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ABSTRACT
Memory leaks are a major threat in modern software systems. They
occur if objects are unintentionally kept alive longer than necessary
and are often indicated by continuously growing data structures.

While there are various state-of-the-art memory monitoring
tools, most of them share two critical shortcomings: (1) They have
no knowledge about themonitored application’s data structures and
(2) they support no or only rudimentary analysis of the application’s
data structures over time.

This paper encompasses novel techniques to tackle both of these
drawbacks. It presents a domain-specific language (DSL) that allows
users to describe arbitrary data structures, as well as an algorithm
to detect instances of these data structures in reconstructed heaps.
In addition, we propose techniques and metrics to analyze and mea-
sure the evolution of data structure instances over time. This allows
us to identify those instances that are most likely involved in a
memory leak. These concepts have been integrated into AntTracks,
a trace-based memory monitoring tool. We present our approach
to detect memory leaks in several real-world applications, showing
its applicability and feasibility.
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1 INTRODUCTION
Modern programming languages such as Java use automatic garbage
collection. Heap objects that are no longer reachable from static
fields or thread-local variables (so-calledGC roots) are automatically
reclaimed by a garbage collector (GC). A memory leak occurs if
objects that are no longer needed remain reachable from GC roots
due to programming errors. For example, a developer may forget to
remove objects from their containing data structures. These objects
cannot be reclaimed by the garbage collector and will therefore ac-
cumulate over time. Beside excessive dynamic allocations [27–29],
memory leaks are one of the major memory anomalies [10].

Applications may involve hundreds of millions of objects at a
single point in time. Thus, tools to resolve memory problems are of
paramount importance. Most state-of-the-art tools, such as Visu-
alVM [34] or Eclipse Memory Analyzer (MAT) [32], perform heap
analyses based on snapshots, i.e., heap dumps. While such tools
can group heap objects by their types, they have no notion on how
these objects are connected as data structures. This is problematic
because memory leaks are frequently related to data structures [41].
By recognizing data structures, users can be provided with further
guidance during memory leak detection.

In addition to the problem of missing data structure information,
a single heap dump does not give any insights regarding the heap’s
evolution over time. Thus, some approaches [6, 12, 13, 34], take
multiple snapshots and compare them. Nevertheless, this still does
not allow temporal analyses on the object-level, i.e., its not possible
to tell whether a certain object was alive in snapshot A and is still
alive in a later snapshot B.

In contrast to snapshot-based approaches, trace-based approaches
continuously record information about events, e.g., allocations or
object moves executed by the GC, throughout an application’s life
time. The recorded trace can later be used to reconstruct the heap
for an arbitrary garbage collection point. In addition to that, de-
tailed trace-based approaches are able to track specific objects over
multiple garbage collections. One example of a trace-based mem-
ory monitoring tool is AntTracks, which is based on the Hotspot
Java VM. It was initially developed by Lengauer et al. [17] and has
been extended by Weninger et al. [37–39]. All concepts presented
in this work have been integrated into AntTracks to prove the
feasibility of our approach.

Weninger et al. [36] presented first ideas on how to use memory
traces to find the root causes of memory leaks by focusing on
the growth of data structures over time. In this work, we extend
and complement our work by a more in-depth description of the
approach and the algorithms used, new metrics and metric patterns
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for data structure growth analysis, as well as a thorough evaluation
of our implementation based on several real-world scenarios in
which we detect memory leaks caused by growing data structures.

Our scientific contributions are

(1) a DSL that enables users to describe arbitrary data structures,
(2) an algorithm to detect instances of previously defined data

structures in reconstructed heaps,
(3) techniques, metrics and patterns for data structure growth

analysis to identify data structures that are possibly involved
in memory leaks, as well as

(4) an evaluation of our approach based on memory leak detec-
tion in real-world applications.

2 BACKGROUND
AntTracks consists of two parts: The AntTracks VM, a virtual ma-
chine based on the Java Hotspot VM [33], and the AntTracks An-
alyzer, a memory analysis tool. Since the concepts presented in
this paper have been integrated into AntTracks, it is essential to
understand how AntTracks works.

2.1 Trace Recording by the AntTracks VM
The AntTracks VM records memory events such as object allocation
events and object movements executed by the GC by writing them
into trace files. It keeps the event size to a minimum and avoids the
recording of redundant data [16, 17].

2.2 AntTracks Analyzer
2.2.1 Reconstruction.
The AntTracks Analyzer is able to parse previously created trace
files. The events in the trace are incrementally processed, which
enables to reconstruct the heap at every garbage collection point [1].
A heap state is the set of heap objects that were live in themonitored
application at a certain point in time. For every heap object, a
number of properties can be reconstructed, including its address,
its type, its allocation site, the heap objects it references, and the
heap objects it is referenced by. To allow addressing a specific object
within a heap state, every heap object is assigned a unique index.

2.2.2 Heap Object Classification.
The AntTracks Analyzer’s core mechanism is object classification
in combination with multi-level grouping [38, 39] to enable user-
driven heap analysis. Using object classifiers, heap objects can be
grouped according to certain criteria such as type, allocation site,
allocating thread, and so on. For example, the Type classifier allows
to group objects by their types, e.g. java.util.LinkedList. In
multi-level grouping, objects are grouped according to the classifi-
cation results of multiple classifiers. This results in a hierarchical
classification tree.

A common classifier combination is to first group all heap ob-
jects by their types (using the Type classifier) and then by their
allocation sites (using the Allocation Site classifier). Figure 1 shows
an example of a classification tree. Yellow rectangles represent
tree nodes and blue circles represent the objects that were clas-
sified into the respective tree branch. For example, the objects 0
to 3 are of type Object[], of which the objects 0, 1 and 3 have

Figure 1: A classification tree that first groups all objects by
their types and then by their allocation sites.

Figure 2: Shared transitive closure ("reachability") and GC
closure ("ownership") of the two red objects.

been allocated in Stack:init() and object 2 has been allocated in
MyService:foo().

2.2.3 Closures and Metrics.
Users require guidance to decide how they should navigate through
a classification tree. AntTracks currently supports three metrics
that are displayed for every object group, i.e., for every node in the
classification tree:

• Shallow
The shallow object count and the shallow byte count are
calculated based on the objects classified at a given node,
without taking into account any referenced objects. For ex-
ample, the shallow object count of the node Object[] in
Figure 1 is 4. The shallow byte count is the size of the ar-
rays themselves, without taking into account the sizes of the
objects referenced by them.

• Deep
The deep object count and the deep byte count are the num-
ber of objects / number of bytes of a node’s transitive closure.
The transitive closure contains all objects that are reachable
from a given object group, as shown in Figure 2.

• Retained
The retained object count and the retained byte count are
the number of objects / number of bytes of a node’s GC
closure. The GC closure contains all objects that are owned
by a given object group, as shown in Figure 2. In other words,
the GC closure contains all objects that could be freed by the
garbage collector if the given object group would be freed.

3 APPROACH
Over the last years, the memory consumption of applications has
grown drastically. This poses a challenge to memory monitoring
tools because it results in more complex heap states that have to
be visualized in a user-friendly way. Many tools still use flat type
histograms (see Figure 4) as their main visualization.
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Figure 3: Our approach consists of four stages: (1) Description of data structures (DS) by a DSL, (2) detection of data structure
instances in reconstructedheap states, (3)heap state analysis, i.e., data structure analysis at a single point in time, and (4) growth
analysis, i.e., tracking data structures over time, detecting those with suspicious growth.

Figure 4: A type histogram displays every type alongside the
number of allocated objects and the consumed memory.

In many heap states, most of the objects are auxiliary objects,
i.e., internal parts of more complex data structures. These are often
located at the top of type histograms. One prominent example are
java.util.HashMap$Node instances. Though head objects of data
structures (e.g., of type HashMap) are far more likely the root cause
for a memory leak, they are only listed at a lower position.

In this work, we present an approach that greatly reduces the
complexity that users have to cope with during memory analysis.
The idea is to hide objects that convey little information and to focus
on the analysis of data structures instead. Generally speaking, a data
structure is a collection of data values, the relationships among them,
and the functions or operations that can be applied to the data [35].
For memory leak detection, we are especially interested in the
relationships among the objects that make up the data structure.

This section explains the core concepts of our approach (see
Figure 3): How data structures can be described by a DSL, how they
are detected in a reconstructed heap state, how this information can
be used to ease heap state analysis, and how information about data
structure growth over time can be derived and used in trace-based
tools such as AntTracks.

3.1 Data Structure Description
In object-oriented languages such as Java, data structures typically
consist of a head object, multiple internal objects that serve as a
backbone, and leaf objects that represent the actual contents of
the data structure. These objects reference each other according
to a specific pattern. This pattern has to be known by a memory
monitoring tool before it can detect instances of the respective data
structure and perform analyses on it.

3.1.1 Benefits of a DSL for Data Structure Description.
Themost straightforward way to achieve pattern recognition would
be to hard-code the patterns of well-known data structures directly
into the tool’s data structure instance detection algorithm. How-
ever, the set of data structure types that can be detected by the
tool would be fixed. Users could not define new data structures, for
example data structures specific to their application or data struc-
tures introduced by third-party libraries. Also, if the well-known
data structures change in the future, e.g., due to renamed types, the
tool’s source code would have to be modified.

Figure 5: Description of java.util.LinkedList in our DSL,
without and with using namespaces and wildcards.

To circumvent these drawbacks, we developed a DSL for describ-
ing arbitrary data structures in separate files. These data structure
description files can then be read by memory analysis tools such
as AntTracks to be used for data structure instance detection in re-
constructed heap states. Using a DSL for data structure description
instead of hard-coded data structure patterns has various advan-
tages. It enables us to ship descriptions of well-known data struc-
tures (e.g., data structures in Java’s java.util package) directly
with AntTracks. At the same time, tool users can extend the pre-
defined data structure descriptions with descriptions of their own
data structures. Finally, changes to existing data structures do not
require changes in the source code, but only in the data structure
description file(s) that are much easier to adjust.

3.1.2 DSL Format.
The left side of Figure 5 shows how java.util.LinkedList can be
described in our DSL. Every type that is a part of the data structure
needs a description, i.e., in our example java.util.LinkedList
and java.util.LinkedList$Node. Since Java applies type era-
sure [3, 4], no information about generics is available at run time and
thuswe do not include generics in theDSL. java.util.LinkedList
represents the head of the data structure and has to be marked with
one of the head keywords (such as DS). Internal parts of data struc-
tures such as java.util.LinkedList$Node are not marked with
a keyword. Similar to Java syntax, the name of the type is followed
by a pair of curly braces. These contain a set of types (separated
by semicolons) that may be referenced by the respective data struc-
ture part. We call this set of types pointed-to types. For example,
an instance of java.util.LinkedList may point to instances of
java.util.LinkedList$Node (line 2), which in turn may point to
instances of java.util.LinkedList$Node instances (line 5), and
so on. Line 6 presents two special language features: (1) a star (i.e., *)
can be used as a wildcard within the name of a pointed-to type
and (2) enclosing a type in parentheses declares it as a leaf. The
term (*) denotes a leaf of any type. Leaf information is used during
data structure instance detection to determine the boundaries of a
data structure. The DSL also supports namespaces which makes it



possible to omit package declarations in type names. For example,
the right side of Figure 5 shows a minimized version of the data
structure description. Line 1 defines the namespace java.util,
thus we can omit the package name for the described types (line 2
and line 5). Since java.util.LinkedList only references the list
head, we do not have to specify the exact pointed-to type but may
use a wildcard instead (line 3). For java.util.LinkedList$Node,
we may again omit the package name in the pointed-to type (line 6).

3.1.3 Implementation.
To implement our DSL, we used the compiler generator Coco/R [21].
It takes an attributed grammar (in EBNF) of a source language
and generates a scanner and a recursive descent parser for it. We
chose this approach because it allowed us to rapidly prototype
first versions of the DSL and to remain flexible in extending the
language’s grammar with new production rules. The full grammar
can be downloaded here1.

3.2 Parsing Data Structure Descriptions and
Detecting Instances

3.2.1 Assigning Data Structure Descriptions to Types.
Before instances of data structures can be detected in a heap state,
the data structure descriptions have to be parsed and assigned to
their corresponding types. Types without a data structure descrip-
tion are assigned a non-head dummy description that does not
declare any pointed-to types. They will always act as leaves in data
structures. Array types of reference types are an exception to this
rule. They are assigned a non-head dummy description too, but they
declare * (any type) as their pointed-to type. After this step, every
type is equipped with its corresponding data structure description.

3.2.2 Resolving Type Names.
As described in Section 3.1.2, every type’s data structure description
defines a set of pointed-to types that belong to the data structure.
These type names may contain wildcards and have to be resolved
to all types matching the name pattern. For example, if a type is
defined to have a pointed-to type *Node, this has to be resolved to
the set of all types whose name ends with Node. The pointed-to
type * is not resolved into the set of all types (which would lead to
enormous memory overhead), but to java.lang.Object.

3.2.3 Detecting Instances.
A reconstructed heap contains information about the objects that
are live at a certain point in time (e.g., their types), as well as
their references between each other. First, the algorithm filters and
remembers all objects that are data structure heads, i.e., objects
whose types have a head data structure description assigned. Then,
to determine which objects belong to a certain data structure, the
head’s pointers are followed recursively. For every object that is
met along the way, the first matching branch of the following four
is taken:

(1) The object’s type is part of its referencing object’s set of pointed-
to types and is a data structure head type.
This it the case if a data structure points to the head of
another data structure. The head object is treated as a leaf of
the referencing data structure and the descent is stopped. A

1http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE19/DSL.atg

typical example for this is Java’s HashSet, which is backed
by a HashMap. Figure 6 visualizes this pattern. A HashSet
only consists of two objects: The head of the hash set and
the head of the hash map.

(2) The object’s type is part of its referencing object’s set of non-
leaf pointed-to types.
In this case, the object belongs to the referencing data struc-
ture, and the descent is continued with its children. For exam-
ple, this is the case for LinkedList$Node instances within
a LinkedList.

(3) The object’s type is part of its referencing object’s set of leaf
pointed-to types.
This means that the object belongs to the data structure, but
it is a leaf and thus the descent is stopped. For example, the
objects that have been added to a LinkedList, i.e., those
which are referenced from a LinkedList$Node instance, are
such leaf objects.

(4) The object’s type is not part of the referencing object’s set of
pointed-to types.
This means that the object does not belong to the data struc-
ture at all, and thus the descent is stopped.

Every visited object is marked to avoid multiple visits.
For example, Figure 7 shows a LinkedList that has been de-

tected using the description in Figure 5. The traversal starts at the
head LL. Next, the first N instance is visited. The data structure
description of LinkedList$Node then tells us to follow further N
nodes (left side, line 5), or to visit any other object as a leaf without
continuing the recursive descent (left side, line 6). Thus, the first
D instance and the second N instance are visited, continuing the
descent from the N object. As a last step, the second D object is
visited as a leaf.

HS HMN[]

HS = HashSet, HM = HashMap, HMN[] = HashMap$Node[] 

HM

DS #1 DS #2

Figure 6: A HashSet only consists of two objects: The set’s
head (HS) and the contained hash map’s head (HM).

LL

N

DN

D

X

X

leaf

 leaf

LL = java.util.LinkedList, N = java.util.LinkedList$Node, D = Data, X = X

DS #1

Figure 7: A LinkedList data structure instances that consists
of the head (LL), two nodes (N) and two data objects (D).

http://ssw.jku.at/General/Staff/Weninger/AntTracks/ICPE19/DSL.atg


(a) Object view (b) Data structure view

Figure 8: AntTracks’s object-based heap state view compared to AntTracks’s data-structure-based heap state view.

3.3 Heap State Analysis
Once all data structures have been detected in a certain heap state,
the user may utilize this information to investigate potential mem-
ory leaks. In AntTracks, a certain heap state can be investigated by
applying user- or predefined classifiers on the objects in the heap
in order to group them. New classifiers have been developed that
utilize the newly gained data structure information for classifica-
tion. In the following, we present the application of some of these
new classifiers, which can be used for top-down analysis as well as
for bottom-up analysis. Furthermore, we present the data structure
view, a new feature to ease top-down analysis.

3.3.1 Top-down Heap Analysis.
In AntTracks, when inspecting a heap state, all objects are initially
classified by their types. This is visualized in Figure 8a. Since we
are looking for the root cause of a memory leak, i.e., for those
objects that keep a lot of other objects alive, we sorted the types by
their retained size (i.e., by their ownership). However, the table in
Figure 8a still mostly shows internal parts of data structures. These
are often inaccessible for developers and are thus of minor interest
when looking for the root cause of a memory leak.

Data structure view. We introduce the data structure view, a view
on the heap state that filters out every object that is not the head
of a previously defined data structure. Additionally, data structures
that are completely contained in another data structure (i.e., owned
by another data structure) are hidden. A typical example for such
hidden data structures are HashMaps that are completely contained
in a HashSet (as previously shown in Figure 6).

When applying the data structure view on the same heap state
as in Figure 8a, only a small fraction of the original heap objects
remains visible, as can be seen in Figure 8b. In this example, internal
objects such as ConcurrentHashMap$Node instances are hidden by
the data structure view. Additionally, some data structures, such
as threee HashSets and three HashMaps, are not shown since they
are completely contained in another data structure. Depending on
the application, data structure head objects often make up far less
than 1% of the application. Also the number of object groups, i.e.,
entries in the classification tree, is greatly reduced. In the example
of Figure 8b, it is now easy to tell that among all data structures,
instances of ConcurrentHashMap together keep alive 47.7% of the
heap. Since the object group of interest still contains 12 objects,
we further drill down, i.e., we perform a top-down analysis, as
shown in Figure 9. First, we inspect the allocation sites of the maps.

Figure 9: Top-down analysis splits object groups until they
are small enough to be analyzed in detail.

Line 3 reveals that the map that has been allocated in method main
of class DataStructureDevelopmentExample keeps alive 47.5% of
the heap on its own.

Leaf classifier. At this point, the user may want to obtain infor-
mation about the map’s leaves, i.e., the actual key and data objects
contained in the map. The new leaf classifier enables users to clas-
sify the leaves of a data structure using any classifier combination.
For example, in Figure 9, the leaf classifier has been used to clas-
sify all leaf objects by their types and allocation sites. This clearly
identifies the leaves of type DeepLongData (line 5) that have been
allocated in the class DataStructureDevelopmentExample (line 6)
to consume the most memory. Knowing which data structure keeps
a large number of objects alive, as well as which leaf objects within
this data structure take up the most memory, should suffice to fix
the memory leak.

3.3.2 Bottom-up Heap Analysis.
In top-down analysis, users search for objects or object groups
that keep many other objects alive. An alternative approach is the
bottom-up approach. Tool users may search for objects that exist
in large quantities and then want to find out which other objects
keep them alive.

Our approach performs bottom-up analysis at a higher level of
abstraction to reduce complexity. Instead of analyzing which objects
keep the object group of interest alive, we suggest to look for the
data structures that keep that group alive. For example, Figure 10
shows a classification tree that has been used to perform bottom-up
analysis in AntTracks. On the first tree level (line 2 and line 6),
objects have been classified by type. This way, we can see that
about 50% of heap is kept alive by objects of type DeepLongData
(line 2).



Figure 10: Bottom-up analysis is used to find those objects
that keep a given set of objects alive.

Containing data structures classifier. The next step in our ap-
proach is to inspect those data structures that contain the objects
of interest. To support this, the new containing data structures clas-
sifier has been developed. This classifier takes an object group and
collects the heads of all data structures that contain these objects.
These head objects can then be classified using any classifier com-
bination. The information about which objects are contained in the
different data structures is obtained and remembered during data
structure instance detection, as explained in Section 3.2.3.

For example, the containing data structures classifier has been
used on the DeepLongData objects in Figure 10 to classify the con-
taining data structure heads by their types, followed by their alloca-
tion sites. As we can see, all DeepLongData objects are contained in
a single data structure (line 3), which is of type
ConcurrentHashMap (line 4) and has been allocated in class
DataStructureDevelopmentExample (line 5). This map could now
again be investigated further by using the top-down approach de-
scribed in the previous section.

3.4 Data Structure Growth Analysis
The analysis of data structures at a single point in time may already
yield useful insights on the structure of the heap. Growth analysis
further supports the user in the search for memory leaks. It consid-
ers the growth of data structures over time, which makes it even
easier for users to spot those involved in memory leaks. This section
describes how objects can be tracked over time using trace-based
approaches such as AntTracks. In addition, we present metrics to
analyze data structure growth as well as metric patterns based on
different growth types. Finally, we present how AntTracks’s exist-
ing classification system has been integrated into the new growth
analysis. This way, users can, for example, detect data structures
that grew over time, tell which set of leaf objects grew the most,
and finally where these leaves have been allocated.

3.4.1 Data Structure Instance Tracking.
We argue that trace-based approaches are better suited for temporal
analyses than snapshot-based ones. Trace-based approaches can
derive temporal information on the object-level, while snapshot-
based approaches have no concept of object identity. Using only
snapshots without additional information (e.g., object tagging), it
is not possible to decide whether an object that was alive in a
certain snapshot still lives in a later snapshot. Figure 11 illustrates
this. In a snapshot-based approach, it can only be inferred that
both snapshots contained one X object, but not whether these two
objects are actually the same instance.

Using AntTracks, we are able to derive this information by re-
playing the recorded GC move events. Furthermore, we are able

X

Y Y

X

Y Y

delete X create
new X

Snapshot 1 Snapshot 2

same object?

Figure 11: Analysis based onmultiple snapshots lacks infor-
mation on the object-level.

to reconstruct the heap object reference graph, i.e., all references
between objects, for both points in time. Using this knowledge,
we can specifically search for data structures which (1) survived
a certain time window (objects that have died cannot be the root
cause of a memory leak) and (2) reference / keep alive more objects
than before.

The workflow for data structure instance tracking consists in
the following steps:

(1) The user selects two garbage collection points betweenwhich
the data structure growth analysis should take place.

(2) The heap is reconstructed for the first point in time and is
stored. The addresses of all data structure heads in this heap,
i.e., the start addresses, are stored as well.

(3) If a data structure head dies during a garbage collection, we
stop tracking it. For surviving heads, their new addresses
(which can be reconstructed fromGCmove events) are stored
alongside their start addresses.

Following this algorithm until the end of the selected time win-
dow, we obtain (1) the reconstructed heap state at the start, (2)
the reconstructed heap state at the end, and (3) a list of all data
structures that survived, i.e., their start and final addresses.

3.4.2 Growth Metrics.
For both points in time, i.e. the start and the end of the selected time
window, various metrics can be calculated for every data structure
head. Subsequently, the absolute growth (both for object count and
byte count) can be calculated for each metric. In this section, we
present those metrics that have proven most useful in identifying
problematic data structures. For simplicity, we refer to both, the
object count and the byte count, as size.

Retained size growth. The retained size denotes ownership and
is calculated from the GC closure, as explained in Section 2.2.3.
A large retained size means that if the head of the data structure
were collected by the garbage collector (i.e., all references to it were
removed), a large number of objects / bytes could be collected with
it. If the retained size of a data structure grew considerably between
two points in time, it is a strong indication for the fact that the data
structure is involved in a memory leak. By default, AntTracks’s data
structure growth analysis sorts all data structures by this growth
metric. This allows us to highlight those data structures that have
a suspiciously large growing ownership.

Transitive size growth. A data structure’s transitive size denotes
reachability, i.e., how many objects / bytes (inside or outside the
data structure) can be reached from it. At a first glance, the growth
of a data structure’s reachability may not seem very useful as a
metric on its own. Nevertheless, we will show that it becomes a
valuable metrics as soon as it is put into relation with other metrics.



(Deep) Data structure size growth. The two previous metrics ig-
nored data structure boundaries. Now, assuming a list with only
a few objects inside it. If the list itself does not grow, i.e., no new
objects are added, but its data objects grow, the metrics mentioned
above would change.

This is why we introduce the two new metrics: data structure
size and deep data structure size. These metrics are calculated from
the newly proposed closures data structure closure and deep data
structure closure. The metrics are supposed to show whether the
data structure itself grew, i.e., whether new objects have been added
to it.

The data structure closure contains all objects that belong to the
given data structure. However, objects that belong to other data
structures within the given data structure are not included. On the
other hand, the deep data structure closure also includes objects
that are part of such contained data structures. For example, let us
revisit the HashSet from Figure 6. Every hash set’s data structure
closure contains only two objects: The HashSet object itself and
the contained HashMap. A hash set’s deep data structure closure,
however, also contains all objects that belong to the hash map, and,
if the hash map contains further data structures, also the objects
that belong to them.

Heap growth portion (HGP). While it is possible to work purely
with absolute growth metrics, our evaluation has shown that met-
rics are easier to interpret when they are put into relation to the
absolute heap growth. Given that the overall heap size increased,
the heap growth portion (i.e., the portion by which the growth of a
specific data structure contributes to the overall heap growth) can
be calculated for every metric as shown in Equation 1.

HGPmetr ic (ds) =
∆metric(ds)

∆heapsize
· 100 (1)

For example, HGPr etained (ds) puts the retained size growth
∆retained(ds) of data structure ds into relation with the overall
heap growth ∆heapsize .

Assume that the overall heap size increased by 1GB and a list’s re-
tained size increased by 0.7GB. This would result in a HGPr etained
value of 70%, i.e., the ownership growth of this data structure con-
tributes 70% to the total growth of the heap, which is a strong
indication that this list causes a memory leak.

3.4.3 Metric Patterns.
This section discusses five typical metric patterns (see Figure 12)
that may occur in various applications. Based on these patterns,
users can easily identify the growth type of a data structure, and
can determine how to proceed with the investigation.

Single-ownership container growth. If a data structure has a strong
retained size growth in combination with a strong (deep) data struc-
ture size growth, we can infer two important properties: (1) New
objects have been added to the data structure (i.e., container growth),
and (2) the data structure keeps the newly added objects alive (i.e.,
single-ownership). This indicates that it is possibly involved in a
memory leak. Nevertheless, this type of memory leak is rather easy
to resolve, since the accumulating objects are kept alive by this data
structure alone. This means that the leaf objects can be collected
by the GC as soon as they are removed from the data structure.

Single­ownership
container growth 

Retained Size
Growth

Data Structure
Size Growth

Shared­ownership 
container growth 

Single­ownership data
growth 

Non­growth 
Shared­
ownership
data growth

Low High

Low

High

Figure 12: Five common metric patterns.

Inspecting the allocation sites of the data structure as well as of
the accumulating leaf objects should yield enough information to
identify the source code locations of interest.

Shared-ownership container growth. Similar to single-ownership
container growth, new objects have been added to the data structure.
Yet, the newly added objects are not kept alive by this instance
alone. Other data structures may be involved as well.

To find a way to free the newly added objects, the tool user
has to analyze the data structure’s leaves in more detail. It is not
enough to just remove the leaves from this data structure to make
them eligible for garbage collection. They have to be removed from
all their containing data structures. To find these containing data
structures, bottom-up analysis (as shown in Section 3.3.2) can be
performed.

Single-ownership data growth. We use this term for a strong re-
tained size growth in combination with a weak (deep) data structure
growth. In contrast to single-ownership container growth, not the
data structure itself is growing (i.e., no or only few new elements
have been added). Instead, the ownership over the contained data
grew. There are two explanations for this.

One possible reason is that the already owned data grew. For
example, imagine a list that stores and owns 100 objects which do
not reference any other objects. Over the analyzed time window, the
list has not been extended, but the contained objects now reference
other objects. This has the effect that the data structure size remains
unchanged while the retained size grows.

Another possibility is that multiple data structures share own-
ership on data objects (or parts of them). The retained size of all
involved data structures would be small at the start of the selected
time window. However, the retained size would grow for one data
structure if the shared ownership changed to single-ownership, e.g.,
because the shared data has been removed from all data structures
except this one.

Non-growth / Shared-ownership data growth. There are two possi-
ble patterns for the case that neither the retained size nor the (deep)
data structure size grew considerably. They are distinguished based
on their deep size growth.

We call the first one non-growth data structures. In addition to
low retained size growth and low (deep) data structure size growth,
also the deep size did not change considerably. This is the case
when the size of a data structure approximately stayed the same,
i.e., neither were many new objects added to the data structure nor



Figure 13: Bar chart to give a quick impression on data struc-
ture growth.

did the contained data grow considerably. Thus, data structures
classified as non-growth do not contribute to a memory leak in the
selected time window.

If, however, the deep size did grow, the data structure growth
can be classified as shared-ownership data growth. This means that
the data structure itself did not grow, but its data became larger
(similar to single-ownership data growth). Yet, in contrast to single-
ownership data growth, the data structure does not own the newly
referenced objects.

3.4.4 Visualization and Classification.
At this point, all data structures have been tracked over the selected
time window and their growth metrics have been calculated. Now
these metrics have to be visualized to users in a way that allows
them to decide which data structures they should investigate in
more detail.

Visualization. AntTracks presents the data structure growth anal-
ysis results to the user in two ways. The first one is a bar chart
which displays the HGP values for deep size growth, retained size
growth, data structure growth and deep data structure growth. The
bar chart shows the ten data structures with the strongest growth
of the currently selected metric. By default, the data structures
are sorted and selected based on the retained HGP , but users may
change this sorting. This visualization gives a quick overview of the
metric combinations of those data structures that had the strongest
growth of the selected metric. An example is given in Figure 13.

More detailed analysis is possible using a tree table view, similar
to the one used in heap state analysis. Every data structure is pre-
sented by a single record. The table columns shown by default are
absolute and HGP values of deep size growth, retained size growth,
deep data structure size growth, as well as the object count. By
default, the data structures are sorted by their retained size growth,
but the user may change the sorting order to any other metric. This
way, the data structures can be searched for metric combinations.

Classification. If a suspicious data structure is detected, the user
can use AntTracks’s classification system to gain further insight on
it. Using the selected classifiers, the data structure is then classified
twice: Once at the start of the selected time window, and once at the
end. The difference between the two resulting classification trees is
then calculated and visualized. This is especially useful to analyze a
data structure’s leaf growth behavior. A typical approach is to first
classify the data structures by their types, then by allocation sites,
followed by the leaf classifier which classifies the leaves by their
types and allocation sites. Figure 14 shows an example of this. First,

Figure 14: Tree table view that displays the growth of a data
structure using a given classification.

one can see that the LinkedList’s retained HGP is about 19%. In
line 2, the list’s allocation site is shown. Then, the leaf classifier has
been applied (line 3). The Objects column shows that the number
of leaves raised from 5, 000 leaves at the start of the time window
to 20, 000 leaves at the end of the time window. The Retained size
column shows that this increase in the number of leaves accounts
for about 12% of the overall heap growth. Line 4 shows that all of
these leaves are of type FlatData. Lines 5 to 8 show the various
allocation sites of the leaves. It can be seen that the new leaves
have been allocated at three different allocation sites (line 5 to 7).
Line 8 conveys the information that the number of leaves that have
been allocated at this particular allocation site has not changed.

4 APPLICATION TO CASE STUDIES
To evaluate the usefulness of data structure descriptions and their
usage in heap analysis over time, we applied them on two different
real-world systems.

The first system is Dynatrace easyTravel [9]. Dynatrace focuses
on application performance monitoring (APM) and distributes
easyTravel as their state-of-the-art demo application. It is a multi-
tier application for a travel agency, using a Java backend. An auto-
matic load generator can simulate accesses to the service. When
easyTravel is started, different problem patterns can be enabled and
disabled, one of which is a hidden memory leak somewhere in the
backend.

The second system is AntTracks itself. AntTracks is under con-
stant development by the authors, as well as by students that do
projects with and within AntTracks. Lately, we were dealing with
an increasing memory footprint over time during the parsing of
trace files. To find the root cause of this memory leak, we analyzed
AntTracks using AntTracks’s data structure growth analysis, and
document this scenario here.

4.1 easyTravel
EasyTravel was executed on the AntTracks VM, which generated a
trace file. This trace file was then opened in the AntTracks Analyzer.
After parsing the trace file, multiple charts are presented to the
user, displaying the application’s memory behavior. For example,
Figure 15 shows the number of allocated objects separated by heap
space type (y-axis) over time (x-axis). In most generational garbage
collectors, objects are allocated in a heap space called eden, are
then moved to a survivor space if they survive at least on garbage
collection, and are eventually promoted to an old space after a cer-
tain number of garbage collections. The growing number of objects
in the old space (red) clearly indicates that the heap consumption
grew over time.



Figure 15: Object count evolution that hints at a memory
leak in easyTravel.

Figure 16: Metric growth bar chart that highlights the
ConcurrentHashMap as memory leak suspect due to its strong
retained size growth.

Figure 17: Classification of the conspicuous map based on
allocation site followed by leaf classification based on leaf
types and leaf allocation sites.

To perform data structure growth analysis, the user can specify
a time window by selecting two points in time (the vertical black
lines in Figure 15). In this example, we selected the end of two
major garbage collections. At these points we can assure that all
heap objects that were not reachable anymore have been collected
by the GC.

Once all surviving data structures have been tracked over the
selected time window, their growth are visualized in the bar chart
(Figure 16) and the tree table view. What can be seen at a glance
is that the retained HGP of the ConcurrentHashMap is about 80%.
This clearly identifies this specific ConcurrentHashMap as themem-
ory leak culprit. What can further be derived from the other metrics
is that nearly no new objects have been added to the data structure
itself (i.e., very low data structure size growth). Yet, since the deep
data structure size grew strongly, we can derive that the map must
contain further data structures, and that these data structures have
grown. As explained in Section 3.4.3, this can be categorized as
single-ownership container growth.

Since we now know that this concurrent hash map is the major
suspect for the memory leak, we want to gain more information
about it until we are able to fix the leak. Figure 17 shows the classifi-
cation tree that we used to analyze the map. The first classifier that
has been used on the map is the allocation site classifier. It tells us
that the map has been allocated in the method findLocations of
class JourneyService (line 3). The second classifier that has been
applied is the leaf classifier. As the name suggests, this classifier can
be used to inspect the leaves of a data structure. The classifier has
two modes: either own leaves or deep leaves. In the first mode, the
classifier would inspect only the leaves of the map itself, without
checking the leaves of contained data structures. Since we know
that the map contains further data structures, the deep leaves mode
has been selected. Furthermore, the classifier was configured to
classify all leaf objects based on their types and allocation sites.
Looking at theObjects column, we can see that the number of leaves
grew from about 32, 000 to about 136, 000 (line 4). We can further
see that nearly all of these leaves are of type Location (line 5).
Unfortunately, their allocation sites are not useful, since they are
somewhere hidden in a framework (line 6). The second growing leaf
type is JourneyService$QueryKey (line 7). These leaves have been
allocated in method findLocations of class JourneyService.

Even though we had no prior knowledge about the system, we
decided at this point that we gained enough insight to investigate
the memory leak on the source code level. To prevent the pro-
liferation of the concurrent hash map, we must prevent that its
Location and JourneyService$QueryKey leaves accumulate. In
the source code, the map of type ConcurrentHashMap<QueryKey,
Collection<? extends Location>> was easily found. In the
method findLocations (the allocation site of the accumulating
QueryKey instances) we found that the map should have served
as a cache for location searches. Once a search was executed for
a given QueryKey, the key was stored in the map, alongside its
search result (a Collection<Location>). Subsequent searches for
the same key should have found the respective entry in the map.
Yet, QueryKey neither implements hashCode nor equals. Thus, ev-
ery request resulted in a cache miss and consequently a new cache
entry, which led to this typical memory leak.

4.2 AntTracks
Figure 18 shows AntTracks’s object count evolution during trace
file parsing. Similar to easyTravel, we can see an increase of objects
in the old generation of the heap.

Yet, in contrast to easyTravel, which had to be analyzed with-
out prior knowledge about its data structures, this time we could
use the data structure DSL to describe AntTracks’s most impor-
tant data structures prior to analysis. Since the leak occurred dur-
ing trace parsing, the first data structure that was described was
AntTracks’s internal representation of heap states. To mimic the
structure of the real heap, AntTracks separates the heap under
reconstruction in a number of Space instances, which are further
divided into LAB (local allocation buffer) instances, which then
store the actual information about objects, mostly using arrays.
We also described AntTracks’s data structure that keeps track of
symbols information such as type names, allocation sites, and so on,
since this data could also have been corrupted during trace parsing.



1 namspace java.util { // By default shipped with AntTracks
2 HashMap$Node {
3 HashMap$Node;
4 (*);
5 }
6 DS HashMap {
7 HashMap$Node[];
8 }
9 // ... other java.util classes
10 }
11
12 namespace at.jku.anttracks.util { // Added for specific use case
13 DS ApplicationStatistics {
14 java.util.HashMap; // HashMap<Thread, MeasurementGroup> and others
15 }
16 ApplicationStatistics$MeasurementGroup {
17 *; // Various internal objects, including List<Measurement>
18 }
19 ApplicationStatistics$Measurement { }
20 }

Listing 1: Description of AntTracks’s data structure to
track the execution time of certain code segments.

AntTracks has an internal performance evaluation feature called
ApplicationStatistics, which is implemented as a singleton. It
supports to creation of Measurement objects, which can be used to
evaluate how much time is spent by which thread in certain code
segments. Multiple measurements are then grouped together in a
MeasurementGroup instance. These data structure parts have also
been described, and their descriptions can be seen in Listing 1.

After calculating the data structure growth over the time window
selected in Figure 18, an overview bar chart (Figure 19) and a tree
table view is shown. By looking at the bar chart, it becomes clear
that the memory leak is caused by the ApplicationStatistics
instance. The metric pattern is akin to that of the memory leak
found in easyTravel: a typical single-ownership container growth.
It may be noteworthy to mention that a data structure’s HGP val-
ues can be above 100%, as can be seen in Figure 19, where the
ApplicationStatistics’s retained HGP is around 115%. In this
case, the overall heap grew by about 100MB, while the
ApplicationStatistics’s ownership grew by 115MB, which can
happen if previous multi-object ownership changed to single-object
ownership, as explained in Section 3.4.3.

Figure 20 shows the classification tree used to analyze the mem-
ory leak. Since ApplicationStatistics is implemented as a sin-
gleton, it is not necessary to check its allocation site. The result of
the leaf classifier already provided enough information to resolve
the memory leak. The classifier has been configured to classify
each leaf by its type, followed by its allocation sites, as well as the
call sites of the allocating methods. Line 3 shows that the overall
number of leaves has skyrocketed from about 6.6 million to 10.2
million. Nearly all of the leaves are of type Measurement (line 4),
and all of them have been allocated in the ApplicationStatistic
class (line 5). To further distinguish the measurements, the methods
that called the allocating method can be inspected. This reveals
that two call sites, both located in the method parseGCRootPtr
of class TraceParserSlave (line 6 and 7), caused the extensive
Measurement allocations.

Checking the TraceParserSlave class, the instrumented parts
within parseGCRootPtr were easily detected. These parts were

Figure 18: AntTracks’s object count evolution shows a simi-
lar pattern as in easyTravel.

Figure 19: Bar chart clearly showing the single-ownership
container growth of the ApplicationStatistics instance.

Figure 20: Classifying the leaves of ApplicationStatistic by
type, allocation site, and call site.

frequently called and thus created a vast amount of Measurement
instances. Since theywere not essential to AntTracks’s functionality,
they were simply removed to resolve the memory leak.

5 RELATEDWORK AND STATE-OF-THE-ART
To support memory leak detection as well as to facilitate memory
leak resolving, various approaches and tools have been developed
over the last years. Šor and Srirama [43] classify these approaches
into the following groups:

(1) Online approaches that actively monitor and interact with
the running virtual machine, separated into approaches that

(a) measure staleness [2, 11, 23, 24, 41]. Staleness is not a quan-
tifiable metric, instead, the longer an object is not used,
the more stale it becomes. The idea behind approaches
that measure staleness is that objects that do not get col-
lected by the GC for a long time but become stale are more
likely to be leaking than non-stale objects. The challenge
that these approaches face is that object access tracking is
extremely expensive.

(b) detect growth [5, 12, 13, 30, 31]. These approaches group
the live heap objects (mostly based either on their types or
allocation sites) and detect growth using various metrics.



These metrics range from simple absolute count differ-
ences between allocations and deallocations [5] to more
complex ones based on the structure of the object refer-
ence graph [12, 13].

(2) Offline approaches that collect information about an applica-
tion for later analysis, separated into approaches that

(a) analyze heap dumps as well as other kinds of captured
state [15, 18–20]. Compared to online approaches, offline
approaches often performmore complicated analyses based
on the object reference graph, involving graph reduction,
graph mining and ownership analysis.

(b) use visualization to aid manual leak detection [6, 22, 25].
(c) employ static source code analysis [7, 42].

(3) Hybrid approaches that combine online features as well as
offline features [8, 26, 40].

For example, one of the approaches most similar to our approach
is container profiling by Xu and Rountev [41]. They also focus on
data structures, but instead of detecting growth, they track opera-
tions on containers and detect container staleness. Their approach
requires ahead-of-time modeling of containers, i.e., the user has
to introduce a “glue layer” in the monitored application’s source
code that maps methods of each container type to primitive opera-
tions (e.g., ADD, GET, and REMOVE). Compared to that, our data
structure description mechanism using a DSL is much less invasive.

Future work (see Section 6) encompasses plans to automatically
infer data structure descriptions from source code and memory
traces. For example, Mitchell and Sevitsky [19] developed LeakBot, a
tool that performs memory analysis using object aggregation. They
present various metrics to detect possible top-level leak roots, which
may correspond to data structure heads. Jump and McKinley [14]
introduced dynamic shape analysis, which seeks to characterize
data structures by summarizing the object pointer relationships
into degree metrics. Metrics like these may facilitate the process of
automatically inferring data structure descriptions.

6 FUTUREWORK
Our data structure description DSL can be used to describe arbitrary
data structures. However, users might find it tedious to describe a
greater number of custom data structures which they use in their
project. To relieve the user of this task, reasonable data structure
definitions should be inferred automatically from static information,
such as the source code, in combination with dynamic information
obtained during trace parsing. The DSL presented in this work
would not become obsolete by such a feature because automati-
cally detected data structure descriptions would most likely require
corrections or extensions by the user. Moreover, in some cases,
users might want to describe undetectable reference patterns as
data structures.

In AntTracks, the heap and subsets thereof are currently repre-
sented in the form of charts and tree table views. In the future, users
should also be able to browse through objects and their reference
patterns in a visualized reference graph. However, considering the
number of objects and references in heaps of modern applications,
visualizing complete reference graphs is infeasible in terms of per-
formance. Moreover, graphs of such dimensions are also impossible
to comprehend for users and consequently are not of much use to

locate the root cause of a memory leak. The newly gained informa-
tion about data structures in the monitored application could be
used to greatly reduce the number of nodes and edges that have to
be visualized. Instead of displaying every object as a separate node,
objects that belong to a given data structure could be collapsed into
a single node, ultimately reducing the object reference graph to a
data structure reference graph. Guided by the metrics that were pre-
sented in this paper, users could locate the root cause of a memory
leak by visually browsing through such a graph, investigating the
data structures they are interested in.

7 THREATS TO VALIDITY
In this paper, we presented five metric patterns that commonly
occur during data structure growth analysis. Each of these patterns
suggests different analysis steps. This poses two potential threats
to validity: (1) Users may find it hard to comprehend all metrics
and their patterns without prior training, and (2) one could argue
that the presented list of patterns is not exhaustive and that further
patterns could be defined (for example, patterns involving shrink-
ing metrics have not been discussed in this paper). To deal with
these threats, future work includes automatic decision making by
the tool. New heuristics should be defined that allow the tool to
automatically detect metric patterns. Based on detected patterns,
the tool could either perform certain classifications or analysis
steps automatically, or it could provide suggestions to the user on
how to proceed in the analysis, similar to a learning-by-doing tool
approach.

Most probably, the major threat to validity of our work is its
currently restricted evaluation based on a limited set of use cases.
We plan to search for open-source projects that suffered from mem-
ory leaks in the past with the goal of building a reference set of
real-world applications that could be used to evaluate memory leak
detection tools. Using this set of applications, alongside other ap-
plications with seeded memory defects, we plan to conduct a user
study with our industry partner as well as with university students.
In addition to comparing AntTracks to existing tools, e.g., in terms
of found memory leaks, we want to gain insight in how well the
study participants are able to understand and use existing memory
leak detection features, as well as what other features users expect
from a memory monitoring tool. This could help the community to
improve the quality of memory monitoring tools in general.

8 CONCLUSION
In this paper, we presented a memory leak detection approach
that puts data structures into the focus of its analysis. To prove
its applicability, we integrated this approach into AntTracks, a
trace-based memory monitoring tool.

Our approach encompasses an easy-to-use domain specific lan-
guage to describe arbitrary data structures, as well as an algorithm
that detects instances of those data structures in reconstructed
heaps. Further, we presented a new feature in AntTracks called data
structure view. It hides objects of lower interest, i.e., data-structure-
internal objects, during heap state analysis and emphasizes data
structure head objects. This reduces the complexity of heap state
analysis users have to deal with in state-of-the-art memory moni-
toring tools. To inspect conspicuous data structures, we developed



new data-structure-specific analysis features to support top-down
as well as bottom-up memory analysis.

Our main contribution is a new technique for analyzing the
growth of data structures over time: We (1) showed how to use
memory traces to track data structures throughout an application’s
lifetime, (2) introduced metrics that describe various aspects of data
structure growth, (3) discussed how certain metric patterns hint
at certain types of memory leaks, and (4) presented techniques to
prioritize, visualize and analyze data structures that may be the root
cause of a memory leak. Data structure growth analysis aims to
further ease the analysis of memory leaks by reducing the number
of steps a user has to take to identify the root cause of such leaks.
Finally, we evaluated the applicability of our approach using two
case studies.
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