
Context-sensitive Trace Inlining for Java

Christian Häubla,∗, Christian Wimmerb, Hanspeter Mössenböcka

a Institute for System Software
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University Linz
Altenbergerstrasse 69
4040 Linz, Austria

phone +43 732 2468 7131
fax +43 732 2468 7138

b Oracle Labs
500 Oracle Parkway

Redwood Shores, CA 94065, USA

Abstract

Method inlining is one of the most important optimizations in method-based just-in-time (JIT) compilers. It
widens the compilation scope and therefore allows optimizing multiple methods as a whole, which increases
the performance. However, if method inlining is used too frequently, the compilation time increases and too
much machine code is generated. This has negative effects on the performance.

Trace-based JIT compilers only compile frequently executed paths, so-called traces, instead of whole
methods. This may result in faster compilation, less generated machine code, and better optimized machine
code. In previous work, we implemented a trace recording infrastructure and a trace-based compiler for
JavaTM, by modifying the Java HotSpot VM. Based on this work, we evaluate the effect of trace inlining on
the performance and the amount of generated machine code.

Trace inlining has several major advantages when compared to method inlining. First, trace inlining
is more selective than method inlining, because only frequently executed paths are inlined. Second, the
recorded traces may capture information about virtual calls, which simplifies inlining. A third advantage is
that trace information is context sensitive so that different method parts can be inlined depending on the
specific call site. These advantages allow more aggressive inlining while the amount of generated machine
code is still reasonable.

We evaluate several inlining heuristics on the benchmark suites DaCapo 9.12 Bach, SPECjbb2005, and
SPECjvm2008 and show that our trace-based compiler achieves an up to 51% higher peak performance than
the method-based Java HotSpot client compiler. Furthermore, we show that the large compilation scope of
our trace-based compiler has a positive effect on other compiler optimizations such as constant folding or
null check elimination.

Keywords: Java, just-in-time, trace-based, compilation, inlining

1. Introduction

Method-based just-in-time (JIT) compilation translates whole methods to optimized machine code, while
trace-based compilation uses frequently executed paths, so-called traces, as the compilation unit [1]. This

∗Corresponding author
Email addresses: haeubl@ssw.jku.at (Christian Häubl), christian.wimmer@oracle.com (Christian Wimmer),

moessenboeck@ssw.jku.at (Hanspeter Mössenböck)
URL: http://www.ssw.jku.at/ (Christian Häubl), http://www.christianwimmer.at/ (Christian Wimmer),

http://www.ssw.jku.at/ (Hanspeter Mössenböck)

Preprint submitted to Computer Languages, Systems and Structures April 18, 2013

(a) control flow graphs

call

return

1

2

3

a

d

(b) possible traces

1 3

1 2' a’ A a'' dbcb

call

return
A

2'' 3

1 2' a’ A a'' dc 2'' 3

Figure 1: Possible traces through three methods

can increase the peak performance, while reducing the amount of generated machine code. Figure 1 shows
the control flow graphs (CFGs) of three methods as well as three possible traces through them. The start
of a trace is called a trace anchor, which is block 1 for all traces in the example. It highly depends on the
specific trace recording implementation which blocks are chosen as trace anchors.

In a virtual machine (VM), traces can be recorded by instrumenting bytecode execution. Those traces
are then compiled to optimized machine code. If a method part that was not compiled has to be executed,
it is common to fall back to the interpreter.

Most existing trace recording implementations allow traces to cross method boundaries [1, 2, 10, 12, 19].
This may result in large traces that must be compiled together.

In previous work [14, 15], we implemented a trace-based JIT compiler based on Oracle’s JavaTM Hot-
Spot client compiler [20]. Our earlier conference paper [15] focused on trace inlining and contributed the
following:

• We described how to perform trace inlining and discuss its advantages compared to method inlining.

• We presented multiple trace inlining heuristics implemented for our trace-based JIT compiler.

• We evaluated the impact of our trace inlining heuristics on compilation time, peak performance, and
amount of generated machine code for the DaCapo 9.12 Bach [3] benchmark suite.

This paper is an extended version of our earlier conference paper [15], and contributes the following new
aspects:

• We present our trace recording and our trace inlining approaches in more detail.

• We describe how compiler intrinsics for native methods can profit from the larger compilation scope
that is achieved by our trace inlining.

• We additionally evaluate our inlining heuristics on the benchmark suites SPECjbb2005 [24] and
SPECjvm2008 [25]. Furthermore, we also compare the peak performance of our best trace inlining
heuristic to the Java HotSpot server compiler.

• We evaluate which high-level compiler optimizations do benefit from trace inlining due to the widened
compilation scope.

The remaining paper is organized as follows: Section 2 gives a short overview of our trace-based Java Hot-
Spot VM. In Section 3 we illustrate our trace recording system, and in Section 4 we explain how we perform
trace inlining. Section 5 presents different trace inlining heuristics. Section 6 discusses the benchmark
results. In Section 7 we discuss related work, and Section 8 concludes the paper.

2

machine code

bytecodes

recorded

often enough

generates

class file

loads
first

executions

traces

records

unmodified modified new

trace counter

increments

overflows

deoptimizes

static analysis

class loader provides

initializes

trace recording

executions

normal interpreter

trace recording interpreter

JIT compiler

Figure 2: Structure of the tracing VM

2. Overview

In previous work, we implemented a trace recording infrastructure and a trace-based JIT compiler for
Java [14, 15]. Figure 2 shows the structure of our VM. Execution starts with the class loader that loads,
parses, and verifies the class files. The class loader provides run-time data structures such as the constant
pool and method objects to other parts of the VM. After class loading, a bytecode preprocessing step is
performed that detects loops and creates tracing-specific data structures.

For trace recording, the Java HotSpot VM template interpreter [13] is duplicated and instrumented. This
results in a normal and a trace recording interpreter. The normal interpreter executes bytecodes with nearly
the same speed as the interpreter of the unmodified VM and is used for the initial executions. Whenever
the normal interpreter encounters a trace anchor, it increments the invocation counter of that trace anchor.
When the counter overflows, the trace anchor is marked as hot and execution switches to the trace recording
interpreter. The current implementation supports two different kinds of traces: loop traces anchored at loop
headers, and method traces anchored at method entries.

Oracle’s Java HotSpot VM ships with two different JIT compilers that share most parts of the VM
infrastructure. The client compiler is designed for startup performance and implements basic optimiza-
tions to achieve a decent peak performance [20]. Upon compilation, the compiler generates the high-level
intermediate representation (HIR), which is in static single assignment (SSA) form [7] and represents the
control flow graph. During and after building the HIR, optimizations such as constant folding, null check
elimination, and method inlining are applied. The optimized HIR is translated to the low-level intermediate
representation (LIR), which is close to machine code but still mainly platform independent. The LIR is then
used for linear scan register allocation [28] and code generation.

The server compiler performs significantly more optimizations than the client compiler and produces
highly efficient code to reach the best possible peak performance [22]. It is designed for long-running
server applications where the initial JIT compilation constitutes only a small overhead in comparison to
the total execution time. The server compiler uses the following compilation phases: parsing, machine-
independent optimization, instruction selection, global code motion and scheduling, graph coloring register
allocation, peephole optimization, and code generation. Some additional optimizations that the server
compiler performs are loop-invariant code motion, loop unrolling, and escape analysis.

Our trace-based JIT compiler is based on the HotSpot client compiler. While our techniques are general

3

enough to be applicable to the server compiler as well, the complex structure of the server compiler is less
approachable for the changes that are required for trace-based compilation, especially in the context of a
research project. Therefore, we decided to use the client compiler as our base.

When traces have been recorded often enough, our compiler at first merges the recorded traces into a
trace graph. This data structure is a hybrid between a control flow graph and a trace tree [10], so that merge
points may exist but paths may still be duplicated if advantageous. On this level, we perform general and
tracing-specific optimizations such as constant folding, aggressive trace inlining, and explicit control flow
duplication. The generated machine code is then directly invoked by the interpreters or by other compiled
traces.

If a precondition for an aggressive optimization is violated during execution, our system deoptimizes [18]
to the trace recording interpreter. Deoptimization at first saves all values that are live in the current compiled
frame and then replaces that compiled frame with one or more interpreter frames. The exact number of
created interpreter frames, depends on the inlining depth of the currently executed instruction. Then, the
interpreter frames are filled with the previously saved values and execution continues in the trace recording
interpreter.

When the trace recording interpreter takes over, it can record a partial trace that directly starts at the
point of deoptimization instead of at the trace anchor. To detect too frequent deoptimization of compiled
code, a counter is incremented every time a deoptimization occurs. After reaching a threshold, the compiled
machine code is invalidated and another compilation is triggered that uses the originally recorded traces
and all partial traces. This allows increasing method coverage or disabling specific aggressive optimizations,
which in turn reduces the deoptimization frequency.

3. Trace Recording

Our trace recording approach restricts traces to span at most one method [14]. When a trace anchor
has been executed frequently enough, execution switches from the normal to the trace recording interpreter.
For trace recording, every thread holds a tracing stack that contains the traces that are currently being
recorded. Information about instructions that modify the control flow is stored in the topmost trace of the
tracing stack, and the tracing stack is modified as necessary.

When a method invocation is reached during trace recording, the invocation is recorded in the caller
trace. For virtual method invocations, we also record the receiver class. Upon entering the callee, a new
method trace is pushed on the tracing stack and recording continues there.

When the callee returns, we pop the corresponding trace from the tracing stack and store it in a trace
repository. Then, we link the caller and the callee trace by storing a pointer to the callee’s trace in the
caller’s trace and continue recording for the caller. The linking preserves context-sensitive call information
over method boundaries and results in a data structure that is similar to a dynamic call graph.

When a previously stored trace is recorded again, only a counter is incremented in the already stored
trace instead of storing the trace another time. We consider traces to be different if they took different
path or if they invoked different callee traces. So, trace linking allows us to record exact call information for
every executed path through the whole application. To reduce the number of recorded traces to a reasonable
amount, we do not link loop traces and recursive method traces to their parent trace. After trace recording
was performed a certain number of times for a trace anchor, we assume that all important traces for this
anchor have been recorded and compile those traces to optimized machine code.

Figure 3 shows a trace recording example where trace recording is triggered for the method addData().
(1) When the trace anchor at the method entry of addData() is marked as hot, execution switches to the
trace recording interpreter and a method trace is pushed on the tracing stack. The method is executed from
the beginning up to the invocation of the virtual method getValue(). When doing the virtual call, the
invocation and the receiver class are stored in the caller trace. (2) Upon entering the method getValue(), a
new method trace is pushed on the tracing stack and trace recording continues there. (3) When getValue()

returns, the corresponding trace is popped from the tracing stack and stored in the trace repository. Then,
the traces are linked by storing a pointer to the trace of getValue() in the trace of addData(). Execution

4

addData1

addData1getValue1

addData1

addData1loop1

addData1

(1)

(2)

(3)

(4)

(8)

(10) addData1

addData1loop2(5) loop1

addData1loop3(6)

addData1(7)

1 public class Adder {

2 private int value;

3

4 public void addData(int[] data) {

5 int value = getValue();

6 for (int i = 0; i < data.length; i++) {

7 if (data[i] < 0) {

8 value += Math.abs(i);

9 } else {

10 value += i;

11 }

12 }

13 setValue(value);

14 }

15

16 public int getValue() {

17 return this.value;

18 }

19

20 public void setValue(int value) {

21 this.value = value;

22 }

23 }

24

25 public static void main(String[] args) {

26 int[] data = new int[] { 0, 1, -1 };

27 Adder adder = new Adder();

28 adder.addData(data);

29 System.out.println(adder.getValue());

30 }

addData1(9) setValue1

(11)

Math.abs1

loop3

getValue1

getValue1

getValue1

loop1getValue1

loop1getValue1 Math.abs1

loop1getValue1 Math.abs1loop3

loop1getValue1 Math.abs1loop3

loop1getValue1 Math.abs1loop3 setValue1

loop1getValue1 Math.abs1loop3

setValue1

addData1

(a) source code (c) traces recorded in the trace repository(b) tracing stack

Figure 3: Tracing stack while trace recording

and trace recording continues for addData() and reaches the loop header. (4) For recording the loop, a new
loop trace is pushed on the tracing stack. (5) After the first loop iteration, when execution is back at the
loop header, the loop trace is popped from the tracing stack and stored. For the next loop iteration, a new
loop trace is pushed on the tracing stack. The second loop iteration executes the same path as the first
iteration, so the system recognizes that the same trace was already recorded and does not store it again
but only increments the counter within the previously recorded trace. (6) The third loop iteration takes a
different path so that the method Math.abs() is invoked for which a new method trace is pushed on the
tracing stack. (7) When Math.abs() returns, the corresponding trace is stored and linked to its caller trace.
(8) Then, execution reaches the loop header and the loop exits. So, the loop trace is popped from the tracing
stack and stored. (9) After the loop, the virtual method setValue() is invoked. So, the invocation and the
receiver class are stored in the caller trace, and a new method trace is pushed on the tracing stack upon
entering setValue(). (10) When setValue() returns, the corresponding trace is popped from the tracing
stack, stored, and linked to its caller trace. (11) Eventually, the method addData() returns so that also
this trace is popped from the tracing stack and stored. After that, the tracing stack is empty and execution
switches back to the normal interpreter.

In the example above, it was assumed that no traces had been compiled for the invoked methods and the
loop. If traces for the method getValue() had already been compiled earlier, the invocation of getValue()
would execute the compiled machine code instead of interpreting the method. So, the trace recording
interpreter cannot push a new method trace on the tracing stack, nor can it record any control flow in the
invoked method. In that case, our trace recording approach does not preserve exact control flow information
over method boundaries. It would be possible to not invoke compiled code and instead force this code to
be executed in the trace recording interpreter if a trace is currently being recorded. However, this would
drastically reduce the startup performance because the application would be interpreted for a significantly
longer time.

For best-possible trace recording performance, all frequently executed operations (such as recording infor-

5

mation for specific instructions) are directly implemented in the assembler templates of the trace recording
interpreter. More complex operations, such as storing the recorded traces, are implemented in the C-based
runtime of the interpreter. Our trace recording infrastructure also supports efficient multi-threading so that
every Java thread can switch between the normal and the trace recording interpreters independently. Each
thread uses a thread-local buffer for trace recording to achieve the best-possible trace recording performance.

During trace recording, multiple threads may operate on the data structure that holds the recorded
traces. We observed that for most trace anchors, only a small number of traces is recorded so that storing
a new trace is required rarely, while in most cases only the execution count of an already recorded trace
is incremented. Therefore, we store the recorded traces in a data structure that avoids locks and atomic
instructions when data is read. When it seems that a new trace was found, we lock our data structure for
other writing threads and recheck under the lock if this trace is really new before adding it to the recorded
traces. So, for the most frequent case, we can avoid synchronization and atomic machine instructions, which
significantly increases the trace recording performance for multi-threaded applications.

4. Trace Inlining

Method inlining replaces calls with copies of the actually called code. The inlining heuristics can be
categorized into static and dynamic approaches.

The Java HotSpot client compiler uses a simple, static method inlining heuristic, where the method size
is compared to a fixed limit. Virtual methods are inlined using static class hierarchy analysis (CHA) [8].
This analysis determines if a method is not overridden by any loaded subclass, in which case it can be inlined
optimistically. If a subclass is loaded later on that overrides an optimistically inlined method, the generated
machine code is invalidated. Dynamic inlining heuristics use profiling information to decide if a call is worth
inlining.

Our trace-based JIT compiler supports both static and dynamic inlining heuristics by making use of the
recorded trace information. Similar to method inlining, trace inlining also replaces calls with copies of the
actually called code. This increases the compilation scope and may result in a higher performance.

4.1. Advantages of Trace Inlining

Trace inlining has several advantages over method inlining:

• Trace inlining does only inline frequently executed traces instead of whole methods. Method-based
compilers try to use profiling information to avoid compilation of infrequently executed method parts [9,
26, 27]. This achieves a similar effect to trace inlining but is a complementary approach.

• The recorded traces contain context-sensitive information about which method parts are used by
which caller. This information is preserved over method boundaries and can be used to avoid inlining
of method parts that were executed frequently in total but are not required for the current caller.

• Traces also store information about the receivers of virtual calls and due to our trace linking, this
information is also context sensitive. So, it might turn out that a certain call site invokes only methods
of a specific receiver type. This information can be used for aggressive inlining of virtual methods.
Method-based compilers also use profiling information for aggressive inlining of virtual calls, but in
most compilers this information is not context sensitive.

4.2. Implementation

We start trace inlining by computing the maximum trace size that should be inlined at the current call
site. This mainly depends on the call site’s relevance (see Section 5.1) for program execution. Then, we use
a heuristic to decide if it is worth to inline the invoked traces at the current call site. To a large degree, this
depends on the size of the traces because inlining large traces causes code bloat.

Inlining method traces is similar to method inlining except that the traces usually do not cover all
bytecodes of the callee. So, we build a trace graph from the traces that should be inlined and replace the

6

(a) control flow graphs

call

return

1

2

3

a

f

1 2' a

b

cb

2'' 3

(c) trace graph after trace inlining

(b) recorded traces

1 2' a fb 2'' 3

ed

g h

i

g i

1 2' a fd 2'' 3g i

3

f g i

d

c

e

de
op

tim
iz

e

de
op

tim
iz

e h

de
op

tim
iz

e

Figure 4: Inlining method traces

method invocation with the contents of that trace graph. Then, return instructions that are located within
the inlined bytecodes are replaced with direct jumps to the next instruction after the call and exception-
throwing instructions are wired to exception handlers located in the caller trace.

Figure 4 (a) shows the control flow graphs of two methods. Two traces through those methods are
shown in Figure 4 (b). After performing trace recording frequently enough, the recorded traces are getting
compiled. The resulting trace graph after trace inlining (but without explicit control flow duplication) is
shown in Figure 4 (c). This trace graph is then compiled to optimized machine code. If one of the removed
blocks must be executed later on, the compiled code deoptimizes to the interpreter.

Another interesting aspect is that we also remove the edge from block 1 to block 3 although the trace
graph does contain block 3. This is advantageous because it avoids control flow merges, which otherwise
could constrain compiler optimizations. So, removing edges that are not executed results in better optimized
machine code.

In most cases, we inline only those traces that were invoked by the current caller. However, if the
callee traces were compiled before trace recording was started for the caller, the caller does not know which
of the compiled traces it needs. In those cases, we conservatively consider all callee traces as inlining
candidates, except those for which we can proof that they cannot be invoked by the current caller because
of the specific parameters that the caller passes to the callee. The used technique behind that is similar
to dead code elimination in a method-based compiler but allows eliminating whole traces instead of basic
blocks. To further reduce the number of inlined traces, we do also filter out infrequently executed traces
(see Section 4.5).

For virtual method invocations, we combine the recorded trace information with the Java HotSpot client
compiler’s CHA to determine the exact receiver class for the current call site. If the CHA identifies a single
target method, the invoked method traces are inlined in a similar way to how the Java HotSpot client
compiler inlines methods. If the CHA finds multiple possible target methods, we try to use the recorded
receiver classes for inlining the method traces aggressively. For this, we add a run-time check that compares
the actual receiver type with the expected type and deoptimizes to the interpreter if the types do not match.
By combining CHA and context-sensitive trace information, we can inline virtual calls more frequently than
most method-based compilers while emitting run-time checks only where necessary.

In addition to inlining method traces, we also support inlining loop traces. Figure 5 (a) shows a trace
graph that was built for method traces that invoked loop traces. The loop traces were not inlined yet, so the
loop is represented as a black box that is still unknown to the compiler. In the next step, a separate trace
graph is built from the loop traces as shown in Figure 5 (b). The actual inlining then replaces the black
box in the caller trace graph with the loop trace graph and links all loop exits to their correct successor

7

3

5

e

a

d

2
lo

op

(a) method trace graph

b

c

14971495

(b) loop trace graph

3

5

e

b

c

1497

a

d

2

(c) after loop inlining

2

3

5

1495

Figure 5: Inlining loop traces

blocks using jump instructions. In this example, block b is linked to block e and block c is linked to block d,
resulting in the trace graph shown in Figure 5 (c).

When inlining loop traces, we consider all traces that were recorded for a specific loop as inlining
candidates. This is necessary because loop traces are never explicitly linked to their caller trace, so no
context-specific call information is available. However, we use the information about the parameters and
locals that flow into the loop to eliminate those traces for which we can proof that they cannot be invoked
by the current caller. Furthermore, we also eliminate traces that were not executed frequently enough.

A more difficult case is that the inlined loop can have a loop exit for which no successor exists in the
caller trace graph. For example, in Figure 5 (a), block d could be missing because it was never recorded.
However, both loop exits could still be present in the recorded loop traces as shown in Figure 5 (b). One way
how this can happen is when the loop traces are compiled before trace recording is started for the method
trace. Previously [15], we addressed this issue by explicitly adding deoptimization points for all loop exits
that could not be linked to a successor, so that execution deoptimized to the interpreter when such a loop
exit was taken. Now, we simply eliminate loop traces that end in a loop exit that is unknown to the current
caller. This reduces the number of inlining candidates and results in less generated machine code.

4.3. Context Sensitivity

Our trace recording infrastructure restricts traces to span at most one method so that the trace-based
compiler heavily relies on aggressive trace inlining [15]. The trace recording mechanism preserves context-
sensitive information over method boundaries so that each caller knows which parts of the callee it should
inline. This helps the compiler to avoid inlining of method parts that were executed frequently in total, but
are irrelevant for the current caller. It reduces the generated amount of machine code, and decreases the
number of merge points, which increases peak performance.

Also method-based compilers use profiling information to remove never executed code. However, their
profiling information typically lacks the context-sensitivity so that they cannot decide which method parts
are required for each specific caller. Context-sensitive profiling information could in principle also be recorded
for a method-based compiler but we believe that trace recording and trace-based compilation simplifies it.

Figure 6 shows the method indexOf() of the JDK class ArrayList. The first part of the method
handles the rare case of searching null, while the second part searches the list for non-null objects. Most
callers will only require the second part of the method. However, if there is at least one caller in the
application that executes the first part of the method, the profiling information in a method-based compiler
would indicate that the first part has been executed. So, whenever the method-based compiler inlines the
method indexOf(), it does also inline this rarely executed method part. Due to our context-sensitive trace
information, our trace-based compiler can avoid that if the caller does not need that specific method part.

Because trace inlining is more selective in what it does inline, our trace-based compiler can use a more
aggressive inlining policy, i.e., it can inline traces through methods that would be too large to be inlined as a
whole. This increases the compilation scope without necessarily inlining a higher number of Java bytecodes

8

1 public int indexOf(Object o) {

2 if (o == null) {

3 for (int i = 0; i < size; i++) {

4 if (elementData[i] == null) {

5 return i;

6 }

7 }

8 } else {

9 for (int i = 0; i < size; i++) {

10 if (o.equals(elementData[i])) {

11 return i;

12 }

13 }

14 }

15 return -1;

16 }

Figure 6: Method ArrayList.indexOf()

than a method-based compiler. Especially, for complex applications, this results in better optimized machine
code and has a significant positive effect on peak performance.

Figure 7 (a) shows the class LineBuilder that wraps an Appendable object and provides the method
appendLine(). If multiple LineBuilder objects are used to wrap instances of different classes, such as
PrintStream, StringBuilder, StringBuffer, and BufferedWriter, then the invocations of append() on
lines 9 and 10 will be polymorphic calls that cannot be inlined easily, as shown in Figure 7 (b).

If the dispatch in appendLine() depends on its call site, e.g., because different LineBuilder objects
are used at different call sites, the inlining in Figure 7 (c) would be preferable. Our context-sensitive
trace information also stores the receiver types of virtual calls. So, our trace-based compiler can do the
preferable inlining indicated in Figure 7 (c) by using this context-sensitive information for aggressive inlining
of virtual calls. If a compiler does not record the profiling information in a context-sensitive way, but just
accumulates all encountered types (i.e., PrintStream, StringBuilder, StringBuffer, and BufferedWriter

at buffer.append()) it will not have enough information to inline such virtual calls.
In the previous version of our trace-based compiler, we only used the type information when the recorded

traces indicated that the invoked method always belonged to the same type of receiver. Such inlined traces
are guarded by a type guard that compares the actual receiver type to the expected receiver type and
deoptimizes to the interpreter if the types do not match. For this paper, we extended trace inlining in the
following ways:

• If a call site always invokes the same method but does it on different receiver types, it was previously
not possible to inline the method. However, this occurs frequently, for example, if an abstract base
class implements a method that is not overridden by subclasses. We enabled this kind of inlining
by guarding it with a so called method guard that accesses the virtual method table of the actual
receiver and compares the invoked method with the expected method. If the methods do not match,
we deoptimize to the interpreter.

• If a call site always invokes the same method but does it via a receiver of an interface type, we extend
type guards to a switch-like structure so that they can check for multiple receiver types. This is cheaper
than the interface lookup and allows us to inline invocations of interface methods in many cases. If
the actual receiver type does not match any of the expected types we deoptimize to the interpreter.

• Another enhancement is the inlining of polymorphic calls. Figure 8 (a) shows a method, where a
virtual call might invoke two different methods. Because these methods are small, it pays off to inline
them both. This results in the control flow shown in Figure 8 (b) where block 2’ dispatches to one
of the inlined methods depending on the type of the actual receiver. Here, we also use switch-like
semantics so that several types can dispatch to the same inlined method. If the actual receiver type
does not match any of the expected types, we deoptimize to the interpreter.

9

appendLine()

PrintStream.append()

StringBuilder.append()

StringBuffer.append()

BufferedWriter.append()

A.a()

B.b()

C.c()

D.d()

appendLine’()A.a()

B.b()

C.c()

D.d()

appendLine’’()

appendLine’’’()

appendLine’’’’()

(b) possible method invocations

(c) preferred inlining

1 public class LineBuilder {

2 private final Appendable buffer;

3

4 public LineBuilder(Appendable buffer) {

5 this.buffer = buffer;

6 }

7

8 public void appendLine(CharSequence sequence) {

9 buffer.append(sequence);

10 buffer.append("\n");

11 }

12 }

PrintStream.append()

StringBuilder.append()

StringBuffer.append()

BufferedWriter.append()

(a) code pattern

Figure 7: Context-sensitive type information

The Java HotSpot server compiler also inlines polymorphic calls but limits the number of inlined methods
to at most two, as a higher number could easily result in code bloat. Our trace-based compiler inlines
method parts more selectively due to the context-sensitivity of the recorded traces. So, we can avoid
inlining of method parts that were executed frequently in total, but are not required for the current caller.
Furthermore, the recorded type information is also context-sensitive, which reduces the number of inlining
candidates. So, our trace-based compiler does not have to limit the number of inlined methods but instead
only limits the total size of all inlined methods depending on the execution frequency of the specific call
site. For applications with a high number of polymorphic calls, this results in significantly better inlining
and therefore a higher performance, while avoiding issues with code bloat.

1

2

3

a

b

call

call

return

return

1

2'

3

a b

2''

(a) polymorphic call (b) polymorphic inlining

Figure 8: Polymorphic inlining

10

public static void primitiveArraycopy(Object src, int srcPos, Object dest, int destPos, int length) {
if (src == null || dest == null) {

throw new NullPointerException();
}
if (srcPos < 0 || destPos < 0 || length < 0 ||

srcPos + length > src.length || destPos + length > dest.length) {
throw new IndexOutOfBoundsException();

}
if (!src.isArray() || !dest.isArray() || src.getClass() != dest.getClass()) {

throw new ArrayStoreException();
}

if (src == dest && isOverlapping(srcPos, destPos, length)) {
copyOverlapping(src, srcPos, dest, destPos, length);

} else {
copyNonOverlapping(src, srcPos, dest, destPos, length);

}
}

public static void primitiveArraycopy(Object src, int srcPos, Object dest, int destPos, int length) {
// src != null && dest != null
// srcPos >= 0 && destPos >= 0 && length >= 0 && srcPos + length <= src.length && destPos + length <= dest.length
// src.isArray() && dest.isArray() && src.getClass() == dest.getClass()
// src != dest
copyNonOverlapping(src, srcPos, dest, destPos, length);

}

(b) optimized arraycopy for primitive type arrays

(a) unoptimized arraycopy for primitive type arrays

Figure 9: Pseudo-code for System.arraycopy() when copying primitive type arrays

4.4. Native Methods

Java code can call native methods using the Java Native Interface (JNI). This mechanism is mainly used
to implement platform-specific features that could not be expressed in Java otherwise. Some methods of
the Java standard library, e.g., System.arraycopy(), are implemented in a platform-specific way directly in
the JVM. As no Java code is executed for such methods, trace recording is not possible for those methods.

The Java HotSpot VM uses compiler intrinsics for the most important platform-specific methods so
that the JIT compiler can inline such methods. If our trace-based JIT compiler compiles a trace graph
that contains the invocation of a native method that is implemented as a compiler intrinsic, we do exactly
the same inlining as the method-based compiler. Still, our trace-based compiler has one advantage: traces
are smaller than methods so that our trace-based compiler can inline Java traces more aggressively than a
method-based compiler could inline Java methods. This results in a larger compilation scope so that the
caller of a native method has specific knowledge about the parameters that are passed to the native method.
The JIT compiler can use this information to optimize inlined compiler intrinsics more aggressively.

Figure 9 (a) shows pseudo-code for the implementation of the native method System.arraycopy(),
which is used to copy primitive type arrays. Depending on the compiler’s information about the parameters
that are passed to System.arraycopy(), it can optimize the intrinsic. Figure 9 (b) shows an optimized
version of the method where the compiler could optimally exploit the parameter values. The necessary
parameter information is for example available when the source and the destination arrays are allocated in
the same compilation scope in which System.arraycopy() is inlined. So, increasing the compilation scope
can help to increase the performance of inlined compiler intrinsics.

4.5. Filtering Out Traces

When a trace is recorded, chances are good that the trace is important and will be executed frequently.
Still, sometimes recorded traces turn out to be rarely executed. By eliminating such traces, we can ensure
that only important paths are compiled. Figure 10 (a) shows the trace graph after merging all recorded
traces. The graph edges are annotated with the execution frequencies.

11

200

1 70

a

100

b c

d

199

d he

j k

1

(a) trace graph

f g

70 59

70 170 59

i

99

200

70

a

100

b c

99

d e

k

(b) trace graph after filtering

f g

70 59

70 70 59

i

99

Figure 10: Filtering out infrequently executed traces

For every block, we determine the most frequently executed outgoing edge and compare its frequency
to those of all other outgoing edges of the same block. Then, we remove all edges with a 100x lower
execution frequency. After processing all blocks, we remove no longer reachable blocks from the trace graph.
Figure 10 (b) shows the resulting graph after filtering.

The recorded trace information conserves the program behavior that was observed during a specific time
frame. At a later point of execution, infrequently executed (and therefore eliminated) paths might become
important as the program behavior may change over time. This results in frequent deoptimization because
not compiled paths get to be executed. If too frequent deoptimization is detected, the compiled machine
code is invalidated and another compilation is triggered. This compilation avoids trace filtering for those
cases that resulted in frequent deoptimization.

Trace filtering has the following corner cases, where extra care must be taken:

• For most loops, the loop body is executed significantly more frequently than the loop exits, see Fig-
ure 5 (c). So, the execution frequencies of the loop exits have to be compared to the frequency of the
loop entry instead of to the frequency of the backward branch. Otherwise, the loop exit edges would
be filtered out, so that deoptimization to the interpreter is required after executing a loop. This would
increase the deoptimization frequency and it would limit the possible compilation scope.

• Aggressive trace inlining may also inline infrequently executed traces. Those inlined traces may not
necessarily reflect the typical execution behavior yet so that trace filtering might eliminate important
traces. This would result in frequent deoptimization so that trace filtering should be avoided for
insufficiently trace-recorded methods and loops.

5. Trace Inlining Heuristics

All inlining heuristics that are presented in the following section have in common that they first compute
the relevance of a call site and then use that relevance to compute the maximum inlining size. The actual
inlining decision is a simple comparison of the maximum inlining size with the actual size of the traces
that should be inlined. For our evaluation, we paired several inlining heuristics with different relevance
computation algorithms.

5.1. Relevance of a Call Site

The relevance of a call site is determined by the relevance of the trace graph block in which the call site
is located. We evaluated three different algorithms for computing the relevance and illustrate their behavior
on the two trace graph examples A and B shown in Figure 11. Example A was built from four different
traces that hardly share any blocks. Example B also shows a trace graph built from four traces, but every
block is shared with at least one other trace.

12

(a) node execution counts

300

100 200

100 70 70 60

100

1.00

0.33 0.67

0.33 0.23

0.67

0.23 0.20

0.33

(b) simple

3.00

1.00 2.00

1.00 0.70

2.00

0.70 0.60

1.00

(c) most frequent trace

4.29

1.43 2.86

1.43 1.00

2.86

1.00 0.86

1.43

(d) path!based

(a) node execution counts

300

190 110

120

300

180

(b) simple (c) most frequent trace (d) path!based

300

1.00

0.63 0.37

0.40

1.00

0.60

1.00

3.00

1.90 1.10

1.20

3.00

1.80

3.00

1.67

1.06 0.61

0.67

1.67

1.00

1.67

200

A

B

Figure 11: Different relevance computation algorithms

For computing the relevance of the trace graph blocks, we first determine how often each block was
executed by recorded traces. Figure 11 (a) shows the trace graphs where every block is annotated with its
execution frequency. Then, we compute the relevance of each block by dividing its execution frequency with
a reference value. Depending on the reference value, the relevance is scaled differently. So, we use one of
the following algorithms to choose that reference value:

• Simple: The simplest way of computing the relevance of a trace graph block is to divide its execution
frequency by the total execution frequency of all traces merged into the trace graph. The resulting
value is in the range]0, 1] and assigns a high relevance to those blocks in which inlining has a positive
effect during most executions, as shown in Figure 11 (b).

• Most frequent trace: Another way is to divide the block execution frequency by the execution frequency
of the most frequently executed trace ever merged into the trace graph. Because traces are merged,
trace graph blocks that are shared between multiple traces have a higher execution count than they
would have without merging. So, this metric returns a high relevance for call sites that are within
such shared blocks, while returning a value in the range]0, 1] for call sites that are only contained in
individual traces. In Figure 11 (c), the colored blocks are shared and therefore get a higher relevance.
If many different traces were recorded and many blocks are shared in the trace graph, then it can
happen that every block in the trace graph has a relevance greater than 1, as shown in example B of
Figure 11 (c).

• Path-based: Our third approach computes a variant of the most frequently executed path through the
trace graph. We start at the root block of the trace graph and determine the most frequently execute
successor block. Then, we mark this block as visited and continue with this block recursively until we
either reach a block without successors or we are back at the loop header. All blocks that are visited
due to this algorithm are colored in Figure 11 (d). Then, we use the lowest execution frequency of all
visited blocks to compute the relevance of all other blocks in the trace graph. This has the advantage

13

that important call sites, i.e., those on this path and on frequently executed split/merge points, have
a value in the range [1, ∞[, while less important calls have a value in the range]0, 1[.

5.2. Configurations

We started with 15 different inlining heuristics ranging from static heuristics to dynamic ones. For each
inlining heuristic, we performed a systematic search to find good parameter settings. During our evaluation,
our dynamic inlining heuristics outperformed all static ones so that we omit detailed results for static inlining
heuristics in this paper. Furthermore, we describe only those variants of our dynamic inlining heuristics
that showed a good peak performance or a small amount of generated machine code.

• Minimum code: This heuristic modifies an inlining size of 35 bytecodes based on the relevance of the
call site. A relevance below 1 reduces the inlining size, while a relevance greater than 1 increases
the inlining size. By combining this heuristic with the path-based relevance computation algorithm, it
shows a fairly good peak performance while generating small amounts of machine code. We also tried
combining this inlining heuristic with the relevance computation algorithm simple. However, this has
a significant negative effect on the peak performance while generating only slightly less machine code.
Therefore, we omit detailed results for this second variant.

• Balanced: This heuristic increases an inlining size of 40 bytecodes based on the relevance of the call
site. A relevance below 1 does not affect the inlining size, while a relevance greater than 1 increases the
inlining size. So, decreasing the predefined size is explicitly not allowed, which makes it more likely
that important calls are inlined. We use this heuristic with the path-based relevance computation
algorithm, which results in a balance between peak performance and amount of generated machine
code.

• Performance: This inlining heuristic uses a large inlining size of 150 bytecodes and decreases that for
call sites with a relevance below 1. Increasing the inlining size beyond the predefined value is explicitly
not allowed. For computing the relevance of the call sites, we again use the path-based relevance
computation algorithm. So, this heuristic is optimized for peak performance while generating still
reasonably small amounts of machine code.

• Greedy: Similar to the previous configuration, this heuristic uses a very large inlining size of 250 byte-
codes and decreases it for call sites with a relevance below 1. To ensure that called traces are inlined
greedily, we combine this heuristic with the most frequent trace relevance computation algorithm.
However, due to the predefined maximum value, even this inlining heuristic avoids inlining of huge
traces. This heuristic shows which of the benchmarks described in Section 6 profit from very aggressive
trace inlining. We also experimented with even more aggressive inlining heuristics but those did not
further improve the peak performance, while generating more machine code.

Similar to method-based compilers, all our heuristics make sure that tiny methods such as accessors are
always inlined. This makes sense, because invoking small traces may require more machine code than the
inlining. Another strategy, that is used by the Java HotSpot server compiler, is to avoid method inlining
if the callee was already compiled separately and the compilation resulted in a large amount of generated
machine code. This assumes that a fairly large compilation scope has already enough information for good
compiler optimizations so that increasing the compilation scope beyond a certain point is not useful. We
also use this technique for all our trace inlining heuristics as it reduces the generated machine code without
affecting the performance measurably.

To reduce the probability of nested trace inlining, we ensure that inlined traces inherit the relevance
from their parent call site. For this, we multiply the relevance of every callee block with the relevance of
the caller’s block. However, we limit the maximum inherited relevance to 1 as the relevance could otherwise
increase with the inlining level. Relevance inheriting again reduces the amount of generated machine code
without affecting the performance measurably and is also used by all our heuristics.

14

11
2%

73
%

77
%

11
5%

80
%

85
%

11
8%

96
% 10

4%

11
9%

14
0%

13
4%

0%

50%

100%

150%

200%

peak performance
(higher is better)

generated
machine code

(lower is better)

compilation time
(lower is better)

minimum code
balanced
performance
greedy

Figure 12: SPECjbb2005 results

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

kb
o

p
s

number of warehouses

client
minimum code
balanced
performance
greedy

hi
gh

er
 is

 b
et

te
r

Figure 13: SPECjbb2005 peak performance for different num-
bers of warehouses

6. Evaluation

We implemented our trace-based JIT compiler for the IA-32 architecture of Oracle’s Java HotSpot VM
using the early access version b12 of the upcoming JDK 8 [21]. For evaluating our inlining heuristics, we
chose the benchmark suites SPECjbb2005 [24], SPECjvm2008 [25], and DaCapo 9.12 Bach [3] as those cover
a large variety of benchmarks. The benchmarking system has the following configuration: an Intel Core-i5
processor with 4 cores running at 2.66 GHz, 4 * 256 kb L2 cache, 8 MB shared L3 cache, 8 GB main memory,
and with Windows 7 Professional as the operating system.

The results are shown relative to the results for the unmodified, method-based Java HotSpot client
compiler, which is denoted by 100%. For the trace-based JIT compiler, the amount of generated machine code
also includes data that is specific to trace-based compilation such as additional deoptimization information
required for fall back to the interpreter. Each benchmark suite was executed 10 times and we report the
average of those results along with the 95% confidence interval.

6.1. SPECjbb2005

The SPECjbb2005 benchmark simulates a client/server business application where all operations are
performed on an in-memory database that is partitioned in so-called warehouses. The benchmark is executed
with different numbers of warehouses, and each warehouse is processed by one thread. We use a system
with 4 cores for benchmarking so that the official SPECjbb2005 throughput in business operations per
second (bops) is defined as the geometric mean of the performance for the warehouses 4 to 8. A heap size
of 1200 MB is used for all measurements.

Figure 12 shows the peak performance, the generated machine code and the compilation time for the
SPECjbb2005 benchmark. All our trace-based compiler variants outperform the client compiler significantly
in terms of peak performance. More aggressive trace inlining results in a higher performance but does also
generate more machine code and requires a longer compilation time because of the larger size of the compi-
lation units. The peak performance of the SPECjbb2005 benchmark clearly profits up to the configuration
performance from the increased trace inlining aggressiveness. Our configuration greedy increases the per-
formance only slightly, while generating significantly more machine code. In terms of compilation time and
amount of generated machine code, our configuration minimum code is especially efficient, while reaching a
decent peak performance.

Figure 13 shows the SPECjbb2005 peak performance for different numbers of warehouses and different
inlining heuristics. The maximum peak performance is reached with 4 warehouses as every warehouse
is processed by one thread and our benchmarking system has 4 cores. The figure shows that our tracing
configurations outperform the method-based client compiler independently of the used number of warehouses.

15

10
7%

10
3%

10
1%

11
9%

10
3%

10
0%

13
7%

11
5%

11
4%

10
9%

11
0%

10
3%

10
4%

12
6%

10
3%

10
0%

14
2%

11
9%

11
8%

11
2%

11
5%

10
4%

10
4%

12
9%

10
3%

10
2%

14
7%

11
9%

12
3%

11
4%

11
7%

10
7%

10
4%

13
4%

10
3%

10
2%

14
9%

12
5%

12
6%

11
6%

0%

50%

100%

150%

200%

compiler compress crypto derby mpegaudio scimark serial sunflow xml mean

minimum code
balanced
performance
greedy

hi
gh

er
 is

 b
et

te
r

Figure 14: SPECjvm2008 peak performance

76
%

34
% 43

%

61
%

62
%

30
%

51
%

38
%

76
%

47
%

88
%

37
% 48

%

70
%

65
%

32
%

60
%

41
%

96
%

53
%

12
3%

45
% 58

%

89
%

71
%

40
%

79
%

49
%

14
5%

67
%

17
4%

50
%

67
%

10
1%

78
%

47
%

98
%

57
%

17
2%

79
%

0%

50%

100%

150%

200%

compiler compress crypto derby mpegaudio scimark serial sunflow xml mean

minimum code
balanced
performance
greedy

lo
w

er
 is

 b
et

te
r

Figure 15: SPECjvm2008 generated machine code

6.2. SPECjvm2008

The SPECjvm2008 benchmark consists of nine benchmark categories that measure peak performance.
Next to the individual benchmark results, we present the geometric mean of all results. A heap size of
1024 MB is used for all measurements.

Figure 14 shows that all our tracing configurations outperform the method-based HotSpot client compiler.
Our tracing configurations show the highest speedups on the benchmarks derby and serial. There, trace
inlining achieves a larger compilation scope than the method inlining used by the HotSpot client compiler.
A very aggressive trace inlining policy such as our configuration greedy does increase the peak performance
especially for the benchmarks derby and sunflow. However this aggressive trace inlining also increases the
amount of generated machine code and the time required for JIT compilation as shown in Figure 15 and
Figure 16.

The small and loop-intensive benchmarks crypto, mpegaudio, and scimark show almost no increased
peak performance because the method-based HotSpot client compiler can inline all calls in the performance
critical loops as well. Due to the small size of these benchmarks, our trace-based compiler can achieve only
a similar-sized compilation scope as the method-based compiler. However, our trace-based compiler inlines
traces instead of whole methods so that significantly less machine code is generated and less compilation
time is required, as shown in Figure 15 and Figure 16.

Figure 15 shows that the amount of generated machine code is sensitive to the inlining size, so that it
can easily happen that lots of machine code is generated. However, small and loop-intensive benchmarks do
not show a large increase in code size, even when our most aggressive trace inlining heuristic is used. On
such benchmarks, a trace inlining heuristic can only be too conservative but never too aggressive.

16

10
0%

36
% 46

%

69
%

54
%

31
%

54
%

45
%

83
%

54
%

12
0%

38
% 50

%

76
%

58
%

32
%

63
%

46
%

10
1%

60
%

17
4%

45
% 59

%

95
%

65
%

40
%

80
%

55
%

14
1%

75
%

21
5%

48
% 66

%

10
8%

72
%

45
%

94
%

65
%

16
2%

85
%

0%

50%

100%

150%

200%

250%

compiler compress crypto derby mpegaudio scimark serial sunflow xml mean

minimum code
balanced
performance
greedy

lo
w

er
 is

 b
et

te
r

Figure 16: SPECjvm2008 compilation time

10
2%

10
0%

10
4%

10
3%

10
7%

12
9%

10
5% 11

0%

11
1%

11
4%

99
% 11

1%

10
4% 11

7%

10
8%

10
4%

10
0% 10

6%

10
6%

11
1%

13
7%

11
1%

11
2%

11
4%

11
6%

99
%

11
5%

10
4%

12
2%

11
1%

10
8%

10
1% 10

7%

11
0% 11

8%

14
8%

11
6%

11
4%

11
7%

11
7%

10
0%

11
9%

10
5%

12
5%

11
4%

10
7%

10
2% 10

8%

11
1% 12

0%

15
1%

12
4%

11
8% 12

6%

12
3%

10
0%

12
3%

10
7%

13
0%

11
7%

0%

50%

100%

150%

200%

minimum code
balanced
performance
greedy

hi
gh

er
 is

 b
et

te
r

Figure 17: DaCapo 9.12 Bach peak performance

6.3. DaCapo

The DaCapo 9.12 Bach benchmark suite consists of 14 Java applications. Using the default data size and
a heap size of 1024 MB, each benchmark is executed for 20 iterations so that the execution time converges.
We present the fastest run for each benchmark and the geometric mean of all results. A heap size of 1024 MB
is used for all measurements.

Figure 17 shows the peak performance results for the DaCapo 9.12 Bach benchmarks, while Figure 18
shows the amount of generated machine code. The inlining heuristic greedy shows the best peak performance,
while generating more machine code than the unmodified Java HotSpot client compiler. Especially the
benchmarks luindex, pmd, and sunflow profit from the greedy heuristic because of its large inlining size.
However, on some of the benchmarks this heuristic is already over-aggressive so that more machine code is
generated without a measurable change in peak performance.

The tracing configurations achieve the highest speedup for the benchmark jython, which executes a large
number of virtual calls. Our trace-based compiler uses the recorded trace information for aggressive inlining
of virtual calls. So, it achieves a large compilation scope, which results in a high peak performance.

On average, all inlining heuristics except greedy generate less machine code than the method-based client
compiler, while still showing a higher average peak performance. One of our static inlining heuristics, which
only compares the size of the traces to a fixed maximum value, reached nearly the same peak performance as
minimum code but generated more machine code. This good result for a static inlining heuristic comes from
the fact that the compiled traces contain only frequently executed paths per definition. So, for methods
without much control flow, it is sufficient to compare the size of the traces to a fixed threshold. As long as
the maximum inlining size was kept low, this static heuristic showed decent results but when the maximum
inlining size was increased, lots of machine code was generated without a significant positive effect on peak

17

64
%

66
%

62
%

65
%

67
%

62
%

61
%

65
%

89
%

45
%

47
%

50
% 57

% 66
%

61
%77

%

76
%

72
%

74
% 82

% 90
%

70
%

74
%

11
0%

48
% 55

% 61
% 72

% 80
%

73
%

10
3%

94
%

91
%

92
%

13
9%

12
3%

89
%

93
%

13
7%

55
%

73
% 81

% 91
% 10

3%

95
%

14
9%

10
7%

12
8%

11
8%

20
6%

11
7%

10
8% 11

0%

18
8%

58
%

93
% 10

2%

10
6% 11

9%

11
7%

0%

50%

100%

150%

200%

250%
minimum code
balanced
performance
greedy

lo
w

er
 is

 b
et

te
r

Figure 18: DaCapo 9.12 Bach generated machine code

66
%

64
% 78

%

83
%

27
% 46

%

67
%

70
%

10
6%

47
%

51
%

45
%

50
% 60

%

59
%76

%

72
% 90

%

94
%

30
%

78
%

75
%

79
%

13
1%

51
% 60

%

49
% 63

% 70
%

69
%

95
%

87
%

11
2%

11
8%

30
%

99
%

92
%

95
%

15
8%

58
% 75

%

77
% 83

%

87
%

85
%

12
5%

96
%

14
4%

14
1%

61
% 79

%

10
6%

10
8%

22
8%

63
%

91
%

89
%

92
%

97
%

10
2%

0%

50%

100%

150%

200%

250% minimum code
balanced
performance
greedy

lo
w

er
 is

 b
et

te
r

Figure 19: DaCapo 9.12 Bach compilation time

performance.
In terms of time required for JIT compilation, Figure 19 shows that our trace-based compiler is highly

efficient so that even our most aggressive configuration greedy requires on average only a similar amount of
time as the method-based HotSpot client compiler.

6.4. High-level Optimizations

Similar to method-inlining, trace inlining is an optimization that has positive effects on other compiler
optimizations due to the larger compilation scope. Figure 20 compares the impact on peak performance for
different high-level optimizations that are used by both the method-based HotSpot client compiler and our
trace-based compiler. Optimizations marked with 1 are local optimizations that are applied directly during
bytecode parsing, while optimizations marked with 2 are global optimizations that run in a separate phase
after graph building.

In general, aggressive trace inlining increases the compilation scope, which positively affects many opti-
mizations. However, depending on the benchmarks the individual optimizations show different gains. For
the SPECjbb2005 benchmark, our trace inlining especially increases the effectiveness of canonicalization,
which performs simple optimizations such as constant folding and dead code elimination. The SPECjvm2008
benchmark suite contains too many small and loop-intensive benchmarks where our trace-based compiler
cannot achieve a significantly larger compilation scope. Therefore, hardly any high-level optimization profits
significantly here. On the DaCapo 9.12 Bach benchmark suite, the performance increase is distributed over
all listed optimizations.

18

SPECjbb2005 SPECjvm2008 DaCapo 9.12 SPECjbb2005 SPECjvm2008 DaCapo 9.12

canonicalization
1 2% 3% 1% 4% 4% 2%

conditional expression elimination
2 1% 0% �1% 0% 0% 0%

block merging
1,2 0% 0% �1% 0% 1% 1%

value numbering
1,2 0% 2% 0% 0% 2% 1%

load/store elimination
1 0% 1% 0% 0% 0% 0%

null%check elimination
2 2% 2% 1% 4% 2% 1%

all optimizations
1,2 5% 7% 4% 9% 8% 6%

client compiler speedup tracing compiler speedup (greedy)

Figure 20: Impact of high-level optimizations on peak performance

6.5. Server Compiler

Oracle’s Java HotSpot VM has two different JIT compilers that share most parts of the VM infrastructure.
Our trace-based compiler builds on the client compiler, which is designed for best startup performance and
implements only basic optimizations to achieve a decent peak performance. The server compiler is designed
for long-running server applications and performs significantly more optimizations to produce highly efficient
code. Some additional optimizations that the server compiler performs are array bounds check elimination,
loop-invariant code motion, loop unrolling, and escape analysis. Thus, the server compiler generates code
with a better peak performance but requires a 6 to 31 times (13 times on average) longer compilation on
the benchmark suites SPECjbb2005, SPECjvm2008, and DaCapo 9.12 Bach. A server executes mostly
long-running applications so that the long compilation time is only a small overhead in comparison to the
total execution time.

We compared our best peak performance configuration greedy to the HotSpot server compiler, and
the results are shown in Figure 21. The SPECjbb2005 benchmark profits heavily from some of the time-
consuming optimizations of the server compiler, so that our trace-based compiler reaches only 67% of the
server compiler’s performance.

For the SPECjvm2008 benchmark suite, our tracing configuration greedy reaches on average 85% of the
server compiler’s performance. This benchmark suite contains many loop-intensive benchmarks, such as
crypto, mpegaudio, and scimark, where the server compiler shows a significantly higher peak performance,
because it applies array bounds check elimination and sophisticated loop optimizations. However, due to
our aggressive trace inlining our trace-based compiler outperforms the server compiler on the benchmarks
compress and sunflow.

On the DaCapo 9.12 Bach benchmark suite, which contains significantly more complex and less loop-
intensive benchmarks [14], our trace-based compiler reaches 93% of the server compiler’s peak performance
on average. However, although our trace-based compiler performs only basic compiler optimizations, it
outperforms the server compiler’s peak performance on the benchmarks luindex, pmd, and sunflow. This is
due to our aggressive and context-sensitive trace inlining approach.

11
9%

11
7%

10
7%

10
4%

13
4%

10
3%

10
2%

14
9%

12
5%

12
6%

11
6%

10
7%

10
2%

10
8%

11
1% 12

0%

15
1%

12
4%

11
8% 12

6%

12
3%

10
0%

12
3%

10
7%

13
0%

11
7%

17
7%

12
7%

99
%

15
1% 17

0%

14
6%

13
1%

16
1%

12
0%

14
8%

13
7%

11
2%

10
6% 11

9%

14
8%

13
1%

16
5%

11
9%

14
4%

11
6%

11
9%

10
1%

13
9%

11
0%

15
3%

12
6%

0%

50%

100%

150%

200%

greedy

server

hi
gh

er
 is

 b
et

te
r

Figure 21: SPECjbb2005, SPECjvm2008, and DaCapo 9.12 Bach peak performance

19

6.6. Startup Performance

The Java HotSpot client and server compilers as well as our trace-based JIT compiler are all designed for
multi-threaded background compilation. So, we evaluate the startup performance in the following scenarios:

• The first scenario executes 1 application thread, while the VM uses up to 4 JIT compiler threads. So,
on our 4 core benchmarking system, up to 3 cores can be exclusively used for JIT compilation.

• In the second scenario, 4 application threads are executed while the VM uses up to 4 JIT compiler
threads. On our 4 core benchmarking system, the JIT compiler threads compete with the applica-
tion threads. The Java HotSpot VM assigns a higher priority to JIT compiler threads as early JIT
compilation has a positive effect on startup performance.

All presented results are normalized to the performance of the configuration client with 1 JIT compiler
thread. We do not present any startup performance results for the SPECjbb2005 benchmark as this bench-
mark is designed to measure peak performance so that first results are obtained after 30 seconds where all
configurations are already close to their peak-performance.

For the SPECjvm2008 benchmark suite, we measured the startup performance by executing one opera-
tion for each benchmark. Figure 23 shows that the HotSpot client compiler and our trace-based compiler
achieve good results for those scenarios where the application threads compete with compiler threads so that
compilation time matters. Figure 22 shows the different scenario when JIT compilation can be offloaded to
otherwise idle cores. There, the HotSpot server compiler shows the best startup performance because the
SPECjvm2008 benchmark suite contains several small benchmarks where there is little to compile and which
almost reach their peak performance after compiling the innermost benchmark loop. This is the ideal case
for the server compiler which does optimize loops especially well so that its peak performance advantage
also affects the startup performance results if idle cores are available for compilation.

The figures also show that the number of compiler threads does neither affect the client compiler nor our
trace-based compiler because both JIT compilers require little time for compilation. The server compiler
requires much time for compilation and therefore greatly profits from more than one compilation thread,
especially if there are idle cores that can be used.

For the DaCapo 9.12 Bach benchmark suite, we measured the startup performance by executing one
iteration for each benchmark. The benchmark results are shown in Figure 24 and Figure 25.

Again, the number of compiler threads neither affects the client compiler nor our trace-based compiler
because those require too little time for compilation. In contrast to that, the server compiler profits when
more than one thread is used for JIT compilation. However, several of our tracing configurations always
show a higher startup performance than the server compiler, even if the server compiler can use idle cores for
JIT compilation. This is the case because the DaCapo 9.12 Bach benchmarks are significantly more complex
than the SPECjvm2008 benchmarks [14], so that the JIT compilation performance is the dominating factor
for startup performance.

So, on the DaCapo 9.12 Bach benchmarks, our trace-based configurations show a roughly 10% slower
startup than the HotSpot client compiler. While our trace-based compiler often requires even less time for
JIT compilation than the HotSpot client compiler, it shows a lower startup performance because of the
additional overhead for trace recording and deoptimization that mainly incur during startup. However,
this drawback is outweighted by the significantly improved peak performance. Unlike the HotSpot server
compiler, our trace-based compiler does not need to use idle cores to achieve a good startup performance.

7. Related Work

Bala et al. [1] implemented trace compilation for their Dynamo system to optimize native instruction
streams. Hot instruction sequences are identified by executing the binary application in an interpreter.
Then, those traces are compiled and the generated machine code is executed directly. The interpretation
overhead decreases with the number of compiled traces, resulting in a speedup eventually. In contrast to
them, we identify suitable trace anchors within Java bytecodes for which we use static analysis during class

20

10
0%

10
1%

10
1%

91
%

91
%

91
%

92
%

92
%

92
%

94
%

94
%

94
%

95
%

95
%

95
%

97
% 10

9%

11
0%

0%

50%

100%

150%

1 compiler
thread

2 compiler
threads

4 compiler
threads

client
minimum code
balanced
performance
greedy
server

hi
gh

er
 is

 b
et

te
r

Figure 22: SPECjvm2008 startup performance with 1 appli-
cation thread

10
0%

10
1%

10
2%

10
0%

10
0%

10
0%

10
1%

10
1%

10
0%

10
2%

10
3%

10
3%

10
2%

10
4%

10
3%

87
% 97

% 10
2%

0%

50%

100%

150%

1 compiler
thread

2 compiler
threads

4 compiler
threads

client
minimum code
balanced
performance
greedy
server

hi
gh

er
 is

 b
et

te
r

Figure 23: SPECjvm2008 startup performance with 4 appli-
cation threads

10
0%

10
2%

10
1%

88
%

88
%

88
%

88
%

88
%

88
%

90
%

90
%

90
%

91
%

91
%

91
%

76
% 89

%

88
%

0%

50%

100%

150%

1 compiler
thread

2 compiler
threads

4 compiler
threads

client
minimum code
balanced
performance
greedy
server

hi
gh

er
 is

 b
et

te
r

Figure 24: DaCapo 9.12 Bach startup performance with
1 application thread

10
0%

10
1%

10
0%

88
%

87
%

87
%

89
%

89
%

89
%

88
%

90
%

90
%

91
%

90
%

91
%

64
%

78
%

82
%

0%

50%

100%

150%

1 compiler
thread

2 compiler
threads

4 compiler
threads

client
minimum code
balanced
performance
greedy
server

hi
gh

er
 is

 b
et

te
r

Figure 25: DaCapo 9.12 Bach startup performance with
4 application threads

loading. We limit individual traces to at most one method and instead link the recorded traces to preserve
context-sensitive trace information over method boundaries. This allows us to delay the inlining decision to
the time of compilation instead of doing it already during trace recording.

Rogers [23] implemented a JIT compiler for Java where frequently executed basic blocks are detected
and compiled. Related blocks, which may also span multiple methods, are grouped and optimized as an
entity when executed frequently. Compared to method-based compilation, up to 18% fewer bytecodes are
compiled. Our system records and compiles traces and uses context-sensitive trace inlining to increase the
peak performance while at the same time generating only modest amounts of machine code.

The next approaches implemented different variants of trace-based compilation for Java [2, 11, 12, 19].
However, all approaches have in common that traces may span more than one method, so that inlining must
be performed during trace recording. In contrast to that, we assume that one method is the maximum
scope of a trace and use trace linking to preserve call information between traces. This allows delaying the
inlining decision to the time of compilation when more information is available. So, our inlining can be more
selective while using simple inlining heuristics that result in a peak performance increase and a reduced
amount of generated machine code.

Gal et al. [11, 12] implemented trace-based compilation for Java on resource-constrained devices. Traces
start at frequently executed backward branch targets and side exits of existing traces. Each trace may span
multiple methods so that inlining is performed during trace recording. After recording a trace, it is compiled
to machine code and linked to other compiled traces to form a tree-like structure. The simple structure
of the compiled traces simplifies many optimizations but may result in excessive tail duplication and code
bloat. A similar approach is also used by the Dalvik VM [4, 6] on Android-based mobile devices. In contrast
to that, we merge individual traces into a trace graph before compilation to avoid excessive tail duplication.

Bebenita et al. [2] implemented trace-based compilation for the Maxine VM. The Maxine VM uses a
baseline JIT compiler instead of an interpreter for the initial executions. This baseline JIT compiler was

21

modified to generate the trace recording instrumentation. Prior to JIT compilation, the recorded traces
are merged into trace regions which have explicit control flow merge points. This avoids unnecessary tail
duplication. Due to various loop optimizations, the JIT compiler achieves excellent speedups for loop-
intensive benchmarks. However, it performs worse than method-based compilation on benchmarks with
fewer loops. Our work is complementary as it focuses on complex applications that are not loop-intensive
such as DaCapo 9.12 Bach jython. We achieve excellent speedups for those applications, while loop-intensive
benchmarks only show small speedups as our trace-based compiler does not perform any sophisticated loop
optimizations yet.

Inoue et al. [19] added a trace-based JIT compiler to the IBM J9/TR JVM by modifying the method-
based JIT compiler. They record linear and cyclic traces without any inner join points and compile them
to optimized machine code. In terms of peak performance, their trace-based compiler nearly reaches the
performance of the similarly optimizing method-based JIT compiler. Wu et al. [29] extended that work by
avoiding short-lived traces and unnecessary trace duplication. While this does not affect peak performance,
it reduces both the amount of generated machine code and the compilation time. We also build on an
existing production quality JVM but limit individual traces to span at most one method. So, we can delay
the inlining decision to the time of compilation, which increases the peak performance.

Bradel et al. [5] used traces for method inlining in the Jikes RVM. The traces are recorded using an offline
feedback-directed system. Then, frequently executed call sites are identified within the recorded traces and
this information is used to perform method inlining. Their evaluation with the benchmarks SPECjvm98 and
Java Grande shows a 10% performance increase, while 47% more machine code is generated. Our system
records traces during execution in the interpreter and only compiles and inlines method parts covered by
traces. This increases the peak performance and can reduce the amount of generated machine code.

Hazelwood et al. [17] implemented context-sensitive inlining for a method-based compiler. Timer-based
sampling and recording of call information is used to guide inlining decisions during compilation. The amount
of generated machine code and the compilation time is reduced by 10% without affecting the performance.
In our system, the recorded traces contain even more detailed context-sensitive information. Depending on
the inlining heuristic, this increases peak performance or reduces the amount of generated machine code.

Method inlining is a well-researched topic that is extensively covered in literature. The remaining related
work therefore concentrates on ways to inline method parts instead of whole methods as this is closest to
our work. Still, these approaches are complementary to trace compilation as method parts are explicitly
excluded there, while trace recording identifies method parts that should be compiled.

Partial method compilation [9, 27] uses profiling information to detect rarely executed method parts in
order to exclude them from compilation. This reduces the compilation time, increases the startup perfor-
mance, and may also have a positive impact on peak performance. Our approach is even more selective as
we record and compile only frequently executed traces. Furthermore, we use the saved compilation resources
for more aggressive and context-sensitive inlining, which increases the peak performance.

Suganuma et al. [26] implemented region-based compilation where rarely executed method parts are
excluded from compilation by using heuristics and profiling information. Then, frequently executed code is
grouped into one compilation unit by heavy use of method inlining. This reduces the compilation time by
more than 20% and increases the peak performance by 5% on average for the benchmark suites SPECjvm98
and SPECjbb2000. We only compile frequently executed method parts covered by recorded traces and use
trace inlining to increase the performance.

8. Conclusions

In this paper, we presented a trace-based compiler for Java that performs trace inlining during JIT
compilation instead of during trace recording. Traces have the advantage that they cover only the executed
method parts. Delaying the inlining decision to the time of JIT compilation allows more selective trace
inlining as more information is available at that time. Furthermore, our recorded traces are context-sensitive
so that we can inline different method parts depending on the specific call site. This allows very aggressive
trace inlining while generating reasonable amounts of machine code. Additionally, we propose to eliminate

22

infrequently executed traces before compilation to ensure that only the most frequently executed traces are
compiled to machine code.

The evaluation with the benchmark suites SPECjbb2005, SPECjvm2008, and DaCapo 9.12 Bach showed
that good trace inlining can increase the peak performance while generating less machine code than method
inlining. Furthermore, we also showed that trace inlining achieves larger compilation scopes that increase
the effectiveness of common compiler optimizations and eventually result in a better peak performance.

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF): project number P 22493-N18.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Vitae

Christian Häubl

Christian Häubl is a PhD student at the Johannes Kepler University Linz, Austria who is working on
trace-based compilation for Java. He received a diploma degree in Computer Science and a diploma degree in
Networks and Security, both from the Johannes Kepler University Linz. His research interests are primarily
in the areas of compilers and virtual machines, but also span areas such as security of web-based applications.

Christian Wimmer

Christian Wimmer is a researcher at Oracle Labs, working on the Maxine VM, on the Graal compiler
project, as well as on other projects that involve dynamic compilation and optimizations. His research
interests span from compilers, virtual machines, and secure systems to component-based software architec-
tures. He received a Dr. techn. degree in Computer Science (advisor: Prof. Hanspeter Mössenböck) and a
Dipl.-Ing. degree in Computer Science, both from the Johannes Kepler University Linz, Austria. Before the
time at Oracle, he was a postdoctoral researcher at the Department of Computer Science of the University
of California, Irvine. He worked with Prof. Michael Franz at the Secure Systems and Software Laboratory
on compiler optimizations, dynamic programming languages, and language-based security.

Hanspeter Mössenböck

Hanspeter Mössenböck is a professor of Computer Science at the Johannes Kepler University Linz,
Austria, and the head of the Christian Doppler Laboratory for Automated Software Engineering. He received
a PhD in Computer Science from the University of Linz in 1987 and was an assistant professor at ETH Zurich
from 1988 to 1994 working with Prof. Niklaus Wirth on the Oberon system. His current research interests
include programming languages and compilers as well as object-oriented and component-based software
engineering. He is the author of several books on programming education.

References

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic Optimization System. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 1–12. ACM Press, 2000.

[2] M. Bebenita, M. Chang, G. Wagner, A. Gal, C. Wimmer, and M. Franz. Trace-Based Compilation in Execution Environ-
ments without Interpreters. In Proceedings of the International Conference on the Principles and Practice of Programming
in Java, pages 59–68. ACM Press, 2010.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and analysis. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 169–190. ACM Press, 2006.

[4] D. Bornstein. Dalvik VM Internals. Presented at the Google I/O developer conference, 2008. http://sites.google.com/
site/io/dalvik-vm-internals.

23

[5] B. J. Bradel and T. S. Abdelrahman. The Use of Traces for Inlining in Java Programs. In Proceedings of the International
Workshop on Languages and Compilers for Parallel Computing, pages 179–193, 2004.

[6] B. Cheng and B. Buzbee. A JIT Compiler for Android’s Dalvik VM. Presented at the Google I/O developer conference,
2010. http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transactions on Programming Languages and Systems, 13(4):451–490,
1991.

[8] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Programs Using Static Class Hierarchy Analysis.
In Proceedings of the European Conference on Object-Oriented Programming, pages 77–101. Springer-Verlag, 1995.

[9] S. Fink and F. Qian. Design, Implementation and Evaluation of Adaptive Recompilation with On-Stack Replacement.
In Proceedings of the International Symposium on Code Generation and Optimization, pages 241–252. IEEE Computer
Society, 2003.

[10] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff,
J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based Just-in-Time Type
Specialization for Dynamic Languages. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 465–478. ACM Press, 2009.

[11] A. Gal and M. Franz. Incremental Dynamic Code Generation with Trace Trees. Technical report, Donald Bren School of
Information and Computer Science, University of California, Irvine, USA, 2006.

[12] A. Gal, C. W. Probst, and M. Franz. HotpathVM: An Effective JIT Compiler for Resource-constrained Devices. In
Proceedings of the International Conference on Virtual Execution Environments, pages 144–153. ACM Press, 2006.

[13] R. Griesemer. Generation of Virtual Machine Code at Startup. In OOPSLA Workshop on Simplicity, Performance, and
Portability in Virtual Machine Design. Sun Microsystems, Inc., 1999.

[14] C. Häubl and H. Mössenböck. Trace-based Compilation for the Java HotSpot Virtual Machine. In Proceedings of the
International Conference on the Principles and Practice of Programming in Java, pages 129–138. ACM Press, 2011.

[15] C. Häubl, C. Wimmer, and H. Mössenböck. Evaluation of Trace Inlining Heuristics for Java. In Proceedings of the ACM
Symposium on Applied Computing, pages 1871–1876. ACM Press, 2012.

[16] C. Häubl, C. Wimmer, and H. Mössenböck. Trace Transitioning and Exception Handling in a Trace-based Java JIT
Compiler. Submitted to International Conference on Compiler Construction, 2012.

[17] K. Hazelwood and D. Grove. Adaptive Online Context-Sensitive Inlining. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 253–264. IEEE Computer Society, 2003.

[18] U. Hölzle, C. Chambers, and D. Ungar. Debugging Optimized Code with Dynamic Deoptimization. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 32–43. ACM Press, 1992.

[19] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A Trace-based Java JIT Compiler Retrofitted from a Method-based
Compiler. In Proceedings of the International Symposium on Code Generation and Optimization, pages 246–256. IEEE
Computer Society, 2011.

[20] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox. Design of the Java HotSpot Client
Compiler for Java 6. ACM Transactions on Architecture and Code Optimization, 5(1):7, 2008.

[21] Oracle Corporation. Java Platform, Standard Edition 8 Developer Preview Releases, 2011. http://jdk8.java.net/

download.html.
[22] M. Paleczny, C. Vick, and C. Click. The Java HotSpot Server Compiler. In Proceedings of the Java Virtual Machine

Research and Technology Symposium, pages 1–12. USENIX, 2001.
[23] I. Rogers. Optimising Java Programs Through Basic Block Dynamic Compilation. PhD thesis, Department of Computer

Science, University of Manchester, 2002.
[24] Standard Performance Evaluation Corporation. The SPECjbb2005 Benchmark, 2005. http://www.spec.org/jbb2005/.
[25] Standard Performance Evaluation Corporation. The SPECjvm2008 Benchmarks, 2008. http://www.spec.org/jvm2008/.
[26] T. Suganuma, T. Yasue, and T. Nakatani. A Region-Based Compilation Technique for Dynamic Compilers. ACM

Transactions on Programming Languages and Systems, 28:134–174, 2006.
[27] J. Whaley. Partial Method Compilation using Dynamic Profile Information. SIGPLAN Notices, 36:166–179, 2001.
[28] C. Wimmer and H. Mössenböck. Optimized Interval Splitting in a Linear Scan Register Allocator. In Proceedings of the

ACM/USENIX International Conference on Virtual Execution Environments, pages 132–141. ACM Press, 2005.
[29] P. Wu, H. Hayashizaki, H. Inoue, and T. Nakatani. Reducing Trace Selection Footprint for Large-scale Java Applications

without Performance Loss. In Proceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, pages 789–804. ACM Press, 2011.

24

