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Abstract

Coroutines are non-preemptive lightweight processes. Their advan-
tage over threads is that they do not have to be synchronized be-
cause they pass control to each other explicitly and deterministi-
cally. Coroutines are therefore an elegant and efficient implemen-
tation construct for numerous algorithmic problems.

Many mainstream languages and runtime environments, how-
ever, do not provide a coroutine implementation. Even if they do,
these implementations often have less than optimal performance
characteristics because of the tradeoff between run time and mem-
ory efficiency.

As more and more languages are implemented on top of the
Java virtual machine (JVM), many of which provide coroutine-
like language features, the need for a coroutine implementation has
emerged. We present an implementation of coroutines in the JVM
that efficiently handles a large range of workloads. It imposes no
overhead for applications that do not use coroutines and performs
well for applications that do.

For evaluation purposes, we use our coroutines to implement
JRuby fibers, which leads to a significant speedup of certain JRuby
programs. We also present general benchmarks that show the per-
formance of our approach and outline its run-time and memory
characteristics.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Interpreters, Run-time environ-
ments

General Terms Algorithms, Languages, Performance

Keywords Java, virtual machine, coroutine, stack frame, activa-
tion, optimization, performance

1. Introduction

Coroutines are a well-known programming concept that allows
subroutines to run in an interlocked way. A coroutine can pass
control to some other coroutine using a yield statement.

Coroutines have also often been seen as inferior alternatives to
full-blown threads, because of the manual context switching. How-
ever, there are situations in which manual context switching makes
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sense or is even desired (e.g., producer/consumer problems, dis-
crete event simulation, and non-blocking server implementations).
None of the top five languages of the TIOBE programming lan-
guages index [20] (C, Java, C++, PHP and Basic) supports corou-
tines without additional libraries.

Runtime environments such as the Java virtual machine (JVM)
make it hard for library programmers to implement coroutines
on top of them. The high level of abstraction and the focus on
portability prevent access to the underlying machine, which is
needed in order to implement low-level features such as coroutines.
A coroutine system for a JVM also needs to interface with other
subsystems, such as garbage collection, which is only possible from
inside the JVM.

We propose a coroutine system for JVMs that uses a combina-
tion of two implementation strategies: Separate stacks are allocated
for coroutines up to a certain number, and a stack copying approach
is employed to allow large amounts of coroutines to be allocated.

Our system incurs only minimal changes to the JVM. Apart
from the additional stack management code, it only requires a
small amount of new code in the garbage collection system. Most
importantly, no modifications to the existing just-in-time compilers
and the interpreter were required.

We implemented our system for the Java HotSpotTM VM on the
Windows and Linux platforms, which shows that it is feasible for
JVMs and managed runtimes in general. This paper contributes the
following:

• We present a coroutine management algorithm that combines
the advantages of the two most common implementation tech-
niques.

• We introduce a Java API for coroutines.

• We outline the modifications of the Java HotSpotTM VM that
are necessary to implement coroutines.

• We show that for languages with coroutine-like features, the
modified JVM vastly increases the performance of implemen-
tations that run on top of it.

• We report the run-time and memory characteristics of our algo-
rithm.

2. System Overview

We developed our implementation as an extension to the Java
HotSpotTM VM [15]. It is part of a larger effort to extend this
JVM with first-class architectural support for languages other than
Java (especially dynamic languages), called the Da Vinci Machine
Project orMulti-Language Virtual Machine Project (MLVM) [16].

2.1 The Java Virtual Machine

A Java virtual machine loads, verifies, and executes Java bytecodes.
It needs to adhere strictly to the semantics defined by the Java vir-
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Figure 1. Interlocked coroutine execution

tual machine specification [8]. The Java HotSpotTM VM in partic-
ular can either interpret the bytecodes or use one of its two just-
in-time (JIT) compilers, called client compiler [7] and server com-
piler [12], to compile bytecodes into optimized machine code. It
decides at run time on a per-method level if the compilation over-
head is justified, because in normal applications most of the execu-
tion time is concentrated in a few frequently called methods, known
as hot spots.

In order to achieve maximum performance, most JVMs today
use the CPU-supported stack to manage local variables and expres-
sion stacks. All the information belonging to one execution of a
method is called an activation frame or stack frame. The stack con-
taining these activation frames grows and shrinks in defined direc-
tions, and obsolete activation frames are overwritten automatically
without the need for explicit management. In addition to the local
variables and expression stacks, the stack also holds the bytecode
index (bci) or program counter (pc) for each activation frame such
that it can be restored upon a return instruction.

In order to conform to the specification, JVMs need to imple-
ment automatic memory management (garbage collection). The
Java HotSpotTM VM contains a sophisticated memory management
system that performs precise garbage collection, which requires the
exact size and layout of an object and all object pointers within it
to be known to the runtime system. Every object is preceded by a
two-word header that contains a pointer to the class of the object
and additional information, such as locking and garbage collection
bits.

Garbage collection marks all objects that are reachable from a
set of root pointers as alive. The VM has to consider a number of
sources for these root pointers, e.g., activation frames, JNI handles,
and compiled code.

2.2 Coroutines

Coroutines [10] are a concept that was first described in 1963 by
Conway [3] as “each module . . . may be coded as an autonomous
program that communicates with adjacent modules as if they were
input and output subroutines”. They are present in numerous pro-
gramming languages, such as Go, Icon, Lua, Perl, Prolog, Ruby,
Tcl, Simula, Python, Modula-2, and many others. The runtime en-
vironments of some of the most popular modern programming lan-
guages, such as C# and Java, however, do not provide coroutine
functionality out-of-the-box.

From a language design perspective, coroutines are a general-
ization of subroutines. When they are invoked, they start execution
at their first statement. A coroutine can transfer control to some
other coroutine (typically using a yield statement). The state of
the local variables at the transfer point is preserved. When con-
trol is transferred back, the coroutine resumes the preserved state
and continues to run from the point of the transfer. At its end or
at the encounter of a return statement a coroutine dies, i.e., passes

control back to its caller or some other coroutine as defined by the
semantics of the coroutine system.

In contrast to other programming language concepts (e.g., con-
tinuations) coroutines are not strictly defined. Coroutines may not
even be recognizable as such, and depending on their semantics and
expressiveness they are called generators, coexpressions, fibers, it-
erators, green threads, greenlets, tasklets, or cooperative threads.

Coroutines that can only yield from within their main method
are called stackless. They can be implemented by compile-time
transformations but are only useful for a limited range of appli-
cations. If coroutines can yield from subsequently called methods,
they are called stackful.

Only coroutines that are not tied to a specific language construct
(like for-each loops) are considered to be first-class coroutines.

Asymmetric coroutines are bound to a specific caller and can
only transfer control back to this caller. Symmetric coroutines can
transfer control to any other coroutine [10]. The target coroutine
can either be specified explicitly (yieldTo) or implicitly (yield).
Using yield, control is passed to a scheduler that selects some other
ready coroutine to run.

An implementation of coroutines is a useful feature for a virtual
machine for a number of reasons:

• Coroutines are present in many new programming languages
such as Ruby [4] and Go [5]. Language implementations that
rely on an underlying virtual machine, such as a JVM, need to
emulate coroutines if they are not available. The most common
ways to emulate coroutines are using synchronized threads and
compile-time transformations, both of which have significant
drawbacks.

• Coroutines are a natural control abstraction for many problems.
For example, producer/consumer problems can often be imple-
mented elegantly with coroutines.

• In contrast to heap-allocated state objects, coroutines allow the
compiler to fully optimize local variables, e.g., to put them into
processor registers. They can thus benefit from the fact that their
state is not accessible from the outside, while heap-allocated
state objects lead to code that is compiled as if such access was
possible.

• Coroutines provide an easy way to inverse a recursive algo-
rithm into an iterative one. For example, a callback-based SAX
parser [11] can be converted into a coroutine that returns one
XML element every time it transfers back to its caller.

• Every coroutine is constrained to a single thread. Within their
thread coroutines do not need to be synchronized because the
points of transfer can be chosen such that no race conditions
occur.

3. Implementation

Coroutines have been incorporated into many different languages.
Depending on the architecture of the underlying runtime system
different implementation techniques have been chosen.

The most common techniques for languages that use the CPU-
supported stack management are:

Separate coroutine stacks. A separate stack area is allocated for
each coroutine. This was very simple in older operating systems
(like DOS), but the introduction of exception management, the
need for correctly handling stack overflows, and other stack-
specific algorithms have made allocating memory that can func-
tion as stack space more difficult.

Copying parts of the stack. The stack data of every coroutine is
copied to and from the stack as needed. While this approach
is simple to implement, it also has two main disadvantages:
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Figure 2. Coroutine states and transitions

Firstly, the coroutine transfer is much more expensive (and its
costs depend on the current number of stack frames). Secondly,
in garbage-collected environments the data that has been copied
from the stack can contain root pointers that need to be visited
during garbage collection, which means that the garbage col-
lector needs to be aware of them.

In programming languages that represent the stack as a linked list
of stack frames it is trivial to implement coroutines by storing the
pointer to the topmost frame of the coroutine. Such systems need
special garbage collection algorithms to free obsolete frames.

3.1 Additional Stacks

In order to provide optimal performance, our coroutine implemen-
tation creates separate stacks for coroutines. On an ideal CPU (ig-
noring caching effects) the switching between coroutines that lie on
separate stacks is always a cheap constant-time operation, because
only few CPU registers need to be saved and restored.

The required memory is requested from the operating system’s
memory management system. A continuous area of memory is
allocated. The end of the stack is protected by guard pages to allow
the runtime system to handle stack overflow errors. These guard
pages are configured in such a way that any access to them will
lead to an operating system exception. The JVM handles these
exceptions and in turn throws a StackOverflowError at the Java
level.

3.2 Stored Coroutines

Separate stacks take up significant amounts of memory and address
space. A stack occupies at least 32-100 kByte of memory (see Sec-
tion 5.1), due to guard pages and the operating system’s allocation
granularity. On 32-bit systems the address space is exhausted af-
ter roughly 25,000 stacks have been allocated. The exact number
depends on the operating system’s memory layout and the JVM
configuration.

Even on 64-bit systems, where the address space usage is less
of an issue, the memory overhead still prevents the allocation of a
large number of coroutine stacks.

Only a small amount of the stack is actually used by a sus-
pended coroutine, typically 1 to 2 kByte. In our system multiple
coroutines can share a stack. A coroutine is nevertheless perma-
nently associated with a specific stack: while it is possible to relo-
cate Java frames (albeit expensive), it is not possible to do so for
native frames. Note that relocation of frames is only a problem if
the relocated frame is executed at its new position; it is not a prob-
lem to temporarily move a frame to some other location while the
corresponding coroutine is suspended.

When a coroutine is created the system automatically selects a
stack that the coroutine will be associated with by looking for the
stack with the smallest number of associated coroutines. The pro-
grammer can also select a coroutine’s stack explicitly by specifying
some other coroutine that will share its stack with the first one.

3.3 Coroutine State

As coroutines are copied to and from their stacks they need to
keep track of their state. Figure 2 shows the different states that
a coroutine can have and the transitions that are possible.

stored In this state the stack frames of the coroutine are stored in a
data object. Every new coroutine is created in this state, with a
small stub data object containing a fabricated frame that starts
coroutine execution. This frame is copied to the stack the first
time the coroutine is called.

on-stack A coroutine whose stack frames are on a stack, but which
is not currently running is in the “on-stack” state. Notice that in
order to change into the “running” state the coroutine first has
to be “on-stack”.

running The currently running coroutine of a thread is in the
“running” state. This implies that the coroutine’s stack frames
are located on its stack.

finished Coroutines that finish execution change into this state.
Normally, a coroutine reaches the “finished” state from the
“running” state, but there are circumstances when coroutines
can change to “finished” directly from other states.

3.4 Data Structures

The VM uses a set of data structures to keep track of all existing
coroutines (see Figure 3):

Thread is the preexisting data structure for threads. It is enhanced
with a list of coroutines (coroutine desc list) and a list of
coroutine stacks (coroutine stack list). Both are imple-
mented as circular doubly-linked lists. Note that the thread’s
body is considered to be a coroutine itself. Therefore, the first
elements of the two lists are the thread’s original stack and
coroutine, which live as long as the thread is alive.

CoroutineDesc holds VM-internal information that is coroutine-
local (e.g., for resource and handle allocation). It also speci-
fies which stack this coroutine belongs to (stack) and holds a
pointer to the coroutine’s off-stack data storage (data). Addi-
tionally it contains a state field which always holds the corou-
tine’s current state.

CoroutineStack holds information about a stack area. This in-
cludes the memory address and size of the reserved space. The
current pointer points to the coroutine that is currently ac-
tive on this stack. There is only one CoroutineStack structure
for each stack area, which can be referenced by more than one
CoroutineDesc structure.

CoroutineData is used to store the stack contents of a coroutine
while the stack is occupied by another coroutine.

Like every native thread has a mirror Java class in the form of
java.lang.Thread, there is a Java class Coroutine for corou-
tines (see Section 4). It is needed in order to allow Java code to
interact with the coroutine system. This mirror class contains a
pointer to the native CoroutineDesc structure.

3.5 Creating Coroutines

Creating a new coroutine involves the following steps:

• Determine if a new stack should be created or not. This can ei-
ther be specified explicitly (by telling the new coroutine to share
the stack with an existing one), or determined automatically. If
the stacks are managed automatically, the system creates a new
stack for each coroutine up to a specified number and then se-
lect coroutines that share stacks using a simple hash function.
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Figure 3. Native coroutine data structures

• In case a new stack is needed the system creates and initializes
the CoroutineStack structure and allocates a block of mem-
ory from the operating system. It also secures the end of the
stack with guard pages and makes further calls to register the
memory block as belonging to the current thread.

• Next the CoroutineData structure is created and filled with a
small dummy frame whose return address points to a function
that initializes and starts the coroutine.

• Finally the CoroutineDesc structure is created and associated
with the Coroutine Java object.

After all the native structures have been initialized the system
connects the Java Coroutine object with the CoroutineDesc
structure. Finally it fills some auxiliary fields and returns the newly
create coroutine.

3.6 Context Switch

Switching from one coroutine to another is the most basic oper-
ation in every coroutine system. It heavily influences the overall
performance and should therefore be implemented with as few in-
structions as possible.

An example of how the native structures are modified during
a context switch is shown in Figure 4. In this case there are two
coroutine stacks, one of which is shared by two coroutines. The
figure shows the switch from the first to the second coroutine and
from the second to the third coroutine.

Figure 5 shows the details of the context switch operation of
our algorithm. It is divided into two parts: “prepare switch” and
“switch”. If the first one succeeds it is guaranteed that the sec-
ond one succeeds as well, without any errors, exceptions, or safe-
points (e.g., garbage collection runs). This separated design, which
involves only a negligible overhead, was chosen in order to be
able to cleanly handle out-of-memory errors while enlarging the
CoroutineData structure.

We decided to implement the core functionality in a mixture of
Java and assembly code. The assembly code is generated at JVM
startup time to fit the current JVM configuration and can be called
from compiled and interpreted Java code with no overhead (apart
from the call/ret instructions). Depending on the operating system
and the CPU, our system is comprised of approximately 100-120
assembly instructions, of which 35-50 form the fast path that only
switches from one stack to the other without having to copy any
stack contents (bold line in Figure 5).

The system first checks whether the target coroutine belongs to
the current thread. It is not allowed to switch to another thread’s
coroutine, and an exception is thrown in this case.

Then it is checked if the target coroutine is in the “on-stack”
state, in which case no additional preparations are necessary. If
the target coroutine is not “on-stack” and its stack is currently
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Figure 4. Data structures before and after context switch

occupied by another coroutine, the system checks if this coroutine’s
CoroutineData structure is large enough to accommodate the
stack contents. The growing of the CoroutineData structure (if
needed) is performed by C++ code which throws an exception if
the system runs out of heap memory.

After the “prepare switch” part is finished it is guaranteed that
the context switch will succeed, so the coroutine system now up-
dates its Java data structures so that the target coroutine becomes
the current coroutine.

Now the actual switch is performed. First, the old CPU context
(i.e., program counter, stack pointer, frame pointer, etc.) is stored
into the old coroutine. Then the system determines if it is necessary
to rescue the old stack contents and/or restore the target’s stack con-
tents. The target coroutine might already be “on-stack”, in which
case no rescuing or restoring is necessary. If the target stack is not
currently in use (i.e., newly created or the coroutine that last occu-
pied it finished), then only the new contents need to be restored. If
the target stack is currently in use both rescuing and restoring are
necessary.

When the rescue and restore operations are finished the target
CPU context is restored, which, from a VM perspective, represents
the actual switch operation.

If the old coroutine has reached its end then its data structures
are freed.
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Figure 5. Coroutine context switch operation

3.7 Coroutines and Garbage Collection

The JVM needs to be able to locate the stack frames of all corou-
tines at all times because it needs to visit stack frames for a number
of reasons, including:

• When compiling methods the just-in-time compilers create
code that is valid only for the currently loaded set of classes. For
example, if the compilers discover that there is only one possi-
ble target for a polymorphic call site they output a monomor-
phic call instead. It is also possible to inline the method in
question. The compilers register the assumptions they took
while compiling code with the system. If during the loading
of new classes such assumptions are violated all activations of
the affected methods need to be located and modified in such
a way that they will resume execution in the interpreter. This
process is known as deoptimization [7].

• During garbage collection the JVM needs to find all root point-
ers to the set of live objects. The stack frames’ local variables
and expression stack values can contain root pointers. Also, the

public class Coroutine {

public Coroutine();
public Coroutine(Runnable r);
public Coroutine(long stackSize);
public Coroutine(Runnable r, long stackSize);

public static void yield();
public static void yieldTo(Coroutine target);

public boolean isAlive();
protected void run();

}

Figure 6. Coroutine Java API: Coroutine class

public class SampleCoroutine extends Coroutine {

public void run() {
System.out.println("Coroutine running 1");
yield();
System.out.println("Coroutine running 2");

}

public static void main(String[] args) {
new SampleCoroutine();
System.out.println("start");
yield();
System.out.println("middle");
yield();
System.out.println("end");

}
}

Figure 7. Example for the usage of Coroutine

methods that the stack frames belong to are objects that need to
be kept alive.

The thread’s coroutine desc list is used to iterate over all
live coroutines when needed. If a coroutine is on-stack then its stack
is walked in exactly the same way as ordinary thread stacks are. If
a coroutine’s frames are stored in its CoroutineData, a special-
purpose stack walking method is used. This method has to take
into account the displacement between the CoroutineData and
the stack that the stack frames lie on when they are executed, i.e., it
modifies each pointer that points to the stack to point to the correct
position within the CoroutineData structure.

4. Usage: Java API

A survey of 12 different programming languages with coroutine
implementations showed that there is no common naming scheme
for coroutines, neither in the way the corresponding language fea-
tures are called, nor in the names of the methods that are used to
control them. We created a Java API for our implementation that
tries to be consistent with the majority of programming languages
and that fits smoothly into the Java world. The API always works
on the coroutines of the current thread in order to avoid having to
lock data structures.

There are two main classes: Coroutine for symmetric corou-
tines, and AsymCoroutine for asymmetric coroutines. They can
both be supplied with a stack size, which the runtime tries to pro-
vide, but which cannot be guaranteed. By specifying a stack size
the user can deal with extreme cases such as coroutines that call
deeply recursive methods and therefore need a large stack, or large
numbers of coroutines that hardly call any other methods and for
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public abstract class AsymCoroutine<InT, OutT>
implements Iterable<OutT> {

public AsymCoroutine();
public AsymCoroutine(long stackSize);

public OutT call(InT input);
public InT ret(OutT output);

public boolean isAlive();
protected abstract OutT run(InT input);

public Iterator<OutT> iterator();
}

Figure 8. Coroutine Java API: AsymCoroutine class

which a large stack would be a waste of memory. In most cases,
however, the automatically chosen stack size will be adequate.

4.1 Coroutine

The interface for symmetric coroutines is shown in Figure 6. It is
similar to Thread in that it can either be supplied with a Runnable
at construction or subclassed (overriding the run() method).

Each thread maintains a circular doubly-linked list of coroutines
that serves as an ordered container for all live coroutines. The
coroutine system inserts a newly created Coroutine object after
the current one, which means that it is the next coroutine to be
scheduled. There are two ways to switch to another coroutine:

yield() transfers control to the next coroutine in the list, which
automatically moves the current coroutine to the end of the list.

yieldTo(Coroutine target) transfers control to the specified
coroutine. The target coroutine must be a coroutine created
within the current thread, otherwise an exception is thrown.
This method behaves as if the coroutines between the current
and the target coroutine were silently skipped, i.e., it does not
alter the order of the coroutines within the current thread.

Both these methods are static and always act on the current thread’s
list of coroutines. The instance method isAlive() returns true if
the Coroutine in question has not yet reached its end.

Figure 7 shows an example of a simple coroutine that produces
the following output:

start
Coroutine running 1
middle
Coroutine running 2
end

4.2 AsymCoroutine

For reasons of generality, we also provide an implementation of
asymmetric coroutines, called AsymCoroutine, shown in Fig-
ure 8. Instances of this class can only be created by subclassing
AsymCoroutine (overriding the run() method).

AsymCoroutine objects are not part of the ordinary Coroutine-
scheduling, they are thus only executed when they are explicitly
called. They also know their caller, which allows them to return to
their caller with a ret() call.

AsymCoroutines are prepared to take an input from their caller
and to return an output. The types of these input and output pa-
rameters can be specified by generic type parameters. If the input
and/or output parameters are not used, the respective type param-
eters should be set to Void. The input parameter given to the first
call() will become the input parameter of the run method, and
the output parameter returned by the run() method will become
the last call()’s return value.

public class CoSAXParser
extends AsymCoroutine<Void, String> {

public String run(Void input) {
SAXParser parser = ...
parser.parse(new File("content.xml"),
new DefaultHandler() {
public void startElement(String name) {
ret(output);

}
});

return null;
}

public static void main(String[] args) {
CoSAXParser parser = new CoSAXParser();

while (parser.isAlive()) {
String element = parser.call(null);
System.out.println(element);

}
}

}

Figure 9. SAX parser inversion

...
public static void main(String[] args) {
CoSAXParser parser = new CoSAXParser();

for (String element: parser) {
System.out.println(element);

}
}

}

Figure 10. SAX parser inversion using enhanced for loops

The fact that AsymCoroutine implements Iterable allows
such coroutines to be used in enhanced for loops. In this case, the
input parameter is always null as there is no way to supply the
iterator with an input.

The AsymCoroutine interface looks as follows:

OutT call(InT input) transfers control to the coroutine that
this method is called on. The calling coroutine can either be
a Coroutine or AsymCoroutine instance, and it is recorded
as the caller of the target coroutine. call() passes an input
parameter of type InT to the called coroutine and returns the
coroutine’s output parameter, which is of type OutT. A corou-
tine can only be called if it is not currently in use. This means
that a coroutine cannot directly or indirectly call itself. Invok-
ing call() on a AsymCoroutine that is not alive leads to an
exception.

InT ret(OutT output) suspends the current coroutine and re-
turns to the caller. The output parameter of type OutT is passed
to the calling coroutine, and the next time the current coroutine
is called ret() will return the input parameter of type InT.

boolean isAlive() returns true if the AsymCoroutine in ques-
tion has not yet reached its end.

It is important to note that trying to yield() to another Coroutine
generates an exception if the current coroutine is an AsymCoroutine.

Figure 9 shows an example AsymCoroutine that inverts a SAX
parser [11] to return one XML element at a time. Figure 10 contains
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Figure 11. average time for one “switch” operation, relative to the active coroutine count

an alternative version of the main method that uses an enhanced for
loop.

The system also includes a subclass of AsymCoroutine with
Void input and output parameter types which provides Thread-
like construction using a Runnable and parameterless call() and
ret() methods.

5. Evaluation

All tests and benchmarks presented in this section were performed
on a computer with a quad-core Intel i5 750 CPU at 2.67 GHz and
8 GByte main memory running Windows 7.

5.1 Memory Consumption

Coroutines consume different amounts of memory depending on
their number of active stack frames. Unless a coroutine has a deeply
nested chain of method activations at the time it yields control, it
uses no more than 2 kByte of space (roughly 1 kByte used by the
VM plus at least 32 bytes per Java frame). The size of the various
control structures is negligible compared to the size of the stack
contents. We managed to run 1,000,000 concurrent coroutines on a
32-bit machine, at which time the address space was exhausted.

The size of the coroutine stack depends on the reservation and
allocation granularity of the operating system and the requested
stack size. The stack size also has to account for a number of so-
called guard and shadow pages that are used to detect stack over-
flows. These additional pages take up between 24 and 92 kByte,
depending on the operating system. This leads to a minimum stack
size of 32 kByte on Linux, 64 kByte on Windows and 100 kByte
on Solaris, which allows the allocation of roughly 60,000, 30,000,
or 20,000 stacks on a 32-bit machine.

5.2 Execution Time

The execution time of the various coroutine operations depends on
factors such as the cache layout of the CPU, the operating system
and others. Nevertheless an approximation can be given.

On our system, creating a new coroutine takes 1.5 µs if a new
stack needs to be created, and 0.3 µs if not. Creating a new thread
takes roughly 2.5 µs. The first call to the coroutine has to set up a
number of data structures and takes 3 µs, whereas starting a thread
takes 60 µs.

Switching between coroutines is the most important operation
and takes 20 ns in the best case. This is less than twice the time it
takes to make a polymorphic method call.

Figure 11 shows the average time for one “switch” operation in
relation to the total amount of active coroutines. The benchmark
we used to create these graphs creates the given number of corou-
tines, switches to all coroutines and computes the average time per

switch. The left graph is a magnification of the right one and shows
the behavior for small numbers of coroutines. The coroutine sys-
tem was configured to allow a maximum of 100 distinct coroutine
stacks per thread.

The graphs illustrate the factors that influence the performance
of the switch operation:

• Up to 25 coroutines the switch time is dominated by the raw
execution time of the assembly and Java code.

• From 25 to 75 coroutines the size of the working set outgrows
the first-level CPU cache.

• Between the number of stacks (100) and two times the number
of stacks (200) the execution time degrades towards the time for
the copy operation.

• At around 4,000 coroutines the size of the working set starts to
outgrow the second-level CPU cache.

The time per switch stays at 480 ns even for very large numbers of
coroutines (1,000,000). These times depend heavily on the machine
the benchmarks are executed on, but they nevertheless show that
there are no abrupt performance degradations

5.3 JRuby fibers performance

In order to determine the effect of JVM-level coroutine support on
language implementations that run on top of the JVM, we eval-
uate the performance of different Ruby [4] environments. Ruby
is a general purpose object-oriented programming language that
draws concepts from a number of programming languages includ-
ing Perl, Smalltalk, Eiffel, Ada and Lisp. The high flexibility and
programming frameworks such as Ruby on Rails [19] have made
the language very popular, consistently ranking in the top 15 of
the TIOBE Programming Community Index [20] in recent years.
The latest version of the Ruby language (1.9) implements a feature
called fibers, which provides a simple interface to symmetric and
asymmetric coroutines.

The Ruby community [18] maintains a C implementation that is
called Matz’s Ruby Interpreter (MRI) after the creator of the Ruby
language (Yukihiro Matsumoto). It is the most widely-used Ruby
implementation and as such serves as a baseline for our bench-
marks. MRI implements fibers with a simple copying approach.

JRuby [17] implements the Ruby language on top of a JVM
and is the second-most widely-used Ruby implementation. It im-
plements fibers by creating a thread for each fiber and synchroniz-
ing the threads in such a way that the threads behave as if they
were fibers. We modified JRuby to use our JVM coroutines instead
of threads to implement fibers.
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Figure 12. Ruby benchmark: 5 fiber chain
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Figure 13. Ruby benchmark: 5000 fiber chain

In order to assess the performance of these implementations we
used a simple benchmark that passes messages through a chain of
fibers. Tests with different numbers of fibers and messages showed
that for all test sizes a large speedup is attained by the use of
coroutines.

Figures 12 and 13 show a comparison of the performance of
MRI, JRuby without modifications, and JRuby with coroutine sup-
port. Figure 12 shows the runtime of a benchmark that passes differ-
ent numbers of messages through a chain of 5 fibers, and Figure 13
shows the same benchmark for a chain of 5000 fibers.

The graphs show that our combined approach works especially
well when each coroutine has its own stack (which is the case with
5 fibers) and still works reasonably well when it needs to resort to
copying (which happens with 5000 fibers).

JRuby with coroutines is roughly 2 times faster than MRI,
which in turn is about 3.5 times faster than JRuby without corou-
tines. On average, JRuby with coroutines is 7 times faster than
JRuby without coroutines.

6. Related Work

Most of the publications on coroutines deal with the operational
semantics and the connection to other research areas, while the
actual implementation details are often omitted.

Weatherly et al. [21] implemented coroutines in Java for simula-
tion tasks. Their implementation copies data to and from the stack
for each context switch. The focus of their work lies on the con-
nection to the simulation infrastructure, and they hardly touch the
intricacies of the coroutine semantics in the Java environment.

Ierusalimschy et al. [6] describe how the Lua virtual machine
handles coroutines. Their implementation uses a separate stack for

each coroutine. The Lua virtual machine is interpreter-only, and
the interpreter functions stackless. This means that the actual stack
data can be stored at an arbitrary memory position, completely
circumventing the problem of dealing with native stacks.

Bobrow andWegbreit [1] show an implementation of coroutines
that stores a spaghetti stack containing stack frames of multiple
coroutines into a single stack segment. This is achieved by jumping
back and forth on the stack and testing if enough free space is
available for a new stack frame each time a subroutine is called.
While this approach can be efficient, it suffers from a number
of drawbacks. It also violates the assumption made by modern
operating systems that there should always be a certain amount of
available stack space beneath the current stack frame.

Pauli and Soffa [13] improve upon Bobrow and Wegbreit. They
introduce a dynamic and moving reentry point for coroutines, in-
stead of the static one used by the original algorithm. They also
show how to apply the algorithm to statically scoped languages and
conclude with a detailed analysis of different variations of the algo-
rithm. However, all models described by Pauli and Soffa still incur
a significant overhead for each method call.

Mateu [9] makes the case that a limited version of continuations
can be implemented via coroutines. He presents an implementation
that heap-allocates frames and uses a generational garbage collec-
tor to free obsolete frames. The performance measurements show
that it is difficult to find the optimal size of this frame heap because
the performance is dominated by the tradeoff between CPU cache
efficiency (small heap) and fewer collections (large heap).

Carroll [2] shows an example of a real-world problem that
would benefit from a coroutine implementation in Java. Two con-
secutive parsers are used to parse RDF (which is based on XML).
Using two ordinary parsers is only possible if they are executed
in different threads. Carroll shows that a significant performance
increase is possible if the two parsers are combined into a single
thread. In this case this is achieved via inverting the RDF parser,
which is undesirable from a design perspective. The need for man-
ual inversion could be avoided if real coroutines were available.

7. Future Work

An additional state “serialized” (added to the states shown in Fig-
ure 2) would be an interesting extension to the approach presented
in this paper. Coroutines in this state could move to other threads
and possibly also to other JVMs. If such serialized coroutines were
cloneable the system would be functionally equivalent to a system
supporting first-class continuations [14], and as such be applicable
to problems that are only solvable by continuations.

8. Conclusions

Coroutines are an elegant solution for many problems and as such
have reappeared in a number of modern programming languages.

In this paper we presented a coroutine implementation approach
that allocates stacks up to a certain limit and then starts copying
data to and from these stacks. We showed the implementation of
this approach for the widely used Java HotSpotTM VM.

The main contribution of our approach is to show that the
two most widely-used coroutine implementation strategies can be
combined, resulting in an implementation that performs well over
a wide range of different workloads. We also introduced a Java API
for coroutines.

We gave estimates for the memory usage of our coroutines
and the run time of the most important operations on them. We
also analyzed the performance of our approach in the context of
language implementations, which showed that for languages that
provide coroutine-like features JVM-based implementations can
benefit significantly from our coroutines.
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