to revoke object fusing
before the field value is changed at run time. Field stores that are already part of a
co-allocation are ignored. A static check at compile time would be too conservative

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 15

tid__instruction

al parameter this

a2 new ArraylList

a8 co-allocation of a2, a4

i3 10

a4 new Object[i3]

a5 a2._16 := a4 // ArraylList.elementData

a6 field store guard: revoke fusing of Polyline.points
al._8 := a2 // Polyline.points

v7 return

Fig. 9. Field store guard in constructor Polyline.<init>()

because field stores for fused fields are allowed as long as they are not executed. The
static check would inhibit object fusing for all fields that are assigned inside a con-
structor. Even though constructors are mostly inlined into the allocating method,
they also remain as distinct methods and are separately compiled. Because initial-
izing fields in the constructor is a recommended and frequently used code pattern
in Java, the static check would lead to nearly no fields that can be fused.

In our example, field store guards are necessary for the field points when the
constructor Polyline.<init>() is compiled. Figure 9 shows the HIR of the con-
structor. In contrast to Figure 8 of the previous section, the ArrayList object
cannot be co-allocated with the Polyline object because the Polyline is not al-
located inside the method, but passed in as the this pointer in instruction al.
Co-allocation is only performed for the ArrayList object and its child Object[]
array, connected by the field store ab5.

Because it modifies the field points, the field store instruction a6 must be
guarded. A call into the VM is emitted in front of the machine code that performs
the field store, i.e., just before the move instruction. The VM method revokes
object fusing for the field points. It is, however, unlikely that this revocation
ever happens. The constructor Polyline.<init>() was inlined in the method
Test.allocate(), which is the only method that allocates Polyline objects in
the bytecodes. Therefore, the constructor itself is only executed if the application
allocates a Polyline object using reflection or the Java Native Interface.

The field elementData of the class ArrayList is modified by two methods:
ArraylList.<init>() and ArrayList.add(). Both methods are compiled with
field store guards. Because the field elementData references an array and is thus
allowed to change, the guards have different semantics. They do not revoke ob-
ject fusing, but mark the old array as inaccessible before the field is overwritten
with the pointer to the new array. The optimized array load checks this mark
so that the old array is no longer accessed (see Section 5.1). The guard inserted
into ArrayList.add() is likely to be executed several times because this method
increases the capacity of the ArrayList.

4.4 Transition to Object Fusing

After all methods that allocate parent objects or store to a fused field are suc-
cessfully compiled, the two preconditions are satisfied for all objects that will be
allocated in the future. However, the heap can still contain objects that were pre-

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

16 : Christian Wimmer and Hanspeter Mossenbock

viously allocated and that are not colocated yet. Such objects become colocated
by the garbage collector. Because the entire heap must be processed, a run of
the mark-and-compact algorithm is necessary. In this run, the order of objects is
changed in the old generation when it is necessary to colocate objects. The op-
timizations described in the next section are delayed until the full collection has
completed.

Our entire optimization system is completely thread safe: it supports multi-
threaded applications as well as optimization and deoptimization concurrent with
running application threads. Object colocation in the garbage collector does not
raise any concurrency issues because all application threads are already stopped
during garbage collection. The just-in-time compiler runs concurrent with the ap-
plication threads, so it is only necessary to wait until all relevant methods have
been compiled with co-allocation and field store guards before the next optimiza-
tion phase is started. The existing infrastructure of the Java HotSpot™ VM
ensures that other thread-critical operations are correctly synchronized. For exam-
ple, revoking object fusing implies that some previously compiled methods must
no longer be executed. This is achieved by patching the entry points and call sites
of these methods, which requires that all application threads are suspended for a
short time.

4.5 Optimized Field Loads

When the preconditions for a field are satisfied, loads of the field can be replaced
by address arithmetic. This is performed by the just-in-time compiler. Optimizing
field loads in the interpreter does not pay off because because the interpretation
overhead is much higher than the possible gain of optimized field loads. In contrast
to the previous sections, it is also not necessary to compile all methods that load a
fused field. Only frequently executed methods that load the field are optimized, i.e.,
methods that were previously compiled. There are two possible ways to optimize
field loads: load folding and address computation.

In many cases, a field load that yields a child object is immediately followed by
a field access of the child. Load folding merges the two memory accesses. The
resulting access uses a different offset, which is the memory distance between the
parent and the child plus the offset of the second field access. Figure 10 shows load
folding for the example method Polyline.getNumPoints (). The unoptimized HIR
contains the two field load instructions. Load folding eliminates the first field load.
The address of the ArrayList object is never explicitly present. Instead, the field
Arraylist.size is accessed relative to the Polyline object. The combined field
offset is -12, as visualized in Figure 7.

Load folding benefits from method inlining. In the example, the two field loads
would be in different methods without method inlining. The second field access
can be a load or store of any type. Load folding can merge a load of a fused field
and a store into the child object to a single store with a larger offset. Similarly,
more than two field accesses can be folded to a single one when fusing children are
nested, i.e., when an indirect child of a parent object is accessed.

If the address of the child object is needed as an explicit value, the load of the
fused field cannot be eliminated, but the memory access can be replaced by address
arithmetic. The distance between the parent and the child in memory is added to

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 17

tid__instruction tid__instruction
al parameter this al parameter this
a2 al._12 // Polyline.points i3 (al-24)._12 // ArraylList.size
i3 a2._12 // ArraylList.size i4a return i3
i4 return i3
(a) Unoptimized HIR (b) Optimized HIR

Fig. 10. Load folding in method Polyline.getNumPoints()

tid__instruction tid__instruction
al parameter this al parameter this
i2 parameter index i2 parameter index
a3 al._12 // Polyline.points a3 (al-24) // Polyline.points
a4 a3.invokeinterface(i2) List.get a4 a3.invokestatic(i2) ArraylList.get
a6 return a4 a6 return a4
(a) Unoptimized HIR (b) Optimized HIR

Fig. 11. Address computation in method Polyline.getPoint ()

the address of the parent. Figure 11 shows the address computation for the exam-
ple method Polyline.getPoint (). The load of the fused field Polyline.points
yields an ArrayList object, which is used as the receiver object in a non-inlined
method call. In the optimized HIR, the load is replaced by the address compu-
tation a3 = al - 24. The total number of executed instructions is not reduced,
but nevertheless one memory load is eliminated. From a technical point of view,
load folding could also be considered as a combination of address computation and
constant folding.

4.6 Usage of Static Type Information

The analysis for object fusing increases the amount of static type information for
fused fields. The co-allocations guarantee that a fused field is initialized with a
child of the same type in all parent objects, and the guarded field stores ensure
that this field is never changed later on. Therefore, the dynamic type of the field
is known, which is more precise than the declared type defined at compile time in
the Java bytecodes.

In our example, the field points of the class Polyline has the declared type List,
which is an interface of the Java collections library. The just-in-time compiler does
not know the implementation class that is actually used. Therefore, a virtual call of
the interface method List.get () is necessary in the example of Figure 11(a). Co-
allocation discovers that this field is always initialized with an ArrayList object.
The compiler can use this information and eliminate the overhead of dynamic bind-
ing or even inline the method. In the optimized HIR of Figure 11(b), the virtual
call is replaced by a static call.

5. ARRAY FUSING

Java integrates array types smoothly into the object class hierarchy. Arrays are
considered as objects and inherit from the common base class Object. However,

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

18 : Christian Wimmer and Hanspeter Mossenbock

there are certain differences between class instances and arrays that affect fusing,
such as the variable size of arrays.

Reference arrays contain pointers to other instances or arrays. Therefore, it
would be beneficial to combine an array with the objects that are referenced by
the array elements, i.e., to have arrays act as fusing parents. However, this is not
possible without an interprocedural data-flow analysis because the bytecodes for
array accesses do not contain any static type information. A concept similar to
our field store guards is not possible for arrays [Wimmer and Méssenbock 2008].
Because of this, we allow arrays only as fusing children.

5.1 Basic Principle

The preconditions for instance fusing ensure that a field references the same in-
stance throughout the whole lifetime of the parent. The class of the fusing child
and therefore its size is a compile-time constant. The field is not allowed to change
because the new child would no longer be colocated and the change of fields ref-
erencing instances cannot be detected efficiently because it would require a read
barrier before each optimized field load.

The basic algorithm for instance fusing can also be applied for array fusing, but
there are also certain differences. On the one hand, the size of an array cannot be
determined at compile time in many cases, which complicates array fusing. On the
other hand, it is possible to integrate the check whether a field referencing an array
has been changed into an array access with no additional costs by embedding it
into the array bounds check. We use the following approach to allow array fusing:

—A¢t allocation, the child array with the initial length is co-allocated with the
parent instance, so an optimized access is possible. It is not necessary that the
length be a compile-time constant.

—After the field has been overwritten with a reference to a new array, an optimized
access using address arithmetic is no longer possible because it would still access
the old array.

—The next garbage collection colocates the new array to the parent. Therefore, an
optimized access is again possible.

Only one field referencing an array with variable length can be present in a group
of optimized objects. Additionally, the array must be the last element of the group.
If an array with variable length were located between two instances in a group, the
offsets for the second instance would no longer be compile-time constants.

Figure 12 illustrates the approach using the ArrayList object and the Object []
array. The field elementData is changed by the method ArrayList.add(): the old
array with the length 10 is replaced by a larger copy with the length 16. Because the
optimized access is not possible between the resize operation and the next garbage
collection, an additional colocation check is necessary before an element of the array
is accessed.

Array fusing saves one field load, therefore it is only beneficial if the check does
not require additional instructions. It is necessary to combine the colocation check
with the array bounds check that precedes every array access according to the Java
specification. When a fused field is modified, we set the length of the old fused

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 19

-56 Object]] [€-~ -56 Object[] -80 Object]] [€-~
48| 8]length: 10 | 48| 8|length: 10 72| 8|length: 16 |
44| 12([0] o> | H| 12|[] PR 8| 12([q] o> |
| Object]] |

8| 48|[9] o> | 8 4[] o[> | 8[length: 16 8| 2([15] et |
4] 52|fusingLen: 9 | 4| 52{fusingLen: 0 12110] o> 4] 76|fusingLen:15 |
—»| ArrayList : —» ArrayList —»| ArrayList :
8/ modCount | 8| modCount 721[15] o> 8/ modCount |
12|size L 12size 76| fusingLen:15 12|size |
16|elementData @ --' 16|elementData @] 16|elementData @ —-'

(a) After allocation (b) After resize and field change (c) After GC

Fig. 12. Basic principle of array fusing

array to 0, which forces the array bounds check to fail. Instead of throwing an
exception immediately, we check whether the field has been changed, i.e., whether it
points to a non-colocated array. In this case, we access the new array and continue
normally. Only if the bounds check for the new array also fails is an exception
thrown. However, it is not possible to set the normally used length field to 0 for
several reasons:

—The old array could also be referenced by other objects or by root pointers.
Overwriting the length field would make the array elements inaccessible because
bounds checks of non-optimized array accesses would also fail.

—The garbage collector must iterate the heap. Without the correct array length, it
would not be possible to compute the array size and thus to compute the address
of the object following the array in memory.

—The optimized array access must load the array length relative to the parent.
Because of the reverse object order (see Section 4.1), the array is placed in front
of the parent. Therefore, the offset of the length field depends on the array
length and is not a compile-time constant.

To solve all these issues, we place a copy of the array length, called fusinglen,
at the end of the child array. It can be loaded using the fixed offset -4 relative to
the parent, as shown in Figure 12. This copy is accessed only by the optimized code
and can be freely manipulated based on the demands of array fusing. Note that
the fusinglLen is smaller than the length in our example, as explained in the next
section. To load the element at the index n from the parent p without loading the
address of the array first, the following address arithmetic is necessary (the element
size of the array is 4 bytes):

p - 8 - fusinglen * 4 + n * 4
The computation can be transformed to:
p + (n - fusinglen) * 4 - 8

With this transformation, no additional machine instruction is necessary. The
multiplication by 4 and the subtraction of the constant offset are performed by the
indexed addressing mode of the memory access. The subtractionn - fusinglen is

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

20 : Christian Wimmer and Hanspeter Mossenbock

nr__operation nr__operation

// ecx: this edx: index // ecx: this edx: index

12 move [ecx + 16] -> eax 12 sub edx, [ecx - 4] -> edx

14 cmp edx, [eax + 8] 14 branch aboveOrEqual S1

16 branch aboveOrEqual Exception 16 move [ecx + edx*4 - 8] -> eax
18 move [eax + edx*4 + 12] -> eax 20 return eax

22 return eax
S1 add edx, [ecx - 4] -> edx

move [ecx + 16] -> eax

cmp edx, [eax + 8]

branch aboveOrEqual Exception
move [eax + edx*4 + 12] -> eax
jump 20

(a) Unoptimized LIR (b) Optimized LIR
Fig. 13. Array fusing in method ArrayList.get()

folded into the array bounds check in the following way: Normally, the array bounds
check compares the array index n with the fusingLen. On most architectures, the
comparison of two numbers is internally implemented as a subtraction whose result
is discarded. When the compare operation of the bounds check is replaced by
a subtraction operation, both the bounds check and the address arithmetic are
performed at once.

Figure 13 shows a fragment of the low-level intermediate representation (LIR)
for the method ArrayList.get(). The if-statement of the method is not shown
because it is not relevant for the array access. The unoptimized LIR first loads
the field elementData with the offset 16. The following array load requires three
instructions: a compare and a branch for the bounds check, as well as the memory
access itself.

The optimized LIR does not need to load the field. Instead, the bounds check
uses the fusingLen, which is accessed using the offset -4 relative to the ArrayList
object. The LIR operation 12 in Figure 13(b) now uses a sub operation instead of
a cmp operation for the bounds check. The result n - fusinglen is written to the
register edx. This value is negative, so the memory access of the LIR operation 16
uses a negative offset.

The LIR code is split into a fast path and a slow path. The fast path code
performs the optimized array access. One memory load is saved compared to the
unoptimized code. When the field is overwritten with the reference to a new array,
the fusinglLen of the old fused array, i.e., the memory location [ecx - 4], is set
to 0, causing the bounds check to always fail. This case is regarded as uncommon,
so the code is placed out-of-line at the end of the method in the slow path S1.
It contains the same operations as the unoptimized code, i.e., it loads the field
and then accesses the array using the normal offsets. Additionally, it must undo
the subtraction by adding the subtracted fusinglen to the register edx. Another
bounds check throws the exception if necessary.

5.2 Object Alignment

The 8-byte alignment of objects complicates the basic scheme for the reverse order
of arrays. Because the array size is rounded up to the next multiple of 8, arrays

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 21

-24 Object]] |€-- 24 Object]] |[€--
-16 8length: 1 : -16 8|length: 2 :
2| 12|[0] o> | 2| 12|[0] o> |
8| 16(padding) | 8 18([1] o> |
4| 20{fusingLen: 1 : 4| 20{fusingLen: 1 :
—»| ArrayList : —»| ArrayList :
8 | modCount : 8 modCount :
12| size : 12| size !
16|glementData @ | —-' 16|glementData @ | —-'

(a) Array with length 1 (b) Array with length 2
Fig. 14. Memory layout with 8-byte alignment

with different lengths can have the same size. The padding is inserted between the
array elements and the field fusingLen. The padding must be incorporated into
the only part of the address arithmetic that is loaded from the actual array: the
field fusinglLen.

Figure 14 illustrates the exact memory layout of fused arrays with the lengths 1
and 2. The offset of the first array element relative to the ArrayList object is -12
in both cases. Therefore, the field fusingLen of both arrays must be equal in order
to yield the same array element offsets in the address computation shown in the
previous section. To make the array bounds check safe, the minimum of the two
lengths must be used, i.e., the array with a length of 2 has an fusingLen of 1.

The reduced fusingLen does not impact the correctness because the slow path
is used to access the last element of all fused Object [] arrays with an even length.
In cases such as the ArrayList where the last array element is not in use for most
lists, this introduces no performance penalty. In summary, array fusing uses the
array bounds check for several purposes:

—Detection of field changes: The slow path is used if the field was modified and
an optimized array access is no longer possible, i.e., if the fusinglen is 0.

—Address computation for the first array element: The compare instruction of the
bounds check is replaced by a subtraction instruction.

—The 8-byte alignment of objects: The slow path is used to handle the rounded
fusinglen appropriately.

—The actual bounds check: Indices that are out of the valid array bounds are
detected.

In the fast path of the optimized array access, the field load of the fused field
is eliminated, so one memory access is saved. However, a slow path that performs
the unoptimized array access is needed for correctness. The overall code size is
increased in favor of a shorter and faster code for the common case. In our example,
the method Polyline.getPoint () can access the address of a point relative to the
Polyline object without loading the address of the ArrayList object and the
Object[] array first. The fields points and elementData are no longer accessed
in the common case.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

22 : Christian Wimmer and Hanspeter Mossenbock

6. EVALUATION

Our implementation is integrated into Sun Microsystems’ Java HotSpot™ VM, us-
ing the snapshot release b21 of the upcoming JDK 7 [Sun Microsystems, Inc. 2009].
We use the default configuration for client applications. In addition to the optimiza-
tions of the current product version, our client compiler also performs array bounds
check elimination based on the algorithm of Wiirthinger et al. [Wiirthinger et al.
2009]. The optimizations described in this paper can be selectively enabled using
command line flags. We use the following four configurations for the evaluation:

—Baseline: All of our analyses and algorithms are disabled.

—Colocation: This configuration combines the impact of read barriers for detecting
hot fields and object colocation during garbage collection for improving the cache
behavior. Instances and arrays are optimized uniformly by the garbage collector.

—Instance fusing: In addition to the previous configuration, fields referencing in-
stances are fused and field loads are removed. Fields referencing arrays are not
fused, but are still colocated by the garbage collector.

—Array fusing: In this configuration, fields referencing both instances and arrays
are fused.

All measurements were performed on an Intel Core 2 Quad processor Q6600 with
2.4 GHz, running Microsoft Windows XP. Each of the four cores has a separate L1
data cache of 32 KByte. Two cores together share a 4 MByte L2 cache, so there are
8 MByte L2 cache in total. All caches have a cache line size of 64 bytes. The main
memory of 2 GByte is uniformly accessed by all cores. The results were obtained
using a 32-bit operating system and a 32-bit VM.

6.1 SPECjvm98 Benchmarks

The SPECjvm98 benchmark suite [SPEC 1998] is commonly used to assess the per-
formance of Java runtime environments. It consists of seven programs derived from
real-world applications that cover a broad range of scenarios. Each benchmark is
executed five times in the same VM instance to allow the VM to apply run-time op-
timizations, and the first runs as well as the last runs are reported in Section 6.1.3.
The first runs represent the startup speed of the VM and include the time necessary
for compilation, while the last runs show the peak performance after all optimiza-
tions have been applied. We repeated all measurements 12 times (always starting
a new VM instance), verified that the results are stable across all executions, and
report the mean of all executions. For all benchmarks, the stable state is reached
before the last runs start. Therefore, the static field access statistics presented in
Section 6.1.2 no longer change in the last runs. The dynamic field access statistics
presented in Section 6.1.1 cover only the last runs in order to exclude the startup
phase. The heap size was fixed to 64 MByte for all benchmarks.

6.1.1 Field Access Counts. Object fusing reduces the number of field loads per-
formed at run time. Figure 15 shows the distribution of field and array loads and
the impact of fusing. Because no field loads are eliminated by object colocation,
this configuration is not shown in the figure. The remaining three configurations
are abbreviated as b (baseline), ¢ (instance fusing), and a (array fusing).

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

100%

80%

60%

40%

20%

0%

200%

150%

100%

50%

0%

Automatic Feedback-Directed Object Fusing . 23
T | I | - =2
DOArray Elements S o)
mRef. to Arrays =2 ~
|| WRef. to Arrays Eliminated B B
S| mRef. to Instances =
L4 Ref. to Instances Eliminated
2 '/ 2
b i a b i a b i a b i a b i a b a b i a
mtrt jess compress db mpegaudio jack javac
Fig. 15. Dynamic field access statistics for SPECjvm98
Initial Counted Colocated Fused
Inst. Arr. Prim.| Inst. Arr. | Inst. Armr. | Inst. A
mirt 380 77 315 40 19 18 11 4 4
jess 410 77 407 67 24 19 10 2 4
compress 352 76 296 13 16 7 9 7 5
db 350 74 289 23 17 4 6 2 2
mpegaudio 412 93 346 73 35 18 19 9 1
jack 395 80 330 80 23| 20 12 2 3
javac 492 92 344 148 6 24 1 2 4
Fig. 16. Static field access statistics for SPECjvm98
iy BBaseline
OFirstRuns - BColocation
= :| @Instance Fusing
OLast Runs:.: - :| @Array Fusing
- T PAN [T
mtrt jess compress db mpegaudio jack javac mean
Fig. 17. Speedup compared to baseline for SPECjvm98 (taller bars are better)

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

24 : Christian Wimmer and Hanspeter Mossenbock

We count all loads of references from the heap, i.e., all loads that could be
optimized by fusing, and distinguish between three kinds: loads of fields referencing
instances, loads of fields referencing arrays, and loads of array elements. The figure
does not contain loads of primitive values such as int fields or elements of int[]
arrays. The first column shows the distribution of the three kinds. This distribution
is identical in all configurations.

The subsequent columns highlight the percentage of loads that are eliminated by
instance fusing and array fusing. The higher the striped bars are, the more field
loads are eliminated. Array elements cannot be optimized without an interproce-
dural data-flow analysis. Therefore, the topmost bar shows no eliminated loads in
any configuration.

Instance fusing optimizes only fields referencing instances, i.e., the bottommost
of the three kinds. For mtrt, the number of accessed fields referencing arrays is also
slightly reduced by instance fusing though no such fields are optimized. This is a
beneficial side effect of instance fusing on other optimizations such as global value
numbering. If it is known that a field never changes, more subsequent other field
loads are identified as redundant and can therefore be eliminated.

All benchmarks except javac perform more loads of references to arrays than
to instances. This demonstrates the importance of array fusing. The benchmarks
mtrt, compress, and mpegaudio frequently access arrays whose lengths are compile-
time constants. The other four benchmarks jess, db, jack, and javac mostly use
array-based collection classes that can be optimized.

6.1.2 Number of Optimized Fields. Our analysis performs fusing on a field-per-
field basis at run time. To limit the overhead, it is important that no time is wasted
analyzing fields that are infrequently accessed. Figure 16 shows that detecting hot
fields using read barriers acts as an effective filter. The first column initial shows
the overall number of fields in all loaded classes. Based on the declared type, we
distinguish fields referencing instances, fields referencing arrays, and primitive fields.
Primitive fields are not relevant for fusing, so they are ignored in the subsequent
columns.

The column counted shows the number of fields for which read barriers are emit-
ted in the compiled code. The read barrier counters are used to determine whether
a field is frequently accessed. The number of frequently accessed fields is shown in
the column colocated. Only 1% to 5% of the fields referencing instances and 8%
to 20% of the fields referencing arrays are colocated. This is essential to keep the
overhead during garbage collection low.

The column fused shows the number of fused fields when object fusing is per-
formed. Ideally, all colocated fields should also be fused. However, this is not
possible because the strong preconditions necessary for object fusing cannot always
be met.

6.1.3 Impact on Run Time. Figure 17 shows how object colocation, instance
fusing, and array fusing affect the performance of SPECjvm98. We present the re-
sults for the individual benchmarks as well as the geometric mean of all benchmarks.
The first runs and the last runs are shown in the same figure on top of each other:
the gray bars refer to the fastest runs, the white bars to the slowest. Both use the

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 25

same baseline, i.e., the last runs with all our optimizations disabled. Therefore, it
is possible to compare the different configurations as well as the first and last runs.
The differences between the first and the last runs in the first column (baseline)
highlight the overhead of just-in-time compilation in the Java HotSpot™ VM.

The second column of the last runs shows the benefits of object colocation. The
second column of the first runs approximates the overhead of the read barriers,
i.e., the overhead of the field counters that are incremented at run time. Because
field accesses are counted in the first runs, object colocation is not yet performed.
Only for the benchmark db, object colocation starts early enough to compensate
the read barrier overhead.

The third column shows the impact of instance fusing. The analyses for guar-
anteeing the preconditions mostly impact the first runs negatively. However, this
overhead is justified by the improved peak performance of the last runs. Array fus-
ing, which is shown in the fourth column, increases the impact of instance fusing.
For both instance fusing and array fusing, the impact on the first runs depends on
the benchmark characteristics: for example, the first run of the benchmark mtrt is
negatively affected because of the increased compilation overhead, while the first
runs of the benchmarks db and compress are improved because the optimization
succeeds early enough in the first run.

For the benchmark compress, seven fields referencing instances and seven fields
referencing arrays account for 97% of all field loads. Only two of theses fields are not
fused, so nearly the whole object graph is combined to one large group of objects.
Similarly, the benchmark mpegaudio has a small working set that fits entirely into
the cache. The two most important fields referencing instances and the two most
important fields referencing arrays are fused.

The working set of live objects for the benchmark mtrt is much bigger than the
cache size. Therefore, object colocation of 29 fields in total leads to a speedup of
4%. Four fields referencing instances and four fields referencing arrays account for
over 90% of all field loads. Eliminating the loads of all four fields referencing arrays
is the most effective part of the optimization and leads to an overall speedup of 30%.
The benchmark db shows the highest speedup of all. It operates on a large number
of object groups that consist of two instances and one array. Object colocation is
able to avoid cache misses and leads to a speedup of 38%. Eliminating loads of the
field that connects the first and the second instance doubles this speedup.

For the benchmark jess, the three most important fields referencing arrays are
fused and thus a significant number of field loads are eliminated. However, two of
the three fields are used to manage dynamic lists and the fields change frequently.
Array fusing for the benchmark jack also optimizes the fields for dynamic lists, but
here the change rate of the fields are lower. The slow path is taken infrequently, so
array fusing leads to a speedup of 2%. The benchmark javac shows a slowdown in all
configurations. The reason for the slight regression of peak performance is mostly
the overhead of object colocation during garbage collection. This overhead is similar
for all benchmarks, but normally outweighed by the improved cache behavior.

6.1.4 Impact of Heap Size. The measurements of the previous section were per-
formed with a heap size fixed to 64 MByte, a size that is reasonable in practice
because then garbage collection time is not a major factor of the overall run time.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

26 : Christian Wimmer and Hanspeter Mossenbock

Because all configurations use the same fixed heap size, the space overhead of ar-
ray fusing, which requires an additional length field, is included in the benchmark
results: The larger arrays fill up the heap more quickly and lead to a more frequent
garbage collection, which adds to the total run time we report.

Experiments with different heap sizes showed similar speedups and slowdowns:
A large heap of 1 GByte does not change the execution times at all because the
larger heap cannot be utilized by the benchmarks. Smaller heaps of 40 MByte and
20 MByte already show a slowdown of some benchmarks, especially javac because it
has a high object allocation rate. However, all configurations are affected equally,
e.g., javac has consistently 12% slowdown when comparing 20 MByte heap size
with 64 MByte heap size. When the heap size is set below a certain limit, garbage
collection time begins to dominate the overall run time. For example, with a heap
size of 12 MByte mtrt is a factor of 5 slower. No particular pattern is visible for our
different configurations of object colocation and fusing: the speedup gained from
our optimizations is alleviated by the overhead of the garbage collector. Because
the variances of multiple runs of the same configuration are high, the differences
are also not statistically significant.

6.2 DaCapo Benchmarks

The DaCapo benchmark suite [Blackburn et al. 2006] consists of eleven object-
oriented applications. They are more elaborate than the SPECjvm98 benchmarks
regarding code complexity, class structures, and class hierarchies. We evaluate the
DaCapo benchmarks (version 2006-10-MR2) in a manner similar to the SPECjvm98
benchmarks and report the same metrics. Again, we executed each benchmark five
times and show the result for the first and the last runs. The heap size was fixed
to 128 MByte for all benchmarks. A large heap of 1 GByte does not change the
benchmark results. Smaller heaps of 64 MByte, 32 MByte, and 24 MByte show
gradual slowdowns of some benchmarks, especially luindex and xalan. However,
our configurations still show the same behavior. Note that hsqldb requires a heap
size of 128 MByte and thus fails in the configurations with a smaller heap.

Figure 18 shows the dynamic field access counts of the DaCapo benchmarks. The
higher complexity of the DaCapo benchmarks compared to SPECjvm98 complicates
our optimizations. Only a smaller percentage of the dynamic loads of references to
instances and arrays are eliminated.

The higher complexity is also visible in the static field access statistics shown in
Figure 19. The effective detection of hot fields using read barriers is essential to keep
the run-time overhead of object colocation and fusing in an acceptable range. The
several thousand fields referencing instances and several hundred fields referencing
referencing are reduced to at most 77 and 65 colocated fields, respectively. However,
our fusing algorithm is too conservative, so few of the colocated fields are fused.

Figure 20 shows the benchmark results for DaCapo. Because the benchmarks
are larger and have a higher number of methods, more methods must be compiled
in the startup phase and the differences between the first runs and the last runs
are usually higher than for SPECjvm98. This is not related to our optimizations
because also the baseline configuration, where all of our modifications are disabled,
is affected. The additional overhead of our code for the first runs is still modest.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing . 27
100% - " 3 = 7 S
2 = B o§ o) i
80%
OArray Elements
ERef. to Arrays
o | OIRef. to Arrays Elim.
60% HRef. to Instances
F1Ref. to Instances Elim.
40% -
20% - < . 5 2 2
0% -
bia bia bia bia bia bia bia bia bia bia bia
antlr bloat chart | eclipse fop hsqldb | jython | luindex |lusearch | pmd xalan
Fig. 18. Dynamic field access statistics for DaCapo
Initial Counted Colocated Fused
Inst. Arr. Prim.| Inst. Arr. | Inst. Armr. | Inst. Arr.
antlr 795 126 606 238 43| 24 13 1 2
bloat 1008 167 578 251 62| 47 12 8 2
chart 1592 274 1296 | 207 68 32 1 4 2
eclipse 3079 767 2162| 771 374 75 65 1 5
fop 1452 158 949 324 48 31 12 1 3
hsqldb 844 209 689 209 92| 26 9 2 1
jython 1264 234 841 278 94 7 31 3 7
luindex 709 155 643 191 63 35 19 6 4
lusearch 684 140 623 | 148 55| 22 15 3 4
pmd 1092 173 779 238 58 65 26 9 8
xalan 1335 183 852 449 75 13 1 0 1
Fig. 19. Static field access statistics for DaCapo
150%
“oa\o&go SESS S55= “o?—goé: Saee Ontae O “oié:gj Seesese ag:g:g: Seeee | S5S=
100% -

50%

0%

\
N
N

OFirst Runs
BLast Runs

B

o N S Y

DOBaseline
B1Colocation
QInstance Fusing

B Array Fusing

antlr

Fig. 20.

bloat chart eclipse fop hsqgldb

jytho

b N B R R)
T TFFTF

n luindex lusearch pmd

xalan

Speedup compared to baseline for DaCapo (taller bars are better)

mean

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

28 : Christian Wimmer and Hanspeter Mossenbock

The speedup of object fusing is lower compared to SPECjvm98, and there are
more benchmarks without a speedup at all. The main constraint of our approach is
object co-allocation. When the time frame between the allocation of a parent and
its children is too long, the allocations do not appear in the same compiled method
so co-allocation is not possible. A complex control flow between the allocations
also hinders co-allocation. Additionally, the DaCapo benchmarks use more dynamic
data structures where references to instances are changed several times. This cannot
be handled by instance fusing.

The benchmark pmd benefits from object colocation. Changing the object order
reduces the number of cache misses and leads to a speedup of 4%. Object fusing
has no impact because too few field accesses are eliminated.

In contrast, about two thirds of the loads of array references are eliminated for
the benchmark luindex. Most of the eliminated loads are actually loads of the same
field for the same object, i.e., mostly cache hits. Nevertheless, the large number of
eliminated loads still leads to a speedup.

The dynamic field access statistics reflect only one of the optimizations that
are performed for fused fields. Other benefits such as the increased amount of
static type information affect the benchmark speed. For example, the benchmarks
antlr and eclipse show a speedup although no significant number of field loads are
eliminated. All other compiler optimizations benefit from object fusing, however
the exact impact of the different optimizations is difficult to quantify. Examples
of optimizations are the elimination of type checks and improved method inlining
because of statically known receiver types.

Our object colocation algorithm is embedded into the garbage collector and in-
troduces a small but measurable overhead. This overhead outweighs the benefit for
some of the benchmarks. For example, the benchmark antlr is slightly slower with
object colocation, but then benefits from object fusing. For some other benchmarks
such as fop and hsqldb, the overhead is higher than the benefit for all configurations.
However, no benchmark has a slowdown of more than 2%.

Our baseline, the Java HotSpot™ VM, is a production-quality Java VM. In
contrast to research virtual machines, all subsystems are heavily tuned for perfor-
mance. Even small extensions to critical paths like the garbage collector lead to a
measurable slowdown. Additionally, our implementation of object fusing supports
all parts of the Java specification, especially dynamic class loading. This requires
a conservative handling in some cases. Therefore, the speedup for the benchmarks
is lower compared to other implementations mentioned in the related work. How-
ever, we believe that our results are meaningful and reflect the actual impact of the
optimizations in practice.

7. RELATED WORK

This section discusses other research projects that work on similar optimizations.
So far, object fusing was only performed in static compilers (under the term object
inlining), while object colocation was usually integrated into virtual machines.

7.1 Object Inlining

Dolby et al. extended a static compiler with an algorithm for automatic object
inlining [Dolby 1997; Dolby and Chien 1998; 2000]. The input language is ICC++,

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 29

a dialect of C++. Their algorithm clones the code of methods that access optimized
fields. Therefore, there can be both optimized and unoptimized objects of the same
class as long as the same method always works on objects of the same kind. Because
they use an advanced interprocedural data-flow analysis, they are able to convert
arrays of references to arrays of object values. Our analysis is not capable of
performing such transformations. However, we can handle dynamic arrays where a
field is changed to point to arrays of different sizes. This is not possible in any of
the existing static approaches. A collection of medium-sized applications shows a
maximum speedup of 50%.

Laud implemented object inlining in a static Java compiler [Laud 2001]. This
algorithm can detect and handle the case when a child object is replaced with
a new object. Instead of replacing the inlined field with a reference to the new
object, the fields of the new object are assigned to the fields of the old object. It
is, however, not allowed that a child object is referenced by anything other than
its parent object, e.g., by a field of another object. No details regarding arrays are
published. To the best of our knowledge, only the detection of inlinable fields was
implemented, but not the necessary program transformations that remove loads of
inlined fields. Therefore, no benchmark results are available.

Lhotak et al. provide a good introduction to object inlining and analyze the pos-
sible impact on several Java benchmarks [Lhotdk and Hendren 2005]. Depending on
the access pattern, they distinguish four classes of inlinable fields, and use this clas-
sification to compare the number of fields that can be optimized by the algorithms of
Dolby and Laud. According to their terms, our algorithm can optimize references to
instances that satisfy the predicates [contains-unique/ and [unique-container-same-
field], and references to arrays that satisfy the predicate [unique-container-same-
field]. Requiring only a single predicate for arrays is an improvement compared
to the algorithms of Dolby and Laud, which require at least two predicates to be
fulfilled. The study does not describe an analysis or implementation for object
inlining, so no benchmark results are published. They only list the most important
inlinable fields for SPECjvm98 and some other benchmarks.

Veldema et al. present an algorithm for object combining that groups objects with
the same lifetime [Veldema et al. 2005]. Their optimizations are integrated into
Manta, a static compiler for Java. Object combining is more aggressive than object
inlining because it also optimizes unrelated objects if they have the same lifetime.
This allows the garbage collector to free multiple objects at once. Elimination of
pointer accesses is performed separately by the compiler. Similar to our approach,
they retain the object headers of child objects, which contain the virtual method
table and a flags field. Fusing of a single variable-length array per object group is
possible. Their optimizations focus on reducing the overhead of memory allocation
and deallocation. This is beneficial for their system because it uses a mark-and-
sweep garbage collector where these costs are high. They report a speedup of up
to 34% for a set of object-oriented applications.

Ghemawat et al. use a cheap interprocedural analysis for object inlining and
for other optimizations [Ghemawat et al. 2000]. Their analysis is integrated into
Swift, an optimizing static Java compiler for the Alpha architecture. They collect a
variety of properties for each field, e.g., whether the field is never null or whether

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

30 : Christian Wimmer and Hanspeter Mossenbock

it is always assigned an object of the same type. Objects can be inlined either
with or without their header. The header is necessary when the child object can be
referenced from outside the parent. Arrays with variable length are not optimized.
There are no timing results with only object inlining enabled, so it is not possible
to quantify the impact of object inlining.

Budimlic et al. present a static Java bytecode optimizer that performs object
inlining [Budimli¢ and Kennedy 1997]. When they inline an instance, they eliminate
the allocation and replace the fields by local variables, i.e., they perform scalar
replacement of instances. For arrays, they replace an array of references by separate
arrays of scalar values, one for each field of the inlining child. This is consistent
with our definition of inlining because it performs address arithmetic to combine an
array access and a field load into a single array access. The evaluation is limited to
four small mathematical computations where their optimization is highly effective,
leading to a speedup of up to 460%.

7.2 Object Colocation

Huang et al. describe a system called online object reordering [Huang et al. 2004],
implemented for the Jikes RVM. They use the adaptive compilation system of
Jikes that periodically records the currently executed methods. Fields accessed in
the most frequently recorded methods are traversed first by the garbage collector.
This information is not as precise as our dynamic numbers obtained from the read
barriers. By using the existing interrupts of Jikes, their analysis has a low run-time
overhead of 2% to 3%.

Chilimbi et al. use generational garbage collection for cache-conscious data place-
ment [Chilimbi and Larus 1998] and present results for the dynamically typed and
purely object-oriented programming language Cecil. They collect run-time informa-
tion about accessed objects using a sequential buffer. When an object is accessed,
its address is written into the next free position of the buffer. This information is
converted to an object affinity graph before garbage collection. Objects that are
accessed together with at most one other object access in between are added to the
graph. The garbage collector places such objects next to each other in memory.
They report a reduced execution time of 14% to 26% for their benchmarks.

Chen et al. use garbage collection as a proactive technique to improve the locality
of objects [Chen et al. 2006], i.e., they trigger garbage collection when the locality
should be improved. The run-time analysis is similar to the one of Chilimbi, however
it is enabled only during short sampling intervals. The implementation is integrated
into the Common Language Runtime of Microsoft. The evaluation with several C#
applications shows an average speedup of 17%, with an analysis overhead of less
than 3%.

Shuf et al. improve the locality of objects in Java applications [Shuf et al. 2002]
using frequently instantiated types, called prolific types. Their implementation is
integrated into the Jikes RVM. The just-in-time compiler uses an allocation profile
to co-allocate at most two objects if they have both a prolific type and if they
are connected by a field. The garbage collector preserves this optimized order
using a modified object traversal algorithm. When only co-allocation is performed,
they report speedups of up to 21% with a non-copying mark-and-sweep collector
where object allocation costs are high, but they observe no speedup with a copying

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 31

collector. This is consistent with our experience that co-allocation itself is not
beneficial if object allocations are cheap.

Chilimbi et al. perform structure splitting for structures of a size comparable to
the cache line size [Chilimbi et al. 1999]. With splitting, the hot fields of multiple
objects end up in the same cache line. They use profiling data collected by an
instrumented version of the application to guide a static compiler for Java. Together
with cache-conscious object colocation performed by the garbage collector, they
report a speedup of 18% to 28%.

8. FUTURE WORK

The benchmark results show that removing field loads is profitable for many appli-
cations, and that the overhead is reasonably small if no optimization is possible. In
some cases, we are conservative and do not optimize where the expected benefit was
too small compared to the implementation complexity. The following small-scale
improvements could be implemented without changing the overall architecture of
our system:

—Some algorithms handle complicated cases conservatively, mostly the algorithm
for object co-allocation. Improvements of co-allocation would directly lead to
more fields that can be fused.

—We do not optimize fields that are accessed using the dynamic features of Java,
i.e., reflection, the Java Native Interface, and object cloning. However, we did
not see a field where optimization is not possible solely because of this constraint.

—In general, fusing of array elements is not possible with our approach. However,
some special cases could be handled, e.g., rectangular multi-dimensional arrays.

Some constraints result from the basic design of our approach. We do not sup-
port certain optimizations because they would introduce too much complexity that
cannot be handled in our dynamic approach. A future implementation of object
fusing could rely more on static analysis in favor of more optimizations.

For example, we do not allow optimized and unoptimized instances of the same
class to coexist. This is the most severe restriction because a single allocation site
where co-allocation is not possible prevents the fusing of a field in all instances and
subclass instances. If instances were separated into disjoint groups, the optimization
of a single group would be possible. This would require some sort of interprocedural
analysis. While an interprocedural data-flow analysis is complicated and expensive
because of dynamic class loading, a limited form could be sufficient for this purpose.

Our approach eliminates neither the object headers of fused objects nor the
pointers to fused fields. This is necessary because we use a dynamic optimization
model that smoothly transitions between unoptimized and optimized machine code.
This approach does not allow structural changes of the heap. To support such
changes, explicit phases would have to be introduced. For example, removing a
field from all objects of a certain class would require a single transition point at
which the heap is rewritten.

After this point, accessing the field would no longer be allowed, i.e., all methods
that access the field would have to be rewritten at this point. This would require
information about all places where the optimized field is loaded, in addition to our

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

32 : Christian Wimmer and Hanspeter Mossenbock

information where the field is stored. If deoptimization is necessary, the heap would
have to be rewritten again to reintroduce the field. Future work could investigate
whether the complexity of such phase changes is justified by the reduced memory
consumption of the optimized application.

9. CONCLUSIONS

We presented a feedback-directed approach for object colocation, instance fusing,
and array fusing. Colocation improves the spatial locality of the heap, and fusing re-
places field loads with address arithmetic. In contrast to previous static approaches,
our optimization is performed automatically at run time when applications are ex-
ecuted in the Java HotSpot™ VM. Following the approach of feedback-directed
optimization, we use read barriers to detect frequently accessed fields that are
worth being optimized. While the actual optimization that eliminates a field load
is quite simple and straightforward, the preceding analysis steps that guarantee
the necessary preconditions are challenging. The evaluation with several standard
benchmarks showed that a speedup can be achieved for a highly optimized and
production-quality Java VM with only optimizing a handful of fields.

Rather than viewing just-in-time compilation and garbage collection as a run-
time overhead stealing time that could have been spent executing the application,
we consider them as a powerful vehicle for dynamic optimizations. Our array fusing
where the fields are modified at run time is one example of an optimization that is
not possible in statically compiled languages such as C+—+.

Acknowledgements

We would like to thank the Java HotSpot™ compiler team at Sun Microsystems,
especially Thomas Rodriguez, Kenneth Russell, and David Cox, for their persistent
support, for contributing many ideas, and for helpful comments on all parts of the
Java HotSpot™ VM. We also thank Thomas Kotzmann and Thomas Wiirthinger
for their valuable comments on the work and this paper.

REFERENCES

ARrNOLD, M., FINK, S. J., GROVE, D., HIND, M., AND SWEENEY, P. F. 2005. A survey of adaptive
optimization in virtual machines. Proceedings of the IEEE 93, 2, 449-466.

BALL, T., MATAGA, P., AND SAGIV, M. 1998. Edge profiling versus path profiling: The showdown.
In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, New York, 134-148.

BLACKBURN, S. M., GARNER, R., HorrMmAN, C., KHAN, A. M., McKINLEY, K. S., BENTZUR, R.,
DiwaN, A., FEINBERG, D., FRAMPTON, D., GUYER, S. Z., HIrRZEL, M., HOSKING, A., JumMP, M.,
LEE, H., Moss, J. E. B., PHANSALKAR, A., STEFANOVIC, D., VANDRUNEN, T., VON DINCKLAGE,
D., AND WIEDERMANN, B. 2006. The DaCapo benchmarks: Java benchmarking development and
analysis. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications. ACM Press, New York, 169-190.

BupiMLI¢, Z. AND KENNEDY, K. 1997. Optimizing Java: Theory and practice. Concurrency:
Practice and Ezperience 9, 6, 445-463.

CHEN, W., BHANSALI, S., CHILIMBI, T. M., GAo, X., AND CHUANG, W. 2006. Profile-guided
proactive garbage collection for locality optimization. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM Press, New York,
332-340.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

Automatic Feedback-Directed Object Fusing : 33

CHiLiMBI, T. M., DAVIDSON, B., AND LARUS, J. R. 1999. Cache-conscious structure definition.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM Press, New York, 13-24.

CHiuiMBI, T. M. AND LARuUs, J. R. 1998. Using generational garbage collection to implement
cache-conscious data placement. In Proceedings of the International Symposium on Memory
Management. ACM Press, New York, 37—48.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently
computing static single assignment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems 13, 4, 451-490.

DoLBy, J. 1997. Automatic inline allocation of objects. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM Press, New York,
7-17.

DoLBY, J. AND CHIEN, A. 1998. An evaluation of automatic object inline allocation techniques.
In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. ACM Press, New York, 1-20.

DoLBy, J. AND CHIEN, A. 2000. An automatic object inlining optimization and its evaluation.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM Press, New York, 345-357.

GHEMAWAT, S., RANDALL, K. H., AND ScaLgs, D. J. 2000. Field analysis: Getting useful and
low-cost interprocedural information. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM Press, New York, 334-344.

GOSLING, J., Jov, B., STEELE, G., AND BrRACHA, G. 2005. The Java™ Language Specification,
3rd ed. Addison-Wesley, Reading.

GRIESEMER, R. AND MITROVIC, S. 2000. A compiler for the Java HotSpot™ virtual machine.
In The School of Niklaus Wirth: The Art of Simplicity, L. Boszérményi, J. Gutknecht, and
G. Pomberger, Eds. dpunkt.verlag, Heidelberg, 133—152.

HEGDE, R. 2008. Optimizing Application Performance on Intel Core Microarchitecture Using
Hardware-Implemented Prefetchers. Intel Software Network.

HOLzLE, U., CHAMBERS, C., AND UNGAR, D. 1992. Debugging optimized code with dynamic
deoptimization. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM Press, New York, 32—43.

Huang, X., BLACKBURN, S. M., McKINLEY, K. S., Moss, J. E. B., WANG, Z., AND CHENG,
P. 2004. The garbage collection advantage: Improving program locality. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications. ACM Press, New York, 69-80.

ISO/IEC. 2003. C++, 2nd ed. International Standard ISO/IEC 14882.

ISO/IEC. 2006. Common Language Infrastructure (CLI), 2nd ed. International Standard
ISO/IEC 23271.

JONES, R. AND LiNs, R. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. John Wiley & Sons, Chichester.

KoTrzMmANN, T., WIMMER, C., MOSSENBOCK, H., RODRIGUEZ, T., RUSSELL, K., AND Cox, D. 2008.
Design of the Java HotSpot™ client compiler for Java 6. ACM Transactions on Architecture
and Code Optimization 5, 1, Article 7.

Laup, P. 2001. Analysis for object inlining in Java. In Proceedings of the Joses Workshop.

LHOTAK, O. AND HENDREN, L. 2005. Run-time evaluation of opportunities for object inlining in
Java. Concurrency and Computation: Practice and Experience 17, 5-6, 515-537.

LinpHOLM, T. AND YELLIN, F. 1999. The Java™ Virtual Machine Specification, 2nd ed. Addison-
Wesley, Reading.

SHUF, Y., GupTA, M., FRANKE, H., APPEL, A., AND SINGH, J. P. 2002. Creating and preserving
locality of Java applications at allocation and garbage collection times. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications. ACM Press, New York, 13-25.

SPEC 1998. The SPECjvm98 Benchmarks. Standard Performance Evaluation Corporation.
http://www.spec.org/jvm98/.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

34 : Christian Wimmer and Hanspeter Mossenbock

Sun Microsystems, Inc. 2009. JDK 7 Project. Sun Microsystems, Inc. https://jdk7.dev.java.net/.

VELDEMA, R., Jacons, C. J. H., HorMaN, R. F. H., aAND BAL, H. E. 2005. Object combining:
A new aggressive optimization for object intensive programs. Concurrency and Computation:
Practice and Ezperience 17, 5-6, 439-464.

WIMMER, C. 2008. Automatic object inlining in a Java virtual machine. Ph.D. thesis, Johannes
Kepler University Linz.

WIMMER, C. AND MOSSENBOCK, H. 2005. Optimized interval splitting in a linear scan register
allocator. In Proceedings of the ACM/USENIX International Conference on Virtual Execution
Environments. ACM Press, New York, 132-141.

WIMMER, C. AND MOSSENBOCK, H. 2006. Automatic object colocation based on read barriers. In
Proceedings of the Joint Modular Languages Conference. LNCS 4228, Springer-Verlag, Berlin
/ Heidelberg, 326-345.

WIMMER, C. AND MOSSENBOCK, H. 2007. Automatic feedback-directed object inlining in the Java
HotSpot™ virtual machine. In Proceedings of the ACM/USENIX International Conference
on Virtual Ezxecution Environments. ACM Press, New York, 12-21.

WIMMER, C. AND MOSSENBOCK, H. 2008. Automatic array inlining in Java virtual machines.
In Proceedings of the International Symposium on Code Generation and Optimization. ACM
Press, New York, 14-23.

WURTHINGER, T., WIMMER, C., AND MOSSENBOCK, H. 2009. Array bounds check elimination in
the context of deoptimization. Science of Computer Programming 74, 5—6, 279-295.

Accepted for Publication in ACM Transactions on Architecture and Code Optimization

