
Interoperability between Execution Modes on GraalVM
Christoph Pichler

Johannes Kepler University
Linz, Austria

christoph.pichler@jku.at

Paley Li
Oracle Labs

Prague, Czech Republic
paley.li@oracle.com

Roland Schatz
Oracle Labs
Linz, Austria

roland.schatz@oracle.com

Hanspeter Mössenböck
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
GraalVM1 [2] is a virtual machine, whose core is an optimizing
JIT-compiler [1]. Its polyglot execution environment supports a
variety of programming languages, such as Java, JavaScript, Python,
Ruby and C. As all code is run in a single runtime, this also enables
cross-language function calls. To run C code in GraalVM, first it has
to be compiled to LLVM2 bitcode, which is then interpreted and
executed in GraalVM ("managed execution"). However, GraalVM
can also invoke native code that is executed on the bare machine
via its native function interface. Thus, compiling the C code to
a (binary) executable and using the native function interface is
another option ("native execution"). The goal of this thesis is to
find heuristics for deciding when such code should be executed in
native or in managed mode as well as mechanisms for mixed-mode
execution.

Currently, GraalVM prefers managed execution whenever LLVM
bitcode is available. However, this leads to elevated start-up times
due to class loading and warm-up. We argue that more native
execution within GraalVM leads to a better performance, but it also
comes with certain limitations.

As an example, consider Python code running on GraalVM –
more precisely, passing GraalVM data to a function of the Python
library PyTorch3, which is implemented in C: Although only a
minority of instructions in PyTorch might access GraalVM data
and thus has to be run in GraalVM, currently the whole library has
to be run in GraalVM. Ideally, the majority of the code will be run
natively, leading to a higher performance.

In our work, we propose and implement a hybrid mode for
GraalVM’s LLVM component: Each function can either be run in
native mode or in GraalVM. Code which needs features of GraalVM

1https://www.graalvm.org/
2https://llvm.org/
3https://pytorch.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

is executed in managed mode, while the remaining functions are ex-
ecuted natively and do not suffer from long start-up times. However,
some challenges and restrictions still have to be considered:

• Program states have to be kept consistent: For state infor-
mation, e.g. for a global variable, its value during native
execution must be consistent with its value during managed
execution. It is neither possible to have all variables stored
only in native mode, nor all of them only in managed mode.

• Moreover, it cannot be determined by static code analysis if
managed data originating from GraalVM, e.g. objects from
foreign languages, are accessed only in managed mode dur-
ing execution. Therefore, it can happen that managed data
are about to be accessed in native execution. In such case, it
is necessary to switch the execution mode at run time.

• Another important aspect is how the decision between na-
tive and managed execution should be taken: Currently, the
developer has to choose the mode (native/managed) for each
function. However, we aim for a scenario where the mode is
automatically chosen from dynamic profiling data and other
analysis.

CCS CONCEPTS
• Software and its engineering → Runtime environments;
Just-in-time compilers; Software performance.

KEYWORDS
Virtual machine, JIT-compilation, Warm-up performance, Native
execution, Managed execution
ACM Reference Format:
Christoph Pichler, Paley Li, Roland Schatz, and Hanspeter Mössenböck. 2022.
Interoperability between Execution Modes on GraalVM. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 1 page. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Student: Christoph Pichler
Advisors: Paley Li, Roland Schatz, Hanspeter Mössenböck

REFERENCES
[1] John Aycock. 2003. A Brief History of Just-in-Time. ACM Comput. Surv. 35, 2 (jun

2003), 97–113. https://doi.org/10.1145/857076.857077
[2] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles

Duboscq, Christian Humer, Georg Richards, Doug Simon, and Mario Wolczko.
2013. One VM to rule them all. In Proceedings of the 2013 ACM international
symposium on New ideas, new paradigms, and reflections on programming and
software (Indianapolis, Indiana, USA). ACM, New York, NY, USA, 187–204. https:
//doi.org/10.1145/2509578.2509581

https://www.graalvm.org/
https://llvm.org/
https://pytorch.org/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	References

