

Handouts

Compiler Construction

Prof. Dr. Hanspeter Mössenböck
Johannes Kepler University Linz

hanspeter.moessenboeck@jku.at

2024

http://ssw.jku.at/Misc/CC/
© 2002-2023 Hanspeter Mössenböck, JKU Linz

http://ssw.jku.at/Misc/CC/

Course Contents

1. Overview
 1.1 Motivation
 1.2 Structure of a compiler
 1.3 Grammars
 1.4 Chomsky's classification of grammars
 1.5 The MicroJava language

2. Scanning
 2.1 Tasks of a scanner
 2.2 Regular grammars and finite automata
 2.3 Scanner implementation

3. Parsing
 3.1 Context-free grammars and push-down automata
 3.2 Recursive descent parsing
 3.3 LL(1) property
 3.4 Error handling

4. Semantic processing and attribute grammars

5. Symbol table
 5.1 Overview
 5.2 Objects
 5.3 Scopes
 5.4 Types
 5.5 Universe

6. Code generation
 6.1 Overview
 6.2 The MicroJava VM
 6.3 Code buffer
 6.4 Operands
 6.5 Expressions
 6.6 Assignments
 6.7 Jumps
 6.8 Control structures
 6.9 Methods

7. Building generators with Coco/R
 7.1 Overview
 7.2 Scanner specification
 7.3 Parser specification
 7.4 Error handling
 7.5 LL(1) conflicts
 7.6 Example

Main Literature

• N. Wirth: Compiler Construction. Addison-Wesley 1996

A master of compiler constructions teaches how to write simple and efficient com-
pilers. Also available under
https://people.inf.ethz.ch/wirth/CompilerConstruction/CompilerConstruction1.pdf
and
https://people.inf.ethz.ch/wirth/CompilerConstruction/CompilerConstruction2.pdf

 P.Terry: Compiling with C# and Java. Pearson Addison-Wesley 2005
A very good book that covers most of the topics of this course. It also describes au-
tomatic compiler generation using the compiler generator Coco/R.

 A.W.Appel: Modern Compiler Implementation in Java. Cambridge University Press
1998
Good and up-to-date book that treats the whole area of compiler construction in
depth.

 H. Mössenböck: The Compiler Generator Coco/R. User Manual.
http://ssw.jku.at/Coco/Doc/UserManual.pdf

Further Reading

 S.Muchnick: Advanced Compiler Design and Implementation. Morgan Kaufmann,

1997.
A very good and complete book which goes far beyond the scope of this introducto-
ry course. Not quite cheap but rewarding if you really want to become a compiler
expert.

 H.Bal, D.Grune, C.Jacobs: Modern Compiler Design. John Wiley, 2000
Also a good books that describes the state of the art in compiler construction.

 Aho, R. Sethi, J. Ullman: Compilers –Principles, Techniques and Tools. Addison-
Wesley, 1986.
Old but still good to read. Does not cover recursive descent compilation in depth
but has chapters about optimisation and data flow analysis.

 W.M.Waite, G.Goos: Compiler Construction. Springer-Verlag 1984
Theoretical book on compiler construction. Good chapter on attribute grammars.

https://people.inf.ethz.ch/wirth/CompilerConstruction/CompilerConstruction1.pdf
https://people.inf.ethz.ch/wirth/CompilerConstruction/CompilerConstruction2.pdf
http://ssw.jku.at/Coco/Doc/UserManual.pdf

Compiler Construction Lab

In this lab you will write a small compiler for a Java-like language (MicroJava). You
will learn how to put the presented techniques into practice and will study all the de-
tails involved in the implementation of a "real" compiler.
The project consists of four levels:
 Level 1 requires you to implement a scanner and a parser for the language Micro-

Java, specified in Appendix A of this document.
 Level 2 deals with symbol table handling and some type checking.
 If you want to go to full length with your compiler you should also implement level

3, which deals with code generation for the MicroJava Virtual Machine specified in
Appendix B of this document. This level is (more or less) optional so that you can
get a good mark even if you do not implement it. But you should try to do it.

 Level 4 finally requires you to use the compiler generator Coco/R to produce a
compiler-like program automatically.

The marking scheme will be as follows:
 class test up to 45 points
 project level 1 + 20 points
 project level 2 + 20 points
 project level 3 + 5 points
 project level 4 + 10 points
 100 points

The project should be implemented in Java using Oracle's Java Development Kit
(JDK, http://www.oracle.com/technetwork/java/javase/downloads/) or some other
Java development environment.

Level 1: Scanning and Parsing
In this part of the project you will implement a scanner and a recursive descent parser
for MicroJava. Start with the implementation of the scanner and do the following
steps:
1. Study the specification of MicroJava carefully (Appendix A). What are the tokens

of the MicroJava grammar? What is the syntax of identifiers, numbers, character
constants and comments? What keywords and predeclared names do you need?

2. Create a package MJ and download the files Scanner.java and Token.java from
http://ssw.jku.at/Misc/CC/ into this package. Look at those files and try to under-
stand what they do.

3. Complete the skeleton file Scanner.java according to the slides of the course and
compile Token.java and Scanner.java.

4. Download the file TestScanner.java into the package MJ and compile it.
5. Download the MicroJava program sample.mj and run TestScanner on it.
6. Download the MicroJava program BuggyScannerInput.mj and run TestScanner on

it in order to check if incorrect tokens are handled properly.

http://www.oracle.com/technetwork/java/javase/downloads/
http://ssw.jku.at/Misc/CC/

Next, you should write a recursive descent parser that uses your scanner to read and
check the input tokens. Do the following steps:
1. Download the file Parser.java into the package MJ and see what it does.
2. Complete the skeleton file Parser.java according to the slides of the course. Write

a recursive descent parsing method for every production of the MicroJava grammar
(see Appendix A). Compile Parser.java.

3. Download the file TestParser.java, compile it, and run it on sample.mj. If your
parser is correct no errors should be reported.

4. Extend Parser.java with an error recovery according to the slides of the course.
Add synchronisation points at the beginning of statements and declarations.

5. Download the MicroJava program BuggyParserInput.mj and run TestParser on it
in order to check if syntax errors are handled correctly.

Level 2: Symbol Table Handling
Extend your parser with semantic processing. At every declaration the declared name
must be entered into the symbol table. When a name occurs in a statement it must be
looked up in the symbol table and the necessary context conditions must be checked
(see Appendix A.4). Do the following steps:
1. Create a new package MJ.SymTab (i.e. a package SymTab within the package MJ).
2. Download the files Obj.java, Struct.java, Scope.java and Tab.java into this pack-

age and see what they do.
3. Complete the skeleton file Tab.java (i.e. the symbol table) according to the slides

of the course.
4. Add semantic actions to Parser.java. These actions should enter every MicroJava

name into the symbol table when it is declared and should retrieve it from the sym-
bol table when it is used. The semantic actions should also open and close scopes
appropriately. Try to check also some context conditions from Appendix A.4 (most
context conditions can only be checked during code generation).

5. Compile everything and run TestParser.java on sample.mj again to see if it works.
Insert some semantic errors into sample.mj. For example, use a few names without
declaring them or declare some names twice and see if your compiler detects those
errors.

6. In order to check whether you built the symbol table correctly you can call
Tab.dumpScope whenever you have processed all declarations of a scope in your
MicroJava program.

Level 3: Code Generation
The next task is to generate code for the MicroJava Virtual Machine. Before you start,
carefully study the specification of the VM (Appendix B) in order to become familiar
with the run-time data structures, the addressing modes, and the instructions. Then do
the following steps:
1. Create a new package MJ.CodeGen.
2. Download the files Code.java, Operand.java and Decoder.java into this package.
3. Complete the skeleton file Code.java according to the slides of the course.
4. Add semantic actions to Parser.java. These actions should call the methods of

Code.java and Operand.java as shown on the slides. Start with the actions for se-
lectors (e.g. obj.f and arr[i]), and continue with the semantic actions for expres-
sions, assignments, if statements, while statements and method calls. Note that
most context conditions from Appendix A.4 have to be checked here as well.

5. Download the file Compiler.java into the package MJ. This is the main program of
your compiler that replaces TestParser.java. Compile it and run it on sample.mj.
This should produce a file sample.obj with the compiled program.

6. Download BuggySemanticInput.mj and check if your compiler detects all semantic
errors in this MicroJava program.

In order to run your compiled MicroJava programs download the file Run.java (i.e.
the MicroJava Virtual Machine) into the package MJ and compile it. You can invoke
it with

java MJ.Run sample.obj [-debug]

You can also decode a compiled MicroJava program by downloading the file De-
code.java to the package MJ and compiling it. You can invoke it with

java MJ.Decode sample.obj

Level 4: The Compiler Generator Coco/R
This task requires you to use the compiler generator Coco/R for building programs
that process structured input. It consists of two subtasks of which you have to imple-
ment at least one.

Task 1: Reading and Building a Binary Tree
Binary trees are dynamic data structures consisting of nodes, where every node has at
most 2 sons, which are again binary trees. Assume that we want to build the following
binary tree:

London

Paris

Madrid Rome

Vienna

Brussels

Data type for nodes

class Node {
 String name;
 Node left;
 Node right;
}

We want to read the tree from an input file, which represents the tree structure with
parentheses, i.e.:

(London
 (Brussels)
 (Paris
 (Madrid)
 (Rome
 ()
 (Vienna)
)
)
)

Describe the input of such trees by a recursive EBNF grammar. Write a Coco/R com-
piler description using this grammar. Terminal symbols are identifiers as well as '('
and ')'. Add attributes and semantic actions to your compiler description in order to
build the corresponding binary tree. Write also a dump method that prints the tree
after it was built.
In order to use Coco/R go to http://ssw.jku.at/Coco/#Java and download the files Co-
co.jar, Scanner.frame and Parser.frame into a new directory Tree. If your compiler
description is in a file Tree.atg in the directory Tree go to this directory and type
 java -jar Coco.jar Tree.atg

This will generate the files Scanner.java and Parser.java in the directory Tree. Write
a main program TreeBuilder.java that creates a scanner and a parser and calls the par-
ser (look at the slides in the course).

Task 2: Building a Phone Book
Assume that we have a text file with phone book entries. Every entry consists of a
person's name and one or more phone numbers for that person. A sample phone book
might look like this:
 Boulder, John M.
 home 020 7815 1234
 office 020 3465 234
 Brown, Cynthia 1234567
 Douglas, Ann Louise
 office +44 (0)20 234 567
 mobile +43 (0)664 7865 234
 ...

• Names consist of letters and may be abbreviated with a dot.
• Phone numbers consist of an optional country code (e.g. +44), an optional city code

(e.g. 020) and a phone number consisting of one or several digit sequences. Country
codes start with a '+' and must be followed by a city code (with a '0' in brackets).
City codes without country codes start with a '0'. If there is no country code the de-
fault is +44. If there is no city code the default is 020.

• Phone numbers may be preceded by the words "home", "office" or "mobile". If
such a word is missing the default is "home".

Describe the syntax of such a phone book file by a grammar. Write a Coco/R compil-
er description that processes such input files by reading them and building a phone
book data structure in memory, where every entry of this data structure holds the fam-
ily name, the first name(s), and the phone number(s) including the country code, the
city code and the kind of phone number as separate fields. Write also a dump method
that prints the whole phone book.

http://ssw.jku.at/Coco/#Java

Appendix A. The MicroJava Language
This section describes the MicroJava language that is used in the labs of the compiler
construction module. MicroJava is similar to Java but much simpler.

A.1 General Characteristics

 A MicroJava program consists of a single program file with static fields and static
methods. There are no external classes but only local classes that can be used as da-
ta types.

 The main method of a MicroJava program is always called main(). When a Micro-
Java program is called this method is executed.

 There are
 - Constants of type int (e.g. 3) and char (e.g. 'x') but no string constants.
 - Variables: all variables of the program are static.
 - Primitive types: int, char (Ascii)
 - Reference types: one-dimensional arrays like in Java as well as classes with fields
 but without methods.
 - Static methods.
 There is no garbage collector (objects are deallocated when the program ends).
 Predeclared methods are ord, chr, len.

Sample program

program P
 final int size = 10;

 class Table {
 int[] pos;
 int[] neg;
 }

 Table val;

{
 void main()
 int x, i;
 { //---------- Initialize val ------------
 val = new Table;
 val.pos = new int[size];
 val.neg = new int[size];
 i = 0;
 while (i < size) {
 val.pos[i] = 0; val.neg[i] = 0;
 i = i + 1;
 }
 //------------ Read values -------------
 read(x);
 while (x != 0) {
 if (x >= 0) {
 val.pos[x] = val.pos[x] + 1;
 } else if (x < 0) {
 val.neg[-x] = val.neg[-x] + 1;
 }
 read(x);
 }
 }
}

A.2 Syntax
Program = "program" ident {ConstDecl | VarDecl | ClassDecl}
 "{" {MethodDecl} "}".

ConstDecl = "final" Type ident "=" (number | charConst) ";".
VarDecl = Type ident {"," ident } ";".
ClassDecl = "class" ident "{" {VarDecl} "}".
MethodDecl = (Type | "void") ident "(" [FormPars] ")" {VarDecl} Block.
FormPars = Type ident {"," Type ident}.
Type = ident ["[" "]"].

Block = "{" {Statement} "}".
Statement = Designator ("=" Expr | ActPars) ";"
 | "if" "(" Condition ")" Statement ["else" Statement]
 | "while" "(" Condition ")" Statement
 | "return" [Expr] ";"
 | "read" "(" Designator ")" ";"
 | "print" "(" Expr ["," number] ")" ";"
 | Block
 | ";".
ActPars = "(" [Expr {"," Expr}] ")".

Condition = Expr Relop Expr.
Relop = "==" | "!=" | ">" | ">=" | "<" | "<=".

Expr = ["-"] Term {Addop Term}.
Term = Factor {Mulop Factor}.
Factor = Designator [ActPars]
 | number
 | charConst
 | "new" ident ["[" Expr "]"]
 | "(" Expr ")".
Designator = ident {"." ident | "[" Expr "]"}.
Addop = "+" | "-".
Mulop = "*" | "/" | "%".

Lexical structure

Character classes: letter = 'a'..'z' | 'A'..'Z'.
 digit = '0'..'9'.
 whiteSpace = ' ' | '\t' | '\r' | '\n'.

Terminal classes: ident = letter {letter | digit | '_'}.
 number = digit {digit}.
 charConst = "'" char "'". // including '\r', '\t', '\n'

Keywords: program class
 if else while read print return
 void final new

Operators: + - * / %
 == != > >= < <=
 () [] { }
 = ; , .

Comments: // to the end of line

A.3 Semantics
If a term in this document is underlined it refers to the following definitions:

Reference type
Arrays and classes are called reference types.

Type of a constant
 The type of an integer constant (e.g. 17) is int.
 The type of a character constant (e.g. 'x') is char.

Same type
Two types are the same
 if they are denoted by the same type name, or
 if both types are arrays and their element types are the same.

Type compatibility
Two types are compatible
 if they are the same, or
 if one of them is a reference type and the other is the type of null.

Assignment compatibility
A type src is assignment compatible with a type dst
 if src and dst are the same, or
 if dst is a reference type and src is the type of null.

Predeclared names
int the type of all integer values
char the type of all character values
null the null value of a class or array variable, meaning "pointing to no value"
chr standard method; chr(i) converts the int expression i into a char value
ord standard method; ord(ch) converts the char value ch into an int value
len standard method; len(a) returns the number of elements of the array a

Scope
A scope is the textual range of a method or a class. It extends from the point after the
method or class name in the declaration to the closing curly brace of the method or
class declaration. A scope excludes other scopes that are nested within it. We assume
that there is an (artificial) outermost scope (called the universe), to which the main
program is local and which contains all predeclared names. The declaration of a name
in an inner scope hides the declarations of the same name in outer scopes.

Note
 Indirectly recursive methods are not allowed in MicroJava, since every name must

be declared before it is used. This would not be possible if indirect recursion were
allowed.

 A predeclared name (e.g. int or char) can be redeclared in an inner scope (but this is
not recommended).

A.4 Context Conditions

General context conditions
 Every name must be declared before it is used.
 A name must not be declared twice in the same scope.
 A program must contain a method named main. It must be declared as a void meth-

od and must not have parameters.

Context conditions for predeclared methods
chr(e) e must be an expression of type int.
ord(c) c must be of type char.
len(a) a must be an array.

Context conditions for the MicroJava productions

Program = "program" ident {ConstDecl | VarDecl | ClassDecl} "{" {MethodDecl} "}".

ConstDecl = "final" Type ident "=" (number | charConst) ";".

 The type of number or charConst must be the same as the type of Type.

VarDecl = Type ident {"," ident } ";".

ClassDecl = "class" ident "{" {VarDecl} "}".

MethodDecl = (Type | "void") ident "(" [FormPars] ")" {VarDecl} "{" {Statement} "}".

 Type must be int or char.
 The main method must be parameterless and void.
 Function methods must be left via a return statement (this is checked at run time).

FormPars = Type ident {"," Type ident}.

Type = ident ["[" "]"].

 ident must denote a type.

Statement = Designator "=" Expr ";".

 Designator must denote a variable, an array element or an object field.
 The type of Expr must be assignment compatible with the type of Designator.

Statement = Designator ActPars ";".

 Designator must denote a method.

Statement = "read" "(" Designator ")" ";".

 Designator must denote a variable, an array element or an object field.
 Designator must be of type int or char.

Statement = "print" "(" Expr ["," number] ")" ";".

 Expr must be of type int or char.

Statement = "return" [Expr] .

 The type of Expr must be assignment compatible with the function type of the cur-
rent method.

 If Expr is missing the current method must be declared as void.

Statement = "if" "(" Condition ")" Statement ["else" Statement]
 | "while" "(" Condition ")" Statement
 | "{" {Statement} "}"
 | ";".

ActPars = "(" [Expr {"," Expr}] ")".

 The numbers of actual and formal parameters must match.
 The type of every actual parameter must be assignment compatible with the type of

every formal parameter at corresponding positions.

Condition = Expr Relop Expr.

 The types of both expressions must be compatible.
 Classes and arrays can only be checked for equality or inequality.

Expr = Term.

Expr = "-"Term.

 Term must be of type int.

Expr = Expr Addop Term.

 Expr and Term must be of type int.

Term = Factor.

Term = Term Mulop Factor.

 Term and Factor must be of type int.

Factor = Designator | number | charConst| "(" Expr ")".

Factor = Designator ActPars.

 Designator must denote a method.

Factor = "new" ident .

 The type of ident must be a class.

Factor = "new" ident "[" Expr "]".

 ident must denote a type.
 The type of Expr must be int.

Designator = Designator "." ident .

 The type of Designator must be a class.
 ident must be a field of Designator.

Designator = Designator "[" Expr "]".

 The type of Designator must be an array.
 The type of Expr must be int.

Relop = "==" | "!=" | ">" | ">=" | "<" | "<=".

Addop = "+" | "-".

Mulop = "*" | "/" | "%".

A.5 Implementation Restrictions

 There must not be more than 127 local variables.
 There must not be more than 32767 global variables.
 A class must not have more than 32767 fields.

Appendix B. The MicroJava VM
This section describes the architecture of the MicroJava Virtual Machine that is used
in the compiler lab. The MicroJava VM is similar to the Java VM but has less and
simpler instructions. Whereas the Java VM uses operand names from the constant
pool that are resolved by the loader, the MicroJava VM uses fixed operand addresses.
Java instructions encode the types of their operands so that a verifyer can check the
consistency of an object file. MicroJava instructions do not encode operand types.

B.1 Memory Layout
The memory areas of the MicroJava VM are as follows:

code This area contains the code of the methods. The register pc contains the in-
dex of the currently executed instruction. mainpc contains the start address of
the method main().

data This area holds the (static or global) data of the main program. It is an array
of variables. Every variable holds a single word (32 bits). The addresses of
the variables are indexes into the array.

heap This area holds the dynamically allocated objects and arrays. The blocks are
allocated consecutively. free points to the beginning of the still unused area
of the heap. There is no garbage collector. Dynamically allocated memory is
only returned at the end of the program. All object fields hold a single word
(32 bits). Arrays of char elements are byte arrays. Their length is a multiple
of 4. Pointers are word offsets into the heap. Array objects start with an in-
visible word, containing the array length.

mstack This area (the method stack) maintains the activation frames of the invoked
methods. Every frame consists of an array of local variables, each holding a
single word (32 bits). Their addresses are indexes into the array. ra is the re-
turn address of the method, dl is the dynamic link (a pointer to the frame of
the caller). A newly allocated frame is initialized with all zeroes.

estack This area (the expression stack) is used to store the operands of expressions.
After every MicroJava statement estack is empty. Method parameters are
passed on the expression stack and are removed by the Enter instruction of
the invoked method. The expression stack is also used to pass the return val-
ue of the method back to the caller.

All data (global variables, local variables, heap variables) are initialized with a null
value (0 for int, chr(0) for char, null for references).

code

code
(byte array)

pc

data

data
(word array)

heap

heap
(word array)

mstack

mstack
(word array)

ra
dl fp

sp

estack

estack
(word array)

esp

free

B.2 Instruction Set
The following tables show the instructions of the MicroJava VM together with their
encoding and their behaviour. The third column of the tables shows the contents of
estack before and after every instruction, for example

..., val, val

..., val
means that this instruction removes two words from estack and pushes a new word
onto it. The operands of the instructions have the following meaning:
 b a byte
 s a short int (16 bits)
 w a word (32 bits)
Variables of type char are stored in the lowest byte of a word and are manipulated
with word instructions (e.g. load, store). Array elements of type char are stored in a
byte array and are loaded and stored with special instructions.

Loading and storing of local variables

1 load b ... Load
 ..., val push(local[b]);
2..5 load_n ... Load (n = 0..3)
 ..., val push(local[n]);
6 store b ..., val Store
 ... local[b] = pop();
7..10 store_n ..., val Store (n = 0..3)
 ... local[n] = pop();

Loading and storing of global variables

11 getstatic s ... Load static variable
 ..., val push(data[s]);
12 putstatic s ..., val Store static variable
 ... data[s] = pop();

Loading and storing of object fields

13 getfield s ..., adr Load object field
 ..., val adr = pop()/4; push(heap[adr+s]);
14 putfield s ..., adr, val Store object field
 ... val = pop(); adr = pop()/4;
 heap[adr+s] = val;

Loading of constants

15..20 const_n ... Load constant (n = 0..5)
 ..., val push(n);
21 const_m1 ... Load minus one
 ..., -1 push(-1);
22 const w ... Load constant
 ..., val push(w);

Arithmetic

23 add ..., val1, val2 Add
 ..., val1+val2 push(pop() + pop());
24 sub ..., val1, val2 Subtract
 ..., val1-val2 push(-pop() + pop());
25 mul ..., val1, val2 Multiply
 ..., val1*val2 push(pop() * pop());
26 div ..., val1, val2 Divide
 ..., val1/val2 x = pop(); push(pop() / x);
27 rem ..., val1, val2 Remainder
 ..., val1%val2 x = pop(); push(pop() % x);
28 neg ..., val Negate
 ..., - val push(-pop());
29 shl ..., val, x Shift left
 ..., val1 x = pop(); push(pop() << x);
30 shr ..., val, x Shift right (arithmetically)
 ..., val1 x = pop(); push(pop() >> x);

Object creation

31 new s ... New object
 ..., adr allocate area of s words;
 initialize area to all 0;
 push(adr(area));
32 newarray b ..., n New array
 ..., adr n = pop();
 if (b==0)
 alloc. array with n elems of byte size;
 else if (b==1)
 alloc. array with n elems of word size;
 initialize array to all 0;
 push(adr(array))

Array access

33 aload ..., adr, i Load array element
 ..., val i = pop(); adr = pop();
 push(heap[adr+1+i]);
34 astore ..., adr, i, val Store array element
 ... val = pop(); i = pop(); adr = pop();
 heap[adr+1+i] = val;
35 baload ..., adr, i Load byte array element
 ..., val i = pop(); adr = pop();
 x = heap[adr+1+i/4];
 push(byte i%4 of x);
36 bastore ..., adr, i, val Store byte array element
 ... val = pop(); i = pop(); adr = pop();
 x = heap[adr+1+i/4];
 set byte i%4 in x;
 heap[adr+1+i/4] = x;
37 arraylength ..., adr Get array length
 ..., len adr = pop();
 push(heap[adr]);

Stack manipulation

38 pop ..., val Remove topmost stack element
 ... dummy = pop();

Jumps

39 jmp s Jump unconditionally
 pc = s;
40..45 j<cond> s ..., x, y Jump conditionally (eq, ne, lt, le, gt, ge)
 ... y = pop(); x = pop();
 if (x cond y) pc = s;

Method call (PUSH and POP work on mstack)

46 call s Call method
 PUSH(pc+3); pc = s;
47 return Return
 pc = POP();
48 enter b1, b2 Enter method
 psize = b1; lsize = b2; // in words
 PUSH(fp); fp = sp; sp = sp + lsize;
 initialize frame to 0;
 for (i=psize-1;i>=0;i--) local[i] = pop();
49 exit Exit method
 sp = fp; fp = POP();

Input/Output

50 read ... Read
 ..., val readInt(x); push(x);
51 print ..., val, width Print
 ... width = pop(); writeInt(pop(), width);
52 bread ... Read byte
 ..., val readChar(ch); push(ch);
53 bprint ..., val, width Print byte
 ... width = pop(); writeChar(pop(), width);

Miscellaneous

54 trap b Generate run time error
 print error message depending on b;
 stop execution;

B.3 Object File Format
2 bytes: "MJ"
4 bytes: code size in bytes
4 bytes: number of words for the global data
4 bytes: mainPC: the address of main() relative to the beginning of the code area
n bytes: the code area (n = code size specified in the header)

B.4 Run-time Errors
1 Missing return statement in a function.

