
Automatic Feedback-Directed Object Inlining
in the Java HotSpotTM Virtual Machine ∗

Christian Wimmer Hanspeter Mössenböck
Institute for System Software

Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University Linz

Linz, Austria
{wimmer, moessenboeck}@ssw.jku.at

Abstract
Object inlining is an optimization that embeds certain referenced
objects into their referencing object. It reduces the costs of field ac-
cesses by eliminating unnecessary field loads. The order of objects
in the heap is changed in such a way that objects that are accessed
together are placed next to each other in memory so that their offset
is fixed, i.e. the objects are colocated. This allows field loads to be
replaced by address arithmetic. We implemented this optimization
for Sun Microsystems’ Java HotSpotTM VM. The analysis is per-
formed automatically at run time, requires no actions on the part of
the programmer and supports dynamic class loading.

We use read barriers to detect the most frequently accessed
fields that are worth being optimized. To safely eliminate a field
load, the colocation of the object that holds the field and the object
that is referenced by the field must be guaranteed. Two precondi-
tions must be satisfied for a field before it is optimized: the objects
must be allocated together, and the field must not be overwritten
later. These preconditions are checked by the just-in-time compiler
to avoid a global data flow analysis. The garbage collector ensures
that groups of colocated objects are not split: it copies groups as a
whole to their new locations.

The evaluation shows that our dynamic approach successfully
identifies and optimizes frequently accessed fields for several
benchmarks. The improved peak performance of 9% in average
for SPECjvm98 (with a maximum speedup of 51%) justifies the
startup overhead of 3% in average (with a maximum slowdown
of 11%) that is caused mainly by the read barriers and the addi-
tional compilation of methods.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Incremental compilers, Memory manage-
ment, Optimization

General Terms Algorithms, Languages, Performance

Keywords Java, object inlining, object colocation, just-in-time
compilation, garbage collection, optimization, cache, performance

∗ This work was supported by Sun Microsystems, Inc.

c© ACM, 2007. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in the Proceedings of the 3rd International Conference on Virtual Execution
Environments, pp. 12–21.

VEE’07, June 13–15, 2007, San Diego, California, USA.
http://doi.acm.org/10.1145/1254810.1254813

1. Introduction
Object-oriented programming encourages programmers to decom-
pose applications into a large number of small classes with a
well-understandable and well-testable functionality. While this
paradigm improves the code quality, it can have a negative impact
on the application’s performance because it increases the number
of objects that reference each other as well as the number of field
loads that access the referenced objects. This can be avoided by
placing such objects consecutively in the heap and replacing the
field loads by address arithmetic, which is called object inlining.

JavaTM source code [6] is compiled to platform-independent
bytecodes that are executed by a virtual machine [15]. To achieve
a high execution speed, modern Java virtual machines translate the
bytecodes of frequently executed methods to optimized machine
code using a just-in-time compiler. This approach offers the oppor-
tunity to integrate object inlining into the just-in-time compiler and
apply it dynamically for fields that are frequently accessed. The
garbage collector of the virtual machine that moves live objects to
new locations can be used to ensure that optimized objects are lo-
cated consecutively in the heap.

Figure 1 illustrates the idea of object inlining. A Rectangle ob-
ject references two Point objects to specify its vertices. Normally,
the three objects are independent. Two field loads are necessary to
access a coordinate, e.g. of the field p1 and the field x, because the
address of the point must be loaded first. The objects are spread
over the heap, which leads to a bad cache behavior. Object inlining
combines the three objects to a larger group so that a coordinate
can be accessed without loading the point first.

p1
p2

Rectangle

x
y

Point

x
y

Point

8

12

8

12

8

12

(a) unoptimized objects

p1
p2

Rectangle

x
y

Point

x
y

Point

8

12

16

24

28

32

40

44

8

12

8

12

(b) after object inlining

Figure 1. Motivating example for object inlining.

12

In programming languages like C++, this merging can be per-
formed by the programmer using value objects. The same class can
be used both to define reference objects and value objects. This is
error prone because of the different semantics, e.g. when variables
are assigned. C# avoids this ambiguity: the class designer must ex-
plicitly specify if a class is used for reference objects or value ob-
jects, which prohibits a flexible re-use of classes. Java does not of-
fer value objects at the language level in favor of a simple object
model.

In general, the access pattern of objects depends on how an ap-
plication is used and which classes are dynamically loaded. There-
fore, fields that are worth being optimized must be detected at run
time. We use read barriers that increment a per-field counter to
identify frequently accessed “hot fields”. The analysis which fields
can be inlined is done by the just-in-time compiler: methods that
affect inlining are scheduled for compilation, and the compiler re-
ports feedback data to the object inlining system. Additionally, we
use the garbage collector to ensure that related objects are placed
next to each other in the heap. When all preconditions are satisfied,
the just-in-time compiler removes field loads for inlined fields.

To the best of our knowledge, our approach is the first that
applies object inlining at run time in a virtual machine without
requiring actions on the part of the programmer. Most existing
solutions perform object inlining in a static compiler and use a
time-consuming global data flow analysis to identify fields that
should be inlined. This paper contributes the following:

• We propose to integrate automatic object inlining as a feedback-
directed optimization into a Java virtual machine and to apply
it at run time for frequently accessed fields.

• We support Java’s dynamic class loading. Instead of a global
data flow analysis, we use the just-in-time compiler for both the
analysis and optimization of methods.

• We evaluate our implementation using several standard bench-
marks and report results for different configurations.

The rest of the paper is organized as follows: Section 2 gives a
short overview of the relevant subsystems in the Java HotSpotTM

VM and introduces the components of our object inlining system.
Section 3 explains the optimization process for a field and presents
the analysis steps. Section 4 comments on the details of some im-
portant aspects. Section 5 presents the benchmark results. Section 6
and 7 deal with future and related work, and Section 8 concludes
the paper.

2. System Overview
We build on Sun Microsystems’ Java HotSpotTM VM, which is
part of the JDK 6 [21]. Figure 2 shows the structure of the de-
fault configuration for interactive desktop applications. It uses a
fast just-in-time compiler, called the client compiler [7], and a gen-
erational garbage collector with two generations. It is available for
Intel’s IA-32 and Sun’s SPARC architecture, but object inlining is
currently only implemented for the IA-32 architecture because of
platform-dependent code patterns in the just-in-time compiler.

After the bytecodes of a method have been loaded by the class
loader, they start being executed by the interpreter. If the invo-
cation counter of a method reaches a certain threshold, the byte-
codes are compiled to optimized machine code. The compiler uses
a graph-based high-level intermediate representation (HIR) with an
explicit control flow graph for global optimizations, and a low-level
intermediate representation (LIR) for linear scan register alloca-
tion [23].

Compilation is done in the background in a separate thread.
The compiler performs aggressive optimizations such as inlining of
dynamically bound methods. If an optimization is invalidated later,

bytecodes

heap

machine code

jit compilerinterpreter

garbage collector

stop-and-copy

mark-and-compact

class loader

loads

young generation

old generation

execution engine

executes generates

access fields

collects

collects

compiles

Figure 2. System structure of the Java HotSpotTM VM.

e.g. because of dynamic class loading, the VM can deoptimize the
machine code and continue the execution of the current method in
the interpreter [8].

The heap is divided into a young and an old generation. The
young generation is collected using a stop-and-copy algorithm that
copies live objects between alternating spaces. Objects that survive
a certain number of collections are promoted to the larger old
generation. If the old generation fills up, a full collection of both
generations is done using a mark-and-compact algorithm [10].

2.1 Definitions

Object inlining operates on groups of objects that are in a parent-
child relationship. The parent object contains a field that points to
a child object. The child is also called the inlined object. A child
has exactly one parent, but a parent can have multiple children.
Therefore, a group can consist of more than two objects.

Object inlining always involves a field that is declared in the
class of the parent object and that points to the child object. We
denote this field as an inlined field. In the example, the Rectangle
object is the parent object and the Point objects are the children of
the rectangle. The points are referred to by the fields p1 and p2, so
these are the inlined fields.

Object inlining should not be confused with method inlining:
method inlining is a compiler optimization that replaces a call to a
method by a copy of the method body. This eliminates the overhead
of method dispatching.

2.2 Design Principles of Object Inlining

Our object inlining system is designed to be automatic (i.e. it does
not require programmer interaction), dynamic (i.e. it is applied at
run time and supports the dynamic class loading of Java), and
feedback-directed (i.e. it uses profiling information collected at
run time to decide which fields are to be optimized). Because all
analysis and optimization steps are happening during the execution
of the application, the time necessary for the analysis adds to the
total run time. Therefore, the analysis must be fast, which precludes
a global data flow analysis and requires a conservative algorithm in
several cases.

Object inlining affects several subsystems of the VM. Most of
our modifications concentrate on two parts where changes are in-
evitable: the just-in-time compiler and the garbage collector. Other
subsystems, for example the class loader, the interpreter and the
internal representation of classes, contain small changes such as
notifications when new classes are loaded. Many other subsystems
are completely unchanged, including the locking scheme for syn-
chronizing objects [17] as well as the handling of threads and safe-
points.

13

co-allocation
field store guards

object inlining

object colocation

method tracking

collect method information
during class loading

hot-field detection

check preconditions
in jit compiler

optimized field load

read barriers inserted
by jit compiler

colocation in
garbage collector

run-time monitor normal field loadprecondition
invalidated

successful

failed

Figure 3. Components for object inlining.

The layout of objects is not changed during object inlining.
The parent object and its children remain distinct objects, but we
guarantee that they are located consecutively in the heap. The
parent’s fields that point to the children are still present, and the
object headers of the children are preserved. This allows the normal
access of optimized fields in subsystems that would not benefit
from object inlining, such as the interpreter and the synchronization
system. It also allows a smooth transition to optimized machine
code. In the example in Figure 1, this is indicated by the dashed
lines between the inlined objects.

We define two sufficient preconditions that a field must satisfy
to safely apply object inlining:

1. The parent and the child object must be allocated together, and
the field store that installs a reference to the child object into the
parent object must happen immediately after the allocations.

2. The field referencing the child must not be modified after the
allocation. If the field were overwritten later with a new value,
the new object would not be colocated to the parent and the
optimized field load would still access the old child object.

2.3 Components for Object Inlining

Figure 3 shows the components that are required for object inlining
as well as their interactions. This section contains a short descrip-
tion of the components, and Section 3 presents details and exam-
ples. The components are not invoked sequentially, but the phases
are partly overlapping because method execution, compilation and
garbage collection are asynchronous.

• Method tracking: The class loader builds the method table that
contains information about methods that allocate objects as well
as methods that modify fields.

• Hot-field detection: When a method is compiled, read barriers,
i.e. increments of per-class counters, are inserted for all field
loads. If a counter for a field f exceeds a certain threshold, f is
considered to be hot and is entered into the hot-field table.

• Object colocation: When the garbage collector moves objects, it
processes groups of objects that are linked by hot fields together
so that the parent object and its children are consecutive.

• Co-allocation: For every hot field f linking a parent object of
class P to a child object of class C, the methods that allocate P
objects are compiled. If possible, the compiler combines the al-
locations of P and C objects to a co-allocation. This ensures that

initial

counting

compile with co-allocation

full garbage collection

inlined

insert read barriers

field considered hot

inlining failed

colocated

co-allocation
not possible

precondition
invalidated

unoptimized

 field not hot

compile with field store guards
guard executed

at run time

Figure 4. Optimization phases for a field.

the newly allocated objects are placed next to each other in the
correct order. If co-allocation is not possible, then object inlin-
ing of f fails. This includes the cases where C is not allocated
in all cases, i.e. where f can be null for some code paths. To-
gether with object colocation, co-allocation guarantees the first
precondition for object inlining.

• Guards for field stores: For every hot field f, the methods that
modify f are compiled. The compiler inserts guards before the
field stores. When a guard is executed later, object inlining of
f fails and methods with optimized field loads are deoptimized.
This guarantees the second precondition for object inlining.

• Optimized field load: When the preconditions for a field are
satisfied, loads of the field are optimized, i.e. the memory access
is replaced by address arithmetic. In some cases, it is also
possible to optimize array bounds checks and dynamic type
checks.

• Run-time monitor: It is possible that object inlining fails after
optimized field loads were emitted, e.g. when a class is loaded
later that invalidates a precondition. The run-time monitor de-
tects these cases. All methods with optimized field loads are
deoptimized, and execution continues with normal field loads.

If a precondition for a hot field cannot be guaranteed, object
inlining is not possible and the field loads must remain. However,
it is still possible to colocate the objects during garbage collection
to improve the cache behavior. Therefore, object colocation in the
garbage collector processes all hot fields regardless of their object
inlining state.

3. Optimization Process for a Field
To detect if a field is worth being optimized and to guarantee the
preconditions for object inlining, each field runs through the opti-
mization phases shown in Figure 4. This section explains the de-
tails for each phase using the example started in Figure 1. Figure 5
shows the corresponding Java source code that defines the data
classes as well as a test class that allocates an object. Our object
inlining algorithm succeeds to inline the two Point objects into
the Rectangle object and to eliminate the field loads for the fields
p1 and p2 in the method area().

14

class Point {
 int x, y;
}

class Rectangle {
 Point p1, p2;

 Rectangle() {
 p1 = new Point();
 p2 = new Point();
 }

 int area() {
 return Math.abs((p1.x - p2.x) * (p1.y - p2.y));
 }
}

class Test {
void allocate() {

 Rectangle rect = new Rectangle();
 // do something with rect
 }
}

Figure 5. Java source code for the example classes.

3.1 Method Tracking

The class loader maintains a so-called method table, which maps
class names to methods that allocate objects of this class, as well
as field names to methods that modify this field. This activity is
called method tracking. Information from the method table is used
in subsequent steps to decide which methods must be compiled
with co-allocation (see Section 3.4) and field store guards (see
Section 3.5).

All names are fully qualified, i.e. the class name contains the
package name, and the field name contains the class name. Un-
fortunately, it is not possible to use the internal metadata objects
of the VM as keys instead of the names. Because linking is not
done during class loading, but at the first execution, the metadata
is not available yet. This introduces a small imprecision because
two classes with the same package name and the same class name
loaded by different class loaders (which is allowed in Java) cannot
be distinguished.

The method tracking data is stored in a single hash table that is
indexed by class and field names. Figure 6 shows the method table
for our example classes. Because every class and field is allocated
or stored only in one method of our example, the method list on the
right-hand side contains only one element for each entry.

new Point Rectangle.Rectangle()
new Rectangle Test.allocate()
putfield Rectangle.p1 Rectangle.Rectangle()
putfield Rectangle.p2 Rectangle.Rectangle()

key (class or field) value (list of methods)
1

2

3

4

Figure 6. Method table for the example.

To guarantee the preconditions of object inlining for the fields
p1 and p2, both Test.allocate() and the Rectangle construc-
tor must be compiled. Test.allocate() allocates an object of
the parent class Rectangle (entry 2) and must therefore be com-
piled with co-allocation. If the co-allocation were not possible, ob-
ject inlining would fail. The constructor of Rectangle modifies
the fields (entries 3 and 4), therefore it must be compiled with field
store guards. If it were ever executed, object inlining would fail.
The first entry is never used: object allocations of the child class
Point are always allowed, even if they allocate objects that are not
combined with a parent.

3.2 Hot-Field Detection

At first, all methods are executed in the interpreter that maintains
method invocation counters. If a method counter reaches a thresh-
old, the method is scheduled for compilation. When the method
area() that loads the fields p1 and p2 is compiled, the compiler
emits read barriers that increment field counters, and the state of
these fields goes from initial to counting. Subsequent executions of
this method increment the field counters.

If a field counter reaches a certain threshold, the field is recorded
in the hot-field tables [24]. The state of the field goes from counting
to colocated. Because the fields p1 and p2 are always accessed
together, they are also detected to be hot at the same time.

The read barriers impose a significant run-time overhead, so
they must be removed when they are no longer needed. This is
accomplished by recompiling the method area() without inserting
read barriers. Because object inlining is possible, the method is
recompiled anyway to perform the optimized field load. However,
even if object inlining of a field fails, methods are recompiled with
normal field access, but without the read barriers.

3.3 Object Colocation

The garbage collector uses the information from the hot-field tables
for object colocation. If a field is accessed frequently, the parent
and the child objects that are connected by the field are likely to be
accessed together. To improve the cache behavior, it is beneficial to
colocate these objects even if object inlining is not possible. If the
objects are colocated, they are probably in the same cache line so
that accessing the parent also brings the child into the cache.

The Java HotSpotTM VM uses a generational garbage collector
with two generations. We modified the stop-and-copy algorithm for
the young generation to copy groups of objects instead of individual
objects. This ensures that a parent object is copied together with all
its child objects. If the parent and the children are not consecutive,
which can happen before the first garbage collection, they are
moved together and the grouping is established. The object groups
are also promoted together to the old generation if they survive a
certain number of copying cycles.

The mark-and-compact algorithm for the old generation pre-
serves the object order during collection. During compaction, ob-
jects are moved towards the beginning of the heap, but they do not
change their order. Therefore, the optimized order of the promoted
objects is retained, and no special handling for object colocation
is necessary. However, objects that were promoted before the field
was identified as hot are not colocated. This can be ignored for the
overall cache performance, but is a problem for object inlining, as
described in Section 3.6.

The code patterns for read barriers, the processing of the read
barrier counters, and the detailed algorithms for object colocation
in the garbage collector, i.e. the detection and copying of object
groups, are described in [24], so the details are omitted here.

3.4 Co-allocation of Objects

Object colocation during garbage collection ensures that a parent
object and its child objects are consecutive after the first garbage
collection run. For object inlining, however, it is a precondition that
the objects are already consecutive immediately after their alloca-
tion. Therefore, co-allocation allocates groups of objects together,
and object colocation ensures that the groups are not separated dur-
ing garbage collection. We integrated co-allocation into the client
compiler.

The high-level intermediate representation (HIR) of the client
compiler consists of a control flow graph of basic blocks and
a data flow graph of instructions. An instruction represents both
an operation and its computation result, so that operands can be
represented as pointers to previous instructions.

15

putfield "p1" (offset: 8)

new Point (size: 16)

new Point

putfield "p2" (offset: 12)

new Rectangle (size: 16)

...

data flow (inverse)

basic block

instruction

Figure 7. HIR fragment of method allocate().

Figure 7 shows the HIR for the method allocate(). The
instructions refer to the state after method inlining. The constructor
of the class Rectangle is inlined, so the two allocations of Point
objects and the two field stores of the constructor are in the same
block as the allocation of the Rectangle object.

To perform co-allocation, we search for putfield instructions
where both the object containing the field and the assigned value
refer to new instructions that are in the same basic block. The allo-
cations are combined to a co-allocation instruction. In the example,
the two putfield instructions satisfy the criteria. Because both
fields are contained in the same object, the three new instructions
are combined to a single co-allocation instruction that is inserted
before the first allocation.

The machine code generated for the co-allocation allocates only
one chunk of memory with 48 bytes that suffices for the three
objects with 16 bytes each. Then the object headers are installed
appropriately—the first Point starts at offset 16, the second at
offset 32. No machine code is generated for the new instructions;
they only yield the already created objects. The machine code of
the putfield instructions remains unchanged.

Co-allocation relies heavily on method inlining. The allocations
can be combined only when the methods that allocate the child
objects are inlined into the method that allocates the parent object.

Object inlining for a field requires that all methods that allocate
objects of the parent class are compiled with co-allocation. If the
co-allocation of one method fails, then the field is not optimized
and the analysis stops. The compiler reports this information as
feedback data to the object inlining system. This avoids data flow
analysis during object inlining.

3.5 Guards for Field Stores

The second precondition for our object inlining defined in Sec-
tion 2.2 states that a field must not be modified after the co-
allocation. To guarantee this, we compile all methods that modify
the field and instrument the field store to revoke object inlining
before the field value is changed at run time. Field stores that are
already part of a co-allocation are ignored.

A static check at compile time would not be sufficient because
field stores for inlined fields are allowed as long as they are not
executed. In our example, field store guards are necessary when
the constructor Rectangle() is compiled. Figure 8 shows the
HIR for the constructor. In contrast to the method allocate()
from the previous section, a co-allocation is not possible here: the
Rectangle object is not allocated in the constructor, but passed in
as the first method parameter.

Therefore, the two putfield instructions of Figure 8 are
guarded. A call into the VM is emitted in front of the machine
code that performs the field stores. The VM method revokes object

putfield "p1" (offset: 8)

new Point (size: 16)

new Point (size: 16)

putfield "p2" (offset: 12)

param 0 ("this")

return

data flow (inverse)

basic block

instruction

Figure 8. HIR of constructor Rectangle().

inlining for the fields p1 and p2. It is, however, very unlikely that
this ever happens. The constructor Rectangle() was inlined in
the method allocate(), which is the only method that allocates
Rectangle objects. Therefore, the constructor itself is executed
only when the application allocates an object using e.g. reflection.

3.6 Transition to Object Inlining

After all methods that allocate parent objects or store the field
are successfully compiled, the two preconditions are satisfied for
all objects that are allocated in the future. However, the heap can
still contain objects that were allocated before the methods were
compiled and that are therefore not yet colocated. Such objects are
colocated by the garbage collector.

Therefore, it is necessary to wait for a full garbage collection
that collects both generations. In this run of the mark-and-compact
algorithm, parent objects are handled specially: the order of objects
is changed also in the old generation if this is necessary to colocate
objects. Before this collection, optimized field loads are not possi-
ble. Therefore, the optimizations described in the next section are
delayed until the full collection has finished.

3.7 Optimized Field Loads

The optimization of loads for inlined fields is again performed
by the just-in-time compiler. Methods that load the field and that
were already compiled are compiled a second time to apply the
optimization. This recompilation also eliminates the read barriers
that previously counted the field loads. There are two possibilities
to optimize field loads:

data flow (inverse)

basic block

instruction

getfield "x" (offset: 8)

getfield "p2" (offset: 12)

sub

...

param 0 ("this")

getfield "p1" (offset: 8)

getfield "x" (offset: 8)

Figure 9. HIR fragment of method area().

16

methods that load the field methods that store the field methods that allocate the field's class

colocate during garbage
collection

compile with
co-allocation

compile with
field store guards

compile with read barriers

execute in interpreter

hot-field tables

guarantee colocation in
full garbage collection

inlining successful

compile with
optimized field load

hot-field detection

object inlining

object colocation

class loader

add to method
table

add to method
table

methods must be compiled methods must be compiled

method invocation counter overflow

read barrier counter overflow

method tracking

add to hot-field tables

Figure 10. Summarized optimization process for object inlining of a field.

1. Address computation: When the address of the child object is
necessary, the inline offset is added to the address of the parent
object. This replaces a field load with an arithmetic instruction.

2. Load folding: When only a field of the child object is accessed,
i.e. when the result of the inlined field load is only used as the
object for another load, the two field loads can be merged into
a single load with a larger offset. This eliminates one field load.

Figure 9 shows the HIR of the method area() that loads the
inlined fields p1 and p2. In this example, load folding is possible.
The first two field loads can be replaced by one load with the offset
16 + 8 = 24, which is the sum of the inline offset of p1 and the offset
of the field x. Analogously, the other two field loads are replaced
by one load with the offset 32 + 8 = 40. The introductory Figure 1
visualizes these offsets.

The correct handling of null pointers complicates the opti-
mization. If a field load can throw a NullPointerException, it
cannot be replaced by address arithmetic. Therefore, object inlining
relies on null check elimination done beforehand by the compiler.
In the example, the compiler can easily identify that the loads of
p1 and p2 cannot cause an exception because the this-parameter
is guaranteed to be non-null.

3.8 Run-Time Monitoring

The preconditions for object inlining can only be guaranteed for
the currently loaded classes. Dynamic class loading can introduce
new methods that allocate parent objects in such a way that co-
allocation is not possible. In this case, object inlining was too op-
timistic and must be undone. This is achieved by deoptimizing all

methods that contain an optimized load for the affected field. Fortu-
nately, this happens rarely. Because the hot-field detection using the
read barriers and the necessary compilations that guarantee the pre-
conditions take some time, most applications have already reached
a stable execution state when a field is inlined.

When examining the preconditions, we only look at methods
that allocate objects or store fields using normal bytecodes. How-
ever, Java offers several other and more dynamic ways for this. Ob-
jects can be allocated and fields can be stored using reflection or the
Java Native Interface (JNI). New objects are also allocated when an
object is cloned using Object.clone().

Because these cases are difficult to handle and rather rare, we
are conservative and disable object inlining for classes that are
allocated and fields that are stored by anything else than bytecodes.
We instrument these subsystems so that our code is called before a
class or field is accessed. If such an access affects an already inlined
field, object inlining is undone using deoptimization.

3.9 Summary

Figure 10 summarizes the steps that are necessary for the success-
ful inlining of a field. The flow chart shows the dependencies of
the subsystems and the order in which methods are analyzed and
compiled to guarantee the preconditions.

4. Analysis Details
This section addresses details that were omitted from the previous
section for clarity. It shows how multiple inlined children, inlining
hierarchies, arrays, class hierarchies and interfaces are handled by
our algorithm.

17

4.1 Multiple Inlined Children and Inlining Hierarchies

Typical traces of frequently accessed fields involve more than one
parent and child object. The example already showed a parent
object that had two inlined children, but it is also possible that an
object is inlined into another already inlined object.

The read barriers can detect that more than one field of a class
is frequently accessed. The first field whose counter reaches the
threshold is the most important one, but the other ones should also
be optimized. In our example, the fields p1 and p2 are equally im-
portant because they are accessed with the same frequency. Inlining
just one of them would be an artificial restriction.

Nevertheless, we perform their inlining in two separate steps.
We allow only one pending inlining request per class at a time in
order to limit the interdependencies during compilation. It would
be difficult to check the preconditions of two or more fields con-
currently, especially when one inlining is successful and the other
one fails.

One object can be parent and child of two different inlined fields
at the same time. Assume that a Rectangle is used to specify
the bounds of a Figure, i.e. that Figure has a field bounds of
the type Rectangle. In this case, it is beneficial to combine the
figure, the rectangle and the two points. The Java code fragment
figure.bounds.p1.x, which requires three field loads in the
unoptimized case, can be optimized to a single field load when the
fields bounds and p1 are inlined.

Such inlining hierarchies do not require a special handling in
our analysis. It is only required that co-allocation is possible for the
whole object group, i.e. the Figure object, the Rectangle object
and the Point objects must be allocated in the same compiled
method.

4.2 Arrays

In most Java applications, array objects are as important as class
instances, but they are more difficult to optimize. They can be both
parent objects, i.e. an array element can point to another object, and
child objects, i.e. they can be referenced by a field.

Object inlining for arrays that are parent objects is impossible
in our approach. It cannot be guaranteed that objects referenced by
array elements are located after the array object. The bytecode for
storing an array element of a reference array, called aastore, does
not contain any static type information. A method that contains
such a bytecode, and that e.g. stores an element of an Object
array passed in as a parameter, can modify any reference array
of the heap. Array store guards similar to our field store guards
are therefore not possible. In contrast, the bytecode for storing
an instance field of an object, called putfield, contains a static
symbolic reference to the field name and to the name of the class
that holds the field [15].

Optimizing arrays that are child objects is similar to normal
instance objects. The only difference is that the number of array
elements and therefore the size of the array can vary. Therefore, we
distinguish two cases:

• When the length of the array is constant at compile time, there
are no differences to instance objects. Our co-allocation com-
bines the array with the parent object, and object inlining is
possible. A field load that loads the array pointer followed by
an array access is folded to an array access with an additional
fixed offset. Furthermore, the array bounds check is simplified
because the array length is constant, which saves another mem-
ory access to load the actual array length.

• When the length of the array is not constant, we do not optimize
the field. This is a restriction of the current implementation
for our co-allocation, but not a general limitation of the object
inlining algorithm.

4.3 Class Hierarchies and Interfaces

Class hierarchies complicate object inlining because subclass ob-
jects can be used as if they were superclass objects. Object inlining
for fields of a superclass is not possible if a subclass adds additional
fields. It is still possible to colocate the children of superclass ob-
jects to subclass objects, but the inlining offsets are not known stat-
ically because subclass objects are larger than superclass objects.
This is the most severe limitation of our dynamic approach where
no global data flow analysis is available to identify sites where only
superclass objects, but no subclass objects can show up.

Assume that in our example a new class ColoredRectangle
is added that extends Rectangle and adds two fields to store a
foreground and a background color. Objects of the new class are 8
bytes larger than objects of the superclass. In contrast to the offsets
shown in Figure 1, the first inlined point would start at offset 24,
and the second at offset 40. However, a ColoredRectangle can
be passed to all methods that expect a Rectangle and thus access
the children with the old offsets 16 and 32, respectively. Therefore,
we do not allow object inlining if the class of the parent object has
subclasses with fields.

In contrast to this, subclasses of Point, for example a class
Point3D that adds a z-coordinate, do not disturb object inlining.
The constructor Rectangle() explicitly allocates Point objects
and not Point3D objects. Therefore, we can allow object inlining
if the class of a child object has subclasses with fields.

Interfaces do not interfere with object inlining. A field can be
declared using an interface type, but during co-allocation, the field
is initialized with an object of a class that implements the interface.
This class is recorded and can even be used by the compiler to
eliminate dynamic type checks because both the field’s declared
type and its dynamic type are known now.

5. Evaluation
Our object inlining algorithm is integrated into the Java HotSpotTM

VM of Sun Microsystems, using the latest product version of the
JDK 6 [21]. All measurements of this section were performed on
an Intel Pentium D processor 830 with two cores at 3.0 GHz,
running Microsoft Windows XP. Each core has a separate L1 data
cache of 16 KByte and an L2-cache of 1 MByte. The cache line
size is 64 bytes for both caches. The main memory of 2 GByte
DDR2 RAM is shared by the two cores. We evaluate our work
with the SPECjvm98 benchmark suite [19] and the SPECjbb2005
benchmark [20].

The SPECjvm98 benchmark suite1 consists of seven bench-
marks derived from real world client applications. They are exe-
cuted several times until the execution time converges. According
to the run rules, the slowest and the fastest runs are reported. The
slowest run, which is always the first one in our case, indicates the
startup speed of a JVM, while the fastest run measures the peak
performance after all JVM optimizations have been applied. The
speedup compared to a reference platform is reported as the met-
ric for each benchmark, and the geometric mean of all metrics is
computed. SPECjbb20052 emulates a client/server application. The
resulting metric is the average number of transactions per second
executed on a memory-resident database.

Scientific applications usually operate on large arrays that can-
not be optimized using object inlining. Therefore, no performance
gain can be expected for such applications. However, there should
also be no slowdown due to the analysis overhead. To verify this,

1 All SPECjvm98 results are not approved metrics, but adhere to the run
rules for research use. The input size 100 was used for all measurements.
2 All SPECjbb2005 results were valid runs according to the run rules. The
measurements were performed with one JVM instance.

18

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%10
2%

97
% 10
0%

10
0%

10
0%

10
0%

98
%

10
0%10

6%

97
% 10
0%

10
0%

10
0%

97
% 10

6%11
6%

10
0% 10

8%

10
2%

10
0%

97
% 10

9%

15
1%

15
1%

10
0%

10
0% 10
3%

10
4%

0%

50%

100%

150%

_227_mtrt _202_jess _201_compress _209_db _222_mpegaudio _228_jack _213_javac SPECjvm98
mean

SPECjbb2005
mean

0

5

1

baseline
read barriers
object colocation
object inlining

1

slowest run
fastest run

Figure 11. Benchmark results for different object inlining configurations relative to the unmodified JDK 6 (taller bars are better).

we performed all measurements also for SciMark 2.0 [16], a bench-
mark for scientific applications that executes several numerical ker-
nels. All configurations mentioned in the next sections showed the
same results.

5.1 Run-Time Impact of Object Inlining

Figure 11 shows how object inlining and its preceding analysis
steps affect the performance of the benchmarks. We report the
results for the individual benchmarks of SPECjvm98, as well as
the mean of SPECjvm98 and the result of SPECjbb2005. For
SPECjvm98, the slowest and the fastest runs are shown on top
of each other: the gray bars refer to the fastest runs, the white bars
to the slowest. Both runs are shown relative to the same baseline,
i.e. the fastest run of the unmodified JDK 6.

The second column, read barriers, shows the overhead neces-
sary to detect the hot fields. Read barriers have a negative effect
especially on the slowest runs. First, the field counters are incre-
mented at run time. To reduce this overhead, the read barriers are
removed when they are no longer necessary by recompiling meth-
ods. This nearly eliminates the overhead for the fastest runs. The
collected information is not used for any optimizations in this con-
figuration.

The column object colocation shows the results when the infor-
mation about hot fields is used to perform object colocation during
garbage collection in order to improve the cache behavior. This has
a major impact on 209 db, which accesses a large number of ob-
jects that are randomly ordered without object colocation. There is
also a speedup for 227 mtrt and SPECjbb2005.

obj arr scalar obj arr obj arr obj arr
_227_mtrt 378 77 311 55 23 11 10 1 4
_202_jess 411 77 404 71 26 16 11 2 2
_201_compress 353 76 293 21 19 7 9 1 4
_209_db 351 74 286 33 18 3 5 1 0
_222_mpegaudio 413 93 343 76 37 24 22 7 9
_228_jack 396 80 327 79 24 23 13 5 3
_213_javac 493 92 341 151 37 36 11 1 0
SPECjbb2005 1822 446 1553 199 86 49 21 2 0
empty 315 54 205 0 1 0 0 0 0

initial counting colocated inlined

Table 1. Number of fields that are optimized.

The last column, object inlining, reports the final results with all
of our code enabled. The benchmarks that showed a speedup with
object colocation are further improved by object inlining. Addition-
ally, 201 compress and 222 mpegaudio show a speedup. The im-
pact on the slowest runs depends on the benchmark characteristics.
If few methods need to be compiled to guarantee the preconditions,
the inlining of a field succeeds early and leads to a speedup. If the
additional compilation overhead is higher than the benefit of ob-
ject inlining, the slowest run is negatively affected. The benchmark
213 javac is the only one that gets slower in each configuration. It

is very sensitive to garbage collection time. Because object coloca-
tion and object inlining modify the garbage collector to copy groups
of objects together, which adds a low but measurable overhead, the
result is negatively affected.

5.2 Statistics of Inlineable Fields

Our analysis performs object inlining field-per-field at run time.
Each field goes through the phases shown in Figure 4. To limit the
analysis overhead, it is important that no time is wasted analyzing
fields that are infrequently accessed.

Table 1 shows that detecting hot fields using read barriers acts as
an effective filter. Even small Java applications load many classes.
The last row of the table shows the field numbers when executing an
application that consists only of an empty method main(). In this
case, all loaded fields are part of the class library and are defined
in classes that set up the infrastructure for running an application.
Also before main() is called, Java code is executed. Two methods
of the class String are frequently executed and therefore com-
piled. In these methods, read barriers for the field String.value
are emitted. The application terminates immediately, so no field is
detected as hot.

The first column initial shows the overall number of fields in all
loaded classes. Based on the declared type, we distinguish object
fields, array fields, and all other scalar types like int and float.
Scalar fields are not relevant for object inlining, so they are ignored.
Most of the several hundred fields are only accessed by methods
that run in the interpreter. The column counting shows the number
of fields for which read barriers are emitted in compiled code.

The read barrier counters are used to determine if a field is
frequently accessed. The numbers of frequently accessed fields
are shown in the column colocated. Only 1% to 7% of all loaded
objects fields and 5% to 24% of the array fields are colocated. This
is essential to keep the overhead during garbage collection low.

To guarantee the preconditions for object inlining at run time,
our analysis is conservative in several cases. This is reflected by

19

baseline
_227_mtrt 171 219 +28% 218 +27% 249 +46%
_202_jess 204 296 +45% 296 +45% 328 +61%
_201_compress 56 75 +34% 75 +34% 93 +66%
_209_db 104 150 +44% 149 +43% 151 +45%
_222_mpegaudio 171 317 +85% 316 +85% 398 +133%
_228_jack 251 362 +44% 362 +44% 410 +63%
_213_javac 641 934 +46% 928 +45% 896 +40%
SPECjbb2005 522 782 +50% 785 +50% 840 +61%
empty 2 2 +0% 2 +0% 2 +0%

obj. colocation object inliningread barriers

Table 2. Number of methods that are compiled.

the low number of fields where object inlining is possible. For some
benchmarks, we optimize the most important fields. For example,
the 5 inlined fields of 227 mtrt lead to a significant speedup. The
single inlined field of 209 db is also the most important one. For
other benchmarks such as 202 jess and 213 javac, our analysis is
too conservative, so the most frequently accessed fields cannot be
inlined yet. An improved algorithm for co-allocation that can e.g.
combine allocations of different basic blocks or arrays with non-
constant length would improve these benchmarks.

5.3 Compilation Overhead

The just-in-time compiler plays an important role in our analysis.
We use it to emit read barriers, to perform co-allocation, to guard
field stores, and finally to optimize field loads. This makes it neces-
sary to compile more methods, and also to compile some methods
twice. Table 2 shows the number of methods that are compiled in
the different configurations.

The removal of read barriers for already hot fields requires that
the methods containing those barriers are recompiled. With the ex-
ception of 222 mpegaudio, this increases the number of compiled
methods by 28% to 50%, i.e. at most every second method is com-
piled twice. Object colocation affects only the garbage collector, so
the number of compiled methods changes insignificantly.

Object inlining is only initiated for the few fields that are fre-
quently accessed. Therefore, the compilation overhead is modest
even though multiple methods must be compiled to guarantee the
colocation of a field and to optimize the field loads. This overhead
is not a bottleneck of our object inlining because the just-in-time
compiler is fast enough and compilation is done in the background
while the application continues to run.

6. Future Work
The speedup of object inlining is directly influenced by the number
of fields that are inlined. Currently, our analysis is conservative
in several places, especially regarding the inlining of arrays. We
plan to extend the analysis so that arrays with a non-constant
length at the allocation site can also be inlined, and to weaken the
precondition that an array field must not change after the allocation.

This is justified by the observation that many array fields rarely
change. For example, the class ArrayList uses an internal array to
store the list elements. This array changes only when an element is
added and the capacity is not large enough. It would be beneficial to
inline the data array so that a list element could be loaded without
loading the array address first.

This requires a special handling of methods that enlarge the data
array so that the store to the field does not invalidate inlining. The
optimized load must detect the change and access the new array
instead of the inlined old one.

7. Related Work
Dolby et al. implemented object inlining in a static compiler for a
dialect of C++ [2, 3, 4]. The compiler offers a highly sophisticated
interprocedural analysis framework. When objects are inlined, all
methods that might access these objects are cloned so that meth-
ods for optimized and unoptimized objects are available. The time
necessary for the analysis varies from one quarter to half of the
total compilation time. The C++ benchmarks showed an average
speedup of 10%, with a maximum of 50% for some benchmarks.
The global data flow analysis and the high compilation time pro-
hibit the integration of such an analysis into a virtual machine.

Laud implemented object inlining for Java in the CoSy compiler
construction framework, a static compiler for Java [13]. In contrast
to our implementation, this algorithm can detect when child objects
are replaced with new ones. It is, however, not allowed that a child
object is referenced by anything else than the parent object, e.g. by
a field of another object. This is possible in our algorithm. To our
knowledge, no benchmark results are published.

Lhoták et al. provide a good introduction to object inlining and
illustrate four classes of inlineable fields, depending on the access
pattern [14]. Using this classification, they compare the number
of fields that are inlineable by the algorithms of Dolby and Laud
for several Java benchmarks, including SPECjvm98. According
to their terms, our algorithm can optimize fields that satisfy the
rules [contains-unique] and [unique-container-same-field], which
are the same rules that are required by the algorithm of Dolby. Their
results show that a significant number of the most frequently ac-
cessed fields can be inlined. However, their research is limited to
object fields; array fields are ignored. We infer from our evaluation
that array fields are equally important as object fields for object in-
lining. The study does not describe an implementation for object in-
lining, so no time measurements except from three hand-optimized
benchmarks are published.

Veldema et al. present an algorithm for object combining that
puts objects together that have the same lifetime [22]. It is more
aggressive than object inlining because it also optimizes unrelated
objects if they have the same lifetime. This allows the garbage col-
lector to free multiple objects together. Elimination of pointer ac-
cesses is performed separately by the compiler. However, they fo-
cus on reducing the overhead of memory allocation and dealloca-
tion. This is beneficial for their system because it uses a mark-and-
sweep garbage collector where these costs are higher.

Similar to our object colocation, several approaches use profil-
ing data to guide the copying order of the garbage collector. The
online object reordering of Huang et al. regards all fields accessed
by frequently executed methods as hot [9], which is not as pre-
cise as our dynamic numbers obtained from the read barriers. The
cache-conscious data placement of Chilimbi et al. uses a technique
similar to our read barriers [1], however it does not distinguish dif-
ferent fields within the same object.

To create and preserve the locality of objects in Java applica-
tions, Shuf et al. co-allocate objects and then preserve this order
during garbage collection [18]. Instead of detecting frequently ac-
cessed fields, they use frequently instantiated types, called prolific
types, to guide the optimization. Similar to our co-allocation, they
build parent-child relationships of objects. A modified traversing
of reachable objects during garbage collection preserves this order.
For co-allocation, they report speedups of up to 21% with a non-
copying mark-and-sweep collector where object allocation costs
are high, but they observe no speedup with a copying collector.
This corresponds with our experience: co-allocation by itself is not
beneficial for the Java HotSpotTM VM.

Escape analysis is another optimization that reduces the over-
head of memory accesses. It detects objects that can be eliminated
or allocated on the method stack. It is orthogonal to object inlining

20

because it optimizes short-living temporary objects, whereas object
inlining optimizes long-living data structures. Kotzmann et al. im-
plemented a new escape analysis algorithm for the Java HotSpotTM

VM [11]. It is fast enough for a just-in-time compiler and handles
all aspects of dynamic class loading. Similarly to our approach,
they must analyze classes that are loaded after the optimization was
performed. If such a class lets a previously optimized object escape
its scope, all affected methods are deoptimized [12].

Ghemawat et al. use a cheap interprocedural analysis not only
for object inlining, but also for other optimizations such as escape
analysis [5]. The analysis was implemented in Swift, an optimizing
static Java compiler for the Alpha architecture. There are no timing
results where only object inlining is enabled.

In a previous paper, we introduced object colocation for the Java
HotSpotTM VM [24]. It presents the code patterns for read barriers
and the detailed algorithm for object colocation during garbage
collection. However, the analysis did not guarantee the colocation
of fields, therefore the optimization of field loads was not possible.
This research extends the analysis to guarantee the preconditions
of object inlining and applies it by eliminating field loads.

8. Conclusions
We presented an object inlining algorithm that optimizes field loads
automatically at run time when applications are executed in the Java
HotSpotTM VM. The most frequently accessed fields are identified
using read barriers. If certain preconditions are satisfied, i.e. the
allocation of the parent and the child object can be combined to a
co-allocation and the field is stored only once during this allocation,
then the field is inlined and subsequent field loads are optimized.

The optimization does not need a global data flow analysis, but
builds on feedback data provided by the just-in-time compiler. All
methods that can influence the inlining of a field must therefore be
compiled. If the preconditions are satisfied in the currently loaded
classes, object inlining is applied optimistically. Deoptimization is
necessary if a precondition is invalidated later by dynamic class
loading. The evaluation with several standard benchmarks showed
that a significant speedup can be achieved with only optimizing a
handful of fields.

Acknowledgments
We would like to thank the Java HotSpotTM compiler team at Sun
Microsystems, especially Thomas Rodriguez, Kenneth Russell and
David Cox, for their persistent support, for contributing many ideas
and for helpful comments on all parts of the Java HotSpotTM VM.
We also thank Thomas Kotzmann for his valuable comments on the
work and this paper.

References
[1] T. M. Chilimbi and J. R. Larus. Using generational garbage collection

to implement cache-conscious data placement. In Proceedings of the
International Symposium on Memory Management, pages 37–48.
ACM Press, 1998.

[2] J. Dolby. Automatic inline allocation of objects. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 7–17. ACM Press, 1997.

[3] J. Dolby and A. Chien. An evaluation of automatic object inline
allocation techniques. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 1–20. ACM Press, 1998.

[4] J. Dolby and A. Chien. An automatic object inlining optimization and
its evaluation. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 345–357.
ACM Press, 2000.

[5] S. Ghemawat, K. H. Randall, and D. J. Scales. Field analysis: getting
useful and low-cost interprocedural information. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 334–344. ACM Press, 2000.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language
Specification. Addison-Wesley, 3rd edition, 2005.

[7] R. Griesemer and S. Mitrovic. A compiler for the Java HotSpotTM

virtual machine. In L. Böszörményi, J. Gutknecht, and G. Pomberger,
editors, The School of Niklaus Wirth: The Art of Simplicity, pages
133–152. dpunkt.verlag, 2000.

[8] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code
with dynamic deoptimization. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 32–43. ACM Press, 1992.

[9] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: improving program
locality. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages
69–80. ACM Press, 2004.

[10] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley & Sons, 1996.

[11] T. Kotzmann and H. Mössenböck. Escape analysis in the context
of dynamic compilation and deoptimization. In Proceedings of
the ACM/USENIX International Conference on Virtual Execution
Environments, pages 111–120. ACM Press, 2005.

[12] T. Kotzmann and H. Mössenböck. Run-time support for optimizations
based on escape analysis. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 49–60.
IEEE Computer Society, 2007.

[13] P. Laud. Analysis for object inlining in Java. In Proceedings of the
Joses Workshop, 2001.

[14] O. Lhoták and L. Hendren. Run-time evaluation of opportunities for
object inlining in Java. Concurrency and Computation: Practice and
Experience, 17(5-6):515–537, 2005.

[15] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

[16] R. Pozo and B. Miller. SciMark 2.0, 1999. http://math.nist.gov/
scimark2/.

[17] K. Russell and D. Detlefs. Eliminating synchronization-related
atomic operations with biased locking and bulk rebiasing. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 263–
272. ACM Press, 2006.

[18] Y. Shuf, M. Gupta, H. Franke, A. Appel, and J. P. Singh. Creating
and preserving locality of Java applications at allocation and
garbage collection times. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 13–25. ACM Press, 2002.

[19] Standard Performance Evaluation Corporation. The SPECjvm98
Benchmarks, 1998. http://www.spec.org/jvm98/.

[20] Standard Performance Evaluation Corporation. The SPECjbb2005
Benchmark, 2005. http://www.spec.org/jbb2005/.

[21] Sun Microsystems, Inc. Java Platform, Standard Edition 6 Source
Snapshot Releases, 2006. http://download.java.net/jdk6/.

[22] R. Veldema, C. J. H. Jacobs, R. F. H. Hofman, and H. E. Bal.
Object combining: A new aggressive optimization for object intensive
programs. Concurrency and Computation: Practice and Experience,
17(5-6):439–464, 2005.

[23] C. Wimmer and H. Mössenböck. Optimized interval splitting in a
linear scan register allocator. In Proceedings of the ACM/USENIX
International Conference on Virtual Execution Environments, pages
132–141. ACM Press, 2005.

[24] C. Wimmer and H. Mössenböck. Automatic object colocation based
on read barriers. In Proceedings of the Joint Modular Languages
Conference, pages 326–345. LNCS 4228, Springer-Verlag, 2006.

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

