
Partial Escape Analysis and Scalar Replacement for Java

Lukas Stadler
Johannes Kepler University

Linz, Austria
lukas.stadler@jku.at

Thomas Würthinger
Oracle Labs

thomas.wuerthinger
@oracle.com

Hanspeter Mössenböck
Johannes Kepler University

Linz, Austria
moessenboeck@ssw.jku.at

ABSTRACT
Escape Analysis allows a compiler to determine whether an
object is accessible outside the allocating method or thread.
This information is used to perform optimizations such as
Scalar Replacement, Stack Allocation and Lock Elision, al-
lowing modern dynamic compilers to remove some of the
abstractions introduced by advanced programming models.

The all-or-nothing approach taken by most Escape Anal-
ysis algorithms prevents all these optimizations as soon as
there is one branch where the object escapes, no matter how
unlikely this branch is at runtime.

This paper presents a new, practical algorithm that per-
forms control flow sensitive Partial Escape Analysis in a dy-
namic Java compiler. It allows Escape Analysis, Scalar Re-
placement and Lock Elision to be performed on individual
branches. We implemented the algorithm on top of Graal,
an open-source Java just-in-time compiler, and it performs
well on a diverse set of benchmarks.

In this paper, we evaluate the effect of Partial Escape
Analysis on the DaCapo, ScalaDaCapo and SpecJBB2005
benchmarks, in terms of run-time, number and size of al-
locations and number of monitor operations. It performs
particularly well in situations with additional levels of ab-
straction, such as code generated by the Scala compiler. It
reduces the amount of allocated memory by up to 58.5%,
and improves performance by up to 33%.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Optimization

General Terms
Algorithms, Languages, Performance

Keywords
escape analysis, java, virtual machine, just-in-time compila-
tion, intermediate representation, speculative optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CGO ’14 February 15 - 19 2014, Orlando, FL, USA
Copyright 2014 ACM 978-1-4503-2670-4/14/02 ...$15.00.

1. INTRODUCTION
State-of-the-art Virtual Machines employ techniques such

as advanced garbage collection, alias analysis and biased
locking to make working with dynamically allocated objects
as efficient as possible. But even if allocation is cheap, it
still incurs some overhead. Even if alias analysis can remove
most object accesses, some of them cannot be removed. And
although acquiring a biased lock is simple, it is still more
complex than not acquiring a lock at all.

Escape Analysis can be used to determine whether an ob-
ject needs to be allocated at all, and whether its lock can
ever be contended. This can help the compiler to get rid of
the object’s allocation, using Scalar Replacement to replace
the object’s fields with local variables.

Escape Analysis checks whether an object escapes its al-
locating method, i.e., whether it is accessible outside this
method. An object escapes, for example, if it is assigned
to a static field, if it is passed as an argument to another
method, or if it is returned by a method. In these cases the
object needs to exist on the heap, because it will be accessed
as an object in some other context.

In many cases, however, an object escapes just in a single
unlikely branch. Nevertheless, this prevents optimizations.
Therefore, we suggest a flow-sensitive Escape Analysis which
we call Partial Escape Analysis.

The idea behind Partial Escape Analysis is to perform op-
timizations such as Scalar Replacement in branches where
the object does not escape, and make sure that the object
exists in the heap in branches where it does escape. Addi-
tionally, our Partial Escape Analysis works not on bytecodes
but on the compiler’s intermediate representation, so that it
can be applied, possibly multiple times, at any point during
compilation.

This paper contributes the following novel aspects:

• A control-flow-sensitive Partial Escape Analysis algo-
rithm that checks the escapability of objects for indi-
vidual branches.

• The integration of our Partial Escape Analysis in a
Java compiler based on SSA form, speculative opti-
mization, and deoptimization.

• An evaluation of this algorithm on a set of current
benchmarks, in terms of run-time, number and size of
allocations and number of monitor operations, show-
ing that our algorithm performs well on a variety of
benchmarks.

Java

C++
Graal API Client

Compiler
Server

Compiler

Graal
Compiler

Interpreter

HotSpot VM

GC

Class Loading . . .

Figure 1: Overview of HotSpot and Graal.

2. SYSTEM OVERVIEW
We implemented our analysis for Graal, which is a Java

just-in-time compiler written in Java that runs on top of
the HotSpot VM (Figure 1). While it can completely re-
place the client and server compilers, it reuses all other VM
components, such as the interpreter, the garbage collection
subsystem and class loading. It is open-source and available
via the OpenJDK Graal project [11].

Graal translates Java bytecode into a high-level intermedi-
ate representation called Graal IR [5], on which it performs
all optimizations. This SSA-based intermediate represen-
tation models both control flow and data flow dependencies
between nodes. While it explicitly expresses the control flow
of the code, many operations are not fixed at specific loca-
tions. Rather, the position at which these operations are
executed is determined solely by their data flow dependen-
cies. There are usually many positions where an operation
could be placed, and it is up to the so-called Scheduler to
determine a good one.

Graal is an aggressive and optimistic compiler that often
makes assumptions about the state and behavior of the run-
ning application. This includes assumptions such as some
classes not having subclasses, and some branches never being
taken. When one of these assumptions is invalidated, e.g.,
by loading a new class or by entering an unexpected branch,
the execution needs to be transferred from compiled code
back to the interpreter (which does not make any assump-
tions and can execute all code). This switch back to the
interpreter is called Deoptimization [7] and requires a trans-
lation from the machine state (native stack frames) back to
the Java VM state, which is used by the interpreter.

The Graal IR contains a mapping to Java VM state for
all positions that can cause a deoptimization to occur. This
mapping is expressed as FrameState nodes and consists of
the current position (bytecode index and method), the local
variables, the contents of the expression stack and the locked
objects.

After inlining, one position can map to multiple Java VM
stack frames. A frame state thus contains a reference to an
outer frame state, which is the caller’s state. This reference
is used to create chains of FrameState nodes that describe
the state of all inlined methods at the current position.

The Graal IR keeps the frame states not at the points
where the actual deoptimizations take place, but at the
points where side effects may occur. Side effects are op-
erations such as field stores and method calls, which cannot
be reexecuted. Operations like an integer addition do not

1 c l a s s Key {
2 i n t i d x ;
3 Object r e f ;
4 Key (i n t i dx , Object r e f) {
5 t h i s . i d x = i d x ;
6 t h i s . r e f = r e f ;
7 }
8 synchron ized boolean e qua l s (Key

o th e r) {
9 re tu rn i d x == othe r . i d x &&

10 r e f == othe r . r e f ;
11 }
12 }
13 s t a t i c CacheKey cacheKey ;
14 s t a t i c Object cacheVa lue ;
15

16 Object ge tVa lue (i n t i dx , Object r e f) {
17 Key key = new Key (idx , r e f) ;
18 i f (key . e qua l s (cacheKey)) {
19 re tu rn cacheVa lue ;
20 } e l s e {
21 re tu rn c r e a t eVa l u e (. . .) ;
22 }
23 }

Listing 1: Simple example.

have side effects; they can be reexecuted and will lead to the
same result.

For example, a field store is associated with a frame state
that describes the state after the store. A machine code
instruction that causes or can cause a deoptimization will
be associated with the after state of the last side-effecting
instruction. All instructions that were executed in-between
do not have side effects and can therefore be reexecuted in
the interpreter.

3. ESCAPE ANALYSIS
Escape Analysis checks whether an allocated object es-

capes (i.e., can be used outside) the allocating method or
thread. This happens, for example, if it is assigned to a
global variable or heap object, or if it is passed as a param-
eter to some other method. Compilers use Escape Analysis
to determine the dynamic scope and the lifetime of allo-
cated objects. The result of this analysis allows the com-
piler to perform numerous optimizations on operations such
as object allocations, synchronization primitives and field
accesses.

Listing 1 shows a small piece of code that will serve as an
example to show the benefits of Escape Analysis: The get-

Value method creates a new Key object and checks whether
it is in the cache. If so, the method returns the cached value.
Otherwise, it creates and returns a new value (the method
createValue is not discussed here).

When getValue is compiled, the compiler will most likely
perform some inlining, which might cause the actually com-
piled code to look like Listing 2. The Key constructor and the
equals method have been inlined into the getValue method,
and a synchronized block was created to achieve synchro-
nization on the inlined equals method.

When Escape Analysis examines the resulting method,
it will come to the conclusion that no reference to the allo-
cated Key object escapes from the current compilation scope.

1 Object ge tVa lue (i n t i dx , Object r e f) {
2 Key key = a l l o c Key ;
3 key . i d x = i d x ;
4 key . r e f = r e f ;
5 Key tmp1 = cacheKey ;
6 boolean tmp2 ;
7 synchron ized (key) {
8 tmp2 = key . i d x == tmp1 . i d x &&
9 key . r e f == tmp1 . r e f ;

10 }
11 i f (tmp2) {
12 re tu rn cacheVa lue ;
13 } e l s e {
14 re tu rn c r e a t eVa l u e (. . .) ;
15 }
16 }

Listing 2: Example from Listing 1 after inlining.

1 Object ge tVa lue (i n t i dx , Object r e f) {
2 i n t i d x1 = i d x ;
3 Object r e f 1 = r e f ;
4 Key tmp = cacheKey ;
5 i f (i d x1 == tmp . i d x && r e f 1 ==

tmp . r e f) {
6 re tu rn cacheVa lue ;
7 } e l s e {
8 re tu rn c r e a t eVa l u e (. . .) ;
9 }

10 }

Listing 3: Example from Listing 2 after Scalar Re-
placement and Lock Elision.

This implies that no references to the object exist after the
method has returned, and that no other thread can ever
see a reference to this object. The compiler can use these
observations to perform a number of optimizations:

• The allocation of the object on the garbage collected
heap can be replaced with allocation on the stack or
in other non-garbage-collected allocation areas such as
zones1.

• Scalar Replacement can be used to eliminate the allo-
cation altogether, by replacing the fields of the object
with local variables.

• Since the object’s lock will never be contended, Lock
Elision can remove the synchronization on key.

If the compiler uses Scalar Replacement and Lock Elision,
the result might look like in Listing 3. The allocation was
replaced with the local variables idx1 and ref1, and the
synchronized statement was removed entirely.

Traditionally, Escape Analysis uses algorithms such as
Equi-Escape Sets [8] to determine which objects escape from
the scope. These algorithms build sets of objects that have
the same escape state, with each object initially being in a
separate set. By analyzing all operations in the method the
system can merge sets (e.g., when an object in one set is

1Zones are heap areas with a known, limited lifetime. The
whole area can be freed in bulk when a certain scope is left.

1 Object ge tVa lue (i n t i dx , Object r e f) {
2 Key key = new Key (idx , r e f) ;
3 i f (key . e qua l s (cacheKey)) {
4 re tu rn cacheVa lue ;
5 } e l s e {
6 cacheKey = key ;
7 cacheVa lue = c r e a t eVa l u e (. . .) ;
8 re tu rn cacheVa lue ;
9 }

10 }

Listing 4: Complex example.

assigned to a field of an object in another set), or mark a
set as escaping (e.g., when an object in this set is assigned
to a global variable).

4. PARTIAL ESCAPE ANALYSIS
In many cases, making a global decision about the escapa-

bility of objects does not allow the compiler to perform the
above optimizations. For example, the object allocated in
Listing 4 escapes into the global variable cacheKey, so that
Escape Analysis would consider it to be escaping.

However, if we only consider the path through the true

branch of the if statement, the object does not escape. An-
alyzing the escapability of objects for individual branches is
called Partial Escape Analysis. Partial Escape Analysis it-
erates over the code and maintains the current escape state
and the current contents of allocated objects during this
process. Initially, each allocated object is in the state vir-

tual, which means that there was no reason yet to actually
allocate it. As the algorithm progresses along the control
flow, it updates this state when instructions operate on the
allocated object.

The transition from Listing 5 to Listing 6 shows how Par-
tial Escape Analysis lets the compiler optimize the code in
this example:

• The allocation in line 2 is removed, and an entry for
this object is created that specifies that it is virtual

and that all fields have their default values.

• The assignments to the fields idx and ref in lines 3
and 4 are removed, and their effects are remembered
by updating the object’s field states.

• When entering the synchronized region in line 7, the
object is still virtual. The monitor enter operation is
removed, and the object’s state is augmented with a
locked flag that specifies that this object would have
been locked if it actually existed at this point.

• The accesses to the idx and ref fields of the virtual

object in lines 8 and 9 can be replaced using the ob-
ject’s current field states.

• When exiting the synchronized region in line 10, the
object is still virtual. Thus, the monitor exit opera-
tion is removed, and the locked flag is removed from
the object’s state.

• At the if statement in line 11, a copy of the current
state is created, because it has to be propagated to
both successors of this control split.

1 Object ge tVa lue (i n t i dx , Object r e f) {
2 Key key = a l l o c Key ;
3 key . i d x = i d x ;
4 key . r e f = r e f ;
5 Key tmp1 = cacheKey ;
6 boolean tmp2 ;
7 synchron ized (key) {
8 tmp2 = key . i d x == tmp1 . i d x &&
9 key . r e f == tmp1 . r e f ;

10 }
11 i f (tmp2) {
12 re tu rn cacheVa lue ;
13 } e l s e {
14 cacheKey = key ;
15 cacheVa lue = c r e a t eVa l u e (. . .) ;
16 re tu rn cacheVa lue ;
17 }
18 }

Listing 5: Example from Listing 4 after inlining.

1 Object ge tVa lue (i n t i dx , Object r e f) {
2 Key tmp = cacheKey ;
3 i f (i d x == tmp . i d x && r e f ==

tmp . r e f) {
4 re tu rn cacheVa lue ;
5 } e l s e {
6 Key key = a l l o c Key ;
7 key . i d x = i d x ;
8 key . r e f = r e f ;
9 cacheKey = key ;

10 cacheVa lue = c r e a t eVa l u e (. . .) ;
11 re tu rn cacheVa lue ;
12 }
13 }

Listing 6: Example from Listing 5 after Partial
Escape Analysis.

• When continuing at line 12, the object is still virtual,
and the return statement ends the processing of this
branch.

• When continuing at line 14, the object is still virtual,
but the assignment to the static field cacheKey lets
the object escape. In order for it to escape, it needs
to exist, and therefore the object needs to be created
and initialized with the current state of its fields at
this point. This process is called materialization in
our system. The object is transitioned to the state
escaped at this point, and the state of its fields cannot
be used from here on since there could be assignments
to the fields from outside the compilation scope.

• Lines 15 and 16 do not affect the state of the object
anymore.

In effect, the allocation was moved into one branch of the
if statement. While this did not lead to fewer allocation
sites in the resulting code, it reduces the dynamic number
of allocations at runtime. The actual reduction depends on
the likelihood of the branch containing the allocation being
reached, but there will always be at most as many dynamic
allocations as in the original code.

Start

New Key

Store idx

Store ref

Load cacheKey

Load idx

Load idx

==

If

Load ref

Load ref

==

If

Merge

Store cacheKey

Invoke createValue

Store cacheValue

Load cacheValue

Return

Load cacheValue

Return

MonitorEnter

MonitorExit

==

If

Phi

true

true false

idx ref

Figure 2: Graal IR of the example in Listing 5 (after
inlining).

5. GRAAL PARTIAL ESCAPE ANALYSIS
Partial Escape Analysis is particularly effective if it can

interact with other parts of the compiler, such as inlining,
global value numbering, and constant folding. In order to
do so, it needs to work on the same internal program repre-
sentation as other optimizations, which, in case of Graal, is
the high-level Graal IR [5].

Figure 2 shows the Graal IR2 for the example in Listing 5
(after inlining). As the Graal IR is in SSA form, there are no
more variables, and the local variable tmp2 is expressed us-

2The graphical representation is a slight modification of the
one used in [5] that omits some aspects of Graal IR that are
of no consequence to the algorithms described in this paper.

1 c l a s s I d extends Node {
2 Clas s<?> t ype ;
3 }
4 c l a s s Ob j e c tS t a t e {
5 }
6 c l a s s V i r t u a l S t a t e extends Ob j e c tS t a t e

{
7 i n t l ockCount ;
8 Node [] f i e l d s ;
9 }

10 c l a s s EscapedState extends Ob j e c tS t a t e
{

11 Node ma t e r i a l i z e dV a l u e ;
12 }
13

14 c l a s s Sta t e {
15 Map<Id , Ob jec tSta te> s t a t e s ;
16 Map<Node , Id> a l i a s e s ;
17 }

Listing 7: The state that is propagated through the
IR.

ing a phi function. Control flow dependencies are expressed
as bold arrows pointing downwards, and data flow depen-
dencies as thin arrows pointing upwards.

Graal’s Partial Escape Analysis starts iterating the IR
graph at the Start node, and processes each node as soon
as all its control flow predecessors have been processed. This
means that it will follow the control flow, branch at control
splits, and process Merge nodes as soon as all predecessors
have been visited. Iteration stops at control sinks such as
Return and Throw nodes.

During this iteration, the system maintains a state that
keeps track of previously encountered object allocations. For
each node that is visited, the system takes the predeces-
sor state and updates it by any effects of the current node.
Merge nodes and loop entries are special in that there are
multiple predecessor states (from merged branches and loop
back edges), which need to be merged into one consistent
state before processing the node.

If there was no reason yet to actually create (materialize)
an allocated object, it is considered to be virtual. This im-
plies that the state of all fields and the number of held locks
is known and correct. When a previously virtual object
needs to be created in the heap, an actual allocation needs
to be inserted, which is considered to be the materialized
value.

5.1 Allocation State
Listing 7 shows a simplified version of the allocation state

maintained during the control flow iteration. Each object
allocation encountered is represented by an Id object. For
each of these Ids there is an ObjectState describing the cur-
rent knowledge about this allocation, stored in the states

map. If the allocation is still virtual, the state is a Virtu-

alState representing the field values and the lock count, if
an allocation escaped, the state is an EscapedState repre-
senting the materialized value. Finally, aliases contains a
mapping from Graal IR nodes to Ids. It will initially map
from the New node of the original program to the alloca-
tion’s Id, but during further analysis more aliases for the
same allocation might be added.

Key (1)New Key
aliases states

Id VirtualStateNode

lockCount
fields

e

EscapedState

materializedValue

v 0 0 -

...

Integer (2)

...

...

Figure 3: Visualization of the allocation state used
in the rest of this paper.

Figure 3 shows a visualization of the state described in the
last paragraph. Multiple nodes can be associated with one
object Id, and one Id is always associated with exactly one
ObjectState. The rounded rectangle representing an object
Id contains the object’s type and a unique identifier. The
VirtualState contains the lockCount and the values of the
object’s fields. The EscapedState contains the material-

izedValue, which is a reference to the node that will create
the actual object at runtime.

5.2 Effects of Nodes on the Allocation State
While iterating over the control flow, Partial Escape Anal-

ysis looks for operations that have an effect on the allocation
state. There are three categories of nodes that require some
action:

• Allocations create new virtual objects, therefore they
always modify the state by adding new elements.

• If any of the inputs of a node is a key in the aliases

map, then the node needs to be examined.

• Merge nodes and LoopBegin nodes (which represent
loop headers) merge multiple states.

Figure 4 shows the node patterns that introduce virtual

objects or change the state of an existing virtual object:

(a) For each allocation, new Id and VirtualState objects
are created, and the VirtualState object is initialized
with default values. Also, new entries in the aliases

and states maps are created that point from the allo-
cation to the Id and from the Id to the VirtualState.

(b) Storing a value which is not in the aliases map into
a field of a virtual object sets the field value in the
corresponding VirtualState object. Loading a (non-
Id) value from from a field of a virtual object replaces
the Load with the value from the corresponding field
of the VirtualState at all its usages.

(c) Entering a synchronized region (MonitorEnter node)
with the locked object being a virtual object incre-
ments the lockCount, and (d) exiting the synchronized
region decrements the lockCount.

(e) Storing a virtual object into a field of another virtual
object puts a reference to the Id of the stored object
into the fields array of the target virtual object.

(f) Loading a virtual object from a field of another vir-

tual object inserts a new entry into the aliases map

New Key

=>

Key (1)New Key

...

v 0 0 -

(a) New allocation.

Store idx

=>

Key (1)New Key v 0 5 -

Key (1)New Key v 0 0 -
5New Key

(b) Storing a value into a virtual object.

MonitorEnter

=>

Key (1)New Key v 1 5 -

Key (1)New Key v 0 5 -New Key

(c) Entering a synchronized region.

MonitorExit

=>

Key (1)New Key v 0 5 -

Key (1)New Key v 1 5 -New Key

(d) Exiting a synchronized region.

Store ref

=>

Key (1)New Key v 0 0 -

Integer (2)New Integer v 0 0
New Key

New Integer

Key (1)New Key v 0 0

Integer (2)New Integer v 0 0

(e) Storing a virtual object into another virtual object.

Load ref

=>

New Key

Key (1)New Key v 0 0

Integer (2)
New Integer

v 0 0

Key (1)New Key v 0 0

Integer (2)New Integer v 0 0

Load ref

(f) Loading a virtual object from another virtual object.

Figure 4: Operations performed on virtual objects.

so that the Load node can be recognized as referring
to the virtual Integer during further processing.

All these operations are removed from the IR after they have
been processed.

Many other operations can also be replaced with constant
expressions based on the precise information the state pro-
vides. Equality checks on object references are always false
when exactly one of the inputs is virtual. If both inputs
are virtual, the check will produce true if they refer to the
same Id, false otherwise. Type checks on virtual objects
can also be performed at compile time, since the exact type
is known.

Figure 5 shows an example of a Store operation where the
input is an escaped object. In general, inputs that refer to
escaped objects are handled as if they were normal values,

=>

Key (1)New Key v 0 0 -

Integer (2)New Integer e
Materialize

Key (1)New Key v 0 0

Integer (2)New Integer e
Materialize

Store ref

New Key

New Integer

Figure 5: Store operation performed on an escaped

object.

but they are replaced with the materializedValue during
processing.

Any operation that is not explicitly handled is assumed
to require an actual object reference. Therefore, any vir-

tual object that is referenced from such an operation will
be materialized, and the input that maps to the Id of the
now escaped object is replaced with the materialized value.

5.3 Merge nodes
Whenever multiple branches meet at a Merge node, there

are also multiple states that need to be merged into one
consistent state. A so-called MergeProcessor is responsible
for doing so, as shown in Figure 6. It first (a) creates the
intersection of the aliases maps of all merged states, which
implies that only Ids that exist in all predecessor states and
have at least one common alias will survive the merge.

For each Id, the MergeProcessor looks at the Id’s Ob-

jectState in all predecessor states:

• If the Id escaped in all predecessors states (b), a new
EscapedState for this Id is added to the merged state,
with the materializedValue pointing to a newly cre-
ated Phi function that merges the materializedValues
of the predecessor states.

• If some predecessors Ids are in the virtual state and
some in the escaped state, then all virtual states need
to be materialized at the corresponding predecessor
in the control flow, and processing continues in the
previous case.

• If all predecessors Ids are in the virtual state, then
the new state of the Id will also be virtual, and all
field values need to be merged. For each field, the
MergeProcessor looks at the value of this field in all
predecessor VirtualObjects:

– If all field values are identical, this value will be
the value of the field in the new VirtualState.
Note that this applies to Ids that represent allo-
cations as well: if all predecessor VirtualStates
reference the same Id, then so does the new one.

– If some field values differ, the MergeProcessor

creates a new Phi node for this field. This re-
quires that all field values are actual values avail-
able at runtime, so none of them can reference a
virtual object. To ensure this, the MergePro-

cessor checks each value whether it is an Id, and
if so, whether the corresponding ObjectState is
a VirtualState. A virtual object needs to be

=>

Key (1)
New Key

...X

Y

Key (1)
New Key

...X

Z

Key (1)
New Key

...X

Integer (2)New Integer ... =>

(a) Merging of aliases.

Key (1)New Key e

Materialize 1

Key (1)New Key e

Materialize 2

Phi

Materialize 1 Materialize 2

eKey (1)
New Key

=>

=>

(b) Merging of escaped objects.

=>

Key (1)
New Key

...X Key (1)
New Key

...Y

Key (1)
New Key

...Phi

=>

Phi

X Y

(c) Merging of aliases for Phi nodes.

Figure 6: Operations performed by the MergeProces-

sor.

materialized before it can serve as an input to a
Phi node.

The MergeProcessor also examines every already existing
Phi nodes that is attached to the Merge node. It needs to
look for inputs of the Phi node that are aliased with Ids:

• If all inputs are aliased to the same Id by their aliases
maps, the Phi node will be added as an alias of the Id,
as shown in Figure 6 (c).

• Otherwise, any input that is aliased with a virtual

object needs to be materialized, and the input in the
Phi is replaced with the materialized value.

• If an input is aliased with an escaped object, the input
in the Phi is replaced with the materializedValue.

During this process of merging states some virtual ob-
jects might be turned into escaped objects, which can in-
validate assumptions about which objects are virtual taken
previously during the merge process. The whole process is
therefore iterated until no additional materializations hap-
pen during merging, at which point a stable state has been
reached.

5.4 Loops
Loops are special in that iteration needs to traverse a loop

before its back edges are processed. Graal’s Partial Escape
Analysis solves this by processing loops iteratively. At the

State E

State C

If (2)

LoopBegin

Y

LoopExit

If (1)

Z

LoopEnd (1) LoopEnd (2)

State B

State D

X State A

Figure 7: Example loop.

first iteration, the loop body is processed with a speculative
state, which is taken from the loop’s predecessor. Iteration
will stop at the loop’s back edges and at loop exits. As
soon as the loop body has been processed, and the states at
all back edges are available, the MergeProcessor is used to
merge the states of the loop’s predecessor and the loop back
edges.

The state produced by the MergeProcessor is only valid
if the speculative start state is correct. Therefore, the new
state is compared to the speculative state. If they differ, the
new state is used as the speculative start state, and the loop
is re-processed. Once the state produced by the MergePro-

cessor equals the speculative state, processing continues at
the loop’s exits.

Figure 7 shows an example of a loop with one exit and two
back edges. When the iteration encounters the loop, only
state A is known. In order to be able to start processing the
loop, it is assumed that B equals A. As iteration continues
processing all other nodes in the loop, it creates the states
C, D and E. The MergeProcessor merges A, D and E to create
a new state B’. If B’ equals B, then C is correct and the
iteration can continue at LoopExit. If B’ does not equal B,
then B is replaced with B’ and the loop is reprocessed.

5.5 Handling Frame States
The HotSpot interpreter cannot work with virtual ob-

jects. Therefore, all virtual objects need to be material-
ized whenever a deoptimization occurs. The information re-
quired to create the objects needs to be added to the FrameS-
tate nodes that describe the mapping from machine state
to Java Virtual Machine state whenever a virtual object is
referenced by the frame state.

Figure 8 shows two Graal IR fragments with frame states,
corresponding to Listing 8. The FrameState nodes are ex-
pressed as dashed boxes marked with “@”; they contain the
method name and the bytecode position. Their inputs de-
scribe the local variables and the contents of the expression
stack. It is important to note that the expression stacks in
this example are empty.

Figure 8 (a) contains a field store which is associated with
position 9 in the constructor of Integer. At this point there
are two local variables: the newly allocated Integer ob-
ject and the value x. The constructor was inlined into the
method foo, so it has a reference to the outer frame state at

1 s t a t i c Object g l o b a l ;
2 vo id f oo (i n t x) {
3 I n t e g e r i = new I n t e g e r (x) ;
4 g l o b a l = nu l l ;
5 . . .
6 }

Listing 8: Example shown in Figure 8.

Start

New Integer

Store value

Store global

...

@foo:5

x

null

@Integer.<init>:9

@foo:13

(a) After inlining.

Start

Store global

...

x

null
@foo:13

v 0Integer (1)

(b) After Partial Escape Analysis.

Figure 8: Example from Listing 8 with FrameStates.

position 5 in foo. This outer frame state has only one local
variable, namely the value x.

Figure 8 (b) shows the same Graal IR fragment after ap-
plying Partial Escape Analysis. The first field store was re-
moved due to Scalar Replacement, which also removed the
associated FrameState nodes. The second field store, how-
ever, was not removed. Its associated frame state contains
a reference to the virtual object whose allocation was re-
moved. This reference to the New Integer node is replaced
with a reference to the virtual object’s Id. To be able re-
store the object during deoptimization, a copy of the current
VirtualState for the Id is added to the frame state.

6. EVALUATION
We evaluated our implementation of Partial Escape Anal-

ysis, which is built on top of the Graal compiler, by run-
ning and analyzing a number of benchmarks. The original
Graal compiler does not perform any kind of Escape Anal-
ysis. All benchmarks were executed on server-class Xeon
E5-2690 CPUs, with the Java VM configured to use up to
2GB of heap.

Our benchmark process runs each of the 14 benchmarks
of the DaCapo suite3 and each of the 12 benchmarks of the
ScalaDaCapo suite4, warming them up for enough iterations
to arrive at a stable peak performance. In addition to that,
it runs the SPECjbb2005 benchmark, which also contains a
warmup phase.

This process was executed 10 times for a configuration
without Partial Escape Analysis and 10 times for a configu-
ration with Partial Escape Analysis. The numbers we report
in this paper are the averages of the benchmark results for
the 10 runs. In separate runs, we also collected statistics for
the size and number of allocations and the number of lock
operations for each benchmark.

6.1 Results
Table 1 shows the results of our evaluation. It omits the

number of lock operations because few of these numbers
are significant. It also omits the DaCapo benchmarks that
do not show a significant change in performance. For each
benchmark, the table contains allocation per iteration in
MB, millions of allocations per iteration, and iterations per
minute metrics, split into without and with Partial Escape
Analysis, and change. The “average” row shows the average
percentage, including (in case of DaCapo) the benchmarks
not shown in the table. Since SPECjbb2005’s iterations are
much smaller than the ones in DaCapo and ScalaDaCapo,
we scaled these numbers by 106. This makes the table more
uniform, but does not influence the relative changes.

Allocated Bytes Most benchmarks show a high allocation
rate. DaCapo lusearch, sunflow, tradesoap and xalan,
ScalaDaCapo factorie and kiama, and SPECjbb2005
allocated more than 1GB per second. Most of Scal-
aDaCapo, some of DaCapo, and SPECjbb2005 see a
large decrease in allocated bytes per benchmark iter-
ation due to Partial Escape Analysis. ScalaDaCapo
factorie has the highest decrease at 58.5% or 24.5GB
per iteration.

Number of Allocations In general, benchmarks with a
high number of allocated bytes also show a high num-
ber of allocations. The relative decrease in the number
of allocations is usually higher than the decrease in the
number of allocated bytes, since the allocations not re-
moved by Partial Escape Analysis often contain large
arrays.

Number of Locks We did not observe a significant reduc-
tion in the number of lock operations in most bench-
marks. DaCapo tomcat shows a 4% or 155,000 oper-
ations per second reduction, and SPECjbb2005 shows
a 3.8% or 2,400,000 operations per second reduction.

Iterations per Minute Most of the benchmarks we exe-
cuted show some improvement in performance, with
many being above 10%. ScalaDaCapo factorie ben-
efits the most in terms of performance, with a 33%
improvement in iterations per minute. Notably, the
DaCapo jython benchmark shows a 2.1% decrease in
performance. Partial Escape Analysis can in rare cases
increase the size of compiled methods, which has a neg-
ative influence on this benchmark.

3DaCapo version 9.12-bach [1]
4ScalaDaCapo version 0.1.0 (2012-02-16) [14]

MB / Iteration MAllocs. / Iteration Iterations / Minute
without with ∆ without with ∆ without with Speedup

D
a
C

a
p

o
∗

fop 172 166 -3.5% 3 3 -5.6% 150.75 172.41 +14.4%
h2 1,336 1,267 -5.2% 31 30 -5.9% 11.64 11.98 +2.9%
jython 2,242 2,057 -8.3% 28 23 -15.2% 25.35 24.80 -2.1%
sunflow 2,707 2,010 -25.7% 62 43 -30.6% 54.55 55.40 +1.6%
tomcat 691 685 -0.8% 7 7 -2.4% 46.73 48.78 +4.4%
tradebeans 3,640 3,354 -7.8% 64 57 -11.1% 9.97 10.61 +6.4%
xalan 1,289 1,270 -1.4% 10 10 -2.2% 156.25 159.15 +1.9%
average† -4.9% -8.0% +2.2%

S
ca

la
D

a
C

a
p

o

actors 1,866 1,550 -17.0% 56 45 -18.5% 17.10 18.81 +10.0%
apparat 3,418 3,306 -3.3% 74 70 -5.5% 6.11 6.94 +13.7%
factorie 43,393 17,996 -58.5% 1,397 547 -60.9% 1.95 2.59 +33.0%
kiama 642 600 -6.6% 13 11 -11.2% 116.28 135.44 +16.5%
scalac 758 648 -14.5% 19 15 -22.6% 23.09 24.12 +4.4%
scaladoc 1,189 1,046 -12.0% 24 18 -24.0% 20.39 20.99 +3.0%
scalap 68 62 -8.8% 2 2 -12.5% 472.44 555.56 +17.6%
scalariform 337 292 -13.3% 10 8 -16.5% 127.66 137.61 +7.8%
scalatest 263 261 -1.0% 4 3 -2.4% 58.14 62.24 +7.1%
scalaxb 226 212 -5.9% 4 3 -13.8% 100.50 105.26 +4.7%
specs 588 362 -38.4% 12 3 -72.0% 35.03 36.43 +4.0%
tmt 2,798 2,698 -3.6% 38 34 -12.2% 13.06 13.50 +3.3%
average -15.2% -22.7% +10.4%

SPECjbb2005‡ 11,608 9,741 -16.1% 180 111 -38.1% 11.07 12.04 +8.7%

Table 1: Evaluation of size and number of allocations, and performance on (Scala)DaCapo and SPECjbb2005.

∗ omitting benchmarks without significant changes in performance
(avrora, batik, eclipse, luindex, lusearch, pmd and tradesoap).

† including the benchmarks omitted in this table.
‡ Scaling factor for SPECjbb2005: 106 (numbers are per one million iterations).

6.2 Comparison
The HotSpot server compiler, which is arguably the most

widely used jit compiler performing Escape Analysis, ben-
efits less from enabling Escape Analysis than Graal does
from enabling Partial Escape Analysis (0.9% vs. 2.2% on
DaCapo, 7.4% vs. 10.4% on ScalaDaCapo, 5.4% vs. 8.7%
on SPECjbb2005). However, it is hard to tell the difference
between better Escape Analysis and the rest of the compiler
performing better in the presence of Escape Analysis.

7. FUTURE WORK
The iteration that updates the allocation state could be

run in parallel as soon as a control split is encountered. More
fine-grained multithreading within the compiler will become
more important as more cores are available for compilation.

Our algorithm currently relies on the scheduler to order
the nodes, so that Partial Escape Analysis can process them
in a valid order. By adding simple invariants to the Graal
IR, such as limiting the maximum distance from nodes fixed
in control flow to nodes affected by Partial Escape Analysis,
the analysis could be performed without a schedule.

8. RELATED WORK

8.1 Java
Blanchet [3, 2] extends previous work on Escape Analysis

to allow for precise treatment of assignments, and uses the

results of this control-flow-sensitive analysis for Stack Allo-
cation. This work is one of the first to completely support
the complete Java language and includes a formal proof of
the correctness of their transformations.

Choi et al. [4] present both a control-flow-sensitive and a
control-flow-insensitive Escape Analysis for Java. Even the
control-flow-sensitive version, which has some similarities to
our Partial Escape Analysis, is only used to make global
decisions about escapability. In addition to the missing loop
handling, it does not collect enough information to perform
on-the-fly Scalar Replacement. The control-flow-insensitive
version of this work is used to perform Scalar Replacement
in the HotSpot server compiler [12] starting with version
Java SE 6u23.

Kotzmann and Mössenböck [8, 9] introduce an implemen-
tation of Escape Analysis for the HotSpot client compiler
that works on the compiler’s high-level intermediate rep-
resentation (HIR). It uses the control-flow-insensitive equi-
escape sets algorithm, and was the first to apply Escape
Analysis in the presence of deoptimization. A similar algo-
rithm is used by Molnar et al. [10] to perform stack allocation
of objects in the Cacao VM.

Shankar et al. [15] present JOLT, a lightweight dynamic
analysis which tries to reduce object churn, the excessive
creation of short-lived objects. It does so by guiding inlining
so that Escape Analysis is more effective. Their approach
significantly increases the number of allocations amenable to
Escape Analysis. Combining it with our approach of Partial
Escape Analysis would be an interesting future work.

8.2 Other Languages
The LuaJIT compiler performs a so-called Allocation Sink-

ing optimization [13], which is essentially an Escape Anal-
ysis tailored heavily towards trace compilation. It relies on
Lua’s alias analysis to remove all loads from non-escaping
objects. The actual Escape Analysis consists of a back-
wards marking phase with iterative processing of PHI refer-
ences, and a forward sweeping phase that tags non-marked
instructions as removable, or “sunk”. While the algorithm
still takes a global decision, the trace-based nature improves
its efficiency, because unlikely branches will reside in sepa-
rate traces. An escaping reference in one of these side traces
will not cause the object to escape in the main trace.

Current development versions of the v8 JavaScript en-
gine [6] contain an implementation of Escape Analysis which
performs a very local analysis (looking only at the usages of
the allocation) to determine whether an allocation escapes
or not. The simulation of the effects of operations for differ-
ent allocations happens independently, which implies that
complex cases cannot be handled.

9. CONCLUSIONS
In this paper, we presented a new approach to perform-

ing Escape Analysis, Scalar Replacement and Lock Elision
in a more fine-grained way. Our analysis does not make a
global decision about an object’s escapability, but propa-
gates the state of all allocations while iterating over control
flow. It can thus perform optimizations like Scalar Replace-
ment in one branch while an actual object is created in an-
other branch.

While previous systems perform a control-flow-sensitive
analysis step followed by a control-flow-insensitive optimiza-
tion step, we combine both steps into a single control-flow-
sensitive algorithm. This technique is an efficient way to
implement Escape Analysis.

We implemented our algorithm for the open-source Graal
compiler. In the DaCapo, ScalaDaCapo and SPECjbb2005
benchmarks, this Partial Escape Analysis can reduce mem-
ory allocated by up to 58.5% and shows an improvement in
performance of up to 33%.

Acknowledgments
We thank all members of the Virtual Machine Research
Group at Oracle Labs and the Institute for System Software
at the Johannes Kepler University Linz for their support
and contributions. The authors from Johannes Kepler Uni-
versity are funded in part by a research grant from Oracle.

10. REFERENCES
[1] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,

K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In
Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 169–190. ACM Press, 2006.

[2] B. Blanchet. Escape analysis for object-oriented
languages: application to Java. In Proceedings of the

ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 20–34. ACM Press, 1999.

[3] B. Blanchet. Escape analysis for JavaTM: Theory and
practice. ACM Transactions on Programming
Languages and Systems, 25(6):713–775, ACM Press,
2003.

[4] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In
Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 1–19. ACM Press, 1999.

[5] G. Duboscq, L. Stadler, T. Würthinger, D. Simon,
C. Wimmer, and H. Mössenböck. Graal IR: An
extensible declarative intermediate representation. In
Proceedings of the Asia-Pacific Programming
Languages and Compilers Workshop, 2013.

[6] Google. The v8 JavaScript engine, 2013.

[7] U. Hölzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 32–43. ACM Press, 1992.

[8] T. Kotzmann and H. Mössenböck. Escape analysis in
the context of dynamic compilation and
deoptimization. In Proceedings of the International
Conference on Virtual Execution Environments, pages
111–120. ACM Press, 2005.

[9] T. Kotzmann and H. Mössenböck. Run-time support
for optimizations based on escape analysis. In
Proceedings of the International Symposium on Code
Generation and Optimization, pages 49–60. IEEE
Computer Society, 2007.

[10] P. Molnar, A. Krall, and F. Brandner. Stack allocation
of objects in the CACAO virtual machine. In
Proceedings of the International Conference on the
Principles and Practice of Programming in Java,
pages 153–161. ACM Press, 2009.

[11] OpenJDK Community. Graal Project, 2013.

[12] M. Paleczny, C. Vick, and C. Click. The Java
HotSpotTM server compiler. In Proceedings of the
Symposium on Java Virtual Machine Research and
Technology, pages 1–12. USENIX, 2001.

[13] M. Pall. Allocation sinking optimization for the
LuaJIT compiler, 2013.

[14] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder.
Da Capo con Scala: design and analysis of a scala
benchmark suite for the java virtual machine. In
Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 657–676. ACM Press, 2011.

[15] A. Shankar, M. Arnold, and R. Bodik. Jolt:
lightweight dynamic analysis and removal of object
churn. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 127–142. ACM
Press, 2008.

