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ABSTRACT
GraalVM1 [2] is a virtual machine, whose core is an optimizing
JIT-compiler [1]. Its polyglot execution environment supports a
variety of programming languages, such as Java, JavaScript, Python,
Ruby and C. As all code is run in a single runtime, this also enables
cross-language function calls. To run C code in GraalVM, first it has
to be compiled to LLVM2 bitcode, which is then interpreted and
executed in GraalVM ("managed execution"). However, GraalVM
can also invoke native code that is executed on the bare machine
via its native function interface. Thus, compiling the C code to
a (binary) executable and using the native function interface is
another option ("native execution"). The goal of this thesis is to
find heuristics for deciding when such code should be executed in
native or in managed mode as well as mechanisms for mixed-mode
execution.

Currently, GraalVM prefers managed execution whenever LLVM
bitcode is available. However, this leads to elevated start-up times
due to class loading and warm-up. We argue that more native
execution within GraalVM leads to a better performance, but it also
comes with certain limitations.

As an example, consider Python code running on GraalVM –
more precisely, passing GraalVM data to a function of the Python
library PyTorch3, which is implemented in C: Although only a
minority of instructions in PyTorch might access GraalVM data
and thus has to be run in GraalVM, currently the whole library has
to be run in GraalVM. Ideally, the majority of the code will be run
natively, leading to a higher performance.

In our work, we propose and implement a hybrid mode for
GraalVM’s LLVM component: Each function can either be run in
native mode or in GraalVM. Code which needs features of GraalVM

1https://www.graalvm.org/
2https://llvm.org/
3https://pytorch.org/
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is executed in managed mode, while the remaining functions are ex-
ecuted natively and do not suffer from long start-up times. However,
some challenges and restrictions still have to be considered:

• Program states have to be kept consistent: For state infor-
mation, e.g. for a global variable, its value during native
execution must be consistent with its value during managed
execution. It is neither possible to have all variables stored
only in native mode, nor all of them only in managed mode.

• Moreover, it cannot be determined by static code analysis if
managed data originating from GraalVM, e.g. objects from
foreign languages, are accessed only in managed mode dur-
ing execution. Therefore, it can happen that managed data
are about to be accessed in native execution. In such case, it
is necessary to switch the execution mode at run time.

• Another important aspect is how the decision between na-
tive and managed execution should be taken: Currently, the
developer has to choose the mode (native/managed) for each
function. However, we aim for a scenario where the mode is
automatically chosen from dynamic profiling data and other
analysis.
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