
UNIVERSITÄT LINZ
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I

Abstract

This thesis presents an efficient runtime environment for a C interpreter implemented in Java. This
interpreter uses the Truffle framework and is called the Truffle/C VM. A runtime environment for
this VM has to bridge Java code, running in a Java Virtual Machine (JVM), and native code. This
is necessary because C code, which runs in the Truffle/C VM (Java), can call any function present
as native code (e.g., C standard library functions). It is not possible to use the Truffle/C VM to
execute these native functions because their source code is often not available or written in different
programming languages. To accomplish the interoperability between the Truffle/C VM and the native
functions, this thesis introduces two concepts.

Firstly, it presents an efficient and dynamic approach for calling native functions from within Java.
Traditionally, programmers use the Java Native Interface (JNI) to call such functions. This thesis
introduces a new mechanism, which is tailored specifically towards calling native functions from Java.
It is called the Graal Native Function Interface (GNFI). It is faster than JNI in all relevant cases and
more flexible because it avoids the JNI boiler-plate code.

The second concept describes a memory model for the Truffle/C VM. This memory model offers
sharing of run-time data between the interpreter (written in Java) and native code.

The runtime environment of the Truffle/C VM facilitates GNFI to provide an efficient function han-
dling for the VM. It uses the memory model to establish interoperability between interpreted C code
and native C code.

This thesis evaluates GNFI and the Truffle/C VM separately. The measurements demonstrate a
significant performance advantage of GNFI compared to JNI and the Java Native Access (JNA) for
normal Java applications. Also, the evaluation shows that the Truffle/C VM, using the introduced
memory model, has a reasonable performance compared to C code, compiled using GCC.
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Kurzfassung

Diese Masterarbeit präsentiert eine effiziente Laufzeitumgebung für einen in Java implementierten
C Interpreter. Der Interpreter heißt Truffle/C VM und verwendet das Truffle Framework. Eine
derartige Laufzeitumgebung muss Java Code (welcher auf einer Java Virtuellen Maschine (JVM)
läuft) und nativen Code verbinden. Dies ist notwendig, da C Code, welcher in der Truffle/C VM läuft
(Java), auch eine beliebige native Funktion aufrufen kann (z.B. eine C Funktion aus der Standard
Bibliothek). Diese nativen Funktionen können nicht mit der Truffle/C VM ausgeführt werden, da
der Sourcecode oft nicht vorhanden ist oder in einer anderen Programmiersprache entwickelt wurde.
Um eine Interoperabilität zwischen der Truffle/C VM und den nativen Funktionen gewährleisten zu
können, stellt diese Masterarbeit zwei Konzepte vor.

Zum Beginn präsentiert diese Arbeit einen effizienten und dynamischen Ansatz um native Funktionen
von Java aus aufzurufen. Normalerweise verwenden Programmierer das Java Native Interface (JNI)
um solche Funktionen aufzurufen. Diese Masterarbeit stellt einen neuen Mechanismus vor, welcher
speziell für den Zweck, native Funktionen von Java aus aufrufen, entwickelt wurde. Diese Mechanismus
nennt sich Graal Native Function Interface (GNFI). Er ist schneller als JNI in allen relevanten Fällen
und auch flexibler, da JNI boiler-plate Code vermieden werden kann.

Im Anschluss stellt diese Arbeit das Speichermodell der Truffle/C VM vor. Dieses Speichermodell
erlaubt den Austausch von Daten zwischen der VM (implementiert in Java) und nativen Code.

Die Laufzeitumgebung der Truffle/C VM verwendet das GNFI um ein effizientes Funktionsmanage-
ment bereitzustellen. Das Funktionsmanagement erlaubt es, verschiedene interpretierte C Funktionen
als auch native C Funktionen aufzurufen. Es verwendet das darunterliegende Speichermodell, welches
die Interoperabilität zwischen interpretierten C Code und nativen C Code ermöglicht.

Diese Masterarbeit evaluiert GNFI und die Truffle/C VM getrennt voneinander. Die Messungen
zeigen, dass GNFI eine signifikant bessere Performanz gegenüber JNI oder dem Java Native Access
(JNA) hat. Weiteres zeigt die Evaluierung, dass die Truffle/C VM unter Verwendung des vorgestellten
Speichermodells eine beachtliche Performanz hat, verglichen mit C Programmen die mit dem GCC
kompiliert wurden.
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Chapter 1

Introduction

This chapter introduces the Truffle/C project, whose goal it is to implement a C interpreter
in Java using the Truffle framework, which executes C code on top of a Java Virtual
Machine. It also describes the scope of this thesis as part of the Truffle/C VM. It points
out the challenges that this project faced and presents the concepts that were developed for
this thesis.

1.1 Motivation

On the first impression, the programming languages Java and C look similar. Both languages are
imperative, are statically typed and also share many syntactic elements. A closer look reveals that
the apparent similarity is deceiving and that Java and C differ in many aspects.

The first language, Java, is an object-oriented high-level programming language. Its source code gets
compiled to bytecode that is executed on a Java Virtual Machine (JVM). The intermediate represen-
tation of bytecode makes Java platform independent. Furthermore, Java is known to be type safe
and memory safe. Type safety means that the language prohibits discrepancy between different data
types for the program’s constants, variables and functions. Memory safety is established because Java
does not provide raw pointers and performs bounds checks for array accesses. Also, Java does not
allow explicit allocation or deallocation of memory. In Java, memory is instantiated by allocating
new objects. The JVM uses a garbage collector, which frees unreachable objects automatically. The
automatic memory management avoids a wide range of memory related problems, like most memory
leaks and security problems.
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The second language, C, is a low-level programming language and it provides constructs that map
efficiently to typical machine code instructions. It allows low-level memory access and provides raw
pointers and pointer arithmetic. Memory can be allocated manually and the programmer also has the
responsibility to free allocated memory in order to avoid memory leaks.

The goal of the Truffle/C project is to execute C code on top of a JVM. It aims to implement C as a
guest language on top of the Truffle framework. Truffle [25] is a framework for implementing managed
guest languages in Java. The developer writes an Abstract Syntax Tree (AST) based interpreter for
the guest language, which is integrated in the Truffle framework. The overall goal of this project is to
execute different C benchmarks on top of Truffle and compare the performance to C code compiled
using standard compilers like GCC.

1.2 Goals, Scope and Results

The different aspects of Java and C raise several challenges when implementing an AST interpreter
for C in Java:

• The C language semantic: The developer has to implement the C language semantic as an
AST interpreter. For the Truffle/C project, we use nodes to represent different control structures
and operations of the guest language C. The challenge is to model all C language constructs
(e.g., loops, if-statements, GOTO statements, etc.) in Java by implementing AST nodes.

• The function handling: The Truffle/C VM needs facilities to handle any kind of C function
call. There are two types of C function calls. A C function executed on top of the Truffle/C
VM can call another function available as a Truffle/C function or the caller can call native
functions from a native library (e.g., standard library functions). The VM needs an efficient way
to perform calls to the different kinds of functions.

• A fast and flexible native function interface for Java: The Truffle/C VM needs to be
able to call native library functions. For this purpose the Truffle/C project introduces a new
approach which is different from other techniques for bridging the Java/native gap like the Java
Native Interface (JNI).
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• A memory model: A memory model for the Truffle/C VM has to provide infrastructure to
store and represent run-time data of a C execution. The key challenge of this memory model is
to support raw pointers. Another major requirement for this memory model is that it has to be
compatible with native C code because pointers can be shared between the Truffle/C VM and
native functions.

This thesis focuses on the runtime environment of the Truffle/C VM and therefore on the last three
points of the list above. It explicitly omits the process of creating the AST from a C source file.
Furthermore, this thesis only describes those AST nodes of the Truffle/C VM which are important to
understand the context of the Truffle/C Runtime Environment. The interpreter part of the Truffle/C
VM is explained in detail in a separate thesis1.

To evaluate the concepts of the Truffle/C Runtime Environment, this thesis compares the performance
of the new native function interface to existing native interfaces for Java, like JNI or the Java Native
Access (JNA). Besides the evaluation of this native function interface, this thesis also evaluates the
performance of the Truffle/C VM.

1.3 Challenges

The challenge of the Truffle/C Runtime Environment is to bridge Java and native code. To establish
such a bridge, we first introduce the Graal Native Function Interface (GNFI), which allows calling
native target functions from within Java. Secondly, we introduce a memory model for the Truffle/C
VM that allows sharing data between the VM and native code efficiently. Finally, the Truffle/C
Runtime Environment facilitates GNFI and the memory model.

1.3.1 Graal Native Function Interface

The Truffle/C VM has to be able to call native libraries because a reimplementation of these libraries
in Java would not be feasible or efficient. Even in contexts without the Truffle/C VM, programmers
often call native code from Java. This is reasonable, e.g., when highly optimized native libraries exist
or when an application is forced to use native legacy code. Calling native code from Java can be seen as
a general problem which is not Truffle/C specific. Therefore this thesis describes an implementation

1Master’s thesis of Manuel Rigger, BSc



Introduction 4

that is not only suitable for the Truffle/C VM, but for any Java application. Parts of this native
function interface are already published in [13]. The parts of this thesis that describe the native
interface are based on this publication.

Programmers typically call native functions using JNI [12]. JNI is a standardized interface, which
allows applications to switch execution from Java to a function available as native code and to ma-
nipulate Java objects from native code. Programmers can pass arbitrary Java objects or primitives
to such a function, which is declared native (but is not implemented) on the Java side and which
is implemented as a C function or C++ method. This native JNI function has a specific name and
signature, which is implied by JNI. Therefore it is only possible to call this special native JNI function
from Java.

Whenever the Java application needs to call a native target function, this is done through the indirec-
tion of these C or C++ native JNI functions/methods. Such a method whose sole purpose is to call
another native function is called a wrapper. Within the context of this thesis we define native code
or native functions as code that the machine can execute directly. For example, the thesis considers
both, the compiled C or C++ JNI wrapper as well as the target function to be native code or native
functions. We define the native target function to be the actual function of interest. The native target
function can follow any calling convention, such as the C calling convention. Hence the C or C++
implementation, which performs the call to the function of interest, is not a native target function.

While it is common to write JNI wrapper functions to call native target functions, this has several
disadvantages:

1. In order to call a native target function at least two calls have to be performed. The first call is
from the Java application to the JNI wrapper and the second from the JNI wrapper to the native
target function. Theoretically, only one call could suffice, namely from the Java application to
the native target function.

2. JNI has additional overhead when setting up parameters. When JNI wrapper functions pass
array references to other native functions, JNI does not guarantee to avoid copying the array [16,
18].

3. The call to the native method is opaque to the JIT compiler, meaning that it cannot inline
the call. We refer to this as a compilation barrier. Because of the compilation barrier, the
JIT compiler cannot optimize the native code of the JNI wrapper function that sets up the
parameters.
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4. The programmer has to implement, compile and link C/C++ code instead of being able to call
the native target function from Java directly.

5. JNI does not allow to dynamically load libraries at runtime or call different native functions that
are unknown at compile time.

The first three disadvantages are related to performance issues, while the fourth one is a usability
problem. The last problem is an architectural problem of JNI, which implies that JNI is not applicable
for the Truffle/C VM. The VM requires to call arbitrary functions at runtime that are not known at
compile time as described in Section 4.3.

This thesis describes a native function interface for the Graal VM [21], which avoids these disadvan-
tages. The Graal Native Function Interface (GNFI) exhibits better run-time performance, as well as
an improved usability. Furthermore, GNFI allows an application to dynamically load libraries and
call functions at runtime.

GNFI avoids the first disadvantage by applying a special inlining mechanism. Usually it is not possible
to call native code directly from Java. To circumvent this issue, GNFI produces a Graal intermediate
representation (IR) and compiles it to a piece of code that assembles the parameters in the calling
convention of the target. This Graal IR can then be inlined by the Graal compiler, just like IR derived
from Java bytecode. After inlining, it is possible to remove the additional layer in most cases and
directly call the native target function.

The second disadvantage of JNI is the fact that JNI cannot guarantee to get references to Java array
data without copying. This is also solved by GNFI. The fact that we use Graal IR to do native calls
enables us to pass pointers into the Java heap, without having the risk of possible garbage collections.
Java applications, in addition to the Truffle/C VM, will benefit from this GNFI feature.

GNFI avoids the third disadvantage by shifting the compilation barrier down to the call of the native
target function. Setting up the parameters is opaque to the compiler in JNI, because it performs this
parameter marshaling on the native side, while the GNFI approach performs this step on the Java
side. Thus, the JIT compiler can still construct an intermediate representation of this transition and
optimize it up to the native target function call. Depending on the use case, GNFI is up to twice as
fast as JNI and is an order of magnitude faster than the Java Native Access (JNA).

GNFI avoids the fourth disadvantage by providing a Java interface that can be used to call native
functions. The Java interface does not only avoid the need for writing native wrapper functions, it also
solves the fifth disadvantage. Following this approach, the programmer can acquire handles to native
libraries during runtime and call a native target function by providing its name and signature.
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GNFI offers functionality similar to JNI, namely to directly invoke native target functions from within
Java, and is specially designed for this purpose. Therefore the goal of this approach is not to replace
JNI, but GNFI should rather provide an alternative and faster way to dynamically invoke native target
functions.

In terms of security, GNFI raises the same issues as JNI. Both techniques allow the programmer to
escape Java’s guarantees of safety and security [24]. Since calling native function is an inherently
unsafe operation, this thesis does not focus on the issue of security.

1.3.2 Truffle/C Memory Model

Given GNFI, a C program running on top of the Truffle/C VM can switch between a Truffle/C
function (on top of the Truffle/C VM) and a native function (e.g., library code). When switching
from the Truffle/C VM, a running Java program, to the native code, parameters can be passed from
Java to native code. The interface of GNFI allows the VM to easily pass parameters to native
functions. Besides passing parameters, the VM can exchange memory allocations of the running C
program via pointers. The Truffle/C VM has to share memory allocations (e.g., structures, unions
and arrays) between the VM and a native function. The Truffle/C Memory Model is responsible for
aligning memory (including structures, unions and arrays) so that the VM can exchange it. Native
code expects a specific platform dependent alignment and padding of the data. This alignment and
padding is the same that a normal C function (compiled using a standard C compiler, e.g., GCC)
would apply to the data. Because we cannot change or influence this alignment and padding, all
shared data for an execution switch between the Truffle/C VM and the native function has to be
aligned as expected by the native code.

A naïve solution for this task would be to copy all shared data into a native memory block before
the Truffle/C VM calls a native function. The VM would then have to align the data according to
the alignment and padding of the target platform. Java offers facilities for allocating native memory
and for storing data into it, using the Java Unsafe API (available in the OpenJDK). This approach,
however, would not be efficient because the VM might have to copy a large amount of data.

For the Truffle/C project, this thesis introduces a different approach. The Truffle/C VM itself uses the
same alignment and padding for C data structures (structures, unions and arrays) as the native code.
This means that the Truffle/C Memory Model does not introduce a new alignment or padding, but
instead uses the exact same representation as the native code does. To replicate the data representation
of native code for the Truffle/C VM, the VM uses the Java Unsafe API to allocate and deallocate
memory for the run-time data on the Native Heap. The Truffle/C Memory Model offers an interface for
the Truffle/C VM to manage run-time data, stored in the platform specific representation. Using the
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same representation of data structures as the native C code has two advantages: Firstly, the Truffle/C
Memory Model can provide valid addresses to the memory locations of the Native Heap, which then
allows the VM to pass real pointers to native functions. Secondly, using the same alignment and
padding as the native C code avoids copying and preparing data before an execution switches from
the Truffle/C VM (Java) to a native function.

1.4 Structure of the Thesis

This thesis aims to separate GNFI from the Truffle/C VM because GNFI i not only suitable for the
Truffle/C VM, but is also applicable to any Java function that calls native target functions. Therefore,
this thesis presents GNFI as a general concept that any Java application can use. Nevertheless, the
main focus of this thesis is on the Truffle/C Runtime Environment and how the VM facilitates GNFI.

Chapter 2 provides an overview of the context of the Truffle/C VM and GNFI. This chapter also
introduces the Truffle framework and how the Truffle/C VM is implemented in this context.

Afterwards, Chapter 3 explains GNFI in detail. It illustrates how GNFI works and describes the
interface that regular Java applications can use to call native target functions.

This thesis continues with describing the Truffle/C Runtime Environment in Chapter 4. This chap-
ter starts with an overview of all parts of the VM and briefly describes them. After the overview,
Section 4.2 introduces the Truffle/C Memory Model. The goal of this memory model is to provide
interoperability between the Truffle/C VM and the native C code. Given GNFI and the Truffle/C
Memory Model, Section 4.3 combines these concepts and introduces the Truffle/C Function Handling.
This chapter describes how the VM does linking and how it is able to call the two different kinds of
functions: Truffle/C functions and native C functions.

After the explanation of all parts of the Truffle/C Runtime Environment, Chapter 5 presents a case
study where all concepts are illustrated on a non-trivial C program.

Chapter 6 provides an evaluation of GNFI and the Truffle/C VM using the runtime environment
presented in this thesis. Again, the thesis aims to also evaluate GNFI separate from the Truffle/C
VM.

This thesis concludes with related work in Chapter 7, future work in Chapter 8 and finally a conclusion
in Chapter 9.
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Chapter 2

System Overview

This chapter explains the context of GNFI and the Truffle/C VM. For this purpose, Sec-
tion 2.1 introduces the Graal VM. GNFI is an extension of the Graal VM. Given the
underlying VM and its extension, Section 2.2 describes the Truffle framework and explains
how the Truffle/C VM is implemented on top of Truffle.

2.1 The Graal VM

The Graal VM, as part of the Graal OpenJDK project [21], is a modification of the Java HotSpotTM VM.
The Java HotSpotTM VM has two just-in-time (JIT) compilers, the client compiler and the server com-
piler. The client compiler aims at fast compilation performance, while the server compiler aims at
better optimizations at the expense of compilation time. Both the client compiler and the server
compiler are implemented in C++.

The Graal VM extends the HotSpotTM VM by a third compiler, the Graal compiler. It reuses all
other parts, including the interpreter, from the HotSpotTM VM. The new compiler, Graal, is written
in Java and aims to produce highly optimized code. Figure 2.1 gives a schematic overview of the
components of the Graal VM.
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Figure 2.1: System architecture of the Graal VM including GNFI.

Graal parses Java bytecode into the so-called Graal Intermediate Representation (IR) [10, 22]. The
Graal IR is a graph that captures the control flow and the data flow of instructions. It gets com-
piled to executable machine code by the Graal compiler. During compilation, the Graal compiler
performs optimizations on this IR and installs the resulting machine code using its interface to the
HotSpotTM VM. Besides code installation, this interface also allows the invocation of an installed
method by providing a reference to it. Hence Graal can call any compiled graph.

The Graal VM allows the installation of so-called method intrinsics. A method intrinsic is a pre-built
graph that replaces a Java method’s implementation.

We implemented GNFI in the context of the Graal VM. The modifications necessary to implement the
interface for the Graal VM are small: Firstly, GNFI extends the Graal IR with new nodes to execute
calls to native functions. GNFI also adds a new capability to the public Graal API, namely the Native
Function Interface. This provides a user-friendly interface for programmers.

To improve the interpreter performance of GNFI, we extend the interface between the Graal compiler
and the HotSpotTM VM as described in Section 3.3.

As Figure 2.1 shows, GNFI extends the Graal VM by a new component (Graal Native Function
Interface) and also extends the interface between the Graal compiler and the HotSpotTM VM (Interface
Extension). GNFI uses the Graal compiler to synthesize and compile Graal IR to machine code. To



System Overview 10

install and invoke the machine code, GNFI uses the existing interface between the Graal compiler and
the HotSpotTM VM. GNFI also introduces an extension of this interface, whose purpose is to speed
up the interpreter performance of GNFI.

2.2 Truffle

The idea behind Truffle [27] is to establish a layered architecture for guest language VMs. VMs are
mostly monolithic pieces of software, written in one language (mostly C/C++) and executing another
language. VMs offer many benefits for their guest language, but in fact do not utilize these benefits
for themselves [27]. The approach of Truffle aims to utilize the benefits of existing VMs. Würthinger
et. al describe in [27] how a Guest VM (Truffle/C VM) runs on top of a Host VM (Graal VM).
The Host VM (Graal VM) is written in Java and C++ and executes the language the Guest VM is
written in (Java in the case of Graal VM). The Guest VM (Truffle/C VM) is written in Java and
executes the code of the guest language (C language). Würthinger et. al mention several advantages
of this layered approach that makes implementing a new Guest VM easy. Guest VMs can benefit from
existing automatic memory management, exception handling, threads and synchronization primitives
as well as an existing well-defined memory model [27]. Figure 2.2 illustrates the layering of Guest VM
and Host VM.

Figure 2.2: System architecture of the Truffle/C VM [27].
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Truffle, the Guest VM, is an Abstract Syntax Tree (AST) based framework for implementing guest
languages in Java. An AST interpreter models constructs of the guest language as nodes, where each
node represents the semantics of one construct of the guest language. These AST nodes build a tree
that represents the program to be interpreted. Each node that is part of the AST has an execute

method. The execute method itself implements the semantics of the corresponding language con-
struct. The language implementer’s task is to design these AST nodes and provide facilities to parse
the guest language code and build the tree.

AST-based interpreters are often considered to be slow in terms of performance. To overcome the
performance issue, Truffle offers 2 different types of optimizations: Self-Optimization and Partial
Evaluation.

The following sections describe these types of optimizations.

2.2.1 Self-Optimization

The Truffle framework offers facilities for the AST to do self-optimization. Self-optimization in this
context means that the AST can change its structure to gain better run-time performance. The
following list describes the parts of Truffle that enable the self-optimization of ASTs [26]:

• Tree Rewriting: Tree rewriting describes the possibility for a node to replace itself and its
parent with a different node. This rewriting allows the AST interpreter to automatically incor-
porate profiling feedback while executing. The possibility to rewrite the AST combined with
collecting profiling information makes the following self-optimizations possible [26]:

– Type Specialization: For dynamic languages, where there is no type information for
variables and operations at compile time, type specialization can rewrite nodes of the AST
to a specific type and therefore improve performance. The implementation of the Truffle/C
VM will only benefit from type specialization in rare cases because C is a statically typed
language where all types are known at compile time.

– Polymorphic Inline Caches: Truffle supports polymorphic inline caches [8]. They work
by chaining nodes that represent the entries in the cache. A new entry in this cache always
adds a node to the tree. The nodes propagate the operation down the chain until it reaches
a node that can execute the operation. This adding of new nodes and entries to the cache
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continues until it reaches a certain length. Once it reaches this length, the chain replaces
itself with the megamorphic case [26]. As the future work points out, the Truffle/C VM
can use this optimization for function pointers.

– Resolving Operations: Operations of a guest language might include a resolving step
(e.g., function resolving). This resolving can be done by using the tree rewriting facility.
Resolving and rewriting nodes comes with the advantage that a rewrite avoids subsequent
checks. The Truffle/C VM makes use of this resolving technique to resolve functions.

• Boxing Elimination: The standard execute method of a node always returns an Object

value [26]. To avoid the boxing and unboxing of Java, which would be unavoidable when only
a generic execute method exists, Truffle enables the programmer to define differently typed
execute methods for nodes. For example, if it is known that a node always returns an int

value, the node can implement an executeInt method. These specialized methods reduce
boxing. This technique offers the possibility to remove the boxing of primitive variables for the
statically typed language C. In C, types are always known at compile time, therefore it is always
possible to derive a type-specific execute method.

• Tree Cloning: As the Truffle AST aims to collect run-time feedback during execution, different
callers can pollute this feedback. Especially for dynamically typed languages this pollution has
a big impact on the quality of the profiling information. To avoid this pollution, Truffle is able
to clone the AST to create caller specific versions.

2.2.2 Partial Evaluation

The dynamic dispatch between nodes causes a significant loss of performance [26]. Truffle provides
partial evaluation to remove this overhead and further optimize the Truffle ASTs. Truffle partially
evaluates stabilized hot functions, represented as ASTs. The term stabilized means that there are no
longer rewrites in the AST and the tree can be seen as stable; Truffle assumes that the tree remains
constant. A function being hot means that the number of executions of the function has exceeded a
certain threshold.

These assumptions enable the Truffle framework to convert the virtual dispatch between the execute
nodes to direct calls. Truffle uses the Graal VM (see Figure 2.2) and its compiler to perform the
optimizations as part of the partial evaluation. The partial evaluation first starts with inlining all these
direct calls, forming one combined unit of compilation for a whole tree [26]. Having one combined
unit allows the Graal compiler to do a wide variety of optimizations.
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As Truffle speculates that the AST is constant, the compiler graph of the partially evaluated AST
has a deoptimizaion point in all branches where a rewrite would happen. These deoptimization points
invalidate the compiled code and continue executing the tree in interpreter mode.

As local variable access is also critical for guest languages [26], Truffle introduces the Frame. A guest
language reads and writes local variables from and to a Frame. The Frame is represented by an array
and contains all local variables. During partial evaluation, Truffle forces an escape analysis [15] of
this array. This technique enables Truffle to remove all access to the array and to connect the read
operation of the variables with the last write operation [26].

The Truffle/C VM is built on top of Truffle (see Figure 2.2). The Truffle/C nodes extend the given
abstract Node of Truffle and model the semantics of C. Because the VM needs the possibility to
access native libraries (e.g., standard library), it also directly uses the Graal extension GNFI, as shown
in Figure 2.2.
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Chapter 3

Graal Native Function Interface

This chapter explains the Graal Native Function Interface in detail. In Section 3.1 this
chapter shows the public interface of GNFI and how to use it. After the description of
the public interface, Section 3.2 describes the call stubs, which perform the conversion of
calling conventions. Sections 3.3 and 3.4 describe how GNFI efficiently performs native
calls from interpreted and from compiled Java methods.

3.1 Public Interface and Execution Modes

Developers using Graal can easily use the Graal Capabilities interface [20] to load GNFI and access
native target functions. This section compares the usage of GNFI with JNI and points out the
advantages of GNFI. It introduces two different modes for calling native target functions via GNFI.
These two modes are native calls from interpreted Java code and compiled Java code.

3.1.1 Public Interface

This section shows an example that demonstrates how a user can acquire and use the Native-

FunctionInterface capability. The goal of the example is to invoke the floor function of a math
library written in C. Listing 3.1 shows the signature of the floor function.

1 double f l o o r ( double value ) ;

Listing 3.1: Signature of an C function floor.
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The usage of the NativeFunctionInterface follows a simple scheme, as shown in Listing 3.2.
First, one has to load the capabilities for the NativeFunctionInterface, assuming the Graal VM
supports it. The second statement uses the capabilities to load a math C library containing the native
target function floor. Resolving the library results in a library handle, which can be used to obtain
a handle to the native target function, as shown in the third statement. To do so, the user has to
provide the library handle, the name of the native target function and the signature. After these three
steps, one can invoke the native target function, referenced by the NativeFunctionHandle.

1 Nat iveFunct i on Inte r f a ce f f i =
2 Graal . ge tRequ i redCapab i l i ty ( Nat iveFunct i on Inte r f a ce . c l a s s ) ;
3 NativeLibraryHandle l ib ra ryHand le = f f i . getLibraryHandle ( " libMyMath . so " ) ;
4 NativeFunctionHandle funct ionHandle =
5 f f i . getFunctionHandle ( l ibraryHandle , " f l o o r " , double . c l a s s , double . c l a s s ) ;

Listing 3.2: Obtaining a NativeFunctionHandle.

To invoke the native target function, the NativeFunctionHandle provides a method (call), which
performs the native call.

In order to perform this call, GNFI has to convert the call on the NativeFunctionHandle, which
is a Java method invocation, to a native call. Thus, the NativeFunctionHandle has to convert
the calling convention from Java to C. For this calling convention conversion, GNFI defines the GNFI
Java calling convention, which all calls on NativeFunctionHandles have to follow. This calling
convention supports all parameter types that the native language requires.

To use the GNFI Java calling convention it is necessary to encode all native types using boxed Java
primitive values. In Java, primitive types are not inherited from Object. In order to treat them as
objects, one has to use wrapper classes. For this thesis I refer to instantiating such a wrapper class
for a primitive type as boxing. For example, Java provides a class Integer, which holds a value of
the primitive Java type int.

The signature of the call method of a NativeFunctionHandle takes an Object array as a param-
eter. The values of this array are supposed to be boxed Java primitive values or one-dimensional Java
arrays. Primitive native arguments take one slot in the array. Complex native arguments can take
multiple slots. This thesis refers to all native types that are atomic and can be encoded in a single
Java primitive type as primitive native types. Complex native types are native types that do not fit
into a Java primitive type or are composite types. Complex native types are represented as a series
of boxed Java primitive values.
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Native calling conventions, such as the C calling convention, can require arguments to be passed by
value or by reference. To pass arguments to a native target function by reference, it is necessary to
know the memory address of the parameters. In Java this can be achieved by copying the data into
a memory block according to the data layout of the native target language. The Java Unsafe API
allows the allocation of memory on the Native Heap as well as loading data from it and storing data
into it. The address of the allocated memory block can be stored into a Java Long value and passed
to the native target function.

An alternative is to pass the address of the data in the Java heap to the native target function
without copying it. This can only be applied for one-dimensional primitive Java arrays because their
Java memory layout is the same as in C. The user can directly pass a Java array of a primitive type to
the native target function. The requirement to pass Java array objects without copying justifies the
fact that the GNFI Java calling convention uses an object array for its arguments and boxes primitive
types. To perform the call, GNFI takes the reference to the Java array object and determines the
base address of the array data inside it. In Section 3.2 we explain why garbage collection is not a
problem here. Depending on the application and purpose, the user can decide how to pass arrays by
reference.

Native languages like C can also return complex types (e.g., structs) by value. In this case, the GNFI
Java calling convention expects an additional parameter at position zero of the Java Object array.
This parameter represents a pointer to a memory cell (encoded as a Java Long value) into which
GNFI places the return value.

Listing 3.3 shows an example of how to use the GNFI Java calling convention. This example calls
the native target function floor. This call passes a double value to a native C function. The code
allocates an Object array with one slot, into which it puts a Java Double value and passes the
array to the native C function. The return value of the call is a Java long value, which encodes
a double value. The method longBitsToDouble can be used to convert the long value into a
double value.

1 Object [ ] arg = new Object [ 1 ] ;
2 arg [ 0 ] = new Double ( 1 . 5 ) ;
3 double r e s u l t = Double . longBitsToDouble ( funct ionHandle . c a l l ( arg ) ) ;

Listing 3.3: Using the NativeFunctionHandle to call a native target function.

To accomplish the same with JNI, the programmer first has to declare a method as native on the Java
side. The following considers the same example as before, namely calling the native target function
floor of Listing 3.1.
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1 c l a s s MyJavaMath {
2 s t a t i c {
3 System . loadLibrary ( "MyJavaMathWrapper " ) ;
4 }
5

6 pub l i c s t a t i c nat ive double f loorWrapper ( double va lue ) ;
7

8 pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {
9 double r e s u l t = floorWrapper ( 1 . 5 ) ;

10 }
11 }

Listing 3.4: Calling floor using JNI (Java side).

Listing 3.4 shows a class MyJavaMath, which declares a method floorWrapper as native and loads
the shared library libMyJavaMathWrapper.so (derived from MyJavaMathWrapper using a nam-
ing convention). This library contains the JNI wrapper function that calls the native target function
floor. Listing 3.5 shows the source code of libMyJavaMathWrapper.so. To implement this wrap-
per library, the programmer first has to implement a function (Java_MyJavaMath_floorWrapper)
according to an auto-generated header file MyJavaMath.h (included in the source file of libMyJava-
MathWrapper.so, Listing 3.5).

1 #inc lude <j n i . h>
2 #inc lude "MyJavaMath . h "
3

4 double f l o o r ( double ) ;
5

6 JNIEXPORT jdoub le JNICALL Java_MyJavaMath_floorWrapper
7 ( JNIEnv ∗ env , j c l a s s obj , jdoub le va lue ) {
8 re turn f l o o r ( va lue ) ;
9 }

Listing 3.5: Calling floor using JNI (C side).

The signature of the function Java_MyJavaMath_floorWrapper in Listing 3.5 is derived from the
native Java method floorWrapper. A call of the Java method floorWrapper invokes Java_-
MyJavaMath_floorWrapper. When compiling and linking libMyJavaMathWrapper.so one has
to link it against the library libMyMath.so, which contains the C function floor.
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This example demonstrates that JNI and GNFI follow different approaches for handling parameters.
GNFI abstains from implicit parameter conversions (i.e., from Java to C/C++) and requires the
user to do the parameter preparation explicitly on the Java side. This removes the need for native
JNI wrappers. However, it requires that the programmer aligns the data as expected by the native
code. For example, the programmer is responsible for providing a memory block that represents a C
structure before using a pointer to this structure as an argument. This arguments preparation on the
Java side provides several advantages:

The first advantage in terms of performance is that it widens the compilation span of the JIT compiler.
A JIT compiler, like Graal, benefits from this because the only compilation barrier is the call to
the native target function itself. By bundling the calling convention-specific code in a Java library,
developers can use the interface without having to care about native code specifics. Developers will
benefit from all advantages of GNFI plus the advantages of Java compiler optimizations such as method
inlining.

The second advantage is that users do not have to maintain, compile and link C/C++ wrapper code
when calling new native target functions. GNFI only requires the modification of Java code.

The third advantage, which is related to the Truffle/C VM, is that GNFI improves flexibility. This
means that it is possible to load libraries and resolve function handles at runtime. A further advantage
is that the VM also uses the same data padding and alignment as native C code and therefore we can
directly exchange pointers between the VM and a native execution.

3.1.2 Modes of Execution

To convert the GNFI Java calling convention to a native calling convention it is necessary to distinguish
between two modes of the caller: the caller can either run in interpreted mode or in compiled mode.
When it runs in interpreted mode GNFI has to bridge two gaps on different levels (see Figure 3.1).

Java Method Call Stub
Native Target

Function

Interpreted
Java Code

Compiled
Java Code

Compiled
Native Code

Figure 3.1: Layer gaps between the interpreted Java code and the native target function.
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The first gap, on the left-hand side of Figure 3.1, is the call from interpreted Java code to a call
stub, represented as installed code. For this thesis we define a call stub to be an installed ma-
chine code method that converts the GNFI Java calling convention to the native calling conven-
tion and performs the actual call to the native target function. The call stub bridges the second
gap on the right-hand side of Figure 3.1, and is described in more detail in Section 3.2. In or-
der to call the call stub’s machine code from interpreted Java code, GNFI forwards the call to
the HotSpotTM VM. The HotSpotTM VM bridges interpreted and compiled Java code and invokes
the call stub code. The NativeFunctionHandle provides an interface for this installed call
stub and uses the HotSpotTM VM facilities, which is hidden from the users. Finally, one uses the
NativeFunctionHandle to call the native target function following the GNFI Java calling conven-
tion.

If the calling Java method runs in compiled mode GNFI can directly invoke the call stub because
there is no need to bridge the gap between interpreted and compiled Java code.

3.2 The Callstub

Whenever GNFI resolves a function handle, it is necessary to create a call stub. This call stub converts
from the GNFI Java calling convention to the native calling convention (e.g., the C calling convention),
which requires the allocation of registers and the reservation of stack space according to the native
calling convention.

Only machine code can do this allocation, hence it is not possible to implement the call stub method
in Java. To overcome this issue, GNFI creates a Graal IR graph [10, 22] at run time and makes it the
implementation of the call stub method. The signature of this Java method has an Object array as
its argument and returns a long value. To call such a stub method, one has to follow the GNFI Java
calling convention as described in Section 3.1.

GNFI creates machine code by first synthesizing an IR graph and then compiling it into machine code
using the Graal VM’s facilities. The IR graph of the call stub contains nodes that load the parameters
from the supplied Object array. Then it unboxes these parameters or resolves their addresses (array
parameters). Finally, the call stub contains a special IR node that represents the native target function
call.
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Since GNFI creates the IR for the call stubs, it is possible to decide at which point garbage collection
(GC) can happen in the Java VM. GCs can only happen when all threads running on the Java VM
have reached a safepoint, i.e., a position where the Java VM can safely stop them before a GC is
initiated.

Neither the graph of the call stub nor the code of a native target function contain a safepoint at which
a GC can happen. Hence passing Java object references to native target functions is safe because the
VM cannot do a GC while the native target function is executed. The fact that other Java threads
have to wait for the native call to return when a GC is pending might be seen as a restriction, but
it also comes with the advantage that native target functions can safely access Java objects. If the
blocking of the GC during the execution of a native target function is not acceptable, one has to resort
to JNI.

Figure 3.2 shows the Graal graph of the call stub of our C function floor. In this graph, thin edges
denote the data flow, while thick edges denote the control flow. The arg node is the parameter of
this callstub method. It is the reference to the Object array that contains the parameters for
the floor function. The LoadIndexed loads the first element of the argument array. The Load node
loads the double value from the Double object and passes the value to the native call node. Beside
the argument, the native call node also has a pointer to the function floor as an input.

Figure 3.2: IR graph of the call stub for the native target function floor.
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The native call node is compiled to machine code, which performs the platform-specific call to the
native target function. The machine code stores the parameters into the right registers and stack slots,
according to the native calling convention, and finally calls the native target function. The imple-
mentation, described in this thesis and used for the Truffle/C VM, produces machine code according
to the AMD64 Application Binary Interface (ABI). Of course this ABI can easily be exchanged for
different platforms.

To install the machine code of this call stub in the VM, GNFI uses the interface between the Graal
compiler and the HotSpotTM VM. Every subsequent call to a NativeFunctionHandle will invoke
this installed machine code.

The call stub only depends on the signature of the native target function. The programmer has to
specify this signature. If the native target function has a fixed signature, i.e., it has a fixed number
of argument types and not a variable number like the C function printf, the signature can be seen
as a compile-time constant. Therefore, the call stub and its IR graph are also compile-time constants
and it is possible to create them statically. As most target functions have a fixed signature, their call
stubs are compile-time constants. A constant call stub has the advantage that GNFI can inline the
call stub’s IR graph into the Java application. Inlining reduces the call overhead to a minimum and
creates opportunities for further optimizations. Section 3.4 explains how call stubs are inlined.

3.3 Native Function Calls in Interpreted Mode

When an interpreted part of a Java application calls a native target function, there are two gaps that
GNFI has to bridge. As Figure 3.1 shows, the first gap is between the interpreted Java application
and the compiled Java call stub. The second gap is between the Java calling convention and the native
calling convention, which Section 3.2 describes. This section describes the first gap and how GNFI
accesses compiled Java code from interpreted Java code.

Whenever the user of GNFI executes a NativeFunctionHandle by using the GNFI Java calling
convention and the caller runs in interpreted mode, GNFI has to invoke the call stub. The call stub
is represented by an installed code. To invoke it, GNFI uses the interface between Graal and the
HotSpotTM VM. This interface offers a method that tells the HotSpotTM VM to execute an installed
code, which in our case is the call stub.
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To speed up communication between Graal and the HotSpotTM VM, GNFI extends the interface by
an additional native-declared execute method (Java side of the interface). It has a machine code
implementation on the HotSpotTM VM side (native side of the interface) that converts the Java
interpreter calling convention to the Java compiled calling convention before invoking the actual call
stub.

Interpreted Java Method

NativeFunctionHandle

Interpreter
Machine Code

Call Stub Native Target Function

call

call

points to
interface
extension

Figure 3.3: Execution in interpreter mode.

Figure 3.3 shows an interpreted Java method that calls a NativeFunctionHandle. The Native-
FunctionHandle refers to the installed call stub. As described, GNFI invokes the call stub by using
the interface extension of the HotSpotTM VM. This extension bridges from interpreted Java code to
compiled Java code. The call stub finally performs the call to the native target function.

3.4 Native Function Calls in Compiled Mode

A NativeFunctionHandle can also be called from compiled code. When the Graal VM compiles
the caller method it is possible to make use of Graal intrinsifications. Instead of invoking the call stub
by using the Graal to HotSpotTM VM bridge (from interpreted Java code to compiled Java code; see
Section 3.3), GNFI intrinsifies the call method of the NativeFunctionHandle object.

This intrinsification inserts a special node (FunctionHandleIntrinsification) into the IR of the caller
method. The FunctionHandleIntrinsification node replaces the call of the NativeFunctionHandle.
To illustrate this intrinsification this section again uses the native C function floor. Listing 3.6
introduces a new example where it adds 1.0 to the result of the native call to the floor function.
The argument for this call is the value 1.5. To prepare the arguments array arg the example boxes
the value 1.5 and stores it at position zero of the array.
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1 Object [ ] arg = new Object [ 1 ] ;
2 arg [ 0 ] = new Double ( 1 . 5 ) ;
3 double c = 1 .0 + Double . longBitsToDouble ( funct ionHandle . c a l l ( arg ) ) ;

Listing 3.6: Addition example using the native function floor.

Figure 3.4 shows the IR graph of this example. As we can see, the intrinsification of the Native-
FunctionHandle replaces the call on its call method with a FunctionHandleIntrinsification node.
The StoreIndexed node prepares the arguments by storing the boxed value 1.5 at position zero of the
array.

The key observation in this graph is that it no longer contains the call of a NativeFunctionHandle;
the FunctionHandleIntrinsification node replaces the call. Finally, the graph shows the addition of
the result of floor and the value 1.0.

Figure 3.4: IR graph for Listing 3.6 containing a FunctionHandleIntrinsification node.

The FunctionHandleIntrinsification node exhibits two different behaviors, depending on the call stub
it represents. Call stubs for variadic functions are run-time variables, because the number of arguments
(and therefore the call stub) can vary. To call a variadic native target function it is necessary to invoke
the call stub, resulting in two calls — one from the compiled code to the call stub and one from the call
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stub to the native target method. Call stubs for non-variadic functions are compile-time constants,
because the call stub does not change. If the call stub is a compile-time constant, it is possible to
reduce the number of calls to one.

In the first case, where the call stub is a run-time variable, the FunctionHandleIntrinsification node
calls the installed code that represents the call stub. This means that the node replaces itself with a
direct call to the installed call stub. For this call it is not necessary to convert the arguments from the
Java interpreter calling convention to the Java compiled calling convention. Instead, all arguments
are already in place. Therefore, it is possible to directly perform the call to the call stub.

Java Application

Compiled Java Method

Interpreter
Machine Code

Machine Code
Call Stub

Native Target Function

intrinsified call

call

has

Figure 3.5: Execution in compiled mode: call to the call stub.

Figure 3.5 shows the execution of a compiled Java method using GNFI where the call stub is a run-
time variable. The compiled Java method does not contain code of the NativeFunctionHandle
anymore. Instead it does a direct call to the call stub.

Figure 3.6 shows the resulting graph for the example of Listing 3.6. To illustrate the first case this
example treats the call stub of the native target function floor as if it was a run-time variable and
calls it. In Figure 3.6 a call replaces the FunctionHandleIntrinsification node. The other parts of the
graph (the call stub and the graph of Listing 3.6) remain unchanged.

In the second case, where the call stub and its graph are compile-time constants, we can directly inline
this graph. Instead of a call to the installed code of the call stub, the FunctionHandleIntrinsification
node replaces itself with the IR graph of the call stub. After compilation, the machine code only has
one call site left, namely the site which directly calls the native target function. Thus, inlining the IR
graph of the call stub enables the Graal compiler to do optimizations on the whole range up to the
native call itself.
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Figure 3.6: IR graph for Listing 3.6; the intrinsified function handle node was replaced by a call to
the call stub.

Java Application

Compiled Java Method

Interpreter
Machine Code

Machine Code
Call Stub

Native Target Functioncall

has

Figure 3.7: Execution in compiled mode: inlined call stub.

Figure 3.7 shows the execution of a compiled Java method using GNFI where the call stub is a compile-
time constant that could be inlined. The call site from the compiled Java method to the call stub is
gone. The only call left is to the native target function.
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In the example of Listing 3.6 the stub can be inlined because floor has a static signature. Figure 3.8
shows the graph that results from replacing the FunctionHandleIntrinsification node by the actual call
stub graph. In this graph all call sites, except the native call to the floor function, are gone. After
inlining the call stub, the Graal compiler is able to apply its optimizations up to the point where the
call to the native function appears.

Figure 3.8: IR graph for Listing 3.6 with the call stub inlined.

Removing all extra calls, and therefore widening the compilation span, is the biggest benefit of GNFI.
If Graal optimizes the graphs from Figure 3.8, it can remove the Object array for the arguments.
It can also remove the boxing of the primitive value 1.5. Figure 3.9 shows the final graph after
all optimizations. All argument manipulations could be eliminated and only the native call itself
remains.

One might argue that it is unlikely that an installed code is a compile-time constant. However, for
call stubs of native target functions, the installed code is nearly always a compile-time constant.

The call stub only depends on the signature of the native target function. If the signature is known at
compile time, which is the case for most native target functions, the call stub graph can indeed be seen
as a compile-time constant. The only case where a call stub is not a compile-time constant is when
the signature contains a variable number of parameters. In this case GNFI has to create separate call
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Figure 3.9: IR graph for Listing 3.6 after optimizations.

stubs for different calls at runtime. In all cases with respect to the Truffle/C VM, the callstub is a
compile-time constant. This is due to the fact that the VM resolves a function handle for each call
site. A call site knows how many parameters are passed, therefore call stubs are always compile-time
constants.

The main advantage of our approach compared to other approaches such as JNI or JNA is that
GNFI can remove all extra call sites, enabling the JIT compiler to optimize the argument conversion
code.
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Chapter 4

Truffle/C VM

The first part of this chapter provides an overview of all pieces of the Truffle/C VM that
are necessary to execute C code on top of the VM. It describes all steps necessary to
compile and execute a C file using a standard compiler like GCC, and then compares how
the Truffle/C VM performs these steps. It also gives an overview of the Truffle/C nodes.

The rest of this chapter then introduces the two main parts of the Truffle/C Runtime
Environment. Section 4.2 explains the Truffle/C Memory Model. It explains how the
Truffle/C Memory Model distinguishes between two different storage locations of run-time
data, which are the Frame and the Native Heap. Furthermore, this chapter explains how
the Truffle/C Memory Model shares run-time data between the Truffle/C VM and native
code. Section 4.3 explains the Truffle/C Function Handling. It describes how the Truffle/C
VM establishes linking at runtime by node rewriting. Besides linking, this section shows
the differences between Truffle/C calls and native calls and explains the calling procedure
of each call type.

4.1 Overview

Compiling a program written in C involves two main steps: First, the compiler compiles the C files to
object files (a relocatable machine code representation). Second, the linker generates an executable
program out of the linked object files and libraries.

The first task of this procedure, compiling C code to object files, can be split into several steps. First,
the C compiler performs preprocessing. This preprocessing step is responsible for including header files,
expanding macros, handling conditional compilation and doing line control. After preprocessing, the
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compiler performs lexical analysis, which converts a sequence of characters into a sequence of tokens.
Syntactic analysis parses these tokens according to the rules of a formal grammar (C grammar). The
result of syntactic analysis or parsing is a so-called parse tree, which can be transformed into an
intermediate representation (IR). The IR is an abstracted representation of the source code, which the
compiler uses to optimize the code. The compiler finally compiles the optimized IR to machine code,
stored in an object file.

The second major task, linking, combines given object files and libraries by relocating their data and
patching symbol references (e.g., patching function call target addresses). Figure 4.1(a) illustrates the
process of compiling and linking C files to produce an executable file.

4.1.1 Creating the Truffle/C AST

The compilation chain of a C program is complex. Reimplementing these steps for the Truffle/C VM
would not be efficient or feasible. Instead of reimplementing the compilation chain for the Truffle/C
project we modify clang [1], a compiler front end for C/C++. Clang comes with a preprocessor,
performs lexical and syntactic analysis and has an Abstract Syntax Tree (AST) as an intermediate
representation for functions. It also provides a symbol table. For the Truffle/C VM we extend clang
and serialize the ASTs of all functions of a C file, including the symbol table. The serialization writes
Truffle/C binaries (*.bn). These Truffle/C binaries replace the object files in our implementation.
After creating the Truffle/C binaries, the Truffle/C VM uses them as input. The VM has a parser
that reads these binary files and creates the Truffle/C ASTs.

One big difference between the GCC compilation queue and the Truffle/C VM is that the VM does
not have an explicit linking step. The VM resolves the targets of the symbolic references, like variables
and functions, at runtime and links them on demand. Instead of patching addresses, the Truffle/C
VM rewrites nodes after resolving the target (see Section 2.2.1 and Section 4.3). The Truffle/C VM
can access all objects, stored in different binary files, at runtime by using the Truffle/C Runtime In-
terface (see Figure 4.1(b)). The Truffle/C Runtime Interface allows resolving objects by their symbolic
reference. It looks for the requested object in all binary files and returns an AST representation of
it (assuming such an object exists). Figure 4.1(b) shows the clang extension for serialization and the
schematic overview of the Truffle/C VM as described in this section.
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(a) Components that compile and link a C program. (b) Components of the Truffle/C VM to compile and exe-
cute a C program.

Figure 4.1: Architectural overview of the components of a normal C compiler and of the Truffle/C VM
that compile and link a C program.
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4.1.2 Truffle/C Nodes

The Truffle/C VM is an AST interpreter and thus represents C functions as ASTs. The nodes of the
Truffle/C ASTs model the semantics of the target language. The following list summarizes the most
important nodes that are necessary to understand the Truffle/C Runtime Environment.

• Variables: The Truffle/C VM distinguishes between two different places where it stores run-
time data (Frame and Native Heap, see Section 4.2). FrameSlot nodes represent variables that
the VM stores in the Frame. MemoryAddress nodes represent the addresses of variables, located
on the Native Heap.

• Frame Read/Write: The Truffle framework offers the Frame (see Section 2.2), where an
execution can store run-time data. To access the Frame, the Truffle/C VM uses FrameRead and
FrameWrite nodes, which in turn reference the aforementioned FrameSlot nodes.

• Memory Read/Write: Besides the Frame, the Truffle/C VM also keeps data on the Native
Heap. The VM usesMemoryRead andMemoryWrite nodes (to read from and write to the Native
Heap), which in turn have one child that can be either a MemoryAddress node or a computed
address value.

• Function Calls: The Truffle/C VM represents a function call as a FunctionCall node. The
FunctionCall node has a variable number of children, which are the arguments. An argument
itself can be an arbitrary subtree that evaluates one argument of the call. Besides the arguments,
the FunctionCall node also knows the root node of the target function. After evaluating the
arguments, the call node calls this root node (see Section 4.3).

4.2 Truffle/C Memory Model

The Truffle/C Runtime Environment has to provide an underlying memory model for the VM that
handles all kinds of memory allocations. The Truffle/C VM needs to allocate memory whenever the
executed program instantiates a primitive variable, array, structure or union. The Truffle/C Memory
Model manages this run-time data. The Truffle/C Memory Model has to solve the following issues:
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• Pointers: A C application can retrieve the address of variables (e.g., by using the & operator).
It is important that the Truffle/C Memory Model is able to provide addresses for variables. The
garbage collector of the JVM can move objects within the Java heap, hence pointers must not
point into it. The Truffle/C Memory Model stores variables which are referenced by a pointer
on the Native Heap.

• Arrays, Structures and Unions: C objects like arrays, structures and unions are represented
as blocks of memory that contain the data of the objects. C programs rely on the fact that
these objects never move inside the memory, hence the Truffle/C Memory Model of the VM has
to guarantee that C programs running on top of the VM can rely on this fact. Therefore, the
Truffle/C Memory Model keeps these objects on the Native Heap and stores them with the same
alignment and padding as native code. A common alignment and padding of data allows the
Truffle/C VM to exchange these objects with native code via pointers.

All run-time data of the Truffle/C VM on the Native Heap has the same alignment as allocations of
native code and therefore the VM can exchange this data freely with native code. The programmer
can access the Native Heap on a byte level from Java using the Unsafe API. This API allows allocating
and deallocating memory and offers read and write operations on a byte level. Using this API, the
Truffle/C VM is able to manage run-time data that is also accessible from native code.

The Truffle framework itself offers the Frame for run-time data. The Truffle optimization partial
evaluation (see Section 2.2.2) performs an escape analysis on the Frame and is able to remove all
accesses to it in the resulting optimized code. For the Truffle/C VM, this Frame optimization potential
should not be neglected. Therefore, the Truffle/C Memory Model aims to only store variables on the
Native Heap that actually could be accessed by native code or that are referenced by pointers. To
benefit from the Frame optimization and provide interoperability with native code, the Truffle/C VM
distributes the run-time data into two types of storage. The first type, referred as Frame, keeps all
function local and primitive typed data that is never referenced by pointers. For this thesis we define
primitive types to be all primitive types of the C language (e.g., int, double, . . .). The second
type, referred as Native Heap, keeps all data that is referenced by a pointer, variables that live during
the execution of the whole C program (global and static local variables) and complex typed data.
Complex types are types that are constructed out of multiple primitive types. With respect to the
C language, structures, arrays and unions are complex types. The following Sections 4.2.1 and 4.2.2
explain and illustrate the two locations of run-time data with an example program.
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4.2.1 Frame

The Frame is part of the Truffle framework and guest languages can use it store their run-time data.
It is not possible to derive a memory address for any variable that the Truffle/C VM stores in the
Frame, which limits the usage of the Frame by the VM. Nevertheless, the VM creates a new Frame
whenever the VM calls a Truffle/C function and keeps all primitive variables and arguments that do
not escape by their address inside the Frame.

1 void nativeFoo ( s t r u c t ExampleStruct ∗ , i n t ∗) ;
2

3 s t r u c t ExampleStruct {
4 char c ;
5 i n t ∗p ;
6 } ;
7

8 i n t g l oba l = 23 ; // g l oba l v a r i a b l e
9

10 i n t main ( i n t argc , char ∗ argv [ ] ) {
11 i n t escaped = 42 ; // escap ing va r i ab l e
12

13 s t r u c t ExampleStruct ∗ s = // l o c a l v a r i a b l e
14 malloc ( s i z e o f ( ExampleStruct ) ) ;
15 char c = ’ a ’ ; // l o c a l v a r i ab l e
16 i n t a [ 3 ] = {1 ,2 , 3} ; // complex type va r i ab l e
17

18 s−>c = c ;
19 s−>p = a ;
20

21 nativeFoo ( s , &escaped ) ;
22 f r e e ( s ) ;
23 re turn 0 ;
24 }

Listing 4.1: A small C program to illustrate the different types of storage.

To illustrate the distinction between the Frame and the Native Heap, we consider the example in List-
ing 4.1. This example uses a native function nativeFoo, which takes an instance of ExampleStruct
and an integer by reference. As nativeFoo is a native function for which no C source code is avail-
able, its arguments have to point to data that is located in the Native Heap and aligned as expected
by the native code.
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The main function declares an integer variable escaped, which main passes to nativeFoo by
reference. Besides this integer variable escaped, main also allocates memory for a structure s,
which the program passes to nativeFoo after setting its members.

With respect to the example of Listing 4.1, the VM creates a Frame before it enters the main func-
tion. The call to main includes placing the arguments argc and argv into slots in the Frame (see
Section 4.3).

Besides Frame slots for the arguments, the Truffle/C VM also reserves slots inside the Frame for all
primitive non-escaping local variables. As the Truffle/C VM knows at compile time which variables it
can place in the Frame, it reserves a fixed number of Frame slots for these variables. In the example,
the VM needs four Frame slots, two for the arguments (argc and argv), one for the character (c)
and one for the pointer to the structure ExampleStruct (s). Figure 4.2 illustrates the Frame of the
function main where the Truffle/C VM uses slot 0 and 1 for the arguments and slot 2 and 3 for the
pointer s and the character c. All other slots are unused. As the example never resolves the addresses
of c and s and both variables have a primitive type, the Truffle/C VM can store them inside the
Frame. The VM stores all other local variables of main on the Native Heap (see Section 4.2.2).

Figure 4.2: Frame allocation of function main in Listing 4.1.

4.2.2 Native Heap

Besides the Frame, the Native Heap is the second place where the Truffle/C VM can store run-time
data. The VM can access run-time data on the Native Heap via pointers and can also provide addresses
of elements stored in this area.

The Truffle/C VM organizes the Native Heap in blocks. A memory block is an allocation performed
by the VM, using the Unsafe API, or the programmer. There are three kinds of blocks:

• Static Block: The Truffle/C VM allocates one block that contains all static variables. This
allocation happens when the VM starts up.
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• Function Block: For each function call, the Truffle/C VM creates a Function Block and de-
allocates it when the function returns. A Function Block contains all local variables or arguments
of a function whose address is needed, as well as all complex local variables.

• User Allocation: User allocations are memory regions allocated by the programmer. The
programmer can allocate memory using native functions like malloc.

Figure 4.3 shows the allocation of the VM on the Native Heap for the example in Listing 4.1. In this
example there is one global variable (global). Therefore, the Static Block has a size of 4 bytes and
contains this integer variable.

At the point where the Truffle/C VM calls the main function, it allocates a Function Block. This
Function Block has a size of 16 bytes. It contains the escaping integer (escaped, 4 bytes) and the
integer array (a, 3 × 4 bytes). This block is alive and accessible by the VM or native code from the
entry point of the function main until it returns.

The example of Listing 4.1 also performs an allocation using the native function malloc. The function
malloc allocates memory on the Native Heap. This allocation reserves 16 bytes that contain the data
of the structure ExampleStruct. The deallocation of this memory block is not the responsibility of
the Truffle/C VM but rather has to be performed by the user code.

Figure 4.3: Native Heap allocations of function main in Listing 4.1.
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4.2.3 Arrays, Structures and Unions

As Section 4.2 has already stated, C programs rely on the fact that C objects (arrays, structures and
unions) are located in the memory and never change location. Also, C code assumes a well-defined
alignment of the data so that the program can access it via pointers. The Truffle/C VM has to satisfy
these assumptions for all code (Truffle/C functions and native C functions) that can access these C
objects. To establish an interoperability between Truffle/C functions and native C functions the VM
keeps these C objects on the Native Heap and also stores them with the same data alignment and
padding as native code. The following two bullets illustrate how the Truffle/C VM incorporates these
invariants, induced by native code, for arrays, structures and unions.

Arrays: C code assumes that arrays are stored as a sequence of variables. Each element of the array
takes n bytes, where n is the size of the array element type (e.g., n = 4 bytes per element
for int a[]). Figure 4.4 shows an example integer array with 4 elements. The Truffle/C
VM incorporates this alignment and stores arrays inside the Static Block or the Function Block
depending on if the variable is global or local. MemoryAddress nodes represent arrays by pointing
to the base address of the array data.

Figure 4.4: Memory representation of an array.

A result of a MemoryAddress node can be seen as a pointer. It is possible to pass this address
value to any native target function. The native target function itself can then access the array
because the VM uses the same alignment as native code.

Figure 4.5 illustrates an array access (e.g., base[index]) of the Truffle/C VM. On the right
side Figure 4.5 shows the variable node (MemoryAddress), which points to the array data.
The parent of this node is an ArrayElementAddress node. Besides the array base address, the
ArrayElementAddress node has a second child. The second child can be an arbitrary subtree
that calculates the index of the array access. This index value is multiplied by a stride which
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converts the index value to an offset within the array data. The result of this calculation, which
is the return value of the ArrayElementAddress node, is an address value that the Truffle/C VM
can read. The blue labels of Figure 4.5 show the return values of all nodes.

Figure 4.5: Truffle/C nodes to read from an array.

Structures and Unions: To store the data of a record variable (structure or union), the Truffle/C VM
has to reimplement the alignment and padding expected by native code.

According to the native alignment rules, the first member of a structure has the offset O0 = 0
from the base address. All offsets of the following members (Oi) are calculated as follows:

O0 = 0

Oi = Align(Oi−1 + Sizei−1, Sizei)

Oi, the offset of member i, is derived from the offset of the previous member Oi−1 plus its
size (Sizei−1) in bytes and the size of the member i (Sizei). The alignment makes sure that
the structure’s members are aligned to platform specific address boundaries. For instance, int
members have an offset Oi mod 4 = 0, where 4 is the size of an int in bytes.
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Figure 4.6 shows the memory representation of ExampleStruct (see Listing 4.1). The charac-
ter c has an offset of 0 because it is the first member (O0 = 0). The platform dependent offset
of p is O1 = 8. O1 = Align(0 + 1, 8), where 0 is the offset of the first member c, 1 the size of
the first member in bytes (Size0) and 8 the size of the second member (Size1).

Figure 4.6: Memory representation of a struct.

Similar to arrays, the Truffle/C VM uses a MemoryAddress node to represent the base address
of a structure instance. Figure 4.6 illustrates a MemoryAddress node pointing to an instance
of ExampleStruct. To access a member of a structure, the Truffle/C VM calculates the
address of the member using a StructElementAddress node (see Figure 4.7). The child of the
StructElementAddress node is a MemoryAddress node. The MemoryAddress node produces a
pointer to the base address of a structure. The StructElementAddress node then adds the offset
of a structure member to the base address. The blue labels of Figure 4.7 show the return values
of all nodes.

The second type of records (unions) follow the same principle as structures, except that the
offset is always zero and therefore the VM does no offset calculation.
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Figure 4.7: Truffle/C nodes to read from a structure.

4.3 Truffle/C Function Handling

The Truffle/C Function Handling is the second part of the Truffle/C Runtime Environment. It has
to provide infrastructure to efficiently resolve, link and call C functions at runtime. The Truffle/C
Function Handling provides the following functionality:

• Function Resolving: An execution of a C program on top of the Truffle/C VM can call
available C functions. The VM does linking at runtime and therefore resolves the target function
to provide a call target on demand (see Section 4.3.1). The VM distinguishes between two
different kinds of call targets:
– Truffle/C functions: If source code of the target function is available and accessible by the

Truffle/C VM, the VM resolves a Truffle/C function.
– Native functions: If the requested function is present as a native function inside a linked

native library, the Truffle/C VM uses GNFI and resolves a NativeFunctionHandle.

• Function Calling: Depending on the kind of the call target, the Truffle/C VM has to apply
different call strategies:
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– Truffle/C functions: If the call target is a Truffle/C function, the VM uses existing Truffle
facilities to perform the call (see Section 4.3.2).

– Native functions: If the call target is a native target function, the VM performs a native
call using GNFI. The VM executes the NativeFunctionHandle of the target function,
using the GNFI Java calling convention (see Section 4.3.3).

4.3.1 Linking Functions

Normally, a C program is compiled and linked completely before executing it. The Truffle/C VM
follows a different approach: The VM performs linking at runtime, so there is no need to link files
before starting execution. The VM takes a list of Truffle/C binaries and also a list of native libraries
as input and immediately starts execution. The linking is opaque to the user.

When the VM starts the execution of a C program, it first resolves the main function. For this
purpose it uses the Truffle/C parser and builds up the function AST of main and uses it as an entry
point (the main function has to be present as a Truffle/C function).

All call sites inside a function AST are initially represented as unresolved FunctionCall nodes. An
unresolved FunctionCall node denotes a call to a C function that only knows the call target’s name,
not the call target itself. A FunctionCall node remains unresolved until the VM executes it the first
time. When the VM tries to execute an unresolved FunctionCall node, the node first resolves an
executable call target for the call target name. The node uses the Truffle/C Runtime Interface (see
Figure 4.8) to get an executable call target. The Truffle/C Runtime Interface first tries to resolve a
Truffle/C call target. It uses the Truffle/C parser and looks in all Truffle/C binaries for a function
that matches the call target name. If a Truffle/C function matches, the Truffle/C Runtime Interface
returns a Truffle/C function to the unresolved FunctionCall node. The unresolved FunctionCall node
then replaces itself with a ResolvedTruffleCall node.

Figure 4.8: Truffle/C function resolving.
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If the Truffle/C Runtime Interface did not find a Truffle/C function, it tries to resolve a Native-

FunctionHandle. It looks for the requested function in all given native libraries (see Figure 4.8).
If the Truffle/C Runtime Interface was able to resolve a NativeFunctionHandle the interface
returns it and the unresolved FunctionCall node replaces itself with a ResolvedNativeCall node. If
the Truffle/C Runtime Interface can neither resolve a Truffle/C function nor a NativeFunction-

Handle, the Truffle/C VM raises a linking error and stops execution. Figure 4.9 illustrates the
procedure of a FunctionCall node rewrite. An unresolved FunctionCall node replaces itself with
either a ResolvedTruffleCall node or a ResolvedNativeCall node.

Figure 4.9: Truffle/C call node rewriting.
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4.3.2 Calling Truffle/C Functions

Once a call node is resolved, the Truffle/C VM is able to call the target function. Listing 4.2 shows
an example to illustrate the function call.

1 i n t foo ( double , i n t ) ;
2

3 void main ( ) {
4 i n t r e s u l t = foo ( 3 . 0 , 1 + 2) ;
5 // . . .
6 }

Listing 4.2: A call statement in C.

This section assumes that the function foo (Listing 4.2) is a Truffle/C function. Calling the Truffle/C
function foo involves the following steps, which apply to all Truffle/C function calls, as shown in
Figure 4.10:

• Argument Evaluation: First, the Truffle/C VM evaluates all arguments. The arguments of
the function foo (Listing 4.2) are the literal node of the value 3.0 and the addition of the values
1 and 2, which the VM has to evaluate.
• Pack Arguments: The VM then stores the evaluated arguments into a representation that is
independent from the function signature. The Truffle/C VM uses an Object array as such an
independent representation.
• Call: After packing the arguments, the VM performs the call to the target Truffle/C function.
It passes the arguments, packed into the Object array, to the callee.
• Copy Arguments to Frame: On the callee side, the VM first stores all arguments that do
not escape by their address and have a primitive type into the Frame.
• Open Function Block: Before executing the function AST, the Truffle/C VM creates a Func-
tion Block. As Section 4.2 explains, whenever the VM calls a function, it creates a Function
Block on the Native Heap where it stores escaping or complex variables of a function.
• Copy Arguments to Native Heap: After creating a Function Block, the Truffle/C VM copies
all complex arguments or arguments that escape by their address.
• Execute Function: The VM evaluates the function body.
• Close Function Block: When the function returns, the Truffle/C VM closes the Function

Block on the Native Heap.
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Figure 4.10: Call to a Truffle/C function.

After these steps, the Truffle/C function returns the result to the call node and the caller continues.

4.3.3 Calling Native Library Functions

Again, we consider the call to the function foo in Listing 4.2. For this section we assume that the
function is a native function. The Truffle/C VM has already resolved a NativeFunctionHandle

(see Chapter 3) and can call foo. The call to this native C function involves the following steps which
apply to all native function calls, as shown in Figure 4.11:

• Argument Evaluation: First, the VM evaluates all arguments, similar to Section 4.3.2.
• Pack Native Arguments: The VM stores the evaluated arguments into an Object array as
required by the GNFI Java calling convention.
• Call: After packing the arguments, the VM executes the NativeFunctionHandle.

After these steps, the call node returns the result of the native function, and the caller continues.
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Figure 4.11: Call to a native function.
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Chapter 5

Case Study

This chapter presents a case study which exercises a C program executed on top of the
Truffle/C VM. The case study demonstrates how the Truffle/C VM calls Truffle/C func-
tions and native functions. Furthermore, it illustrates the states of the Frame and Native
Heap at important points of the C program execution. This example uses the native library
cblas, which is a library that offers highly optimized matrix operations.

The program of the case study consists of one file, caseStudy.c (see Listing 5.1). It performs two
matrix multiplications, one of which is executed using a Truffle/C function, while the other one uses
a native function from the native library cblas.

In order to start the Truffle/C VM and execute caseStudy.c, the VM requires two arguments. The
first argument is the path to the C file it should execute (containing the main function, caseStudy.c).
Besides the C file, it is necessary to tell the VM all libraries that are used. While one would set the
linker option -lcblas using GCC, the Truffle/C VM needs the path to the library object. There-
fore, the second argument is the path to the cblas library (libcblas.so). Given these arguments,
the Truffle/C VM can execute caseStudy.c. The VM automatically compiles caseStudy.c to a
Truffle/C binary and starts executing the main function of the program.
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1 #inc lude <cb l a s . h>
2

3 s t r u c t matrix {
4 i n t rows ;
5 i n t c o l s ;
6 double ∗ data ;
7 } ;
8

9 void myMult( s t r u c t matrix ∗ m1, s t r u c t matrix ∗ m2, s t r u c t matrix ∗ m4) {
10 i n t i , j , k ;
11 double sum = 0 ; // | | Point 3 | |
12 f o r ( i = 0 ; i < m1−>rows ; i++ ) {
13 f o r ( j = 0 ; j < m2−>co l s ; j++ ) {
14 f o r ( k = 0 ; k < m1−>co l s ; k++ ) {
15 sum = sum +
16 m1−>data [ i ∗ m1−>co l s + k ] ∗ // | | Point 4 ( i = 1 , j = 1 , k = 1) | |
17 m2−>data [ k ∗ m2−>co l s + j ] ;
18 }
19 m4−>data [ i ∗ m3−>co l s + j ] = sum ;
20 sum = 0 ;
21 }
22 }
23 }
24

25 i n t main ( ) {
26 s t r u c t matrix m1; // i n i t i a l i z e matrix 1 :
27 double m1_data [ ] = {
28 1 . 0 , 2 . 0 , 3 . 0 ,
29 4 . 0 , 5 . 0 , 6 . 0 } ;
30 m1. data = m1_data ;
31 m1. rows = 2 ;
32 m1. c o l s = 3 ;
33

34 s t r u c t matrix m2; // i n i t i a l i z e matrix 2 :
35 double m2_data [ ] = {
36 7 . 0 , 8 . 0 ,
37 9 . 0 , 10 . 0 ,
38 11 . 0 , 1 2 . 0 } ;
39 m2. data = m2_data ;
40 m2. rows = 3 ;
41 m2. c o l s = 2 ;
42

43 s t r u c t matrix m3; // i n i t i a l i z e matrix 3 :
44 double m3_data [ ] = {
45 0 . 0 , 0 . 0 ,
46 0 . 0 , 0 . 0 } ;
47 m3. data = m3_data ;
48 m3. rows = 2 ;
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49 m3. c o l s = 2 ;
50

51 s t r u c t matrix m4; // i n i t i a l i z e matrix 4 :
52 double m4_data [ ] = {
53 0 . 0 , 0 . 0 ,
54 0 . 0 , 0 . 0 } ;
55 m4. data = m4_data ;
56 m4. rows = 2 ;
57 m4. c o l s = 2 ;
58

59 double alpha = 1 . 0 , beta = 0 . 0 ;
60 // | | Point 1 | |
61 //BLAS CALL m3 = m1 x m2: // | | c a l l cblas_dgemm | |
62 cblas_dgemm(CblasColMajor , CblasNoTrans , CblasNoTrans , m1−>rows , m2−>co l s , m1−>co l s ,
63 alpha , m1. data , m1. co l s , m2. data , m2. co l s ,
64 beta , m3. data , m3. c o l s ) ;
65 // | | Point 2 | |
66 //CALL IMPLEMENTATION m4 = m1 x m2: | | c a l l myMult | |
67 myMult(&m1, &m2, &m4) ;
68 re turn 0 ; // | | Point 5 | |
69 }

Listing 5.1: A program (caseStudy.c) that multiplies matrices using a Truffle/C function and the
cblas_dgemm function (blas library).

5.1 Problem Statement

The program of caseStudy.c (see Listing 5.1) declares a structure matrix. This structure repre-
sents a matrix of double values. It contains a pointer to a one dimensional double array (data).
This array contains the values of the matrix. Furthermore, this structure declares the number of rows
(rows) and the number of columns (cols). These values (rows and cols) are necessary for the
multiplication algorithms to interpret the one dimensional double array as a matrix.

The main function first initializes 4 matrices (stored in struct matrix m1, m2, m3 and m4).
For matrix m1, main initializes a 2 × 3 matrix. Afterwards, main initializes a 3 × 2 matrix (m2).
Finally, main creates two 2× 2 matrices (m3 and m4).

Having initialized these matrices, main calls the native blas function cblas_dgemm. This function
multiplies two double precision matrices (m3 = m1 × m2). Listing 5.2 shows and describes the
signature of cblas_dgemm.
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1 void cblas_dgemm (
2 // S p e c i f i e s row−major (C) or column−major ( Fortran ) data orde r ing .
3 const enum CBLAS_ORDER Order ,
4 // S p e c i f i e s whether to t ranspose matrix A.
5 const enum CBLAS_TRANSPOSE TransA ,
6 // S p e c i f i e s whether to t ranspose matrix B.
7 const enum CBLAS_TRANSPOSE TransB ,
8 // Number o f rows in matr i ce s A and C.
9 const i n t M,

10 // Number o f columns in matr i ce s B and C.
11 const i n t N,
12 // Number o f columns in matrix A; number o f rows in matrix B.
13 const i n t K,
14 // Sca l i ng f a c t o r f o r the product o f matr i ce s A and B.
15 const double alpha ,
16 // Matrix A.
17 const double ∗ A,
18 // The s i z e o f the f i r s t dimension o f matrix A;
19 // i f you are pas s ing a matrix A[m] [ n ] , the value should be m.
20 const i n t lda ,
21 // Matrix B.
22 const double ∗ B,
23 // The s i z e o f the f i r s t dimension o f matrix B;
24 // i f you are pas s ing a matrix B[m] [ n ] , the value should be m.
25 const i n t ldb ,
26 // Sca l i ng f a c t o r f o r matrix C.
27 const double beta ,
28 // Matrix C.
29 double ∗ C,
30 // The s i z e o f the f i r s t dimension o f matrix C;
31 // i f you are pas s ing a matrix C[m] [ n ] , the value should be m.
32 const i n t ldc
33 )

Listing 5.2: Signature of cblas_dgemm.
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After the native call to cblas_dgemm, the case study performs a call to the Truffle/C function
myMult. The function myMult takes three matrices, represented as pointers to instances of the
structure matrix. The function computes m4 = m1×m2.

This example is well-suited to explain the Truffle/C Runtime Environment, because it makes use of
the different types of storage, namely the Frame and the Native Heap, and therefore allows us to
extensively investigate the Truffle/C Memory Model. The example also calls a Truffle/C function and
a native function, hence this case study can explain the different procedures of resolving and calling
functions.

5.2 Analysis

To analyze the program (see Listing 5.1), this chapter will focus on seven points of the execution
(denoted by comments like "|| Point 1 ||") in the source code of Listing 5.1. At these points of
execution, this chapter analyzes the content of the Frame and the Native Heap. Also, this analysis
focuses on function calls and linking. Therefore, this section describes how the VM resolves the
functions and how it performs the calls.

Point 1: At Point 1 of the execution, the structures (m1, m2, m3 and m4) and arrays (m1_data,
m2_data, m3_data and m4_data) are already initialized and stored on the Native Heap. The
Truffle/C VM places these variables in the Function Block of the main function. To store the
structures, the VM applies the same alignment (see Section 4.2) as native code. Figure 5.1
illustrates the state of the Native Heap at Point 1. The VM allocates and stores the data in
the same order in which they are declared in the program. There is no Static Block because the
example does not use global variables or static local variables.

The Frame at Point 1 contains only two values, alpha and beta, as Figure 5.2 shows. These
variables have a primitive type and they are never referenced by their address, therefore the VM
can place them inside the Frame.
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Figure 5.1: Native Heap at Point 1.

Figure 5.2: Frame of main at Point 1.

Call cblas_dgemm: When the execution reaches the call to cblas_dgemm, the call is initially unre-
solved. To resolve this call, the call node asks the Truffle/C Runtime Interface for a call target,
providing the name cblas_dgemm. The Truffle/C Runtime Interface first tries to find a Truf-
fle/C function with the name cblas_dgemm by using the Truffle/C Parser. The parser will not
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find a Truffle/C function with the name cblas_dgemm, hence the Truffle/C Runtime Interface
tries to resolve a NativeFunctionHandle. As there is a native cblas_dgemm function, the
Truffle/C Runtime Interface returns a NativeFunctionHandle as a call target. The call
node replaces itself with a ResolvedNativeCall node and performs a native call. To perform the
call, the VM first evaluates all arguments and stores the results in an Object array as required
by the GNFI Java calling convention. Table 5.1 shows the content of the Object array that
contains the arguments for the NativeFunctionHandle.

index Content Description
0,1,2 101, 111, 111 enum values of CblasColMajor , CblasNoTrans , CblasNoTrans
3,4,5 2, 2, 3 row/column information for m1, m2, m3
6 1.0 double value 1.0
7 139998154615616 the address of m1.data
8 3 size of first dimension of m1
9 139998154615680: the address of m2.data
10 2 size of first dimension of m2
11 0.0 double value 0.0
12 139998154615744 the address of m3.data
13 2 size of first dimension of m3

Table 5.1: Content of the arguments array for the native call to cblas_dgemm.

After preparing the arguments and executing the NativeFunctionHandle, the execution of
main continues after the call.

Point 2: The native function cblas_dgemm updated the data of array m3_data on the Native
Heap. The new content of m3_data is the result of the matrix multiplication. The Frame did
not change and still contains the values for alpha and beta.

Call myMult: When the execution reaches the call to myMult, the call node is also initially unresolved.
As previously stated, the call node asks the Truffle/C Runtime Interface for a call target. Again,
it first uses the Truffle/C Parser and tries to resolve a Truffle/C function. This time the parser
succeeds and finds a Truffle/C function and returns it as the call target of myMult. After the
call node rewrites itself to a ResolvedTruffleCall, the VM performs a Truffle call.

The call first evaluates the arguments. The arguments for the myMult function are the 3 pointers
to m1, m2 and m4. The call node boxes the 3 addresses into Long Objects and packs them into
an Object array, as shown in Table 5.2.
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index Content Description
0 139998154615600 the address of m1
1 139998154615664 the address of m2
2 139998154615776 the address of m4

Table 5.2: Content of the arguments array for the Truffle call to myMult.

After packing the arguments, the Truffle/C VM calls myMult. Before the function executes the
body, it copies the arguments to the Frame of myMult. Besides copying the arguments, the VM
also opens a Function Block where it can store complex or escaping local variables of myMult.
In the case of myMult, there are no complex or escaping local variables, therefore the Function
Block is of size zero. As there are no complex arguments or arguments that are referenced by
their address, there is no need to copy arguments to the Native Heap. Finally, the VM executes
the function body.

Point 3: The VM only creates a new Frame for myMult. This Frame contains the three arguments and
the local variables i,j,k and sum, which are needed for the matrix multiplication. Figure 5.3
shows the Frame of function myMult.

Figure 5.3: Frame of myMult at Point 3.

Point 4: The function myMult reads the elements of the matrices m1 and m2 to finally calculate
the product and store it in the matrix m4. The expression m1->data[i * m1->cols +

k] at Point 5 reads the element at position column = i and row = k of the matrix m1.
Figure 5.4 shows the AST representation of this expression. On the top of this tree there is
a MemoryRead node which reads the element of the matrix. The ArrayElementAddress node
provides the address for this read operation, which points to the Native Heap. To provide this
address, the ArrayElementAddress node has two children. The first child computes the array
index (ArrayElementAddress - Left child) while the second child (ArrayElementAddress - Right
child) computes the base address of the array.
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Figure 5.4: Truffle AST for the expression m1->data[i * m1->cols + k].



Case Study 54

ArrayElementAddress - Left child: The index calculation (i * m1->cols + k) first multi-
plies the value i (located in the Frame) and the number of columns of m1 (m1->cols). A
MemoryRead node reads the number of columns (m1->cols) from the Native Heap. To do
so, the AST has to provide the address of the member cols. It computes this address by
first reading the base address of m1 from the Frame and afterwards adding the offset of the
member cols to the base address (StructElementAddress node). After the multiplication
of i * m1->cols, the tree adds the value of k to this product.

ArrayElementAddress - Right child: To provide the base address of the array (m1->data), the
tree first reads the base address of m1 from the Frame. Afterwards, it adds the offset of the
member data (StructElementAddress node) to the base address of m1. The MemoryRead
reads the content of this member (data) and returns the address of the array m1_data.

After evaluating the right and left child, the ArrayElementAddress can provide the address of
the matrix element.

Blue edges in this tree denote the data that the different nodes produce. We assume that the
local variables i, j and k have the value 1 (i = 1, j = 1 and k = 1).

Point 5: After executing myMult, the VM closes the Frame of myMult and it is no longer accessible.
As myMult changed values, stored in the Function Block of the function main (structure m4), the
content of the Native Heap changed. The function myMult placed the result of the multiplication
of the matrices m1 and m2 into m4. At the end of this program, the matrices m3 and m4 both
contain the product of m1×m2.

This case study has shown how the Truffle/C VM distinguishes between the different locations of
run-time data, namely the Frame and the Native Heap. Furthermore, it illustrated how the VM aligns
the data on the Native Heap to be in accordance with native code. Besides investigating the Truffle/C
Memory Model, this case study also shows how the VM resolves functions and how it performs Truffle
calls as well as native calls.
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Chapter 6

Evaluation

This chapter evaluates GNFI and the Truffle/C VM independently from each other. The
evaluation of GNFI uses micro benchmarks and a jblas benchmark. To evaluate the Truf-
fle/C Runtime Environment, this chapter presents performance numbers of the Truffle/C
VM compared to GCC on various C language benchmarks.

The benchmarks were executed on an Intel Core i7 3520M dual-core 2.9GHz CPU running 64 Bit
Fedora 17 (Linux3.6.9-2) with 8GB of memory. GNFI and the Truffle/C VM are built on Graal revision
ee8cd087a731 (including the Truffle framework) from the official OpenJDK Graal repository1. The
evaluation uses OpenJDK 1.7.0_09 for JNI, and JNA version 3.5.2.

6.1 Evaluation of GNFI

This section presents an evaluation of GNFI for standard Java applications. It presents a comparative
performance evaluation of GNFI, JNI and JNA. The first benchmark is a micro benchmark that
determines the cost of a call. It invokes an empty C function (with 0, 3 and 5 arguments) in a loop.
This benchmark measures the call overhead of the three approaches.

The evaluation also benchmarks an application that uses a native numerical library, accessed by
JNI, JNA and GNFI. This benchmark is a good choice because researchers in the past extensively
investigated aspects such as efficiency and usability when calling native numerical libraries [5, 6, 7, 11].
None of these investigations considered the extra calling overhead caused by JNI and JNA.

1available at http://hg.openjdk.java.net/graal/graal

http://hg.openjdk.java.net/graal/graal
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As a concrete application that uses a native numerical library, the evaluation uses jblas [17], a Java
wrapper for BLAS, which is the de-facto standard for matrix operations. For the evaluation, all usages
of JNI within jblas were replaced by GNFI or JNA.

The charts in this section are all arranged on a linear, unbiased, higher-is-better scale. The y-axis shows
the different approaches that were evaluated. The x-axis shows the number of executed calculations
performed within 10 seconds. For all of the benchmark results in this section, the benchmarks were
executed 10 times with the same parameters. The charts show the arithmetic mean for each benchmark
result, along with the minimum and the maximum of 10 runs.

The evaluation of each benchmark contains results for several different configurations: In interpreted
mode (int) the benchmarks run with the compilation disabled, thus with all code running in the
interpreter. This mode uses GNFI as described in Section 3.3. The JNI and JNA versions of the
benchmark are also running in the interpreter mode with compilation disabled.

In compiled mode we measure the performance after an initial warm-up with compilation enabled. For
GNFI there are two modes of operation: In the first mode (runtime callstub), the evaluation uses a
configuration that makes sure that the optimizations cannot inline the call stub. Therefore, GNFI has
to call it (see Figure 3.5). In the second mode (static callstub), GNFI inlines the call stub. Section 3.4
describes the configuration for GNFI in detail. For the JNI and the JNA versions of the benchmarks
the evaluation also measures the performance after an initial warm-up with compilation enabled.

The following sections briefly describe each benchmark and evaluate it for the modes interpreted,
runtime callstub and static callstub.

6.1.1 Microbenchmarks

To measure the pure call overhead, the evaluation uses a shared library that contains an empty function
arg0 as shown in Listing 6.1. Besides arg0, this library contains two functions (arg3 and arg5)
with 3 and 5 arguments, respectively.

1 void arg0 ( ) {}
2 i n t arg3 ( i n t a , i n t b , i n t c ) { re turn 0 ; }
3 i n t arg5 ( i n t a , i n t b , i n t c , i n t d , i n t e ) { re turn 0 ; }

Listing 6.1: Native functions arg0, arg3 and arg5 to evaluate the pure call overhead.



Evaluation 57

Figure 6.1 shows the comparison of GNFI, JNA and JNI when calling arg0 in interpreted mode. We
can see that GNFI is slower than JNI by a factor of 2.7. However, it is still faster than JNA by a
factor of 3.4.

Figure 6.2 shows that passing the arguments only has a minor effect on the speed of GNFI and JNI.
GNFI is still slower than JNI by a factor of 2.7. For JNA, additional arguments cause a slowdown.
For the function with 5 arguments (arg5), GNFI beats JNA by a factor of 41.

Compared to JNI, GNFI has to go through more layers to perform the call. As Section 3.3 describes,
GNFI has to bridge interpreted and compiled code, which impedes the performance. For the perfor-
mance of an application, interpreted code plays a minor role. Hence, the implementation of GNFI
neglects the performance in interpreted mode and focuses on performance in compiled mode.
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Figure 6.1: Performance of arg0 (interpreted mode).
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Figure 6.2: Performance of arg3 and arg5 (interpreted mode).

Figure 6.3 shows the comparison of JNI, JNA and GNFI on arg0 in compiled mode. GNFI outper-
forms JNA by a factor of 10.3. It is now also faster than JNI by a factor of 1.2 with the static callstub.
The performance of the static callstub is 6% better than the performance of the runtime callstub.

Again, the evaluation of Figure 6.4 shows that additional parameters only have a minor effect on the
performance of JNI and GNFI. GNFI with static callstub remains faster than JNI by a factor of 1.2.
The performance of JNA decreases with additional arguments. For the function with 5 arguments
(arg5), GNFI beats JNA by a factor of 74.
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Figure 6.3: Performance of arg0 (compiled mode).
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Figure 6.4: Performance of arg3 and arg5 (compiled mode).

For the micro benchmarks, GNFI with static callstub can inline the callstub (described in Section 3.4)
and thus remove one call site. The JIT compiler can also remove the args array. This inlining
explains the 6% speedup of the static callstub compared to the runtime callstub. GNFI with runtime
callstub is faster than JNI because GNFI does a direct call to the call stub. Compared to JNI, GNFI
does not set up any environment parameters, which explains the differences in performance.

6.1.2 Jblas Matrix Multiplication Benchmark

The jblas benchmark measures how often random double matrices of different sizes can be multiplied
within 10 seconds. The matrix dimensions are n× n where n ∈ {10, 100, 1000}.

In interpreted mode (int) for n = 10 (Figure 6.5, upper three bars), GNFI is slower than JNI by a
factor of 2.6 and 12 times faster than JNA.

We explain the slowdown of GNFI compared to JNI in interpreted mode by the fact that GNFI has to
go through more layers to perform the call, as explained in the evaluation of the micro benchmarks.
However, when increasing the problem size, GNFI performs better than JNI even in interpreted mode.
The benchmark results in Figure 6.6 show the comparison for n = 100, where GNFI outperforms JNI
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by 70%. GNFI is a factor of 2 faster than JNA for n = 100. The explanation of the smaller performance
gap between JNA and GNFI is that the constant call overhead of JNA has less impact when more
time is spent inside the native method.

Similarly for n = 1000 (Figure 6.7) GNFI beats JNI by a factor of 1.9. GNFI is also faster than JNA
by a factor of 1.9. The JNI jblas wrapper and the JNA interface copy the elements of the matrices to
perform the call to the native BLAS function. GNFI directly passes a reference to the matrices on the
Java heap. This is achieved by passing the Java array object to the call stub. The call stub resolves
the address of the array data and passes this pointer to the native target function. GNFI benefits
from the fact that jblas represents matrices as one-dimensional Java arrays.

In compiled mode GNFI is faster than JNI and JNA for all problem sizes. In mode runtime callstub
GNFI intrinsifies the NativeFunctionHandle as described in Section 3.4. The caller method makes
a direct call to the call stub. Thus, GNFI is faster than JNI by a factor of 1.14 for n = 10 (Figure 6.5),
by a factor of 1.7 for n = 100 (Figure 6.6), and by a factor of 1.9 for n = 1000 (Figure 6.7). GNFI is
faster than JNA by a factor of 17 for n = 10, by a factor of 1.8 for n = 100, and by a factor of 1.9 for
n = 1000. Again, the performance gap between JNA and GNFI decreases as n increases because the
constant call overhead of JNA has less impact on performance.

In the mode static callstub, the machine code of the benchmark can even call the BLAS function
directly. However, the optimization from runtime callstub to static callstub only has an effect on
n = 10 where the call overhead is still important. For n = 100 and n = 1000 the speedup is not
noticeable, because the constant call overhead becomes negligible, compared to the time spent in the
BLAS function. The performance advantage of GNFI results from not having to copy the matrices.

Although there was still a performance gap between compiled and interpreted Java code for n = 10,
this performance gap becomes almost non-existent for n = 100 and n = 1000.
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Figure 6.5: Performance of jblas for n = 10.
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Figure 6.6: Performance of jblas for n = 100.
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Figure 6.7: Performance of jblas for n = 1000.

6.2 Evaluation of the Truffle/C VM

This section presents a comparative performance evaluation of the Truffle/C VM and machine code
compiled using GCC. This evaluation aims to determine the efficiency of the Truffle/C Runtime
Environment. The benchmarks used for this evaluation are Mandelbrot, Fannkuch Redux and the
Spectral-norm benchmark, all of which are part of the Computer Language Benchmarks Game2 col-
lection.

The first benchmark, Mandelbrot, contains no function calls and performs many computations with
variables that the Truffle/C VM will keep in the Frame. Therefore, this benchmark demonstrates how
the Truffle/C VM benefits from the Truffle optimizations for the Frame. This evaluation justifies the
design decision of having two different locations for run-time data, Frame and Native Heap.

The second benchmark, Fannkuch Redux, performs many array permutations and therefore makes
heavy use of the Native Heap. The Truffle/C VM keeps most variables of this benchmark on the Native
Heap and only a few variables are in the Frame and will benefit from the Frame optimizations. Other
than for Mandelbrot, the heavy use of the Native Heap now has a major influence on performance.
Hence, this benchmark is well-suited to determine the efficiency of the VM using the Native Heap.

2http://benchmarksgame.alioth.debian.org/

http://benchmarksgame.alioth.debian.org/
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The third benchmark, Sectral-norm, does many function calls (Truffle/C function calls and native
function calls), so that it measures the efficiency of the function calling procedure of the Truffle/C
VM. The location of run-time data of the benchmark is well balanced between the Frame and the
Native Heap. As a result, this benchmark is well-suited to evaluate the Truffle/C Memory Model and
Truffle/C Function Handling.

The charts in this section are arranged on a linear, unbiased, lower-is-better scale. The y-axis shows
the different approaches that were evaluated (Truffle/C VM and GCC with different levels of opti-
mizations). The x-axis shows the score of each benchmark. The evaluation of this section executes the
benchmarks using a benchmark harness. This harness runs the benchmarks 10 times with the same
parameters after an initial warm-up and computes a score. This score represents the arithmetic mean
of the execution time in milliseconds. The charts show the scores of the Truffle/C VM and GCC for
each benchmark.

The evaluation of the benchmarks contains results for the following configurations:

• Truffle/C VM: Truffle/C VM performance after an initial warm up. The warm up compiles
and optimizes the Truffle ASTs of the benchmarks.
• GCC performance: Performance of binaries, compiled using GCC with different levels of
optimizations (O0, O1, O2, O3 and Ofast).

The benchmark results of Mandelbrot (Figure 6.8) show that the Truffle/C VM outperforms GCC
with the optimization level of O0 by a factor of 1.7. The Truffle/C VM performance is only 15%
slower than the best GCC performance (optimization level Ofast). These numbers show that the
VM has a reasonable performance compared to binaries compiled using GCC. Furthermore, these
numbers demonstrate that the distinction between Frame and Native Heap improves the Truffle/C
VM performance because the VM benefits from all Frame optimizations by the Truffle framework.
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Figure 6.8: Mandelbrot performance of the Truffle/C VM and GCC.

The benchmark results of Fannkuch Redux (Figure 6.9) show that the VM outperforms GCC with
the optimization level of O0 by 4%. The Truffle/C VM performance is 2.4x slower than the best GCC
performance (optimization level O2). For this benchmark, binaries compiled using GCC with the
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optimization level of O2 give the best performance. This optimization level outperforms the levels O3
and Ofast. We explain this slowdown of Ofast by optimizations of GCC that have a bad impact on
the performance (optimizations that might cause slowdowns because of, e.g., cache misses or a greater
code size). The Truffle/C VM numbers on Fannkuch Redux point out that the distinction between
Frame and Native Heap greatly improves the performance of the VM. If we compare the Mandelbrot
numbers and the Fannkuch Redux numbers we can see that keeping variables in the Frame (like for
Mandelbrot) speeds up the performance of the VM significantly. When the Truffle/C VM has to resort
to the Native Heap for many variables, the gap between the best performance of GCC and the VM
increases.
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Figure 6.9: Fannkuch Redux performance of the Truffle/C VM and GCC.

The benchmark results of Spectral-norm (Figure 6.10) show that the Truffle/C VM outperforms GCC
with an optimization level of O0 by 30%. The performance of the Truffle/C VM is 4.7x slower than
the best GCC performance (optimization level Ofast). We explain the big performance gap between
the GCC with an optimization level of Ofast and the other GCC optimization levels by the fact
that Ofast sets the GCC ffast-math option. This option gains performance by using imprecise
floating point operations that are faster. Besides GCC with the Ofast option, GCC with O1 gives
the best GCC performance. For the Spectral-norm benchmark, the GCC optimizations of level O2
and O3 cause a slowdown compared to O1. Again, we explain this slowdown by optimizations that
might cause, e.g., cache misses or a greater code size. Besides the different GCC performance results,
these benchmark results show that the Truffle/C VM, using the Truffle/C Function Handling and
the Truffle/C Memory Model, is in average 2.5 times slower than the best performance of binaries
compiled with GCC.
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Figure 6.10: Spectral-norm performance of the Truffle/C VM and GCC.
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Chapter 7

Related Work

This chapter lists the most important work related to GNFI and the Truffle/C VM. With
respect to the Truffle/C VM, this chapter also points out former research towards memory
safe C.

GNFI: From the user’s perspective, JNA [3] is similar to GNFI. It allows the programmer to dynami-
cally invoke native target functions without having to write native code — the programmer can
simply dispatch the call from Java. As with GNFI, one loads a library and can then call arbi-
trary native target functions contained within. JNA offers the same flexibility as GNFI in terms
of dynamically calling native target functions. It uses a native library stub, accessed via JNI,
to dynamically invoke the native target code. However, as with JNI, the JIT compiler cannot
inline this native code. Therefore, JNA cannot compete with GNFI in terms of performance, as
the evaluation in Section 6.1 shows.

Hirzel et al. [14] propose another approach which tries to simplify the invocation of C code from
Java, called Jeannie. It is both a language and a compiler to allow both Java and C code in
the same file. The programmer can easily combine the two languages without the boiler-plate
code of JNI. However, since it is translated to JNI code, it suffers from the same performance
problems as the JNI.

Stepanian et al. [23] try to widen the compilation span by letting the JIT compiler directly
inline native code. Their approach converts the native code to the compiler’s intermediate
language, on which the JIT compiler then performs optimizations. Following their approach of
decompiling and inlining native JNI wrapper functions, they could gain a significant speedup
compared to JIT-compiled code without inlining. However, their approach differs from GNFI
because they do not provide an alternative to JNI. The approach of Stepanian et al. speeds up
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JNI while preserving the portability properties of JNI. The programmer still uses JNI to access
native target functions, though their JIT compiler is able to inline the native code of JNI. GNFI
provides a way to invoke native target functions from Java directly while improving performance
and usability.

The approach used in the Compiled Native Interface (CNI) [2] is based on the idea of making
GNU Java compatible with GNU C++. CNI allows writing Java native methods in C++ with
zero overhead. CNI uses hooks in G++ (the GNU C++ compiler) so that C++ code can access
Java objects as naturally as native C++ objects. The approach of CNI is faster than JNI,
but less portable. It differs from GNFI because GNFI provides facilities to call native target
functions from Java, thus GNFI completely avoids writing native code.

Truffle/C VM: There are other language implementations on top of Truffle besides the Truffle/C VM.
The most sophisticated is the JavaScript implementation [26]. Truffle is designed for dynamic
languages and the JavaScript implementation is used as Truffle’s proof-of-concept. The per-
formance of the JavaScript implementation is outstanding and it outperforms other JavaScript
interpreters on top of the JVM [26].

CINT [9] is related to the Truffle/C VM in that it also is an interpreter for C/C++ code. It is
designed for development, where saving compile and link time is more important than run-time
performance. The major difference between CINT and the Truffle/C VM is that CINT is a
standalone interpretation system while the Truffle/C VM reuses facilities (like GC and memory
management) from the underlying JVM.

The Truffle/C VM is well-suited for research towards memory safe C. Nagarakatte et al. [19]
present an approach called SoftBound to establish spatial safeness of C. SoftBound is based on
compile-time transformation to enforce spatial safety of C. This approach records base and bound
information for every pointer as disjoint metadata. This enables checking whenever pointer
values are loaded or stored. Similar to this approach is theMemory Save C Compiler (MSCC) [4].
This compiler ensures both temporal and spatial memory safety in C programs through a source-
to-source transformation [4]. While these approaches are based on code transformations at
compile time, the Truffle/C VM is able to ensure memory safeness at runtime because the C
code is interpreted by a Java application running on top of the JVM. Such memory safeness
checks can easily be added to the Truffle/C AST nodes.
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Chapter 8

Future Work

So far, the Truffle/C VM supports a subset of the C language syntax as a proof-of-concept.
GNFI supports calling arbitrary native functions from Java by providing the GNFI Java
calling convention. This chapter mentions potential future work of GNFI and the Truffle/C
VM.

Platform: At the moment, GNFI only supports Unix systems and the AMD64 Application Binary
Interface. Nevertheless, we designed GNFI in a way that makes platform dependent code easily
exchangeable.

Library: To improve the usability of GNFI, the GNFI Java calling convention should be hidden from
the user. The GNFI Java calling convention is platform dependent, therefore a user-friendly
library that wraps it would improve the usability.

Callbacks: One possible extension of GNFI is to support callbacks. Supporting callbacks means that
it is possible to pass references to Java methods to native code. The native code can then use
these references (function pointers) to perform callbacks, which execute Java code.

Function Pointers: Function pointers are not supported by the Truffle/C VM at its current state.
The VM cannot resolve a function pointer of a Truffle/C function that one can pass to native C
functions.
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Completeness: The current state of the Truffle/C VM supports a subset of the C language syntax.
The Truffle/C VM supports six primitive types (int, char, long, short, float and
double). Besides these primitive types, the VM also supports structures, unions, arrays and
pointers. To support all concepts of the ANSI C standard, the VM has to support function
pointers and all unsigned primitive types (e.g., unsigned int).

Memory Safe C: The Truffle/C VM is a great platform for research towards Memory Safe C. Memory
safeness means that the Truffle/C VM can check array bounds, can do buffer overflow checks
and can perform memory access checks at runtime.
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Chapter 9

Conclusion

This thesis describes the runtime environment of a virtual machine for the C language on top of the
Truffle framework, called Truffle/C VM. The VM offers an efficient way to execute C programs on top
of a JVM. It solves two major issues that arise when C code is interpreted on top of a JVM:

The first issue is the need to call native functions (e.g., library functions) efficiently. For this purpose
this thesis proposes a new native function interface, called GNFI. Compared to similar approaches,
GNFI has advantages in terms of usability and performance. In terms of usability, the programmer
does not have to write C/C++ glue code to call native target functions. Thus, the programmer
does not have to compile such source files or to link them to libraries. To evaluate GNFI this thesis
demonstrates the performance of GNFI for the jblas library, which is a Java wrapper for the native
vector and matrix operation library BLAS. The evaluation uses a matrix multiplication benchmark of
jblas. The results show that for calling native code from Java, GNFI performs better than JNI and
JNA in all relevant cases.

The second issue is a memory model that allows the Truffle/C VM to share data with native code
(e.g., library functions). This thesis presents the Truffle/C Memory Model that enables sharing data
between the VM and a native code. To evaluate the Truffle/C Runtime Environment, this thesis
demonstrates the performance of Truffle/C VM on various C benchmarks. The results show that the
execution time of the benchmarks, running on top of the Truffle/C VM, is faster than the execution
time of machine code produced by GCC without optimizations. The numbers also show that the
performance of the Truffle/C VM is in average a factor of 2 slower than the performance of GCC with
all optimizations enabled.

The implementation of the Truffle/C Runtime Environment and GNFI should provide a solid base,
including a reusable architecture that makes further work related to the Truffle/C VM simpler.
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