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ABSTRACT

In several Java VMs, strings consist of two separate objects:
metadata like the string length are stored in the actual string
object, while the string characters are stored in a charac-
ter array. This separation causes an unnecessary overhead.
Each string method must access both objects, which leads
to a bad cache behavior and reduces the execution speed.

We propose to merge the character array with the string’s
metadata object at run time. This results in a new layout of
strings with better cache performance, fewer field accesses,
and less memory overhead. We implemented this optimiza-
tion for Sun Microsystems’ Java HotSpot™ VM, so that the
optimization is performed automatically at run time and re-
quires no actions on the part of the programmer. The orig-
inal class String is transformed into the optimized version
and the bytecodes of all methods that allocate string objects
are rewritten. All these transformations are performed by
the Java HotSpot™ VM when a class is loaded. Therefore,
the time overhead of the transformations is negligible.

Benchmarks show a reduction of the average used mem-
ory after a full garbage collection and an improved perfor-
mance. The performance of the SPECjbb2005 benchmark
increases by 8%, and the average used memory after a full
garbage collection is reduced by 19%. The peak performance
of SPECjvm98 is improved by 8% on average, with a maxi-
mum speedup of 62%.
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D.3.4 [Programming Languages|: Processors—Compil-
ers, Optimization, Code generation
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1. INTRODUCTION

Strings are one of the essential data structures used in
nearly all programs. Therefore, string optimizations have
a large positive effect on many applications. Java supports
string handling at the language level [8]. However, all string
operations are compiled to normal method calls of the classes
String and StringBuilder in the Java bytecodes [11].

To the best of our knowledge, strings in Sun Microsystem’s
Java HotSpot™ VM, Bea System’s JRockit, and IBM’s J9
use the object layout illustrated in Figure 1 (a). Every string
is composed of two objects: metadata like the string length
are stored in the actual string object, whereas the string
characters are stored in a separate character array. This
allows several string objects to share the same character ar-
ray. To increase the opportunities for sharing the character
array, string objects use the fields offset and count. These
fields store the string’s starting position within the character
array and the string length, so that a string does not need
to use the full character array. This is beneficial for meth-
ods such as String.substring(): a new string object that
references the same character array is allocated, and only
the string’s starting position and length are set accordingly.
No characters must be copied.

If a string uses its whole character array, the field count
is a duplication of the character array’s field length. Fur-
thermore, the field offset is an overhead that reduces the
performance: when a string character is accessed, offset is
loaded to determine the start of the string within the array.

String > char[]
8| count: int 8| length: int
12| offset: int 12| char[0]
16| hashcode: int
20| value: char[] e char{length-1]

(a) original

String String
8| count: int 8| count: int
12| hashcode: int 12| char[0]

16 | char[0]
char[count-1]
char[count-1]

(b) optimized (c) optimized hash field

Figure 1: Object layout of strings



Although string objects can share their character arrays,
this is not the common case. We measured the percent-
age of strings that do not use their full character array:
0.05% for the SPECjbb2005 [15] benchmark, 5% for the
SPECjvm98 [14] benchmarks, and 14% for the DaCapo [2]
benchmarks. However, a string also shares its character ar-
ray when it is explicitly copied. Of all string allocations,
19% are explicit string copies for the SPECjbb2005 bench-
mark and 4% for the SPECjvm98 benchmark. The DaCapo
benchmarks allocate hardly any explicit string copies.

Because of these results, we propose different string lay-
outs as shown in Figure 1 (b) and (c). In the first one, we
remove the field offset and merge the character array with
the string object. This precludes the sharing of character ar-
rays between string objects, but has several advantages such
as the reduction of memory usage and the elimination of field
accesses. The second variant, described in Section 4.5, also
removes the field hashcode to save another four bytes per
string object. The computed hash code is cached in the
object header instead. Our paper contributes the following:

e We present two string optimization variants that re-
duce the memory usage and increase the performance.

e Our approach requires neither actions on the part of
the programmer nor any changes outside the Java Hot-
Spot™ VM.

e The evaluation shows the impact of our optimizations
on the number of allocated bytes and the performance
of several benchmarks.

The paper is organized as follows: Section 2 gives a short
overview of the relevant subsystems in the Java HotSpot™
VM and illustrates where changes were necessary. Section 3
discusses the advantages of our optimization. Section 4 de-
scribes the key parts of our implementation, i.e. bytecode
transformation and string allocation. Section 5 presents the
benchmark results. Section 6 deals with related work, and
Section 7 concludes the paper.

2. SYSTEM OVERVIEW

We build on the early access version b24 of Sun Microsys-
tems’ Java HotSpot™ VM, which is part of the upcom-
ing JDK 7 [16]. The VM is available for multiple archi-
tectures, however our string optimization is currently only
implemented for the TA-32 architecture because platform de-
pendent code is necessary within the interpreter and the
just-in-time compiler.

Figure 2 illustrates some of the subsystems necessary for
the execution of bytecodes. When a class is loaded by the
class loader, the corresponding class file is parsed and ver-
ified, run-time data structures such as the constant pool
or the method objects are built, and finally the interpreter
starts executing the bytecodes. For every method, the num-
ber of invocations is counted in order to detect so-called
hotspots. When an invocation counter reaches a certain
threshold, the just-in-time compiler compiles the method’s
bytecodes to optimized machine code. There are two differ-
ent just-in-time compilers for the Java HotSpot™ VM:

e The client compiler is optimized for compilation speed
and refrains from time consuming optimizations [9,
10]. With this strategy, the application startup time
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Figure 2: System overview

is low while the generated machine code is still reason-
ably well optimized.

e The server compiler makes use of more sophisticated
optimizations to produce better code [12]. It is de-
signed for long-running server applications where the
initial compilation time is irrelevant, and where a high
peak performance is essential.

Within the Java HotSpot™ VM, certain methods can
be declared as intrinsic. When such a method is compiled
or inlined, a handcrafted piece of machine code is used as
the compilation result. This makes it possible to optimize
specific methods manually.

Every Java object has a header of two machine words,
i.e. 8 bytes on 32-bit architectures, 16 bytes on 64-bit ar-
chitectures [13]. 7 bits of the first header word are used for
synchronization and during garbage collection. The remain-
ing 25 or 57 bits of the first word store the identity hash
code of the object when it is computed via the method Sys-
tem.identityHashCode (). The second header word stores a
pointer to the class descriptor object that is allocated when
a class is loaded. The class descriptor holds the metadata
and the method table of the class.

Currently, the optimization is only implemented for the
interpreter and the client compiler. The client compiler uses
a graph-based high-level intermediate representation (HIR)
as well as a low-level intermediate representation (LIR) [10].
The HIR is in static single assignment (SSA) form [6] and
is used for global optimizations. The LIR is used for linear
scan register allocation and for peephole optimizations.

As shown in Figure 2, we add a rewriter component to the
basic execution system. After the class loader has finished
loading a class, the rewriter checks if a method allocates
string objects. If so, the method bytecodes are transformed.
This is done only once per class and adds a negligible over-
head to the execution time. Additionally, the string class
itself is transformed manually. Several other subsystems
of the VM are affected by our string optimization because
String is a well-known class that is directly used within
the VM. Nevertheless, we tried to minimize the number of
changes.

3. ADVANTAGES OF THE OPTIMIZATION

Although character array sharing between multiple string
objects is no longer possible with optimized string objects,
the optimization has several other advantages:

e Elimination of field accesses: By removing the field
offset, one field access is saved in almost every string
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Figure 3: Reduction of memory usage for optimized
string objects (higher is better)

operation. By embedding the character array into the
string object, the characters can be accessed without
dereferencing the array pointer.

Reduced memory usage: Original string objects have
a minimum size of 36 bytes. With our optimization,
the minimum size is 12 or 16 bytes, depending on the
removal of the field hashcode. Saving up to 24 bytes
per string object results in the reduced memory us-
age shown in Figure 3, which depends on the string
length. For example, for strings of length 10 our opti-
mized string handling saves 37% of string memory, or
44% if also the field hashcode is eliminated. The figure
also contains the average string lengths for the differ-
ent benchmark suites. Because the memory usage is
reduced, fewer garbage collections are necessary.

e Faster garbage collection: An original string is com-
posed of a string object and a character array that
both must be processed by the garbage collector. The
optimized string is a single object and thus reduces the
garbage collection time.

Better cache behavior: The two parts of an original
string can be spread across the heap. Both parts are
always accessed together, which results in a bad cache
behavior. The optimized string is always one unit that
possibly fits into a single cache line.

4. IMPLEMENTATION

Our implementation of the optimization uses three new
bytecodes for allocating and accessing optimized string ob-
jects. These bytecodes are only necessary within the class
String because the characters of a string are declared as
private and cannot be accessed directly from outside.

To introduce the new bytecodes, it is necessary to trans-
form the object code of the String class. Although this
could be done at run time, it would be complicated. There-
fore, we modify the Java compiler (javac) and use it to com-
pile the class String. This results in an optimized class,
which is created once, and is used by the VM if the string
optimization is enabled. The modified version of javac is not
used for compiling any other source code.

Additionally, methods that allocate string objects must
be transformed. This must be done at run time because it
affects application classes whose source code is not available.
The transformation details are explained in Section 4.4.
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Introducing new bytecodes for optimized operations inside
the VM is a common pattern. These bytecodes use numbers
that are unused according to the specification [11]. Because
it is only necessary to handle the new bytecode instructions
in the interpreter and to support them in the just-in-time
compiler, the impact on the overall VM structure is low.

4.1 Removing the Offset Field

To remove the offset field of strings, we modify the Java
source code of the class String. The following three cases
must be considered:

e In most cases, it is possible to just remove the ac-
cesses to the field offset, or to replace them with the
constant 0. An example for this case is the method
String.charAt ().

e Sometimes, the field offset is used to implement an
optimization such as the sharing of character arrays
between string objects. This kind of optimization is
no longer possible and it is necessary to create a copy
of the characters leading to a certain overhead. An
example for this is the method String.substring().

e In uncommon cases, the string-internal character array
is passed to a helper method of another class. The op-
timized string characters cannot be passed as a charac-
ter array to a method anymore. It would be necessary
to pass the string object itself. To make this possi-
ble, the receiving method would have to be overloaded
to allow a string object instead of a character array
as an argument. We decided to keep the number of
changes to a minimum and did not change or add any
methods outside of the class String. Instead, we copy
the string characters to a temporary character array
which is then passed as an argument to such methods.
This is expensive, but could be easily optimized in the
future.

In addition to the Java source code of the class String,
some parts of the Java HotSpot™ VM must be modified
because String is a well-known class within the VM. The
VM allocates strings for its internal data structures and pro-
vides methods to access their content. Also some intrinsic
methods use the field offset in their handcrafted piece of
machine code. The same three cases shown above apply also
to the changes inside the VM.

4.2 Character Access

Two new bytecodes are introduced for accessing the char-
acters of an optimized string:

e scload: This bytecode loads a string character and
is similar to the bytecode caload used for loading a
character from a character array. scload expects two
operands on the stack: a reference to the string object
and the index of the accessed character.

e scstore: This bytecode stores a string character and
is similar to the bytecode castore used for storing
a character in a character array. Compared to the
scload bytecode, one additional operand is expected
on the stack: the character which is to be stored at
the specified index of the given string.
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aload this
22: getfle%d value 0: aload this
25: iload index 1: iload index
26: aload this  — 2: scload
27: getfield offset 3: ireturn
30: iadd .
31: caload
32: ireturn

(a) original (b) optimized

Figure 4: Bytecodes of the String.charAt method

Although these bytecodes are similar to the character ar-
ray access bytecodes, they are still necessary for two reasons:

e As illustrated in Figure 1, the offset of the first char-
acter of an optimized string is different from the offset
of the first element of a character array. Furthermore,
the offset depends on the optimization level: it is 16 if
the field hashcode is preserved, and 12 if it is removed.

e Each time a character array is indexed, a bounds check
is performed. If the index is out of the valid bounds,
an ArrayIndexOutOfBoundsException is thrown. The
optimized string object needs a bounds check too, but
within the String class it is a convention to throw a
StringIndexOutOfBoundsException if the check fails.

Introducing the new bytecodes reduces the size of methods
in the class String because many field loads are no longer
necessary. For example, Figure 4 shows the bytecodes of
the method String.charAt(), whose size is reduced from
33 to 4 bytes. This speeds up the execution and reduces the
overall size of the class String by approximately 6%.

4.3 String Allocation

Allocating optimized string objects is more complicated
than accessing their characters. The class String has cur-
rently 16 constructors. All must be preserved to ensure that
no existing program breaks. In Java, the allocation of an
object is separated from its initialization, i.e. they are per-
formed by two different bytecodes. For allocating an object,
its size must be known. After the allocation, the construc-
tor is invoked to perform the initialization. Arbitrary code
can be placed between these two bytecodes, as long as the
yet uninitialized object is not accessed. To allocate an opti-
mized string, the number of its characters must be known.
However, the number is usually calculated during the execu-
tion of the constructor and is therefore not available to the
object allocation.

We solve this problem by replacing the string construc-
tors with static factory methods that combine the object
allocation and initialization. These factory methods have
the same arguments as the constructors. They calculate the
length of the resulting string, allocate the optimized string
object, and initialize it. One of these factory methods is
presented in Figure 5. The operator newstring, used in this
method, is compiled to a new bytecode for string alloca-
tion by the modified javac. The details of this bytecode are
explained below.

Figure 6 (a) presents a simple Java method. The method
allocates and returns an optimized string object that is ini-
tialized using a character array. The bytecodes of the un-
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private static String allocate(char value[]) {
int len = value.length;
String string = newstring(len);
stringcopy(value, @, string, 0, len);
return string;

Figure 5: Factory method for string allocation

public static String createString() {
char[] ch = ...;
return new String(ch);

}

(a) Java sourcecode
10: new java.lang.String
13: dup
14: aload ch
15: invokespecial constructor
18: areturn

(b) original bytecode
10: nop
13: nop
14: aload ch
15: invokestatic factory method
18: areturn

(c) optimized bytecode

Figure 6: Example for string allocation

optimized version are shown in Figure 6 (b). Because the
size of the original string object is statically known, it can
be allocated. In the next step, the reference to the newly
created original string object is duplicated on the operand
stack. This is necessary because the reference is needed both
for the invocation of the constructor and the method return.
After that, the constructor’s parameter is pushed onto the
operand stack and the constructor is invoked. The construc-
tor computes the length of the string’s character array, allo-
cates it, and initializes it with the characters of the array ch.

The previously introduced rewriter component transforms
the original bytecodes to the optimized version shown in Fig-
ure 6 (c) (the details about the bytecode rewriting algorithm
are presented in Section 4.4). The transformation happens
whenever a method is loaded that allocates string objects.
The string allocation and the subsequent reference duplica-
tion are replaced with no operation (nop) bytecodes. We do
not remove these bytecodes completely because this would
change the bytecode indices and thus would have side effects
on all jumps within the method. If the method is compiled,
the nop bytecodes are ignored anyway.

Figure 7 shows the bytecodes available for allocating ob-
jects and arrays. For the allocation of an original string ob-
ject, the bytecode new is used as illustrated in Figure 6 (b).
This bytecode can only be used if an object with a statically
known size is to be allocated, which applies to all Java ob-
jects except arrays. The only operand is an index to a class
in the constant pool. When the bytecode is executed, the
index is used to fetch a class descriptor that contains the
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Figure 7: Allocation bytecodes

object size. Knowing the size, an object of this class can be
allocated.

For allocating arrays, the newarray bytecode is used. The
array element type is directly encoded in the bytecode and
the array length is expected on the operand stack. With
the length and the array element type, the total array size
is calculated and the allocation is performed.

Optimized string objects have a variable length like ar-
rays, but also fields like objects, so neither of the two pre-
vious bytecodes can be used. Therefore, we introduce the
bytecode newstring that is similar to the bytecode newar-
ray and expects the string length on the stack. A bytecode
operand, like the element type, is not necessary because the
VM knows that a string object only contains characters.
Furthermore, the number of fields of a string is fixed and
statically known. With this knowledge, the total string size
is calculated and the allocation is performed. This bytecode
is exclusively used to implement the allocation of optimized
string objects within the factory methods (the emphasized
part in Figure 5).

4.4 Bytecode Rewriting

The rewriter component transforms the original, unopti-
mized bytecodes to the optimized ones. This is necessary
for all methods that allocate string objects. Whenever a
class has been loaded, the rewriter checks if a method of
this class allocates string objects. If this is the case, the
rewriter transforms the bytecodes in three steps, as illus-
trated in Figure 8:

1. The allocation of the string object, i.e. the bytecode
new, is removed by replacing it with nop bytecodes.
The bytecode new would push a string reference on
the stack which does not happen anymore because of
the removal.

2. The bytecode rewriting process is difficult because of
stack management instructions like dup or pop that
would use the no longer existing string reference. Each
of these management instructions must be modified or
removed. Furthermore, some of the subsequent byte-
codes might have to be rearranged. Our current imple-
mentation is prototypical in that it handles only the
most common stack management instructions. Yet, it
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void rewriteMethod(Method method) {
foreach(Bytecode code within method) {
switch(code) {
case new:
if(createsString) {
replaceWithNop();
}

break;
case dup:
if(isBetweenNewStringAndStringInit) {
replaceWithNop();
}

break;
case invokespecial:
if(invokesStringConstructor) {
replaceWithInvokeFactoryMethod();

}

break;

Figure 8: Bytecode rewriting heuristic

is complete enough for running nearly all Java pro-
grams including the various benchmarks presented in
Section 5. Only special bytecode-optimized programs
which make use of more sophisticated but rarely used
stack management instructions like dup_x1 might cause
problems and are currently not supported (i.e. they are
reported as errors).

3. In the last step of the rewriting process, the construc-
tor invocation is replaced with the invocation of a fac-
tory method. Because the factory method has the
same arguments as the constructor, no change to the
operand stack handling is necessary. This rewriting
step can be implemented in two different ways:

e The constant pool index of the invoked method
could be rewritten. This would make it necessary
to add the name of the factory method to the
constant pool.

e The method resolution within the VM could be
modified. Each time a string constructor must
be resolved, the factory method is returned in-
stead. This also works for applications which use
the Java Native Interface (JNI) and could not be
rewritten otherwise. Therefore, we implemented
this approach.

4.5 Removing the Hashcode Field

When the method String.hashCode() is invoked the first
time on a string object, the hash code is computed and
cached in the field hashcode to avoid multiple computations.
The hash code is computed from the characters of a string,
i.e. two string objects with the same contents have the same
hash code. The field hashcode requires four bytes per string
object, so its removal is beneficial. However, recomputing
the hash code each time it is accessed would slow down many
applications.

Every Java object has a header of two machine words.
If the identity hash code of an object is calculated via the
method System.identityHashCode(), the result is cached



in the header (and is truncated to 25 bits on 32-bit archi-
tectures). This caching is necessary because although the
identity hash code is a random number that does not de-
pend on the object’s value, it must not change during the
object’s lifetime.

Although the identity hash code is preferably unique for
every object, it is not guaranteed to be so. Therefore, it
should not have any side effects if the identity hash code
of strings is equal to the string hash code. So, we use the
object header for caching the string hash code. As long
as String.hashCode() is executed by the interpreter, the
hash code is not cached and has to be calculated upon each
method invocation. This is necessary because the Java ob-
ject header cannot be accessed via a bytecode. When the
method String.hashCode() is passed to the just-in-time
compiler, it is not compiled but an intrinsic method is used
that calculates the hash code once and caches its value in
the object header. Only when the object is locked and the
header word is used to point to a locking data structure, we
do not store the hash code because this code path would be
more expensive than recomputing the hash code. This is a
rare case because strings are normally not used for synchro-
nization.

As mentioned before, the hash code is truncated to 25 bits
on 32-bit architectures when it is stored in the mark word.
Although this should not have a significant negative effect,
the hash code algorithm is specified in the documentation of
the class String. Therefore, this optimization might violate
the specification on 32-bit architectures. Because of this, the
next section evaluates our optimization with and without the
elimination of the field hashcode. On 64-bit architectures,
this optimization complies with the specification because the
object header is large enough to hold the hash code without
any truncation.

4.6 Further Adjustments

Some existing optimizations are voided by the new opti-
mized class String. The method System.arraycopy() can
no longer be used to create a copy of the string characters
because they are not stored as a real array anymore. Sys-
tem.arraycopy () is faster than a loop in Java code because
some bounds and type checks can be omitted. Therefore,
we use specialized versions of System.arraycopy() for opti-
mized string objects. These methods copy a range of charac-
ters between two strings or between a string and a character
array. In the just-in-time compiler, these new methods are
handled as intrinsic methods and share nearly the whole
code with the method System.arraycopy().

Because of replacing the string constructors with factory
methods, no constructors can be accessed via reflection. This
could be solved by returning the appropriate factory method
if a specific constructor is requested. This would require
some additional changes in the Java HotSpot™ VM, which
are not implemented yet.

5. EVALUATION

Our string optimization is integrated into Sun Microsys-
tems’ Java HotSpot™ VM, using the early access version
b24 of the upcoming JDK 7. The benchmarking system has
the following configuration: an Intel Core2 Quad proces-
sor with 4 cores running at 2.4 GHz, 2 * 2 MB L2 cache,
2 GB main memory, and with Windows XP Professional as
the operating system. For measuring the performance and
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the number of allocated bytes, we use the SPECjvm98 [14],
SPECjbb2005 [15], and the DaCapo [2] benchmarks. We
present the results of four different configurations:

e Our baseline configuration is the unmodified Java 7
build b24.

e In the “optimized” configuration, all optimizations de-
scribed in this paper except the removal of the field
hashcode are performed.

e Our optimization has two benefits: a reduced mem-
ory consumption because of the smaller string objects,
and a reduced number of memory accesses because of
the eliminated fields. The “overhead” configuration in-
creases the size of the optimized string objects artifi-
cially to the size of the original strings by adding a
padding of 20 bytes per string. If a benchmark does
not invoke any methods that use character array shar-
ing for the original string, this configuration allocates
exactly the same number of bytes as the baseline. Any
additional memory overhead (e.g. in Figure 14) is a
result of the missing character array sharing. There-
fore, this configuration indicates how much character
array sharing is used in a benchmark. The perfor-
mance loss in comparision with the “optimized” con-
figuration shows the impact of the reduced memory
usage on the performance.

e The “optimized hash field” configuration uses all opti-
mizations described in this paper including the opti-
mization of the field hashcode. We use a 32-bit archi-
tecture for benchmarking and therefore the hash code
is truncated to 25 bits. Because the SPECjbb2005
benchmark compares the hash code of a string object
to a hardcoded value during the startup, the bench-
mark had to be modified slightly.

5.1 SPECjbb2005

The SPECjbb2005 benchmark represents a client/server
business application. All operations are performed on a
database that is held in the physical memory. With an
increasing number of warehouses, the size of the database
increases and less memory is available for executing transac-
tions on the warehouses. Therefore, the number of garbage
collections increases, which has a negative impact on the
performance.

The benchmark result is the total throughput in so called
SPECjbb2005 business operations per second (bops). This
metric is calculated from the total number of executed trans-
actions on the database. In this benchmark, a high number
of string operations is performed. Unless stated otherwise,
a heap size of 1200 MB is used for all measurements.

Figure 9 illustrates the SPECjbb2005 performance and
the average amount of used memory after a full garbage
collection. The used memory after a full garbage collection
serves as an approximation of the application’s minimum
heap size. Both numbers are significantly improved by our
string optimization.

The SPECjbb2005 benchmark always runs 240 seconds
for a specific number of warehouses. Therefore, the total
number of allocated bytes depends on the performance, i.e.
on how many transactions can be run in this time frame.
To measure the number of allocated bytes independently of
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the performance, we used a slightly modified version of the
SPECjbb2005 benchmark that executes a fixed number of
transactions on four warehouses. For the optimized config-
urations, the number of allocated bytes is reduced as shown
in Figure 11. Furthermore, the optimizations also reduce
the time necessary for garbage collection. The configura-
tion “overhead” allocates more bytes than the the baseline
because original strings use character array sharing for ex-
plicit string copying.

To further evaluate the impact of the reduced memory
consumption, we executed each configuration with a heap
size of 512 MB, up to the number of warehouses where an
OutOfMemoryException was thrown. Figure 10 shows the
performance for various numbers of warehouses. The per-
formance increases up to 4 warehouses because each ware-
house uses its own thread and the benchmarking system has
4 cores. With a higher number of warehouses, the thread
overhead and the memory usage increases, so that the per-
formance decreases. Because of the reduction of memory us-
age, it is possible to execute the SPECjbb2005 benchmark
with 24 instead of 19 warehouses.

Figure 12 shows the average garbage collection time for
runs with various numbers of warehouses. The configura-
tions that reduce the memory usage also spend less time in
the garbage collector. The memory-resident database uses
a smaller part of the heap and therefore more memory is
available for the actual execution, which then needs fewer
garbage collections. There is a clear correlation between
Figure 10 and Figure 12: the performance decreases as the
time for garbage collection increases.
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number of warehouses

Figure 12: SPECjbb2005: garbage collection time for various numbers
of warehouses (lower is better)

5.2 DaCapo

The DaCapo benchmark suite consists of eleven object-
oriented applications. We used the release version 2006-
10-MR2 and executed each benchmark five times, so that
the execution time converges because all relevant methods
have been compiled by then. We present the slowest and the
fastest run for each benchmark. The slowest run, which is al-
ways the first one in our case, shows the startup performance
of the JVM, while the fastest run shows the achievable peak
performance (all relevant methods compiled). Furthermore,
the geometric mean of all results is presented. A heap size
of 256 MB is used for all benchmarks.

The performance for the benchmarks in the DaCapo suite
is presented in Figure 13. In this diagram, the slowest and
the fastest runs for each benchmark are shown on top of
each other. Both runs are shown relative to the fastest run
of the baseline. The light bars refer to the slowest runs, the
dark bars to the fastest runs.

Both the fastest and the slowest runs are improved for
nearly all benchmarks. Especially the chart benchmark,
which is string intensive, profits greatly from the string op-
timization. Other benchmarks with a considerable speedup
are antlr, hsqldb, and jython. Benchmarks that use only few
strings show neither a speedup nor a performance reduction.
The configuration “overhead” shows for most benchmarks a
similar performance as the configuration “optimized”. There-
fore, the reduction of the memory usage has hardly a positive
effect on the performance of these benchmarks.

The number of allocated bytes for each benchmark is pre-
sented in Figure 14. Again, the chart benchmark profits
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Figure 14: DaCapo: number of allocated bytes (lower is better)

greatly from the optimization and allocates less memory.
This benchmark also shows the impact of the elimination
of the field hashcode. While the number of allocated bytes
is reduced for most string intensive benchmarks, the jython
benchmark shows a contrary result. More memory must be
allocated for this benchmark because character array sharing
is no longer possible with optimized string objects. There-
fore, new string objects are allocated and the characters
must be copied. Nevertheless, the performance still shows a
speedup. The configuration “overhead” allocates more mem-
ory than the baseline for most benchmarks. This indicates
that a significant amount of character array sharing is used.

5.3 SPECjvm98

The SPECjvm98 benchmark suite contains seven bench-
marks derived from typical client applications. Similar to
the DaCapo benchmark suite, we executed each benchmark
until the execution time converged. We report the slow-
est and the fastest run for the string intensive benchmarks
db, jack, and javac (no significant difference to the baseline
is measured for the other four benchmarks), as well as the
geometric mean of all seven benchmarks.

Figure 15 illustrates the results of the SPECjvm98 bench-
mark suite. In this diagram, the slowest and the fastest run
for each benchmark are shown on top of each other. Both
runs are shown relative to the fastest run of the baseline and
the light bars refer to the slowest runs, the dark bars to the
fastest runs.

Especially the db benchmark, which mainly operates on
string objects, profits from the string optimization. The
number of allocated bytes decreases only slightly, so the high
speedup results from the removal of the field accesses and the
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better cache behavior. For all benchmarks the performance
of the slowest run as well as of the fastest run is greater or
equal to the baseline. Furthermore, the number of allocated
bytes is smaller or equal to the baseline for all benchmarks.
This means that the performance and the number of allo-
cated bytes are optimized without any negative effect on any
of the benchmarks. The largest reduction of the number of
allocated bytes is measured for the jack benchmark.

5.4 Further Evaluations

The string optimization has a negative impact on some
methods such as String.substring(). Therefore, we ex-
ecuted our own micro benchmark to determine the nega-
tive impact on such methods. This micro benchmark is a
worst case scenario for our string optimization and invokes
the method String.substring() on random strings with a
length of 0 to 100 characters. For this micro benchmark,
the optimized configurations are about 25% slower than the
baseline.

About 19% of all string allocations in the SPECjbb2005
benchmark are explicit string copies. These copies are allo-
cated with the constructor String(String), which trims the
internal character array for original strings. Because opti-
mized strings always use all their characters, explicit copies
are useless. However, they cannot be removed easily for two
reasons:

e Object equality: Without an explicit string copy,
the semantics of object equality checks can change.

e Synchronization: When a string object is used as
a monitor, the program behavior might change if no
explicit string copy is allocated.
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Figure 15: SPECjvm98: performance and allocated bytes for string intensive benchmarks

These cases would have to be detected to safely eliminate
explicit string copying. Both cases do not apply to any of
the explicit string copies in the SPECjbb2005 benchmark.
To measure which performance could be expected from the
string optimization if the programmer knows that the alloca-
tion of explicit string copies is unnecessary, all explicit string
copies were removed for the SPECjbb2005 benchmark. In
comparison to the baseline, the “optimized hash field” con-
figuration shows a 18% higher performance and a reduction
of the average used memory after a full garbage collection
by 20%. Furthermore, the number of allocated bytes is re-
duced by 11%, and the time necessary for garbage collection
is reduced by 30%.

6. RELATED WORK

Boldi et al. implemented a MutableString class, which
combines the advantages of the classes String and String-
Buffer [3]. A MutableString can be in the state “compact”
or “loose”. Depending on this state, the MutableString
has the advantages of the class String or StringBuffer.
In contrast to our optimization, existing programs must be
changed and recompiled to be able to use the advantages of
this newly introduced class. Furthermore, their optimization
does not reduce the memory usage.

Tian addressed the performance problem of string con-
catenations [17]. Each time two string objects are concate-
nated, a new string object is allocated and all characters
are copied. Using the Java bytecode optimization frame-
work Soot [18], a bytecode transformation was implemented.
With this transformation, it is possible to improve the per-
formance of string concatenation nearly up to the perfor-
mance of the class StringBuilder. This optimization has
to be applied directly to the .class file, while our optimiza-
tion is performed automatically behind the scenes by the
VM and covers more than just string concatenations.

Ananian et al. implemented several techniques to reduce
the memory usage of object-oriented programs [1]. These
techniques include field reduction and the elimination of un-
read or constant fields. Furthermore, static specialization is
used to create two different string classes: one string class
without an field offset (SmallString) and one with a field
offset (BigString). If the field offset is zero, a Small-
String is allocated, otherwise a BigString. An evaluation
with the SPECjvm98 benchmark suite showed that the max-
imum live heap size is reduced by up to 40%. Some of the
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optimizations have a negative impact on the performance,
some have a positive one. We only optimize string objects,
but we always remove the field offset and we merge the
string’s character array with the string object, which saves
further memory.

Chen et al. implemented two different approaches to re-
duce the memory consumption. A heap compression algo-
rithm reduces the minimum heap size of an application [5].
It mainly targets memory constrained environments such as
mobile devices and uses a Mark-Compact-Compress-Lazy
Allocate garbage collector as its basic component. The ap-
proach can use an arbitrary compression algorithm. The
evaluation was done with a “zero removal” compression al-
gorithm, and showed that 35% of memory can be saved on
average. The compression can be applied to all kinds of
Java objects, but has a negative impact on the overall per-
formance.

The second approach exploits frequent field values to re-
duce the memory usage [4]. It uses the fact that a small
number of distinct values appear in a lot of fields. Two
object compressions are proposed to reduce the amount of
memory for fields. The evaluation with SPECjvm98 shows
that the minimum heap size, which allows Java applications
to execute without an OutOfMemoryException, is reduced
by up to 24% (14% on average). The loss of performance
is below 2% for most of the cases. Our approach optimizes
only string objects but shows a good reduction of memory
usage and a speedup for string-intensive benchmarks.

Dolby et al. implemented object inlining in a static com-
piler for a dialect of C++ [7]. This optimization can merge
some referenced objects with the referencing one, which im-
proves the cache behavior and reduces the indirection over-
head. The average speedup for the C++ benchmarks is 10%
with a maximum of 50%. However, the necessary analysis
for object inlining takes up to half of the compilation time.
In contrast to our optimization, object inlining is not limited
to string objects, but our optimization is performed at run
time in a virtual machine and has only a negligible analysis
overhead.

Wimmer et al. implemented object inlining for the Java
HotSpot™ VM [19, 20]. The optimization is performed au-
tomatically at run time, but cannot optimize strings because
the character array can be shared between multiple string
objects. The mean peak performance of the SPECjvm98
benchmark suite is improved by 9% (with a maximum of

51%).



7.

CONCLUSIONS

We presented a string optimization that is performed au-
tomatically at run time within the Java HotSpot™ VM.
The string object and the character array of an original

string are merged into a single object.

For this merging,

new bytecodes are introduced that are only used within the
class String. All methods that allocate string objects are
rewritten once at run time. The merging removes additional
field accesses, reduces the memory usage, speeds up garbage
collection, and leads to a better cache behavior. The evalu-
ation with several benchmarks shows that these advantages
result in a significantly higher overall performance and a
lower memory usage.
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