
1

5. Symbol Table
5.1 Overview
5.2 Objects
5.3 Scopes
5.4 Types
5.5 Universe

© 2002-2024 Hanspeter Mössenböck, JKU Linz

2

Responsibilities of the Symbol Table
1. It maintains all declared names and their properties

• type
• value (for named constants)
• address (for variables, fields and methods)
• parameters (for methods)
• ...

2. It is used to retrieve the properties of a name
• Mapping: name ⇒ (type, value, address, ...)

Contents of the symbol table
• Object nodes: Information about declared names
• Structure nodes: Information about type structures
• Scope nodes: for managing the visibility of names

=> most suitably implemented as a dynamic data structure
(linear list, binary tree, hash table)

3. It manages the scopes of names

3

Symbol Table as a Linear List
Given the following declarations

final int n = 10;
class T { ... }
int a, b, c;
void m() { ... }

we get the following linear list

"n"
Con

"T"
Type

"a"
Var

"b"
Var

"c"
Var

"m"
Meth

for every declared name
there is an Object node

+ simple
+ declaration order is retained (important if addresses are assigned only later)

- slow if there are many declarations

Basic interface
public class Tab {

public static Obj insert (String name, ...);
public static Obj find (String name);

}

4

5. Symbol Table
5.1 Overview
5.2 Objects
5.3 Scopes
5.4 Types
5.5 Universe

5

Object Nodes
Every declared name is stored in an object node

Kinds of names (objects) in MicroJava
• constants
• variables and fields
• types
• methods

static final int
Con = 0,
Var = 1,
Type = 2,
Meth = 3;

What information is needed about objects?
• for all objects name, type, object kind, pointer to the next object
• for constants value
• for variables address, declaration level
• for types -
• for methods address, number of parameters, parameters

6

Possible Object-oriented Architecture
Possible class hierarchy of objects

Obj
name
type
next

Constant
val

Variable
adr
level

Type Method
adr
nPars
locals

However, this is too complicated because it would require too many type casts

Obj obj = Tab.find("x");
if (obj instanceof Variable) {

((Variable)obj).adr = ...;
((Variable)obj).level = ...;

}

Therefore we choose a "flat implementation": all information is stored in a single class.
This is ok because
• extensibility is not required: we never need to add new object variants
• we do not need dynamically bound method calls

7

Class Obj
class Obj {

static final int Con = 0, Var = 1, Type = 2, Meth = 3;
int kind; // Con, Var, Type, Meth
String name;
Struct type;
Obj next;
int val; // Con: value
int adr; // Var, Meth: address
int level; // Var: 0 = global, 1 = local
int nPars; // Meth: number of parameters
Obj locals; // Meth: parameters and local objects

}

final int n = 10;
class T { ... }
int a, b, c;
void m(int x) { ... }

kind
name
next
val
adr
level
nPars
locals

Con
"n"

10
-
-
-
-

Type
"T"

-
-
-
-
-

Var
"a"

-
0
0
-
-

Var
"b"

-
1
0
-
-

Var
"c"

-
2
0
-
-

Meth
"m"

-
100
-
1

Var
"x"

-
0
1
-
-

Example
parameters are
also of kind Var

adr
level

8

Global Variables

program Prog
int a, b;
char c;
Person p;
int x;

{ ... }

Global variables are stored in the Global Data Area of the MicroJava VM

Gobal Data Area
0 a
1 b
2 c
3 p
4 x
5
...

• Every variable occupies 1 word (4 bytes)
• Addresses are word numbers relative to the Global Data Area
• Addresses are allocated sequentially in the order of declaration

9

Local Variables

void foo()
int a, b;
char c;
Person p;
int x;

{ ... }

Local variables are stored in a "stack frame" on the method call stack

stack

0 a
1 b
2 c
3 p
4 x

• Every variable occupies 1 word (4 bytes)
• Addresses are word numbers relative to the frame pointer
• Addresses are allocated sequentially in the order of their declaration

frame pointer

stack pointer

stack frame
of the current method

frame of the caller

frame of the caller's caller

10

Entering Names into the Symbol Table
The following method is called whenever a name is declared

Obj obj = Tab.insert(kind, name, type);

• creates a new object node with kind, name, type
• checks if name is already declared (if so => error message)
• assigns consecutive addresses to variables and fields
• enters the declaration level for variables (0 = global, 1 = local)
• appends the new node to the end of the symbol table
• returns the new node to the caller

Example for calling insert()

VarDecl
= Type<↑type>

ident<↑name> (. Tab.insert(Obj.Var, name, type); .)
{ "," ident<↑name> (. Tab.insert(Obj.Var, name, type); .)
}
";" .

11

Predeclared Names

Which names are predeclared in MicroJava?
• Standard types: int, char
• Standard constants: null
• Standard methods: ord(ch), chr(i), len(arr)

Predeclared names are also stored in the symbol table

kind
name
val
adr
nPars
locals

Type
"int"
-
-
-
-

Type
"char"
-
-
-
-

Con
"null"
0
-
-
-

Meth
"ord"
-
-
1

Meth
"chr"
-
-
1

Meth
"len"
-
-
1

kind
name
val
adr
level
locals

Var
"ch"
-
0
1
-

Var
"i"
-
0
1
-

Var
"arr"
-
0
1
-

12

Alternative: Special Names as Keywords
int and char could also be implemented as keywords

requires a special treatment in the grammar

Type<↑type>
= ident<↑name> (. Obj x = Tab.find(name); type = x.type; .)
| "int" (. type = Tab.intType; .)
| "char" (. type = Tab.charType; .)
.

It is simpler to have them predeclared in the symbol table

Type<↑type>
= ident<↑name> (. Obj x = Tab.find(name); type = x.type; .).

uniform treatment of predeclared and user-declared names

13

5. Symbol Table
5.1 Overview
5.2 Objects
5.3 Scopes
5.4 Types
5.5 Universe

14

Scope = Range in which a Name is Valid
There are separate scopes (object lists) for
• the program contains global names
• every method contains local names
• every class contains fields
• the "universe" contains the predeclared names

Example

"x"

program P
int a, b;

{
void m (int x)

int b, c;
{

...
}
...

}

"b" "c"

"a" "b" "m"

"int" "char" "null"

scope m
(all names declared in m)

scope P
(all names declared in P)

universe
(predeclared names)

locals

outer

curScope
• Searching for a name always starts in curScope
• If not found, the search continues in the next outer scope
• Example: search b, a and null

15

Scope Nodes
class Scope {

Scope outer; // to the next outer scope
Obj locals; // to the objects in this scope
int nVars; // number of variables in this scope (for address allocation)

}

Method for opening a scope

static void openScope() { // in class Tab
Scope s = new Scope();
s.outer = curScope;
curScope = s;
curLevel++;

}

• called at the beginning of a method or class
• links the new scope with the existing ones
• new scope becomes curScope
• Tab.insert() always creates objects in curScope

Method for closing a scope

static void closeScope() { // in class Tab
curScope = curScope.outer;
curLevel--;

}

• called at the end of a method or class
• next outer scope becomes curScope

16

Opening and Closing a Scope

MethodDecl (. Struct type; String name; .)
= Type<↑type>

ident<↑name> (. curMethod = Tab.insert(Obj.Meth, name, type);
Tab.openScope(); .)

"(" ... ")"
...
"{" (. curMethod.locals = Tab.curScope.locals; .)
...
"}" (. Tab.closeScope(); .)
.

Note
• The method name is entered in the method's enclosing scope
• curMethod is a global variable of type Obj
• After processing the declarations the local objects of the scope are assigned to curMethod.locals
• Scopes are also opened and closed for classes

17

Entering Names into a Scope

class Tab {
static Scope curScope; // current scope
static int curLevel; // current declaration level (0 = global, 1 = local)
...
static Obj insert (int kind, String name, Struct type) {

//--- create object node
Obj obj = new Obj(kind, name, type);
if (kind == Obj.Var) {

obj.adr = curScope.nVars; curScope.nVars++;
obj.level = curLevel;

}
//--- append object node
Obj p = curScope.locals, last = null;
while (p != null) {

if (p.name.equals(name)) error(name + " declared twice");
last = p; p = p.next;

}
if (last == null) curScope.locals = obj; else last.next = obj;
return obj;

}
...

}

Names are always entered in curScope

18

Example

"int" "char" "null"

curScope

19

Example

program P "int" "char" "null"

curScope

Tab.openScope();

20

Example

program P
int a, b;

{

"a" "b"

"int" "char" "null"

curScope

Tab.insert(..., "a", ...);
Tab.insert(..., "b", ...);

21

Example

program P
int a, b;

{
void m()

"a" "b"

"int" "char" "null"

curScope

Tab.insert(..., "m", ...);
Tab.openScope(); "m"

curMethod

22

Example

program P
int a, b;

{
void m()

int x, y; "a" "b"

"int" "char" "null"

curScope

Tab.insert(..., "x", ...);
Tab.insert(..., "y", ...);

"m"

"x" "y"

curMethod

23

Example

program P
int a, b;

{
void m()

int x, y;
{

"a" "b"

"int" "char" "null"

curScope

curMethod.locals =
Tab.curScope.locals

"m"

"x" "y"

curMethod

24

Example

program P
int a, b;

{
void m()

int x, y;
{

...
}

"a" "b"

"int" "char" "null"

curScope

"m"

"x" "y"Tab.closeScope();

curMethod

25

Example

program P
int a, b;

{
void m()

int x, y;
{

...
}
...

}

"int" "char" "null"

curScope

Tab.closeScope();

26

Searching Names in the Symbol Table
The following method is called whenever a name is used

Obj obj = Tab.find(name);

static Obj find (String name) {
for (Scope s = curScope; s != null; s = s.outer)

for (Obj p = s.locals; p != null; p = p.next)
if (p.name.equals(name)) return p;

error(name + " is undeclared");
return noObj;

}

• The lookup starts in curScope
• If not found, the lookup is continued in the next outer scope

x b clocals

a b m

outer

int char

curScope

If a name is not found the method returns noObj
kind
name
type
val
adr
level
nPars
locals

Var
"noObj"
...
0
0
0
0

noObj • predeclared dummy object
• better than null, because it avoids aftereffects

(exceptions)intType

27

5. Symbol Table
5.1 Overview
5.2 Objects
5.3 Scopes
5.4 Types
5.5 Universe

28

Types
Every object has a type with the following properties
• size (in MicroJava always 4 bytes)
• structure (fields for classes, element type for arrays, ...)

Kinds of types in MicroJava?
• primitive types (int, char)
• arrays
• classes

Types are represented by structure nodes

class Struct {
static final int // type kinds

None = 0, Int = 1, Char = 2, Arr = 3, Class = 4;
int kind; // None, Int, Char, Arr, Class
Struct elemType; // Arr: element type
int nFields; // Class: number of fields
Obj fields; // Class: list of fields

}

29

Structure Nodes for Primitive Types

int a, b;
char c;

kind
name
type
next
val
adr
level
nPars
locals

Var
"a"

-
0
0
-
-

Var
"b"

-
1
0
-
-

Var
"c"

-
-
2
0
-
-

kind
elemType
nFields
fields

Int
-
-
-

Char
-
-
-

object node

structure node

There is just a single structure node for int in the whole symbol table.
It is referenced by all objects of type int.
The same is true for structure nodes of kind char.

30

Structure Nodes for Arrays

int[] a;
int b;

kind
name
type
next
val
adr
level
nPars
locals

Var
"a"

-
0
0
-
-

Var
"b"

-
-
1
0
-
-

kind
elemType
nFields
fields

Arr

-
-

The length of an array is statically unknown.
It is stored in the array at run time.

Int
-
-
-

31

Structure Nodes for Classes

class C {
int x;
int y;
int z;

}
C v;

kind
name
type
next
val
adr
level
nPars
locals

Type
"C"

-
-
-
-
-

Var
"v"

-
-
0
0
-
-

kind
elemType
nFields
fields

Class
-
3

Int
-
-
-

kind
name
type
next
val
adr
level
nPars
locals

Var
"x"

-
0
1
-
-

Var
"y"

-
1
1
-
-

Var
"z"

-
2
1
-
-

Types have 2 nodes
• object node: name
• structure node: structure

32

Type Compatibility: Name Equivalence
Two types are the same if they are denoted by the same name
(i.e. if they are represented by the same type node)

class T {...}
T a;
T b;

Type
"T"

...

Var
"a"

...

Var
"b"

...

Class
-
...
...

The types of a and b are the same (can be checked by if (a.type == b.type) ...)
Name equivalence is used in Java, C/C++/C#, Pascal, ..., MicroJava

Exception
In Java (and MicroJava) two array types are the same if they have the same element types!

int[] a;
int[] b;

same types although
different type nodes

Var
"a"

Var
"b"

Array ArrayInt

33

Type Compatibility: Structural Equivalence

Two types are the same if they have the same structure
(i.e. the same fields of the same types, the same element type, ...)

class T1 { int a, b; }
class T2 { int c, d; }
T1 x;
T2 y;

The types of x and y are the same (but not in MicroJava!)

Structural equivalence is used in Modula-3 but not in MicroJava and in most other languages!

Type
"T1"

...

Var
"y"

...

Class
-
2

Var
"a"

...

Var
"b"

...

Type
"T2"

...

Var
"x"

...

Class
-
2

Var
"c"

...

Var
"d"

...

Int
-
-
-

34

Methods for Checking Type Compatibility
class Struct {

...
public boolean isRefType() {

return this.kind == Class || this.kind == Arr;
}

// checks if two types are the same (structural equivalence for arrays, name equivalence otherwise)
public boolean equals (Struct other) {

if (this.kind == Arr)
return other.kind == Arr && other.elemType == this.elemType;

else
return other == this;

}

// checks if "this" is assignable to "dest"
public boolean assignableTo (Struct dest) {

return this.equals(dest)
|| this == Tab.nullType && dest.isRefType()
|| this.kind == Arr && dest.kind == Arr && dest.elemType = Tab.noType;

}

// checks if two types are compatible (e.g. in compare operations)
public boolean compatibleWith (Struct other) {

return this.equals(other)
|| this == Tab.nullType && other.isRefType()
|| other == Tab.nullType && this.isRefType();

}
}

necessary because of builtin function len(arr)

35

Solving LL(1) Conflicts with the Symbol Table

Method syntax in MicroJava

void foo()
int a;

{ a = 0; ...
}

Actually we would like to write it like this

void foo() {
int a;
a = 0; ...

}

But this would result in an LL(1) conflict

Block = "{" { VarDecl | Statement } "}".
VarDecl = Type ident {"," ident}.
Type = ident ["[" "]"].
Statement = Designator "=" Expr ";"

|
Designator = ident {"." ident | "[" Expr "]"}.

First(VarDecl) ∩ First(Statement) = {ident}

36

Solving the Conflict With Semantic Information

private static void Block() {
check(lbrace);
while (sym ∉ {rbrace, eof}) {

if (NextTokenIsType()) VarDecl();
else Statement();

}
check(rbrace);

}

private static boolean NextTokenIsType() {
if (sym != ident) return false;
Obj obj = Tab.find(la.val);
return obj.kind == Obj.Type;

}

Block = "{" { VarDecl | Statement } "}".

checks if the next token is a type name

37

5. Symbol Table
5.1 Overview
5.2 Objects
5.3 Scopes
5.4 Types
5.5 Universe

38

Structure of the "universe"

kind
name
type
val
adr
level
nPars
locals

Type
"int"

-
-
-
-
-

Type
"char"

-
-
-
-
-

Con
"null"

0
-
-
-
-

Meth
"chr"

-
-
-
1

Meth
"ord"

-
-
-
1

Meth
"len"

-
-
-
1

Var
"i"

-
0
1
-
-

Var
"ch"

-
0
1
-
-

Var
"arr"

-
0
1
-
-

Int
-
-
-

Char
-
-
-

Class
-
0
-

Arr

-
-

Var
"noObj"

-
-
-
-
-

None
-
-
-

intType charType nullType noType

chrObj ordObj lenObj noObj

kind
elemType
nFields
fields

39

Interface of the Symbol Table
class Tab {

static Scope curScope; // current top scope
static int curLevel; // nesting level of current scope

static Struct intType; // predefined types
static Struct charType;
static Struct nullType;
static Struct noType;

static Obj chrObj; // predefined objects
static Obj ordObj;
static Obj lenObj;
static Obj noObj;

static Obj insert (int kind, String name, Struct type) {...}
static Obj find (String name) {...}
static void openScope() {...}
static void closeScope() {...}

}

What you should do in the lab

40

• Create a new package MJ.SymTab
• Download Tab.java into it and complete Tab.java
• Call Tab.openScope() and Tab.closeScope() for the program, for methods and for classes
• Return a Struct node in Type (note that it can be an array type)

Enter names into the symbol table at every declaration
• constant declaration (set also the constant value)
• variable declaration (works also for fields)
• class declaration
• method declaration
• parameter declaration

Look up a name in the symbol table wherever it occurs in a program
• in Designator
• in Type
• in object creation (new ident)

Other
• call Tab.dumpScope() before you close the program scope

	Foliennummer 1
	Responsibilities of the Symbol Table
	Symbol Table as a Linear List
	Foliennummer 4
	Object Nodes
	Possible Object-oriented Architecture
	Class Obj
	Global Variables
	Local Variables
	Entering Names into the Symbol Table
	Predeclared Names
	Alternative: Special Names as Keywords
	Foliennummer 13
	Scope = Range in which a Name is Valid
	Scope Nodes
	Opening and Closing a Scope
	Entering Names into a Scope
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Searching Names in the Symbol Table
	Foliennummer 27
	Types
	Structure Nodes for Primitive Types
	Structure Nodes for Arrays
	Structure Nodes for Classes
	Type Compatibility: Name Equivalence
	Type Compatibility: Structural Equivalence
	Methods for Checking Type Compatibility
	Solving LL(1) Conflicts with the Symbol Table
	Solving the Conflict With Semantic Information
	Foliennummer 37
	Structure of the "universe"
	Interface of the Symbol Table
	What you should do in the lab

