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Abstract—Faults are common in large software systems and
must be analyzed to prevent future failures such as system
outages. Due to their sheer amount, the observed failures cannot
be inspected individually but must be automatically grouped
and prioritized. An open challenge is to find similarities in
failures across different systems. We propose a novel approach for
identifying error-prone software technologies via a cross-system
analysis based on monitoring and crash data. Our approach
ranks the error-prone software technologies and analyzes the
occurred exceptions, thus making it easier for developers to
investigate cross-system failures. Finding such failures is highly
advantageous as fixing a fault may benefit many affected systems.
A preliminary case study on monitoring data of hundreds of
different systems demonstrates the feasibility of our approach.

I. INTRODUCTION

It has been shown that large-scale software systems tend
to fail more often due to their higher complexity [1], [2].
Such failures can lead to crashes, often with dramatic impact.
System outages, downtime and performance degradations can
potentially lead to bad reputation or financial loss of the
service provider of a system [1]. Researchers have thus been
developing approaches for analyzing crashes (e.g., [3]–[5]).
Since systems will grow even more in the future, the number
and impact of crashes can also be expected to increase, making
a manual analysis infeasible. Instead, a promising idea is
to find similarities among crashes by bucketing, grouping
or classifying crash reports. This can be used to prioritize
crashes, e.g., by their frequency, so that developers can first
fix the issues with the highest impact. Previous research in
this area focused on inspecting crashes, either occurring on a
specific platform such as Android [6] or in single software
systems [7]–[14]. Research so far often concentrated on a
specific product (e.g., Mozilla Firefox) or product family (e.g.,
Microsoft products such as Windows and Office).

However, analyzing failures in today’s large-scale software
systems is particularly challenged by the diversity of programs
and processes, which are executed on heterogeneous technolo-
gies. Moreover, different versions of programs or components
are frequently deployed to different environments, thereby
creating a vast and diverse landscape of software technologies.
In such a context, crash analysis thus needs to go beyond

the boundaries of individual systems. Our aim is to find
commonalities of crashes in such multi-system landscapes,
allowing to identify and fix problems potentially affecting
multiple systems. Hence, we are particularly interested in fre-
quently happening crashes which are not specific to only one
service provider, i.e., crashes that occur in multiple systems.
Since large numbers of crashes may occur, crash prioritization
becomes essential.

We use anonymized system and crash data from a monitor-
ing infrastructure of an industry partner. Rather than inspecting
the crashes individually, we look for common properties of
the crashed processes. Such properties are, for example, the
frameworks or technologies (e.g., Java, .NET, PHP) used by
these processes. We automatically create technology tuples
and connect them to the occurred crashes. We consider a
technology tuple as a set of framework types and versions.
For example, ((Java, 1.8), (Tomcat, 8.0)) is a
technology tuple with two elements. We then merge the tuples
across all systems and apply a user-definable ranking metric,
allowing us to reveal error-prone software technologies. We
consider a software technology as error-prone not only if it
has faults, but also if it is incorrectly used. This is important
as bugs are frequently introduced when integrating a particular
software technology in a system. The resulting top ranked tu-
ples are further analyzed and grouped by exceptions, yielding
the final targets for manual investigation. An engineer can then
browse through these targets to determine the root cause of
the crashes. In case a common solution is found, all affected
service providers can then be notified to benefit from a fix for
such common crashes.

Our paper claims the following contributions:
(i) We describe a novel approach for aggregating and

prioritizing crashes that occur in heterogeneous systems by
automatically identifying error-prone software technologies
via merging, ranking and grouping system monitoring data as
well as crash data. The goal is to highlight common crashes
that occurred in multiple systems where fixing one such crash
may benefit many affected service providers.

(ii) We provide a preliminary case study based on hundreds
of different systems with thousands of processes and crashes.



We show that our cross-system crash analysis is capable of
identifying common problematic cases for which a solution
can potentially be applied to every affected service provider.

The rest of this paper is organized as follows: Section II
describes the monitoring and crash data required for our
approach. Section III presents our cross-system crash analysis.
In Section IV, we apply our approach on a large dataset
and highlight identified problematic cases. In Section V, we
discuss related work and Section VI concludes this paper.

II. MONITORING AND CRASH DATA

Our research is conducted in collaboration with an industry
partner. However, it is independent of a specific monitoring
infrastructure. We assume that the following data about pro-
cesses and crashes will be collected from the monitored sys-
tems, allowing our approach to identify error-prone software
technologies based on common crashes (cf. Table I, II):

A. Processes

Data need to be continuously collected about important
properties and communication connections of all processes
executed by the monitored systems. Process properties include
information about the used software technologies together with
timestamps indicating if the process and the used technolo-
gies are active. Connection properties describe all process-to-
process communications and also allow to create a communi-
cation graph.

TABLE I
EXAMPLE PROPERTIES OF A PROCESS AND SOFTWARE TECHNOLOGIES

Process: TomcatServerA
Start End

14916310027301 1499218873887
Software Technologies

Type Edition Version Active Until

Java OpenJDK 1.8.0 121 1495535781954
Tomcat -2 7.0.65.0 1495535781954
Java OpenJDK 1.8.0 131 1499218873887
Tomcat - 8.0.44.0 1499218873887
1 All timestamps are in milliseconds of UTC.
2 The character “-” indicates a missing entry.

Example properties of a Tomcat server process hosting a
web service are listed in Table I. The start and end timestamps
of the process indicate the points in time when the process was
first launched and when it was terminated. The software tech-
nologies encompass the following information: the type of the
technology (e.g., Java), an optional edition (e.g., OpenJDK), an
optional version (e.g., 1.8.0 121), and a timestamp indicating
until when the particular technology was active on the process.
As can be seen from the timestamps in the example, an older
version of Apache Tomcat was running on Java until both were
updated. The new software technologies then were executed
until the termination of the process.

B. Crashes

Crash data contain properties of all occurred failures in the
monitored systems. They contain the process causing a crash,
a timestamp, as well as the exception or error message. For ex-
ample, a programming error in the Tomcat source code could
have led to a server crash, which is described by the properties
shown in Table II. The timestamp indicates that the crash oc-
curred while the software technologies (Java, OpenJDK,
1.8.0_121) and (Tomcat, 8.0.44.0) were active.

TABLE II
EXAMPLE CRASH PROPERTIES

Process Exception Timestamp
TomcatServerA java.lang.NullPointerException 1498540000391

Our approach is not limited to exceptions. If other properties
are stored for each crash (e.g., the top stack trace frame or
the location where the crashed process was executed), we
can utilize this information as we will show in Sections III-D
and IV.

III. APPROACH

Our automated approach extracts information about soft-
ware technologies used at crash points to reveal suspicious
technologies likely leading to system failures. It comprises
four steps: (i) It first creates a history of system topology
snapshots by preprocessing the monitoring data described in
the previous section. (ii) It then creates software technology
tuples based on an analysis of the occurred crashes. (iii) It
ranks the software technology tuples to reveal the most suspi-
cious ones; and (iv) performs a detailed analysis of the crash
properties.

A. Creating System Topology Snapshots

The raw data described in the previous section need to be
preprocessed and transformed to a representation facilitating
the subsequent analyses. In this step, we thus build a snapshot-
based topology for each system, i.e., process graphs that
also include associated crash events. The nodes in a graph
represent processes that were active at the time of the snapshot,
while the edges indicate communication links between the
processes, i.e., a graph could be disconnected. In order to
capture the evolution of the system topologies over time, we
create multiple process graphs for each system. In this way,
we can represent structural changes that happen when a new
process starts or when an existing process terminates.

B. Crash Frequency-based Creation of Software Technology
Tuples

Our approach aims to extract information about software
technologies at crash points to reveal error-prone technologies.
Therefore, we create so-called software technology tuples that
capture the technologies used during the lifetime of a process.
We determine how often a tuple was seen at a crash point and
how often it was active at a point where the process did not



crash. We also capture the processes and systems that were
affected and the crash events that were recorded.

Specifically, our approach currently encompasses two types
of tuples:

1-tuples are created by extracting every single software
technology of each process. For example, if a process A has
two technologies X and Y , we create two 1-tuples, namely
(X) and (Y ).

2-tuples are created based on the process graphs by consid-
ering pairs of neighboring, i.e., communicating, processes. We
create all possible technology pairs for each process pair and
their active software technologies. Figure 1 shows an example
of two neighboring processes A (with software technologies
X,Y ) and B (with software technology Z). The timeline
shows the timestamps of both processes: B started at t1 and
ended at t4, whereas A started at t2 and ended at t5. The
timestamps for the software technologies show how long they
were active: X was active from the start of A = t2 until t3
while Y was then active until the end of A = t5. Software
technology Z was active the entire time. In this example, we
would create two 2-tuples, namely (X,Z) and (Y,Z). In case
process B would start after timestamp t3, we would create
only one 2-tuple, namely (Y,Z) because technology X would
no longer be active.

A
ST

X

Y

B
ST

Z

B X Y
time

ZA

t1 t3 t5t4t2
Fig. 1. A 2-tuple example showing the timelines of three software technolo-
gies (ST) on two processes.

We analyze 2-tuples as we want to investigate possible
software incompatibilities, i.e., crashes might occur more
frequently if specific (versions of) technologies communicate
with each other. Such misconfigurations have been identified
as a significant cause of system failures [15]. Obviously, our
approach could also handle n-tuples as we will discuss in
Section IV-D.

For every created tuple, we check if it crashed during its
lifetime, i.e., the time span from activating to deactivating its
software technologies. We consider a tuple as crashed if at
least one of the involved processes crashed during its lifetime.
Otherwise, the tuple is considered as not crashed. In both
cases, we record to which system a tuple belongs, yielding
the following tuple result r:
• r.techs: The actual software technology tuple, e.g.,

(X,Y ).
• r.crashed: 1 if (at least one of) the process(es) running

the techs crashed, 0 otherwise.
• r.events: The set of all crash events of process(es) where

r.techs was active. The set is empty if no crash occurred.

• r.system: The monitored system of the service provider
hosting the process(es).

After storing all results in a database, our approach next
merges tuples in each system by creating buckets of similar
versions, thereby compacting the version information recorded
for the software technologies. Specifically, we remove the last
version token but keep at least two tokens (e.g., for the version
information 1.8 we keep 1.8 while for 7.0.65.0 we shorten
it to 7.0.65). This merging steps improves our prioritization
results, while still providing sufficiently detailed information.
Afterwards, we aggregate the results for equal technology
tuples. For ≥ 2-tuples, equality means that two tuples are
either exactly equal or “reverse-equal”, i.e., (X,Y, Z) is con-
sidered equal to (Z, Y,X) since it is in the reverse order, while
(X,Z, Y ) would be a different tuple. This means that we form
groups G of equal software technologies of the results r (with
the compacted version field) and create the new merged results
m for each such group G as follows:
• m.techs = r.techs, arbitrary r ∈ G
• m.crashed =

∑
r∈G r.crashed

• m.¬crashed =
∑

r∈G(1− r.crashed)
• m.events = ∪r∈Gr.events
• m.system = r.system, arbitrary r ∈ G

After the merging process, crashed and ¬crashed indicate
how often a specific tuple crashed (respectively did not crash)
in the observed time period of the monitored system.

In the last aggregation step of tuple processing, we merge
the results for all the different systems. Again, we form
groups G of equal software technologies of the merged results
m and create new final results f for each such group G as:
• f.techs = m.techs, arbitrary m ∈ G
• f.crashed =

∑
m∈G m.crashed

• f.¬crashed =
∑

m∈G m.¬crashed
• f.crashedSystems = ∪m∈G∧m.crashed>0{m.system}
• f.¬crashedSystems = ∪m∈G∧m.¬crashed>0{m.system}
The new entries crashedSystems and ¬crashedSystems in-

dicate in which systems the particular tuple crashed or did not
crash respectively.

C. Ranking of Software Technology Tuples

After computing these tuple results, the approach aims to
extract the most “interesting” tuples, i.e., the ones revealing
software technologies that likely result in failures. We aim to
find tuples that frequently led to crashes in many different
systems. We defined the following metric to calculate a rank
for each final result tuple f :

rank(f) =
|f.cS|

|f.cS|+ |¬f.cS|
· |f.cS|
maxf ′∈F (|f ′.cS|)

· f.c

where | · | is the number of elements of the set, cS stands
for crashedSystems, c for crashed and F is the set of all final
results. The first factor is the ratio of crashed systems to all
systems in which this tuple occurred. The second factor is a
scaling factor that rewards tuples with many crashed systems.
If this factor was missing, tuples with few crashed systems



and zero not-crashed systems would be ranked high despite
the low total number of systems, which is contrary to what
we defined as interesting. The third factor simply ranks tuples
higher if they crashed more frequently, thus ensuring a focus
on reoccurring crashes rather than one-time crashes.

D. Crash Property Analysis

After applying the ranking metric, we sort the tuple results
in descending order and analyze the top tuples in more detail
to find crash commonalities. Specifically, we first group and
sort the data by the reported crash exceptions to yield groups
of equal exceptions. We then divide these groups based on the
individual systems where the exception occurred. For every
tuple, we visualize the final result as a bar plot showing all
crashes, first grouped by their exceptions and then by their
originating systems.

As discussed above the most interesting results are tuples
with many crashes that occurred in multiple systems. Engi-
neers can then manually investigate such cases by inspecting
the affected systems, the crashes and the processes affected by
the crashes. They may need to use additional data to identify
the crash’s root cause and to develop a fix for affected service
providers.

As mentioned in Section II, we can also apply the grouping
algorithm on any other crash property. For instance, if the top
stack frame is also stored for each crash, we can obtain plots
showing crash groups of equal top stack frames, again divided
by the originating systems. If crashes have no exception
property we cannot directly apply our grouping in the last
processing step. However, we can treat such cases as “empty”
exceptions rather than no exception at all. This way, we can
still see these crashes in the final plot and, in case of interest,
inspect them in more detail.

IV. EVALUATION

The goal of our approach is to identify error-prone soft-
ware technologies across multiple systems by automatically
finding common crashes potentially affecting multiple service
providers. In our preliminary evaluation we investigate the
following research questions to evaluate the usefulness of the
approach:

RQ1. Is the automated analysis capable of finding error-
prone software technologies? – We performed a 1-tuple anal-
ysis and also analyzed crash properties across systems based
on an industrial dataset.

RQ2. Are the results found by the crash property analysis
meaningful? – We conducted a manual inspection of selected
results to determine whether our approach can help in identi-
fying common cross-system crashes.

RQ3. Does the consideration of process communication
yield additional information? – We performed a 2-tuple anal-
ysis and compared the results to the 1-tuple analysis.

We analyzed systems from our industry partner’s environ-
ment. These systems are completely independent of each other
and their sizes range from small systems with only a few
processes to huge and complex systems with hundreds of

machines and thousands of processes. The dataset was created
to cover a longer period of time with more likely changes to
systems and technologies. Our dataset ranges from April 2017
to March 2018. To keep the size of the dataset manageable, we
included the first week of each month. The average number
of crashes was approximately 18,000 crashes per month, the
average number of systems was about 500.

A. RQ1 – Automated Analysis

To check whether our approach can find problematic error-
prone cross-system technologies, we first performed a 1-tuple
analysis as defined in Section III-B and then analyzed the
exceptions of the occurred crashes. Figure 2 shows char-
acteristic examples of top ranked 1-tuples, grouped by the
exception crash property. Obviously, these examples show
only a small subset. As mentioned before, we specifically
looked for exception groups with a high number of crashes
occurring in multiple systems. Visually speaking, these groups
result in large multicolored bars, with each color representing
a system. The x-axis of the plots shows the total number
of occurred crashes and the y-axis represents the exception
groups in descending order of the crash count. To keep the
plots readable, we removed exceptions that only occurred in
one system and we only kept a maximum of seven exception
groups.

For instance, Figure 2a shows the bar plot for the highest
ranked tuple of the October export: (CLR, 4.0.30319),
which is part of the .NET Framework 4.7 (CLR = Com-
mon Language Runtime). The TargetInvocationEx-
ception was thrown most often but only in two systems,
whereas the SqlException occurred nearly as often but
in four different systems. The TypeInitializationEx-
ception occurred in eight systems. The next two exceptions
are also of interest, as they occurred in three and six systems.

Analogously, one can interpret the results in Figure 2b
showing the tuple (CLR, 2.0.50727), which is part of the
.Net Framework 3.5. Clearly, the AppDomainUnloaded-
Exception with six systems and over 100 crashes is worth
to be investigated in more detail.

In Figure 2c, we can see the highest ranked tuple of the
month March, this time displayed using a logarithmic scale
because of the high crash count. After the TypeInitial-
izationException, which was thrown in 42 systems,
the SerializationException causing the second-most
crashes occurred in five different systems, followed by the
NullReferenceException (seven systems). The Mem-
oryException and the ObjectDisposedException
could be worth investigating as well since they were thrown
in nine and five different systems.

An engineer can use such visualizations to select cases for
further inspection to determine any possible common root
causes or to discard irrelevant ones.

B. RQ2 – Manual Inspection

We now demonstrate that the automatically found crashes
are indeed meaningful. We illustrate this process by looking at
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(a) October 2017: exception groups of the 1st ranked 1-tuple (CLR, 4.0.30319).
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(b) October 2017: exception groups of the 13th ranked 1-tuple (CLR, 2.0.50727).
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(c) March 2018: exception groups of the 1st ranked 1-tuple (CLR, 4.0.30319) in logarithmic scale.

Fig. 2. Examples of top ranked 1-tuples, grouped by the exception crash property. The colors represent different systems.

the example in Figure 2b in more detail to confirm the validity
of the results. Specifically, we more closely investigated the
systems affected by the AppDomainUnloadedException
based on the results of our October analysis. First, we searched
on the Internet for possible causes and found a handful of
related issues. These included bugs in SQLite and NUnit,
switching the test runner from MSTest Runner to Visual Studio
Test Runner and switching between versions of the .NET
framework. We then continued by looking at the crashed
processes of the individual systems to find similarities or
correlations. As it turned out, most of the crashes occurred in
the ReportingServicesService.exe within a suspicious 12-hour
interval. Further investigations revealed that the crashes were
most likely due to Microsoft’s Reporting Services, which by
default recycled application domains every 12 hours [16].

The example shows a problem potentially affecting many
service providers, who would benefit from the findings and
possible solutions.

C. RQ3 – Process Communication

Our approach either performs a 1-tuple analysis considering
the software technologies of individual processes or a 2-tuple
analysis also considering pairs of communicating processes.
We also explored the benefit of additionally considering
communications between processes. Specifically, the 1-tuple
approach is expected to yield single error-prone software
technologies, while the 2-tuple analysis can potentially also
discover suspicious technology pairs. In such a case, the 2-
tuple would be ranked higher than the two individual 1-tuples.

Before we discuss the comparison results in Figure 4, we
explain how to read the plot using the small example in
Figure 3. The x-axis represents the rank position of the two
top ranked 2-tuples while the y-axis represents the difference
to the higher ranked corresponding 1-tuple. The rank position

is the index of the tuple after sorting the tuples by rank in
descending order. In Figure 3, there are two 2-tuples: The
1st ranked 2-tuple has a difference of −3, the second one
has a difference of +1. Here is how these differences were
calculated:

• Suppose the two 2-tuples are (X,Y ) and (Y,Z). They
have rank positions rp of rp(X,Y ) = 1 and rp(Y,Z) = 2
(directly taken from the x-axis of the plot).

• The corresponding 1-tuples are (X), (Y ) and (Z). Sup-
pose they have rp(X) = 4, rp(Y ) = 5 and rp(Z) = 1.

• For each 2-tuple, the difference d is now calculated by
subtracting the higher ranked 1-tuple rp from the 2-tuple
rp. For (X,Y ), the higher ranked 1-tuple is (X), which
yields d = rp(X,Y )−rp(X) = 1−4 = −3. For (Y, Z), the
higher ranked 1-tuple is (Y ), which yields d = rp(Y,Z)−
rp(Y ) = 2− 1 = 1.

The difference indicates which tuple is considered as more
relevant. A positive difference means that the 1-tuple is more
relevant, a negative one means that the 2-tuple is more relevant.

Figure 4 shows a comparison for each monitored month. As
can be seen in the figure, the 1-tuple results were in general
considered as more relevant. With a few exceptions, most
top ranked 2-tuples just contained a top ranked 1-tuple (or
even two), indicating that analyzing technologies in pairs did
not offer additional information, i.e., in most of the cases,
a single component could be blamed for the failure. The
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Fig. 3. Example comparison of 2-tuples to 1-tuples.



increasing trend in each subplot just shows that most of the
2-tuples shared a high ranked 1-tuple, e.g., if (X) was at a
very low rank position, then (X,A), (X,B), (X,C) would
yield monotonically increasing differences. The outliers did
not yield interesting insights either. Their rank differs for two
reasons: i) The error-prone 2-tuple only occurs within a single
system. ii) The fault can only occur in a system with those
two tuples (e.g., a web server and its backend), i.e., the 2-tuple
outlier indicates a common technology correlation. Neither
case shows a general software incompatibility.

D. Further Opportunities

Our preliminary evaluation demonstrated the feasibility of
our approach for a common scenario. However, our approach
can be adapted and customized in different ways. This includes
choosing the definition of the ranking metric, the use of
alternative properties for the crash property analysis, as well
as the kind of tuple analysis. This raises interesting questions
for further research, which we discuss in the following.

Using different ranking metrics: The ranking metric is
responsible for extracting the top tuples from the recorded
raw data. It thus allows full control of what a user considers
as interesting. Equation (1), for example, drops the crash
count in our original metric to set the focus even more on
different systems. Conversely, the metric could also discard
all information on the systems and solely reflect the crash
count, as it is done in (2).

ranka(f) =
|f.cS|

|f.cS|+ |¬f.cS|
· |f.cS|
maxf ′∈F (|f ′.cS|)

(1)

rankb(f) =
|f.c|

|f.c|+ |¬f.c|
(2)

As different metrics imply different top tuples, this naturally
changes the 2-tuple vs 1-tuple scenario, which is shown in
Figure 5 for March 2018. Of course, this requires further
investigation in an in-depth evaluation.

Considering alternative crash properties: As mentioned
in Section II, we can also make use of different crash proper-
ties if they are available. For instance, we could create groups
based on common class names where the crashes occurred.
We could also look at process signals or the fault location.
The advantage of utilizing additional crash information is the
increased insight we get into the crash data, which helps to
filter actually relevant crashes and allows for a faster root
cause investigation. An example is shown in Figure 6. The
grouping algorithm could also be extended to allow custom
equality measures instead of exact matches only. This would
prove useful in case of more complicated crash properties
such as stack traces, where some sort of stack trace similarity
measure (cf. [8], [9], [11], [17], [18]) would then determine
equal groups in the plots.

Performing an n-tuple analysis: Based on our 2-tuple
to 1-tuple comparison, we concluded that investigating n-
tuples with n ≥ 3 might not be worth the effort as al-
ready 2-tuples did not provide significantly more information.
Moreover, we argue that failures originating from software
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Fig. 6. Example groups for three alternative crash properties: class name
(top), process signal (middle) and fault location (bottom).

incompatibilities are typically already covered by 2-tuples,
since such incompatibilities are much more likely to occur in
direct communication rather than over multiple hops. However,
it must be noted that the observation in Figure 4 only holds for
the data we analyzed and for the ranking metric we defined
in Section III-C. Future data or data from other monitored
systems and different metrics might yield other results, so we
will consider data, metrics and n-tuples in future work.

V. RELATED WORK

Error analytics is a huge area of research. For instance,
many valuable research contributions have been made in the
field of software bug management (e.g., optimization, triaging,
automatic fixing of bugs) [3]–[5]. The work by Ghafoor and
Siddiqui [18] is probably closest to our approach for analyzing
and prioritizing cross-system crashes. Specifically, the authors
try to find the same bugs for different programs or prod-
ucts (e.g., Mozilla Firefox, Thunderbird, MailNews). For that
purpose, they utilize bug reports from the corresponding bug
repositories via the Bugzilla API from where they extract stack
traces, which they group according to the information available
in the bug reports. Since stack trace matching is a promising
approach [17], [19] they use a string-based similarity measure
to cluster similar bugs. They evaluated their approach on
132 programs. A manual inspection of the resulting clusters
revealed that the clustered bug reports are indeed correlated,
i.e., fixing a bug in such a cluster also fixes the same problem
in different programs.

Classifying and bucketing crashes and bugs or bug reports
for prioritization has been researched in recent years, however,
existing research mainly focuses on single applications or

families of products. Dhaliwal et al. [9] present a classification
of Mozilla Firefox crash reports based on stack trace string
similarity. Glerum et al. [10] introduce the Windows Error
Reporting (WER). The authors collect debugging data from
Microsoft products and assign bugs to buckets using differ-
ent labeling heuristics (program name, version, timestamp,
exception code, etc.) as well as classifying-heuristics (stack
matching, prioritizing stack frames, etc.). Kim et al. [12] create
weighted crash graphs based on stack traces of the crashes
bucketed by WER and compute a graph similarity measure
to classify crashes. ReBucket [8] is another improvement
of WER: The authors additionally analyze the stack trace
similarity via their Position Dependent Model, which considers
the number of functions, the distance of those functions to the
top stack frame, as well as the offset distance between matched
functions. A different approach was proposed by Cui et al. [7],
who consider program semantics by extracting additional in-
formation from crash memory dumps to identify bad functions
for crash bucketing. Wang et al. [14] even investigate crash
type correlations between groups of equal or similar crash
reports via structural (stack traces), temporal (crashes that
occurred at similar timestamps) and semantic information
(textual similarity of user comments). The concepts and ideas
presented in these papers are useful to complement our crash
event analysis in the future. Especially stack traces would be
a great addition to our approach to improve the automatic
grouping algorithm and to support the manual inspection, as
stack traces provide great help in finding bugs [20]. Regarding
manual inspection, log messages could be useful as already
shown in other work [21], [22].

The approach by Murtaza et al. [13] is based on function call
traces. They specifically look at recurring faults in different
versions of a deployed program and try to detect faults in
older versions of a system for which a fix already exists in
newer versions. Under certain circumstances, our approach
can also identify such cases, e.g., when a specific software
technology used in multiple systems contains faults. Recurring
crashes are also the main focus of Gao et al. [6], who try
to automatically apply known fixes found in Q&A sites (e.g.,
Stack Overflow) by partial stack trace matching. Incorporating
such an approach into our own approach could be interesting,
most notably to automatically gather information for the
identified problems, which is currently a manual activity.

Predicting whether new crash events should be classified
as relevant or not was investigated by Kim et al. [11]. They
prioritize crashes by applying machine learning on previous
crashes that were labeled as important or unimportant. This
could also be a valuable addition to our current system, as it
would allow to immediately classify new crashes as essential.
There is also recent research on predicting defects in new
projects based on defect data from existing projects [23], [24].
Our research focus so far was different, i.e., analyzing occurred
crashes for finding fixes as opposed to predicting future defects
for prevention. However, it would be interesting to investigate
if ideas from cross-project defect prediction could also be
applied to cross-system crash prediction.



As the detection of operational anomalies in continuous
monitoring is an essential task in DevOps [25], our approach
can also be used to complement and enhance existing tool
pipelines.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for a cross-system
crash analysis to identify error-prone software technologies
across different service providers. We focused on finding
similar or equal crashes that occurred in multiple systems,
where fixing one such crash can potentially benefit many
affected service providers. For this purpose, we extracted
tuples of software technologies of the monitored systems’
processes and tracked whether and how often they crashed.
Our approach applies a user-defined ranking metric which
yields the top error-prone software technologies, and then
analyzes these technologies in more detail by grouping the
occurred crashes by their exceptions. This results in exception
groups per error-prone software technology. These groups ease
the selection of cases that can be inspected manually to find
the root cause of crashes and, ideally, to provide common fixes
or solutions.

Based on the data of hundreds of different systems, we in-
vestigated three research questions in a preliminary evaluation
covering a time period of 12 months. In this study, we executed
a 1-tuple analysis and also performed a manual root cause
investigation for a selected crash-property grouped result. We
further compared 2-tuples to 1-tuples. Our results indicate the
usefulness and the applicability of our new approach and show
opportunities for further research.

We expect that utilizing additional data such as stack
traces or logs will further improve our approach and provide
additional insight into cross-system analysis. The manual in-
vestigation could also be supported by automatically gathering
relevant data from crashes, processes of the monitored systems
or even by suggesting possible hints or solutions retrieved
from online searches. Moreover, the results could be used
to populate a knowledge base of found fixes and solutions,
allowing to quickly provide remedies for recurring crashes.
Taking temporal properties into account might also be an
interesting path of future work. This could include detecting
patterns in crashes, their properties or even entire processes,
systems or specific data thereof.

ACKNOWLEDGMENT

This work was supported by the Christian Doppler For-
schungsgesellschaft.

REFERENCES

[1] R. N. Charette, “Why software fails [software failure],” IEEE Spectrum,
vol. 42, no. 9, pp. 42–49, 2005.

[2] E. E. Ogheneovo, “Software dysfunction: Why do software fail?” Jrn.
of Computer and Communications, vol. 2, no. 06, pp. 25–35, 2014.

[3] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang, and H. Mei, “A survey
on bug-report analysis,” Science China Information Sciences, vol. 58,
no. 2, pp. 21 101–021 101, 2015.

[4] T. Zhang, H. Jiang, X. Luo, and A. T. Chan, “A literature review of
research in bug resolution: Tasks, challenges and future directions,” The
Computer Journal, vol. 59, no. 5, pp. 741–773, 2016.

[5] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, and H. Shah, “A survey
on bug prioritization,” Artificial Intelligence Review, vol. 47, no. 2, pp.
145–180, Feb. 2017.

[6] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei, “Fixing
recurring crash bugs via analyzing Q&A sites,” in Proceedings of
the 30th International Conference on Automated Software Engineering
(ASE). IEEE, 2015, pp. 307–318.

[7] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P. Kemerlis,
“RETracer: Triaging crashes by reverse execution from partial memory
dumps,” in Proceedings of the 38th International Conference on Soft-
ware Engineering, ser. ICSE ’16. ACM, 2016, pp. 820–831.

[8] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “ReBucket: A
method for clustering duplicate crash reports based on call stack simi-
larity,” in Proceedings of the 34th Int’l. Conf. on Software Engineering,
ser. ICSE ’12. IEEE Press, 2012, pp. 1084–1093.

[9] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying field crash reports for
fixing bugs: A case study of Mozilla Firefox,” in Proc. of the 27th Int’l.
Conf. on Software Maintenance (ICSM). IEEE, 2011, pp. 333–342.

[10] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the (very)
large: Ten years of implementation and experience,” in Proc. of the 22nd
Symp. on Operating Systems Principles. ACM, 2009, pp. 103–116.

[11] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and S. Park,
“Which crashes should I fix first?: Predicting top crashes at an early
stage to prioritize debugging efforts,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 430–447, 2011.

[12] S. Kim, T. Zimmermann, and N. Nagappan, “Crash graphs: An aggre-
gated view of multiple crashes to improve crash triage,” in Proceedings
of the 41st International Conference on Dependable Systems & Networks
(DSN). IEEE, 2011, pp. 486–493.

[13] S. S. Murtaza, N. H. Madhavji, M. Gittens, and A. Hamou-Lhadj,
“Identifying recurring faulty functions in field traces of a large industrial
software system,” IEEE Transactions on Reliability, vol. 64, no. 1, pp.
269–283, 2015.

[14] S. Wang, F. Khomh, and Y. Zou, “Improving bug management using
correlations in crash reports,” Empirical Software Engineering, vol. 21,
no. 2, pp. 337–367, Apr. 2016.

[15] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and
S. Pasupathy, “An empirical study on configuration errors in commercial
and open source systems,” in Proc. of the 23rd Symposium on Operating
Systems Principles, ser. SOSP ’11. ACM, 2011, pp. 159–172.

[16] Microsoft, “Application domains for report server applications,” Mar.
2017. [Online]. Available: https://msdn.microsoft.com/en-us/library/
bb934330.aspx

[17] M. Brodie, S. Ma, L. Rachevsky, and J. Champlin, “Automated prob-
lem determination using call-stack matching,” Journal of Network and
Systems Management, vol. 13, no. 2, pp. 219–237, 2005.

[18] M. A. Ghafoor and J. H. Siddiqui, “Cross platform bug correlation
using stack traces,” in Proceedings of the International Conference on
Frontiers of Information Technology (FIT). IEEE, 2016, pp. 199–204.

[19] N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and L. Mignet,
“Automatically identifying known software problems,” in Proceedings
of the 23rd International Conference on Data Engineering Workshop.
IEEE, 2007, pp. 433–441.

[20] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?” in Proceedings of the 7th Working Conference
on Mining Software Repositories (MSR). IEEE, 2010, pp. 118–121.

[21] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“SherLog: Error diagnosis by connecting clues from run-time logs,” in
Proceedings of the 15th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS
XV. ACM, 2010, pp. 143–154.

[22] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving
software diagnosability via log enhancement,” in Proceedings of the
16th Int’l. Conf. on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XVI. ACM, 2011, pp. 3–14.

[23] S. Hosseini, B. Turhan, and D. Gunarathna, “A systematic literature
review and meta-analysis on cross project defect prediction,” IEEE
Transactions on Software Engineering, vol. PP, no. 99, pp. 1–40, 2017.

[24] F. Porto, L. Minku, E. Mendes, and A. Simao, “A systematic study
of cross-project defect prediction with meta-learning,” arXiv preprint
arXiv:1802.06025, 2018.

[25] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables DevOps: Migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, 2016.


