
A Framework for Preprocessing Multivariate,
Topology-Aware Time Series and Event Data in a

Multi-System Environment
Andreas Schörgenhumer∗, Mario Kahlhofer∗, Peter Chalupar∗, Paul Grünbacher†, Hanspeter Mössenböck‡
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Abstract—Monitoring and predicting quality properties of
complex systems relies on collecting and analyzing huge amounts
of data at run time. Machine learning is frequently adopted to
analyze time series and event data, often coming from multiple
systems. In such a context, extracting and preprocessing data
is an essential but also highly tedious task. In this paper,
we thus present an offline preprocessing framework that can
handle multivariate time series and event data in a multi-
system environment that also takes the system’s topology into
account. After a discussion of the key requirements, we present
the architecture and implementation of our highly configurable
and easy-to-use framework. We demonstrate how the framework
allows to extract data and to yield output files for machine
learning via configuration settings. In a two-step evaluation,
we investigate the framework’s usefulness and scalability. We
demonstrate the usefulness in an event prediction case study
of real-world multi-system time series data. Our results show
the significant impact of different data preprocessing settings
on machine learning. Our experiments further demonstrate that
processing performance scales linearly with respect to the number
of systems and time series.

I. INTRODUCTION

In high assurance systems engineering, engineers need to
collect and analyze massive amounts of data during operation
to determine if a system still meets its requirements or to
prevent and predict system failures. In particular, data pro-
cessing is an integral and challenging task when developing
machine learning applications for this application context [1]–
[3]. Tools and frameworks assisting in data handling are
therefore highly needed to lower the amount of code engineers
have to write, to reduce errors, and to increase performance
through automation.

For example, in the domains of performance monitoring
and predictive maintenance [4]–[9] time series data from
various interconnected sources is analyzed to predict criti-
cal events, therefore assuring a system’s proper functioning.
Many researchers have proposed methods, frameworks and
workflows for analyzing univariate and multivariate time series
data in preparation for machine learning. Existing approaches
support data preprocessing, visualization or even provide full
tool pipelines combing different techniques [8]–[15]. While
these approaches are already complex on their own, additional
research challenges arise when dealing with data from multiple

systems [16]–[18]. Specifically, by system we mean a set of
entities, each providing zero or more time series. For example,
a system could comprise various sets of hardware and software
components in a data center or different sets of machines and
associated sensors in an industrial environment. The system’s
topology shows how these entities are connected and indicates,
e.g., data flows or other communication links.

Despite some work also considering a system’s topological
view [9], there are currently no general frameworks for dealing
with different topologies and time series data in a multi-system
environment. To the best of our knowledge, existing research
has not yet investigated frameworks or workflows capable of
preprocessing multivariate time series data in a multi-system
setting that also consider the dynamically changing system
topologies. We expect that a highly configurable framework
will improve the rate at which developers can analyze data
and train machine learning models by reducing the overhead
of the preprocessing step, thus enabling a rapid and iterative
workflow. Such an assisted workflow is essential, since deci-
sions made in the preprocessing step can have a high impact
on the achievable results of the trained models [1].

In this paper, we first identify and discuss the requirements
for a preprocessing framework that is capable of dealing with
this kind of data. We propose an approach for implementing
the framework and evaluate its feasibility on an industrial
multi-system monitoring dataset to demonstrate its usefulness
and the high impact of the preprocessing step. Furthermore,
we evaluate our framework on a large data set to show its
scalability and feasibility for big data problems. Specifically,
our paper claims the following contributions:

(i) We propose a highly customizable, offline framework for
preprocessing multivariate time series from multiple systems
with different and evolving topologies.

(ii) We evaluate the practical usefulness, feasibility and
scalability of our framework on an industrial dataset. We show
that our framework provides useful results that can then be
easily utilized as input for machine learning.

The rest of this paper is organized as follows: Section II
describes our assumptions on the structure of the analyzed
data. Section III describes the properties we expect from the
preprocessing framework. Section IV explains our preprocess-



ing framework. In Section V, we evaluate our framework on
an industrial dataset. In Section VI, we discuss related work.
Section VII concludes this paper and outlines future work.

II. DATA

In this section, we describe the key data elements we assume
for multi-system analysis. Specifically, a system provides three
different kinds of data:

(i) Topology. The topology defines the structure of a sys-
tem’s entities, i.e., its physical or abstract components (e.g.,
host, machine, sensor). Each entity must be mapped to exactly
one entity type defining which other types an entity may be
linked with. As systems evolve, the topology may change over
time. Entities may have different lifetimes, starting when they
become active and ending when they become inactive.

(ii) Time series. Each entity provides between 0 and n
different time series, where n is determined by the entity type.

(iii) Events. Events are incidents relevant for run-time
analysis that may occur at any entity (e.g., the slowdown of
a service). An event only needs to hold information about its
type, at what time it occurred, and which entity was affected.

For better understanding, we illustrate these definitions with
an example. Figure 1 shows a tiny system with six entities: a1
of type A, b1 and b2 of type B, c1 and c2 of type C and d1
of type D. At some point between timestamps tx and ty , an
event occurred at entity a1. As described before, the topology
may change, which is shown at timestamp ty where b1 became
inactive. Each of the four entity types is associated with 0 to
n time series, as listed in Table I. The table also includes
concrete examples to provide a better understanding of what
entities and time series might look like (cf. Section V). Each
individual entity provides time series data specified by its type.
Type A does not provide any time series data in contrast to the
other three types. For instance, entities b1 and b2 of type B
each provide two time series: B-1 and B-2. For b1, however,
the time series data are only available up to timestamp ty .

Note that the entities of a system do not need to form a
connected graph, i.e., individual entities or groups of entities
may not be interlinked. The former is the case when topology
data is missing. The latter often occurs in case of subsystems,
i.e., groups of connected entities. It is also not required that
each individual entity provides all time series specified by its
type. For instance, in the above example, b1 might only provide
B-2. Finally, data does not have to originate from a single
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Fig. 1. Example of an event occurring at entity a1 and a topology change
where entity b1 is no longer active at timestamp ty .

TABLE I
EXAMPLE FOR TIME SERIES MAPPED TO ENTITY TYPES.

Abstract Concrete

Type Time Series Type Time Series

A  ∅ Service ∅

B  B-1, B-2 Host CPU, Memory

C  C-1 Disk Space

D  D-1, D-2, D-3 Network Sent, Received, Failed

system only, but can also come from multiple independent
systems, if they share the same entity types.

III. REQUIREMENTS

Bearing these assumptions about data and related work in
mind, we identified five requirements for our data preprocess-
ing framework:

R1. Multi-system analysis [16]–[18]. In real-world settings,
it is common that data from multiple systems needs to be
processed. The framework has to be capable of handling such
a setup, especially considering that the involved systems may
vary in size, which affects overall data balancing.

R2. Topology support [9]. The framework needs to be
capable of resolving connections and mapping relevant events
to interlinked entities, thus taking the structure of the system
into account. This includes dealing with different lifetimes of
entities.

R3. Techniques for data selection and sampling [10], [19].
Entities may have multiple time series. The framework needs
features for extracting user-defined datasets, which also con-
sider the properties of the time series. This includes choosing
from different sampling and balancing modes and defining
arbitrary observation windows for the time series.

R4. Handling missing data [13], [14]. Data recorded from
real-world systems is often imperfect. A framework should
be capable of handling missing entities as well as missing or
incomplete time series.

R5. Performance for big data [20]. Time series data can be
huge. A framework should scale reasonably with increasing
amounts of data.

There are also several requirements which we consider out
of scope for our framework. In particular, these involve the
inclusion of machine learning algorithms or the tailoring of
data to specific needs required by certain machine learning
algorithms (e.g., normalization or standardization).

IV. APPROACH

Our main goal is to provide assistance for users who want
to apply machine learning (ML) in conjunction with entities,
events and time series, most notably for event prediction with
supervised techniques. Our framework is specifically designed
to aid users in tedious and repetitive tasks that are unavoidable
when dealing with such data. This allows to reduce the time
needed for manual data processing.
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Fig. 2. Overview of our 4-step preprocessing framework. The annotations indicate configuration settings at the different steps.

The framework expects data as described in Section II and
creates feature vectors to be directly used by subsequent ML
scripts. We accomplish this with the configuration-based data
preprocessing framework shown in Figure 2. We chose Java
as the implementation language for platform independence.
A configuration, or config for short, specifies all the settings
needed to process and transform the raw data into feature vec-
tors stored in comma-separated values (CSV) files. Users only
have to provide and specify access to the data sources, create
configs, plug those configs into the framework and finally use
the generated output files for ML purposes. Configs are the
main drivers for our framework, and the users may come
from various domains. The YAML [21] format was selected
for defining the configuration files due to its readability by
humans and language independence.

Our framework can be divided into four main parts: data
access, data selection, sampling and data extraction. In our
pipeline, each of the four steps operates with specified input
parameters and yields output that is used in the subsequent
step. The last three steps can be customized by various
configuration settings. First, the framework needs access to the
raw data, i.e., the time series and the topologies of the systems.
Once data access is established, the next step is to sample
selected data, i.e., users can specify which subsets of the data
they want to process (e.g., which systems, which time series,
which time frames). Sampling is a highly configurable process
ultimately yielding samples for which feature vectors (FV)
need to be created. These samples are the input for the final
data extraction step. For each of the samples, the framework
builds a customizable FV based on the settings, defining how
the time series data should be processed. The final output are
CSV files containing FVs, which can be readily used for ML.

A. Data Access

The first step enables our framework to access the raw
data of the systems, i.e., we create a structured view on the
data, which allows us to access all time series, events and

topologies. The data access step da can be formalized with
the following function definition:

da(rawData) → structuredData (1)

Regarding time series data, our framework is not limited to a
specific data storage and access technology. It simply provides
an interface which must return the required data, specified
by the system, the entity, and the time series ID. This way,
arbitrary data sources can be connected. The same holds for
the event data. The topology of each system, on the other
hand, is a YAML file defining the interlinked entities and their
lifetimes. The topology file is based on the main entity type,
which provides the entry point to access all data. For instance,
the main entity type in the example of Figure 1 and Table I
could be A. The topology file then would contain all links
based on this type, e.g., a1 is connected to b1 (up to timestamp
ty), b2, and indirectly to c1, c2 and d1.

B. Data Selection

The first choice users have to make is to specify which data
they want to process. As shown in Figure 2, our framework
provides various settings for the data selection, which can be
controlled via the configs. Users can select the systems
that should be processed, the timeSeries to be used,
the events for which FVs should be created (e.g., service
slowdowns or machine failures), and the time frames for which
data should be inspected (from, to). These settings directly
address requirements R1 and R3. The data selection step ds
can be formalized with the following function definition, using
the output of Equation (1):

ds(structuredData, cds) → structuredDatads (2)

where cds are the user-defined data selection config settings,
and the ds subscript denotes the resulting subset of the data.



C. Sampling

The next step is to sample the selected data. Sampling is
the selection of a subset of the original data and is essential in
reducing the amount of raw data. Based on the selected data
and different config settings, our framework yields a list of
annotated samples for which FVs are then created in the data
extraction step. Annotated samples contain the timestamp and
the main entity (including its associated system) where the
sample should be taken. Furthermore, a sample is considered
as a positive sample if an event is associated with its timestamp
and as a negative sample if no event is associated with its
timestamp. The sampling step sp can be formalized with the
following function definition, using the output of Equation (2):

sp(structuredDatads, csp) → [S] (3)

where [S] is the list of annotated samples and csp are the user-
defined sampling config settings, which are shown in Figure 2
and which we explain in detail below.

Our framework supports two main options controlled via the
samplingMode: per event (PE) and slide through (ST). PE
means that positive samples are taken based on the events that
occurred, which requires further settings for negative samples.
ST, on the other hand, means that all samples (positive and
negative) are created by sliding through the entire time frame
and taking positive and negative samples at regular intervals.
For both options, users can define the timeUnit for all
subsequent time-sensitive settings.

For PE, sampling is split into two steps: positive and
negative sampling. Positive samples are created by traversing
through all occurred events and taking a sample at the entity
at the event timestamp. However, users may choose to activate
additional settings that influence the positive samples: drop-
CloseEvents and closeEventsDistance can be used
to discard events on the same entity that are close to each other.
This can be useful to avoid taking a correlated set of positive
samples, for example, if a chain of events was triggered.
After the positive samples, negative samples must be created.
Since there are no events, random timestamps in the available
time frame are chosen to take negative samples. There are
three different negativeSamplingSources, i.e., the entry
points (=main entities) from which samples are taken: In case
of non-event entities, only main entities are used where no
event occurred, event entities means that only main entities are
used where events did occur, while all entities is a mixture of
both. For the latter two, users may activate the additional set-
ting minDistanceNegativeSampleToEvent to avoid
negative samples that are too close to events (cf. the Dead Zone
in Figure 2). The number of negative samples is calculated
by multiplying the balancingRatio with the number of
positive samples, either of all systems or of the individual
systems (see below). The balancingMode defines how
these samples are distributed (cf. requirement R1). It allows
two options: overall and per system. The former takes the sizes
of the systems into account and distributes negative samples
accordingly. For instance, if there are two systems with one

being ten times the size of the other and we want to create
100 negative samples (resulting from applying the balancing
ratio on all systems), then this option would create roughly
90 negative samples of the bigger system and 10 negative
samples of the smaller system. The per system option creates
negative samples based on the positive samples of the current
system.

ST is less complicated because it simply slides through the
entire data without the need for balancing. The option offset
specifies the initial time offset to the data time frame, and
samples are taken at each main entity every stepSize steps.
Users can specify a predictionWindowSize that is used
to classify a slide-through sample as positive if the timestamp
of this sample is close to an event. This is useful as it is often
the case that events do not exactly align with the starting point
and steps of the ST algorithm, which would result in zero
positive samples in the worst case.

D. Data Extraction

In the final data extraction step, our framework creates a list
of FVs (stored in CSV files) for each sample from the previous
step. The data extraction step de can be formalized with the
following function definition, using the output of Equation (3):

de([S], cde) → [FV ] (4)

where cde are the user-defined data extraction config settings.
The data extraction step defines how the processed data

should appear in the final output. As shown in Figure 2,
multiple configuration options are provided. First, users have
to specify a leadTime, i.e., the distance between the samples
and the prediction points (event and non-event timestamps
for PE, slide-through timestamps for ST). The lead time can
thus be used for specifying how far the predictions should go
into the future. Afterwards, users must specify how data is
extracted from the time series specified in the data selection
step. The topology is automatically resolved to access the
correct data (cf. requirement R2). Our framework provides
observation windows that consist of arbitrary, highly customiz-
able boxes that precisely define how data should be extracted
for each time series. Each box has four properties:
size: the total length of the observation window box.
stepSize: the step size in which single data points are

visited inside the box.
aggregationFuncs (AF): If needed, users can specify

functions aggregating the raw data points of the box, i.e., a
feature vector sample then contains aggregated values instead
of the raw time series data. Common statistical functions, such
as the mean/average, standard deviation, median, minimum,
maximum, quartiles, skewness or kurtosis, are available and
can be arbitrarily combined.
combinationFuncs (CF): The same set of statistical

functions can also be used for dealing with data from multiple
similar entities (cf. requirement R2). It might often be the
case that users want data from a specific time series for which
multiple entities exist in the system. An example is C-1 with
entities c1 and c2 in Figure 1, where we have two separate



datasets, one for c1 and one for c2. However, we cannot simply
append them in the feature vector, as feature vectors must
be identical in length and not all entities of type B might
be linked to exactly two entities of type C. Therefore, we
introduce combination functions (CF) that combine multiple
datasets. If users selected AFs, they can specify a CF for each
such AF. If users selected raw time series data without AFs,
a single CF must be specified.

Figure 3 illustrates the data extraction using the example of
Figure 1 and Table I. Given an event that occurred at entity a1,
the framework automatically selects all connected entities for
which time series have been specified. For b2 and time series
B-1, the user specified two boxes: the first box uses the last
three raw values, while the second box uses an aggregation
based on the average. These values can directly be forwarded
to the feature vector (FV:B-1). For c1, c2 and time series
C-1, the user specified an aggregated box using the average,
minimum and maximum of the enclosed raw data. Since there
are two similar entities, they have to be combined, in this case
using the same functions as in the aggregation step. The result
is added to the feature vector (FV:C-1), which is assigned the
label Event, as this sample was taken at an event occurrence.

Finally, there are various settings for dealing with miss-
ing data (cf. requirement R4). The option missingData-
PointMode specifies how to resolve gaps in the time series
data. Users can either decide to drop the data, or they can re-
place the missing values with not-a-number values (NaN), the
previous value, the nearest available value or an interpolated
value. Users can also specify how to handle missing time series
via useNaNForMissingTimeSeriesData, which either
creates NaN placeholders or discards the entire sample. To give
users more control over NaN values and how they influence the
AFs and CFs, the settings discardNaNInAggregation-
Funcs and discardNaNInCombinationFuncs are pro-
vided. If enabled, the values in the corresponding settings de-
fine a threshold below which NaN values are discarded before
applying the AFs and CFs, respectively. This is useful to avoid
getting only NaN values as an aggregation or combination
result, when there are only few NaN values that could simply
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b2: B-1
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Fig. 3. Example of extracting data into a feature vector.
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Fig. 4. ERD of a monitored system.

be ignored. If entire entities are missing, possibly because
they became inactive (cf. requirement R2), the framework
automatically either skips the sample altogether or uses NaN
values as a replacement.

V. EVALUATION

To show the usefulness and the feasibility of our approach
(cf. requirement R5), we performed an evaluation based on a
multi-system monitoring environment provided by an industry
partner. Using monitoring time series data, the main task in
this real-world scenario is to predict performance slowdown
events, which occur at certain entities of a system. The goal is
a binary classification, where we want to determine whether
data attached to certain points in time indicate an event or not.

In this context, a system is an independent composition of
hardware and software components, operated by some service
provider, e.g., a web shop running on a certain hardware
setup. Figure 4 shows an entity-relationship diagram (ERD) of
such a system. Services are abstract entities and represent the
business logic that is carried out on one or more hosts, which
in turn can host multiple services. The performance slowdown
events occur at these services if the average response time of
a service exceeds a threshold compared to its baseline. A host
is a physical or virtual computing unit to which zero or more
disks and networks can be connected. In total, 34 different
time series are collected at host, disk and network level, all
with a resolution of one minute.

For accessing the monitoring data (cf. Section IV-A), we
developed an interface for InfluxDB, a database specifically
designed for working with time series data [22]. For creating
the topology files, we built a topology model based on the
ERD of Figure 4, where we decided to treat services as the
main entities, as the events occur at these entities. Given
this setup, we had access to 20 days of continuous data of
250 different systems, containing more than 200 000 entities
and over seven billion individual time series entries. At the
time of the evaluation, we only had limited hardware resources
at our disposal. All of the experiments below were conducted
on a Dell Precision notebook running on Windows 10 and
powered by an i7-7820HQ CPU, 32GB RAM and a 1TB SSD.

A. Case Study

For evaluating the usefulness of our framework, we con-
ducted a case study, in which we took the role of an engineer
who was assigned to inspect the accuracy, false positive rate
(FPR), precision and recall1 of a machine learning classifier
for event prediction when different datasets are applied. The
data were the same as described above, i.e., 20 days of 250

1The corresponding formulae and further details can be found at https:
//en.wikipedia.org/wiki/Confusion matrix



monitored software systems, where the first 14 days were used
for training and the last 6 days were used for testing (test set).
The following tasks had to be completed:

T1. Exploring different subsets of the entire data.
T2. Experimenting with various combinations of time series.
T3. Investigating time series with different observation

windows.
T4. Experimenting with different sampling approaches.
T5. Using different techniques for handling missing data.
Building a working solution for these tasks from scratch

would require significant effort. However, our framework
already provides configurable capabilities for experimenting
with the data sets. For T1, the settings from, to and
systems are available to process data subsets based on time
frames and the number of systems. For T2, timeSeries
is the main setting to select the raw data sources, and the
framework provides several settings for each time series, as
required by task T3, e.g., size and aggregationFuncs
for the defined observation window boxes. There are also
plenty of settings for T4: PE samplingMode with its
different options (balancingMode, balancingRatio,
etc.) or ST sampling and its options, e.g., prediction-
WindowSize, stepSize, etc. Finally, there are also vari-
ous settings for T5, which comprise how to handle missing
values (missingDataPointMode) or entire time series
(useNaNForMissingTimeSeriesData), including op-
tions for how to treat missing values in the aggregation and
combination functions of the observation window boxes.

To assess the usefulness of the framework and the impact
of the parameters on ML results, we created a high number
of configs, plugged them into the framework and used the
generated output CSV files as input for a machine learning
algorithm. Specifically, we selected the default random forest
classifier of scikit-learn [23]. We then created about 9 000 con-
figs by building the Cartesian product over different settings,
e.g., size = {5, 10, 15, 30, 60}, aggregationFuncs =
{mean, (minimum, maximum)}, etc. to thoroughly investigate
the influence of data preprocessing on event prediction perfor-
mance based on monitoring time series data.

Figure 5 shows the distribution of the four evaluation met-
rics on the test set, where we trained and tested the random for-
est classifier with data from about 9 000 different configs. The
x-axis represents the value of the corresponding metrics for
the configs in percent, while the y-axis represents the number
of configs in the corresponding buckets. Evidently, different
configs yield drastically different metric values, supporting the
claim that appropriate data retrieval is an essential and success-
critical step in time-series-based machine learning.

B. Performance Scalability

Since the absolute preprocessing time of our framework
highly depends on the chosen data access, we decided to give
a relative performance overview. To this end, we selected a
single system with 25 services, each of which is linked to one
or two hosts, which again are connected to one or two disks
and networks. For a fair comparison, the framework processed
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the data sequentially. Naturally, a concurrent processing model
(e.g., MapReduce [24]) would make sense, as independent
systems and time series can be accessed in parallel. We will
investigate such an approach in future work.

In the first experiment, we created copies of the selected
system to investigate the scalability of our framework with
respect to the number of processed systems. We used a simple
config with the following main settings: ST sampling with a
step size of 30 minutes, and a 60 minute observation window
box with a single aggregation function (mean) applied to a
single disk time series. The red line in Figure 6 displays the
relative performance of up to 600 systems, which shows that
our framework scales linearly with the number of systems.
With respect to absolute processing time, it took about 560 sec-
onds to process 100 systems on our hardware setup.

Similarly, we conducted another experiment on how well
our framework performs when the number of processed time
series increases. In this case, we used the same system but
created copies of a disk time series to guarantee performance
comparability. The config used was the same as above, with
the difference that this time we defined multiple observation
window boxes – one for each time series. The blue line in
Figure 6 displays the relative performance of up to 600 time
series, which shows that our framework also scales linearly
with the number of time series. With respect to absolute
processing time, it took about 520 seconds to process 100 time
series on our hardware setup.

In both cases, the run time actually is slightly below strictly
linear. This is because some parts of the framework are static,
i.e., independent of the number of systems or time series, and
secondly, because the Java virtual machine is influenced by
factors such as warm-up, optimizations, etc.



VI. RELATED WORK

Data processing to create and select features has been an
essential part of machine learning practice for a long time [25].
Especially time series data has caught the interest of many re-
searchers [26], [27], recently also with respect to big data [20],
[28]. Efficiently handling such data is of high relevance, as
the application of appropriate tools and frameworks can have
a great impact in different research areas including failure
and reliability prediction [4], finance and economics [29] or
environmental challenges [30]. While there are approaches that
do not rely on heavy time series preprocessing and feature
engineering, such as [31], the majority of the approaches
proposed in the literature suggest some form of processing.

A. Time Series Processing

Wilson [19] argues that different forms of data are required
for time series mining, i.e., directly working on the raw data is
mostly not applicable. He presents three main preprocessing
techniques for dimensionality reduction: piecewise approxi-
mation, identification of important points and symbolic rep-
resentation. To show the difference between the classification
accuracy using raw time series values compared to feature-
based representations, Nanopoulos et al. [10] tested a neural
network on synthetically generated time series. For the feature-
based representation, they used common statistical functions,
such as the mean, standard deviation, skewness and kurtosis,
which resulted in higher accuracies. Jansen et al. [8] trained
neural networks on multivariate time series data of metal
processing machines to predict failures. They included a com-
prehensive data preprocessing pipeline (cleaning, sampling,
grouping, etc.) and tested various configurations (features,
history length, network parameters) to find the best solution.

We incorporated many of the above preprocessing steps into
our approach, carefully choosing which settings are required
and fit best with respect to multivariate time series processing.

B. Frameworks Focusing on Time Series

Many researchers have acknowledged the value of frame-
works to help the users in their daily practice. Many of
these frameworks have different focus points, such as data
preprocessing, time series data handling, visualization or an
entire workflow pipeline. Bernard et al. [12] presented an
iterative segmentation workflow for multivariate time series
with visual analysis so users can see the impact of various
processing parameters (data cleaning, sampling, segmentation,
etc.) and can then adjust those parameters accordingly. In
earlier work [11], Bernard et al. also created a tool for the
interactive design and control of a time series preprocessing
pipeline. Users can combine multiple preprocessing steps (data
cleaning, sampling, normalization, etc.) and can visualize
the outcome. TimeCleanser [13] is a visual-analytics-guided
framework for cleaning time series data. The authors derived
various time-induced data quality problems from related work
and incorporated those into their framework. Users can visual-
ize data for inspection and also directly fix data issues such as
invalid syntax, missing intervals, or implausible sequences of

values. Shi et al. [14] developed a more specific preprocessing
framework in the domain of power grid systems. They focused
on inserting missing values, data cleaning and data reduction
to improve prediction accuracy for datasets with missing
data. The authors of [15] introduced an entire data analytics
tool pipeline. Their modular and flexible web-interface-based
framework supports data storage, preprocessing, analysis and
visualization, with a focus on time series data. The only
approach also taking system topologies or structures into
account is Hora [9], an online failure prediction framework. In
addition to time series data of individual components (internal
data, e.g., CPU, memory), the authors also considered the
architecture of the inspected system to infer where failures
would propagate through.

Many of the mentioned approaches can be seen as comple-
mentary to ours, for example, visualization to get more insight
into the available data beforehand or preprocessing techniques
targeting the requirements of particular machine learning al-
gorithms. However, none of the previous work focused on
a multivariate time series data preprocessing framework as
preparatory work for event prediction, especially utilizing the
topology information of the underlying system as well as data
from multiple systems.

C. More General Frameworks

Beyond the specifics of time series data, Kirchner et al. [32]
proposed a generic framework for data preprocessing with
a focus on subsequent clustering, which includes handling
missing values, dimensionality reduction, scaling and others.
DQF4CT [33] is a conceptual data quality framework for
classification tasks which includes a guide for dealing with
problems in data quality as well as an ontology that assists in
choosing the appropriate data cleaning techniques. YALE [34]
is a flexible framework for various data mining tasks with the
main goal of fast prototyping. They introduced operators that
can be arranged and combined in trees, which are then used to
process the data. YALE contains many built-in operators, such
as data source operators, preprocessing algorithms (discretiza-
tion, filtering, normalization, etc.), visualization operators and
machine learning operators. Van Merriënboer et al. [35] pre-
sented the Fuel framework responsible for data preprocessing
(data format standardization, shuffling, resampling, etc.), and
the Theano-based Blocks framework (relying on Fuel) for
training neural networks. Google Research developed the
TensorFlow-based framework TFX [36], which incorporates
various steps from a general-purpose machine learning plat-
form. It includes components for data analysis, transformation
and validation, training, model evaluation and validation and
serving. It provides a multi-purpose framework with unified
configuration to avoid project-specific glue code, to reuse
components, and to ensure correct data processing.

Similar to the time-series-oriented frameworks, these ap-
proaches could be used complementary to our own framework
as well, most notably for further preprocessing our CSV output
(normalization, filtering, shuffling, etc.) or for plugging this
output into a pipeline, e.g., based on TFX.



VII. CONCLUSION

In this paper, we presented an approach for providing
preprocessing assistance for engineers, who apply machine
learning on event and time series data. We identified multiple
requirements for a framework that has to handle events and
multivariate time series from multiple systems, where each
such system is represented by interconnected entities, which
may also evolve over time. Based on these requirements, we
developed a novel, offline preprocessing framework that can be
customized with configuration files to extract and preprocess
the data as the users desire. The output of our framework
are CSV files, which can directly be used for further machine
learning purposes. Our framework is especially helpful in sup-
porting an iterative workflow, as changes to the preprocessing
steps can be easily made via the configs.

We evaluated our framework using real-world data from a
multi-system monitoring environment. First, we conducted a
case study to demonstrate the usefulness of our framework
for exploring various data configurations and the influence of
different data settings on the accuracy of the trained machine
learning models. Second, we investigated the performance and
scalability based on two major data contributors: the number
of systems and the number of available time series. Both
experiments revealed a linear scaling of our framework.

Despite the successful evaluation, there is much room for
improving our prototype framework. For example, parallel
processing based on MapReduce [24] could prove valuable.
Moreover, we plan to apply our framework to data from
other domains as well. Future work also includes creating the
necessary extensions for real-time (online) prediction tasks,
where data is continuously streamed into the framework.
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