Tool Support for Restricted Use Case Specification:
Findings from a Controlled Experiment

Markus Weninger*, Paul Griinbacher!, Huihui Zhangi, Tao Yue§, Shaukat AliT
*TChristian Doppler Laboratory MEVSS
tnstitute for Software Systems Engineering, *Institute for System Software
Johannes Kepler University Linz, Austria
Email: markus.weninger @jku.at
tSchool of Computer Engineering, Weifang University, China
§9Simula Research Laboratory, Norway
§Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
I Information Systems Architecture Science Research Division, National Institute of Informatics, Tokyo 101-8430, Japan

Abstract—Evidence has shown that the use of restricted natural
languages can reduce ambiguities in textual use case specifications
(UCSs). Restricted natural languages often come with specific
editors that support particular use case templates and provide
enforcement of the language’s restrictions. However, whether
restriction enforcement facilitates the definition of UCSs as
compared to an editor without such support is a fundamental
question to answer. To this end, we report results of a controlled
experiment in which we compared two approaches for defining
restricted UCSs: (i) a specific Restricted Use Case Modeling
(RUCM) tool that supports restriction enforcement; and (ii) a
general Office Word UCS template without such enforcement. We
compared both approaches from multiple perspectives including
restriction misuse, understandability, and restrictiveness. Results
show that the restriction misuse rates are generally low, which
indicates the usefulness of the RUCM, independent of the use of
the editors. The results also indicate that the RUCM tool eases
the application of more complex restrictions. We also found that
the participants profited from extensive training prior to the
experiment. The experiment participants further showed their
strong willingness to recommend the RUCM tool to others and
to use it in the future, which was not the case for the Office
Word template.

Index Terms—Use case modeling, restricted natural language,
controlled experiment.

I. INTRODUCTION

Use case modeling is one of the main approaches for
specifying requirements and a number of use case modeling
solutions have been proposed [1]-[3], some of which have also
been implemented as open source and commercial tools [4]—
[6]. As discussed in [7], use case modeling is one of the most
well-applied modeling methods in practice.

A use case modeling solution often consists of use case
diagrams and textual UCSs. Use case diagram notations
have been standardized in the Unified Modeling Language
(UML) [8] in the 1990’s and are therefore implemented
in most of the modeling frameworks (e.g., Papyrus [4],
IBM RSA [5], MagicDraw [6]). However, there is no stan-
dardized solution for describing textual UCSs [9]. Many efforts
have been made in the past to propose different use case tem-
plates [10], [11], to reduce ambiguities of textual UCSs [12],
and to enable automation [13]. One such effort resulted in the

use case modeling solutions Restricted Use Case Modeling
(RUCM) [14], [15] and RUCM for Real-Time (RUCM-RT).
RUCM has been used for education purposes in several
international universities and has also been applied in various
industry domains such as avionics [16].

RUCM is composed of a use case template to structure and
document UCSs, as well as a set of restrictions. These essen-
tially constrain the way users can write and structure UCSs
(on the use of English and applying pre-defined keywords).
The motivation of devising RUCM is to reduce ambiguities
in textual UCSs and to facilitate the automated generation of
downstream artifacts such as analysis models and test cases.
In the past, the RUCM template and restrictions have been
evaluated in terms of their applicability and the capability
of facilitating the generation of UML analysis models via
two controlled experiments conducted at Carleton University,
Canada [14]. Results of the controlled experiments showed
that the RUCM methodology (with its template implemented
as tables in Office Word, named Office Word editor in the rest
of the paper) was easy to apply. The results also showed that
a higher quality of the UML analysis models was achieved
when RUCM models were used as input compared to a non-
restricted use case modeling solution. At the time when these
controlled experiments were conducted, no dedicated tool
support existed for the RUCM methodology, except for the
general Office Word editor.

However, tool support is considered an important factor
in promoting software engineering methodologies in practice,
as well recognized in the software engineering community,
especially in the area of model-based engineering. Therefore,
a dedicated RUCM tool has been developed [17] and applied
in various settings. However, there is still a lack of evidence
showing the usability and applicability of the RUCM tool. We
thus conducted a controlled experiment, reported in this paper,
to test if the RUCM tool helps to enhance the user experience
and applicability of the RUCM methodology and to understand
which aspects of the current RUCM tool could further be
improved. Our controlled experiment involved 41 students,
who received prior training about RUCM in the context of a

compulsory master-level course on Requirements Engineering,
which is part of the software engineering program at the
Johannes Kepler University Linz, Austria. Results revealed
no statistically significant differences between the RUCM
tool and Office Word editor regarding the Misuse rate of
applying the different RUCM restrictions. Still, results indicate
that the RUCM tool eases the application of more complex
restrictions. Our results also show that the participants’ ability
to correctly apply the RUCM restrictions strongly profited
from extensive training prior to the experiment. Overall, the
observation shows that RUCM, in combination with prior
training, is generally easy to apply, yet the participants showed
their strong willingness to recommend the RUCM tool to
others and to use it in the future, which was not the case
for the Office Word editor.

The rest of the paper is organized as follows. Section II
summarizes the background of the RUCM methodology in-
cluding the RUCM restrictions. Section III describes the goals
and research method of the controlled experiment. Section IV
summarizes the results for the investigated research questions.
Section V discusses interesting findings and the threats to
validity of the experiment. In Section VI we discuss the related
work. Finally, we present our conclusions and give an outlook
on future work.

II. BACKGROUND ON RUCM

The Restricted Use Case Modeling (RUCM) methodology
has been proposed by Yue et al. [14], [15] to facilitate the
automated and semi-automated generation of other artifacts
such as UML analysis models [8], executable test cases [18],
and use case scenarios for facilitating requirements inspec-
tions [19]. RUCM provides a use case template alongside 26
restrictions to guide the textual specification of use cases [14].
The approach aims to ease the practical uses, to reduce
ambiguity, and to facilitate automated analyses and generation
of downstream artifacts.

Controlled experiments have been conducted by
Yue et al. [14], [15] to evaluate RUCM in terms of its
ease of use and the quality of manually derived analysis
models. Results showed that RUCM is overall easy to
use and results in significant improvements [14] regarding
the understandability of UCSs compared to the use of a
commonly applied use case template.

A RUCM UCS has one basic flow, which can have one or
more alternative flows. An alternative flow always depends on
a condition occurring in a reference flow, which is either the
basic flow or an alternative flow itself. There are three types
of alternative flows: i) a specific alternative flow refers to a
specific step in the reference flow; ii) a bounded alternative
flow refers to more than one step in the reference flow; and
iii) a global alternative flow (called general alternative flow
in [20]) refers to any step in the reference flow. For specific
and bounded alternative flows, the RFS (Reference Flow Step)
keyword specifies the reference flow step numbers.

The 26 restrictions of RUCM are classified into three
categories: i) 16 restrictions on the use of natural language

(R1-R16); ii) nine restrictions regarding the use of keywords
for specifying control structures (R17-R25); and iii) one
restriction on that each flow of events should have its own
postcondition (R26).

Due to its nature of being a general purpose tool, the Office
Word editor does not provide any RUCM-specific support
beyond the structure of the template as a table, nor does it
enforce any of the RUCM restrictions. The RUCM tool, on
the other hand, enforces certain criteria regarding all nine
keyword restrictions, as well as R2 ("Describe the flow of
events sequentially") and R26 ("Each flow of events should
have its own postcondition"), by informing the users about
detected restriction violations. Specifically, for the keyword
restrictions R17 (INCLUDE <use case name>) and R18
(EXTENDED BY <use case name>), the tool automatically
checks that valid names are specified following the keywords.
When applying the RFS keyword (R19), a template enforces
that the keyword is followed by the name of a reference
flow and step number(s). Regarding R20 (IF-THEN-ELSE-
ELSEIF-ENDIF), the tool requires users to specify conditions
after IF and ELSEIF. To enhance the user experience, the
tool also provides auto-indentation for the inner blocks. The
keyword MEANWHILE (R21) has to connect two sentences,
and a condition should be specified following VALIDATES
THAT (R22). When applying DO-UNTIL (R23), the user
needs to specify a condition following UNTIL and a list
of steps after DO. Again, auto-indentation is provided. The
keyword ABORT (R24) forms a sentence by itself; nothing
else should be added to it. The application of RESUME STEP
(R25) is very similar to RFS: a template enforces to refer to
a step of the same or different flow of events. Whenever one
of these constraints is violated, the tool notifies users with a
warning.

III. EXPERIMENT PLANNING

We adapted the experiment reporting template proposed
in [14]. All key aspects of the experiment are described.

A. Experiment Definition

The overall objective of the controlled experiment was to
evaluate RUCM for defining UCSs with the RUCM tool en-
forcing certain RUCM restrictions (cf. Section II). Specifically,
we used the RUCM tool and compared it to the Office Word
editor not enforcing restrictions. We investigated different as-
pects such as Applicability, Understandability, Restrictiveness,
and Learning Effort. We pursued the overall objective by
exploring the following three goals, as formulated by using
the Goal-Question-Metric template [21]:

Goal 1: Analyze the RUCM tool for the purpose of evalu-
ating its applicability for defining UCSs conforming with the
RUCM restrictions from the point of view of requirements
engineers (in the context of graduate students defining use case
models). For that purpose we used four dependent variables
originally defined in [14] for our experiment: Restriction
Misuse, Understandability, Applicability, and Restrictiveness.

Table 1
EXPERIMENT DESIGN.

Goal Round RQ Task (3 ¥4 hours in total) Group A Group B
Task 1: Answering the Pre-Lab Questionnaire (5 mins) Tool Pre-Lab Q. Word Pre-Lab Q.
Task 2: Setup (reading specifications, opening tool, etc.) (5-10 mins)
Gland G3 1 1,4 Task 3: Specitying UCs (60 mins) CS1 + Tool CS1 + Word
2 Task 4: Answering the Comprehensive Questionnaire (10 mins)
4 Task 5: Answering the Post-Lab Questionnaire (5 mins) Tool Post-Lab Q. Word Post-Lab Q.
Task 1: Answering the Pre-Lab Questionnaire (5 mins) Word Pre-Lab Q. Tool Pre-Lab Q.
Task 2: Setup (reading specifications, opening tool, etc.) (5-10 mins)
Gl and G3 2 1,4 Task 3: Specifying UCs (60 mins) CS2 + Word CS2 + Tool
2 Task 4: Answering the Comprehensive Questionnaire (10 mins)
4 Task 5: Answering the Post-Lab Questionnaire (5 mins) Word Post-Lab Q. Tool Post-Lab Q.
G2 3 3 Task 6: Comparison Questionnaire (5 mins)

We investigated the impact of using the RUCM tool on these
variables.

Goal 2: Analyze the RUCM tool for the purpose of eval-
uating its perceived applicability from the point of view of
requirements engineers (in the context of graduate students
defining use case models). Specifically, we investigated how
the subjects perceive the applicability of RUCM and its
tool. We defined five dependent variables: Learning Effort,
Ease to Apply, Subjective Usefulness, Willingness to Use, and
Willingness to Recommend.

Goal 3: Analyze the RUCM tool for the purpose of evaluat-
ing the required effort from the point of view of requirements
engineers (in the context of graduate students defining use
case models). In particular, we investigated the time required
to use the RUCM tool using the dependent variable time effort
as well as the perceived effort for learning and understanding
the tool.

For each of the three goals, we defined three independent
variables: Method, with two treatments corresponding to the
use of RUCM_Word and RUCM_Tool; System, i.e., the se-
lected case studies; and Order, i.e., the sequence of using the
two treatments.

B. Context Selection and Experiment Participants

We conducted the experiment during a compulsory master-
level course on Requirements Engineering, which is offered
as part of the Software Engineering master program at the
Johannes Kepler University Linz, Austria. The course covers
the role of requirements in the software life cycle and a variety
of methods for eliciting, analyzing, negotiating, documenting,
and validating requirements. Forty one students registered for
the course in the winter term 2016 and participated in the
experiment.

Before the experiment, the students attended a lecture (by
the first two authors of the paper) explaining the meaning
and use of the 26 RUCM restrictions in the requirements
specification process. As part of the experiment preparation,
the students further had to complete a homework assignment
on two different use case scenarios with the goal of specifying
UCSs conforming to the RUCM restrictions, once using the
RUCM tool and once using the Office Word editor. The scores

of the assignment were used to form two equally strong groups
of the students for the experiment. A more detailed discussion
on how this training influenced the experiment results is given
in Section V.

The experiment was conducted as part of a series of com-
pulsory laboratory exercises during the course. We selected
the two case study systems SmartHome (3 use cases, medium
complexity) and OrderProcessing (2 use cases, higher com-
plexity), as we regarded their domains as easy to understand
by the students. Also, we assumed that the subjects would
be able to finish these specification tasks within a 3-hour
laboratory session. The subjects had no prior knowledge about
the goals of the experiment, the selected case studies, and the
use cases. Moreover, the subjects were aware that the tool was
not developed by the people grading the lecture.

C. Hypotheses Formulation and Research Questions

We formulate hypotheses for each dependent variable of
our research goals and for the two treatments: RUCM_Word,
denoting the use of the RUCM methodology with an Of-
fice Word editor, and RUCM_Tool, denoting the use of the
RUCM methodology with the RUCM tool. For each depen-
dent variable, the null hypothesis (Hp) to be tested is that
there are no significant differences between RUCM_Word and
RUCM_Tool. The alternative hypothesis (H7) for each depen-
dent variable is two-tailed and says that there are significant
differences between RUCM_Tool and RUCM_Word.

Specifically, we investigate the following research questions:

e« RQl1 - Is RUCM_Tool significantly different with
RUCM_Word in terms of enabling the conformance of
the devised RUCM models against the RUCM restric-
tions? (cf. Goal 1)

« RQ2 - Is RUCM_Tool significantly different with
RUCM_Word in terms of facilitating the understand-
ability, applicability, and restrictiveness of the RUCM
restrictions? (cf. Goal 1)

« RQ3 - Is RUCM_Tool significantly different with
RUCM_Word from the subjects’ subjective opinions on
the learning effort, ease to apply, usefulness, willingness
to use, and willingness to recommend? (cf. Goal 2)

¢ RQ4 — Is RUCM_Tool significantly different with
RUCM_Word in terms of required time effort for com-
pleting USCs? (cf. Goal 3)

D. Experiment Design

We used a within-subject experiment design [22], i.e., each
subject was exposed to more than one of the treatments being
tested [23] (in our case two treatments), as opposed to a
between-subject design exposing subjects to a single treatment
only. A within-subject design is especially suited if the number
of subjects is rather low, yet one has to counter possible
carryover effects such as a practice effect by counter-balancing
the order of treatments or by providing extensive practice prior
to administering any treatments [24], which we both ensured
in our experiment design.

The experiment design presented in Table I consists of three
rounds, in which the experiment subjects were divided into
Group A and Group B. Round 1 has five tasks (Task 1 to
Task 5), as shown in the table. Each group was given a treat-
ment (i.e., RUCM_Tool for Group A and RUCM_Word for
Group B) to first solve the SafeHome case study. In Round 2,
the two groups were swapped to work on the different treat-
ment (i.e., RUCM_Word for Group A and RUCM_Tool for
Group B), this time working on the OrderProcessing case
study. In Round 3, all subjects were asked to complete a
comparison questionnaire, which we used to collect subjective
opinions of the participates after having experienced the two
treatments in Round 1 and Round 2.

E. Instrumentation

We used the following experiment instruments for the
different tasks'.

Task 1, Task 2, and Task 5: We designed a pre-lab
questionnaire with seven four-point Likert scale questions to
collect information about the subjects’ prior background on
use case modeling and the RUCM methodology (Task 1).

After that initial assessment, the participants had 10 minutes
to read the experiment guidelines and the specifications of the
case studies. The specification of each case study contains
a short description of the system and its actors, a use case
diagram, as well as an informal description of the events of
the involved use cases. The experiment guidelines describe
the list of documents provided, the tasks to be completed,
and the submission guidelines. For instance, the participants
were asked to write down the time required to complete each
UCS. The guidelines also reminded them to apply the RUCM
restrictions. The subjects also had access to a document sum-
marizing all RUCM restrictions (together with examples and
counterexamples of applying them) for reference throughout
the experiment.

We used a post-lab questionnaire to collect information
about the subjects’ perception about the experiment at the end
of Round 1 and Round 2 (Task 5). For instance, we asked ques-
tions to determine if the students understood the assignment,

IThe complete set of questionnaires is available at http://dx.doi.org/10.5281/
zenodo.1460462.

how they felt when applying the RUCM restrictions using the
two treatments (RUCM_Tool vs. RUCM_Word), if they had
enough time to finish the tasks, and in which step they lost
time in case they could not complete a task.

Task 3: This task required the subjects to document
UCSs by applying RUCM. As input, the participants received
partially filled UCSs complying with the RUCM use case tem-
plate. The UCSs contain descriptions for only the following
fields of the template: Use Case Name, Brief Description,
Primary Actor, Secondary Actor, Dependency, and General-
ization. The rationale was to provide an overview of high-level
requirements (e.g., thanks to the brief description), to ensure
that UCSs were consistent with the use case diagram, and to
let the participants then focus on defining the flows of events
— the most complex part of UCSs most relevant for the RUCM
restrictions.

Task 4: We used the comprehension questionnaire pre-
sented in [14] to capture the participants’ subjective opinions
on the RUCM restrictions. It was designed for the participants
to characterize each restriction according to three measures:
Understandability, Applicability, and Restrictiveness. The first
question is a ’yes/no’ question helping to determine whether
the participants were able to understand each restriction when
performing Task 3. The second question required the par-
ticipants to assess the straightforwardness of applying the
restrictions using a four-point Likert scale. The third statement
measures the perceived restrictiveness of each restriction,
again using a four-point Likert scale.

Task 6: After the subjects had gained experience with
both treatments, i.e., RUCM_Tool and RUCM_Word, we
asked them in Round 3 to complete a comparison question-
naire containing eight four-point Likert scale questions and one
open-ended question on the applicability of the two treatments.
The questionnaire covers the learning effort, the ease of use,
the usefulness for applying the RUCM restrictions as well as
personal preferences and recommendations regarding the use
of the two editors.

F. Evaluation Measurement and Data Collection

Task 3 and Task 4 evaluated each RUCM restriction
based on four measures: Understandability, Applicability,
Restrictiveness (following the definitions in [14]), and Re-
striction Misuse for evaluating both RUCM_Word and
RUCM_Tool. The experiments reported in [14] only evaluated
RUCM_Word. Due to space limitation, please refer to Sec-
tion 3.6.1 of [14] for the definitions of the first three measures.
Restriction Misused will be introduced in Section IV-A. To
evaluate the cost required to apply the two treatments we
measured the Time Effort spent on specifying each UCS (in
minutes).

Task 6 compares the two treatments from the aspects of
Learning Effort, Ease to Apply, Subjective Usefulness, Willing-
ness to Use, and Willingness to Recommend. Recall that these
questions were answered on four-point Likert scales, from 1
(Completely disagree) to 4 (Completely agree).

ks

3 E20

28

S515

SE10

g2 s I

oo ™ | I —

d)

x= R2 RI7 RI18 RI9 R R21 R2 R23 R4 R R2%

Restriction = Tool® Word

Figure 1. Percentage of participants that misused a given restriction at least
once (Restriction Misused) when using RUCM_Tool and RUCM_Word.

IV. EXPERIMENT RESULTS AND ANALYSES

In this section, we report and analyze the results based on
our four research questions. As explained in Section II, the
26 RUCM restrictions are classified into restrictions on the
use of natural language (R1 to R16), restrictions enforcing
the usage of keywords for specifying control structures (R17
to R25), and one restriction enforcing that each flow of
events should have its own postcondition (R26). The RUCM
tool provides syntax-highlighting and auto-completion for the
RUCM keywords. However, the tool does not enforce any
restrictions on the use of natural language except for R2. Our
analyses thus focus on the restrictions R2 as well as R17-R26,
which are enforced by the RUCM tool.

A. Results for RQI

RQ1 aims to answer if RUCM_Tool is significantly different
from RUCM_Word in terms of enabling the conformance of
the devised RUCM models against the RUCM restrictions. To
do so, the participants had to define textual UCSs that conform
to the 26 RUCM restrictions during Task 3 of Round 1 and
Round 2. Each participant had to work on two case studies,
once using RUCM_Word and once using RUCM_Tool (cf.
Table I). To evaluate the participants’ conformance to each
of the 26 RUCM restrictions, we define the boolean metric
Restriction Misused, which indicates if a given participant
misused a particular restriction at least once in a UCS.

Figure 1 shows the Restriction Misused metric for the 11
restrictions enforced by the tool. The two restrictions R21
(MEANWHILE) and R22 (VALIDATES THAT) were never
misused. Especially the results for R22 are interesting, since
this rule had to be applied very often, but has never been
misused due to its simple nature.

R2 ("Describe the flow of events sequentially") and R18
(EXTENDED BY) were misused only by participants us-
ing RUCM_Word. While it is possible in RUCM_Word to
describe the flow of events in any way (e.g., by not using
the tabular layout), RUCM_Tool automatically maintains the
sequence of a flow of events, thus strictly enforcing R2. Even
though R18 was not necessary for defining the UCSs, subjects
using RUCM_Word misused the restriction in a few cases.
RUCM_Tool prevented the users from wrongly applying this
restriction.

All the other restrictions, except for R24 (ABORT), had
lower Restriction Misused results when using RUCM_Tool.
Most of the R24 violations were caused by alternative paths
not properly ended with an ABORT statement. Future versions
of the RUCM tool may enforce that every alternative path has

=

N A O ®O
oo oo oo

R19 R20 R21 R22
Restriction

R24 R25 R26
H Tool ® Word

R2 R17 R18 R23

Figure 2. Percentage of Understandability=true after round 1 when using
RUCM_Tool and RUCM_Word.

Understandability
[% of "Yes" answers]

to either end with ABORT (R24) or RESUME STEP (R25)
to further reduce this restriction misuse.

R26, i.e., specifying a postcondition for each flow of events,
is the only restriction that has a Restriction Misuse value above
15%. We believe that these relatively high misuse rates were
caused by the difficulty of eliciting such postconditions when
comparing with eliciting event flow steps. Training on how to
elicit postconditions should be given to users in the future.

While the data reported above shows that on average the
participants made fewer mistakes (average Restriction Misused
of 4.2% using RUCM_Tool, 5.0% using RUCM_Word) there
is no statistically significant difference. We executed Fisher’s
exact test with a = 0.05 based on Hy: RUCM_Tool and
RUCM_Word perform equally in regards to Restriction Misuse
and the alternative hypothesis Hy: RUCM_Word has a statisti-
cally significant different Restriction Misuse than RUCM_Tool,
the null hypothesis Hy could never be rejected.

Among the 26 restrictions, except R12 and R26, all the other
24 restrictions have been misused by less than 15% of all the
participants, 18 of which have even been misused by less than
5% of all the participants. This indicates that the participants,
independently of the used treatment, in general only made
very few to no mistakes, which also explains why there is no
statistically significant difference between both treatments. We
believe that this is a result of the students’ in-depth training
before the experiment. They used both treatments during
a training homework assignment on two use case studies
of similar complexity to those used during this experiment.
Afterwards, they received detailed personal feedback on which
restrictions they applied wrongly.

B. Results for RQ2

RQ2 investigates if RUCM_Tool significantly differs from
RUCM_Word regarding the Understandability, Applicability,
and Restrictiveness of the RUCM restrictions. The participants
answered a comprehensive questionnaire in Task 4 of Round 1
and Round 2 to collect information about these metrics.

The Understandability reflects the subjective opinion of
the participants on the ease of comprehending a particular
restriction. It is rated as either true or false.

We only analyzed Round 1, to avoid bias caused by learning
effects from Round 1 to Round 2 regarding Understandability.
As pointed out in Section III-B we also formed equally
strong groups based on the students’ grades on the homework
assignments, thus avoiding distorted results that may be caused
by unbalanced groups.

[
@2 ® 9
S O o

n
o

R2 R17 R18 R19 R20 R21 R22

Restriction

R25 R26
H Tool ® Word

Applicability [%]
8

0

R23 R24

Figure 3. Percentage of Applicability >= 3 when using RUCM_Tool and
RUCM_Word.

Figure 2 shows the understandability score of Round 1 for
R2 and R17 to R26, i.e., the 11 tool-enforced restrictions.
In general, the understandability after Round 1 can be sum-
marized as well understood. 21 of the 26 restrictions had an
understandability score of over 90%, which again indicates
that the intensive training before the experiment was useful
to the participant. Surprisingly, the average understandability
score was less than 90% only for one of the natural language
domain restrictions, while the average understandability score
was less than 90% for four of the nine RUCM keyword
restrictions. R18 (EXTENDED BY) is the strongest outlier
with regard to understandability. The reason may be that it
was not a focus in the homework assignments before the
experiment and also did not have to be used in the experiment
itself.

Overall, tool support seems to ease the understanding of
some of these restrictions. The average understandability score
was 94.4% when using RUCM_Tool and 90.5% when using
RUCM_Word. Five of the RUCM keyword restrictions had
an understandability score of less than 90% when using
RUCM_Word, while only two of these restrictions scored
lower than that threshold when using RUCM_Tool. For the
11 RUCM restrictions shown in Figure 2, RUCM_Word never
surpassed RUCM_Tool in terms of understandability. Yet, we
could not determine statistically significant differences for any
restriction using Fisher’s exact test (v = 0.05).

Another interesting aspect detected during data analysis is
that the understandability score increased for seven out of nine
RUCM keyword restrictions when Group B switched from
RUCM_Word in Round 1 to RUCM_Tool in Round 2. On
the other hand, none of the understandability scores increased
when Group A switched from RUCM_Tool in Round 1 to
RUCM_Word in Round 2. This supports our assumption that
the tool fosters understanding the RUCM keyword restrictions.

We measure the Applicability on a four-point Likert scale
ranging from 1 (Completely disagree) to 4 (Completely agree).

20 out of 26 restrictions received an applicability rating of
90% or higher (i.e., 90% of the students rated the applicability
of the given restriction with 3 or 4 on the 4-point Likert
scale). The figure shows that the applicability score does not
differ much when using RUCM_Tool compared to when using
RUCM_Word, at least no statistically significant difference can
be detected using Fishers’s exact test (¢ = 0.05). Yet, we
argue that this is again due to the intensive training before
the experiment. The students have already gained knowledge
about how to apply the restrictions in certain situations, and
therefore the treatment did not further affect this applicability

during the experiment.

Interestingly, the applicability scores were on average 5%
higher in the second round, independently if RUCM_Tool or
RUCM_Word was used in Round 1. This indicates some kind
of warm-up effect during Round 1, i.e., the participants needed
some time to get used to RUCM restrictions again.

Restrictiveness is also measured on a four-point Likert
scale from 1 (Completely disagree) to 4 (Completely agree).

As expected, the participants feel more restricted by
RUCM_Tool than by RUCM_Word for all RUCM keyword
restrictions (Figure 4). While the Office Word editor does
not enforce any restrictions, the RUCM tool prevents certain
operations in the first place or informs the user in case of
errors. Nevertheless, only five restrictions had a restriction
rating over 20%, and all were lower than 35%. Also, Fisher’s
exact test (a« = 0.05) does not detect a statistically significant
difference for any of the restrictions.

In Section V we discuss possible reasons for these higher
restriction ratings when using RUCM_Tool. The feedback we
received from the students suggests that the currently used
mechanism to visualize mistakes and syntactical errors in the
tool (a yellow triangle with a white exclamation mark next to
the error message) is one of the main reasons for these scores.
In particular, the tool currently lacks a feature informing users
on how to resolve the reported problem.

C. Results for RQ3

RQ3 investigates if RUCM_Tool is significantly different
with RUCM_Word regarding the subjective opinions on the
learning effort, ease to apply, usefulness, willingness to use,
and willingness to recommend. Data was collected using
the comparison questionnaire from Task 6 in Round 1 and
Round 2, using seven four-point Likert scale questions.

Learning effort: Learnability is an important aspect of
usability [25]. The participants have been asked if it takes
significantly more effort (in terms of time) to learn using the
RUCM tool than the template for the Office Word editor.
About three of four participants (72,5%) disagree with the
statement that the RUCM tool takes more time to learn.
Considering that the participants have years of experience on
how to use the Office Word editor and its table-editing features,
yet had no prior experience before the training assignments on
how to use the RUCM tool, we regard this as a good result,
with possible future improvements further reducing the tool’s
learning curve.

25
20
15
‘debmeklLLE
0
R2 R17 R18 R19 R20 R23 R24

R21 R22 R25 R26
Restriction u Tool ™ Word

Restrictivness [%]
=
o

Figure 4. Percentage of Restrictiveness >= 3 when using RUCM_Tool and
RUCM_Word.

Agree [%]
3

80
70
60
40
30
20
10

0

o‘d od e e oo yee wed
1o o 2 0\ o \No S et o o e \>C,N\\de e ‘“‘“0
o o s v \‘\C“O“ oM ed\‘ \NO‘ e O ‘“‘“e (“e“d \%a
et g @ e RV e \N\\\ € O™ s
oy e W oo
Y VO
eka R

Figure 5. Rating on Learning Effort, Ease to Apply, Usefulness to Apply
RUCM Restrictions, Use in the Future and Recommend to Others when using
RUCM_Tool and RUCM_Word.

Ease to apply: The ease of use of a tool can greatly affect
its future adoption by users [26]. Therefore, the participants
were asked if they considered the RUCM tool significantly
easier to apply, compared to the Office Word editor template.
87,5% of the participants agreed that the RUCM tool is easier
to use than the Office Word editor. In particular, the automatic
support for editing structural constructs, such as stacked IF-
THEN-ELSE statements, was reported as being helpful in the
tool, while the same task was regarded as tedious in the Office
Word editor due to formatting problems.

Usefulness to apply RUCM restrictions: The third ques-
tion evaluates if the RUCM tool is seen as more useful in terms
of applying the RUCM restrictions, compared to the template
for the Office Word editor. While Section IV-B showed no real
higher applicability rating on a per-restriction basis, 90% of
the participants agreed that the RUCM tool is more useful
for applying RUCM restrictions in general than the Office
Word editor. This indicates that although the participants felt
well applying the RUCM restrictions independently of the
treatment, they preferred using the RUCM tool. As said in the
previous section, this may be due to support for structuring
specific segments, or highlighting certain syntax elements and
restriction violations.

Use in the future: The comparison questionnaire’s fourth
and fifth question ask if the participants plan to use the RUCM
tool or the Office Word editor and its UCS template in the
future. Nearly four-fifths (79.5%) of the participants agreed
to use the RUCM editor in future to define use case models
and specifications, while only one out of ten (10%) of the
participants agreed to use the Office Word editor in future,
again a clear results showing that the participants prefer the
RUCM tool over the tabular Office Word editor.

Recommend to others: Finally, question six and seven
asked the participants if they would suggest the RUCM tool
or the Office Word editor to others in the future. 70% of the
participants agreed to recommend the RUCM tool to others
in the future, while only 12.5% of them agreed to suggest the
Office Word editor and its template. These numbers are similar
to those obtained for the planned future use and again confirm
the positive perception of the RUCM tool by the participants.

D. Results for RO4

We also asked the participants to track the time they took
to finish the UCSs, allowing us to detect if RUCM_Tool
reduces the time needed to complete the UCSs compared to
RUCM_Word.

Unfortunately, the data was inconclusive with regard to this
research question. Figure 6 shows a box plot displaying the
time needed to finish every UCS (excluding participants that
could not finish on time). Looking at the median times, both
treatments took nearly the same amount of time for one use
case, two use cases could be finished around 10% faster using
RUCM_Word, while two use cases were completed around
20% faster using RUCM_Tool. Overall, these numbers give
no clear picture if RUCM_Tool or RUCM_Word is to prefer
with respect to speed.

We gained additional insights from the post-lab question-
naires. The participants indicated if they could not finish a
UCS in time, and also named reasons for not completing it.
The number of participants that were able to finish the exercise
was nearly 50% higher for RUCM_Tool than for RUCM_Word
in case of the Safe Home system. For the Order Processing
system, the number was even 70% higher for participants
using RUCM_Tool compared to RUCM_Word. Those who
couldn’t finish on time were asked if this was due to problems
understanding the used treatment (14% for RUCM_Tool, 22%
for RUCM_Word) or problems applying the used treatment
(19% for RUCM_Tool, 41% for RUCM_Word).

It is further interesting to consider these results together
with the complexity of the use cases and the restriction
misused results. The Order Processing case study contains
two larger use cases, while Safe Home contains three smaller
use cases. The participants using RUCM_Tool finished on
time and made fewer mistakes on larger and complex use
cases than RUCM_Word users. This could be observed, for
example, for complex use cases containing stacked IF-THEN-
ELSE-ELSEIF-ENDIF constructs, which participants reported
as difficult to use in RUCM_Word. We thus expect that tool
support for such constructs will increase overall productivity
and usefulness.

V. DISCUSSION
A. Lessons Learned

Importance of training: The subjects received extensive
training before the experiment for both treatments. They used

43 = Tool = Word

=
Te=_m

FillAndShipOrder PlaceOrder RetrieveCCTVData MonitorWindowAndDoor Verify Account
OrderProcessing SafeHome

Case Study / UseCase

Time [min]
oo w
s L a8

s

=

——
L]

=)

Figure 6. Average Time needed when using RUCM_Tool and RUCM_Word.

RUCM_Tool and RUCM_Word during a training homework
assignment. They also received personal feedback in case they
misused RUCM restrictions. We see clear signs that such
training can have a strong influence in how well RUCM
restrictions are used (i.e., it results in a lower restriction
misuse) and how well the restrictions are accepted by the
participants (e.g., the average applicability ratings are higher).
This view is confirmed by the results of R18, which received
less attention during the training, with a negative impact on
these scores.

Natural language restrictions: Although the students
saw the usefulness in using certain keywords (R17-R25) to
create more structured UCSs, the students expressed doubts
during the training on how putting restrictions on the use of
natural language (R1-R16) would help to improve the quality
of UCSs. Research has already been conducted on how to
derive further artifacts such as analysis models [15] or test
cases [18] from restricted use case models. These results
show that restrictions on the use of natural language are
essential to ease the process of natural language processing
and further analyses. We are confident that training on natural
language restrictions could be greatly enhanced by presenting
tool features for automatically generating downstream artifacts
based on a RUCM UCS.

RUCM editor improvements: During Round 3 partic-
ipants were asked if and how the RUCM_Tool could be
further improved. As part of this, 57% agreed that the RUCM
tool can still be significantly improved. Additionally, they
provided free-text feedback to suggest detailed improvements
for RUCM tool capabilities: As already discussed earlier, many
students suggested to display additional information in case an
error is detected within a UCS. The yellow triangle currently
used to signal an error in a certain line of the UCS seemed
to irritate rather than encourage users. Suggestions regarding
this issue range from simple error messages, as known from
common IDEs, to step-by-step instructions on how to resolve
common types of errors.

To prevent certain common errors, some participants sug-
gested to add additional checks (i.e., making the tool even
more restrictive) or to provide automatic step generation (e.g.,
automatically generating an alternative flow for every VAL-
IDATES THAT sentence). Further, they requested additional
navigation mechanisms (e.g., similar to CTRL + left click in
most IDEs). As last point, the participants suggested keyboard
shortcuts to ease navigation and to facilitate the editing of
UCS.

Many participants complained that the tool is only available
as an Eclipse plug-in and they suggested web-based alterna-
tives. This was surprising given that the Eclipse IDE is widely
used in different courses at their university. In particular,
students criticized the text scaling, the low font resolution
of Eclipse’s user controls, and compatibility problems of the
RUCM plug-in with the versions of Java and Eclipse installed
on their machines.

Role of domain familiarity: Participants indicated in the
Post-Lab questionnaires of Round 1 and Round 2 whether they

had enough time to finish the UCSs. They further provided
explanations in case they could not finish a UCSs. 34.6%
of the participants said that could not finish the SafeHome
system and 60.0% of the participants that could not finish
the OrderProcessing system agreed that they spent too much
time on understanding the respective case study system. This
suggests that familiarity with the use case domain, which is
most of the time the case for requirements engineers in the
industry, may enable users to use RUCM even more efficiently.

B. Threats to validity

The key internal validity threat in our experiment is the
choice of the experiment design. Given that the experiment
was conducted as part of a course, we chose a within-subjects
design after considering all the practical constraints such as
the limited time for the laboratory sessions and the limited
number of students.

Our main conclusion validity threat is about the sample
size based on which we performed our analyses. In total
41 students participated in the experiment. To maximize the
sample size for UCSs, we used two rounds with two different
case studies. In this way, we managed to obtain twice the
observations given the time constraints and limited availability
of the number of students.

In our context, one construct validity threat is related to
the comparison questionnaire, which we used in Round 3.
The comparison questionnaire includes the same questions for
both RUCM_Tool and RUCM_Word. Thus, there was no bias
towards any of the treatments. A second construct validity
threat is related to the use of measures for comparing the two
treatments. In the experiment, we used the same measures
for Understandability, Applicability, and Restrictiveness for
comparing the two treatments and thus there was no bias
introduced during evaluation.

External validity threats are common among controlled ex-
periments, in general, which are related to the generalizability
of the experiment results. We conducted our experiment with
41 participants using two different case studies due to practical
constraints. Nonetheless, replications of the experiment with
additional participants are needed in the future to generalize
the results further. Another external validity threat is due to
the use of students rather than professionals as the participants
of the experiment. However, as studied in [27]-[29], there
were no significant differences between trained students (as it
was in our case) with professionals regarding various software
engineering activities. Therefore, we are confident that this
observation is also applicable to our context, i.e., applying the
RUCM methodology. In other words, using students as the
experiment participants reflects real application contexts, that
is professionals applying the RUCM methodology.

VI. RELATED WORK

We focus our discussion of related work on the following
relevant aspects: use case modeling, empirical evaluations of
use case modeling methodologies, and usability engineering
approaches including Human Computer Interaction (HCI).

A. Use Case Modeling

Since first introduced in 1986 [30], use case modeling
has been widely applied, which later on contributed to the
standardization of the use case diagram notations in UML.
However, there is no a standard way of specifying UCSs.
In the literature, various types of use case templates (e.g.,
Cockburn [10], Jacobson et al. [2], Kruchten [3], Kulak et
al. [31], and Larman [11]) have been proposed to structure and
specify UCSs. In practice, use case modeling often drives the
whole system/software development life cycles. Therefore, use
case models can be used as an input to derive other artifacts
such as analysis models and test cases. Considerable effort
has been spent on this research stream such as Liu [32] and
Somé [13]. The development of RUCM and RUCM based
approaches [14], [15], [18], [33], [34] fall into this category
of research streams. Some effort (e.g., Smialek et al. [12],
Somé [13]) has been also put on proposing restrictions (also
called writing guidelines) for specifying UCSs, as summarized
in Yue et al. [9], to reduce ambiguities and facilitate automa-
tion. Based on the results of the literature review, Yue et al.
proposed the 26 restrictions for RUCM (Section II).

B. Empirical Evaluation of Use Case Modeling Approaches

Various empirical studies have been conducted to evaluate
the impact of applying restriction rules on the quality of UCSs.
For instance, Achour et al. [35] investigated the impact of
the CREWS rules on the completeness and structuredness of
UCSs. The experiment results show that the application of
the rules produced more complete and better structured UCSs.
Furthermore, Phalp et al. [36] conducted an empirical study to
compare two sets of writing rules: the CREWS rules and CR
rules [37] (leaner than the CREWS rules), in terms of seven
quality metrics such as coverage (a use case containing all
the required information). The experiment results show that
the CR rules results in less learning overhead and performs
at least as well as the CREWS rules. A similar experiment
was also conducted by Anda et al. [38] to compare different
sets of guidelines by measuring the resulting UCSs in terms
of their understandability, usefulness, and quality. All these
experiments however evaluated restriction rules as a whole
and none of them evaluated each rule individually.

Two controlled experiments conducted by Yue et al. [14],
[15] to evaluate the impact of the 26 restrictions of RUCM
individually for assessing the impact of applying RUCM on the
understandability of UCSs and the quality of analysis models
manually generated from them. Results of the two experiments
showed that RUCM (with its template realized as tables for
the Office Word editor) was easy to apply and achieved
higher quality UML analysis models when RUCM models
were used as the input, when comparing with a non-restriction
based use case modeling solution. In [39], two recent studies
were reported to assess eight use case templates (including
the RUCM template) from two aspects, i.e., comprehension
and learnability. Their results showed that RUCM’s use case
template is one of the three that have showed significantly

better than the others evaluated during the study in terms of
helping experiment participants to make more correct changes.

We, however, aimed to evaluate, via the controlled experi-
ment reported in this paper, the usability and applicability of
the RUCM tool (which implements the RUCM template and
enforces some restrictions to a certain extent, see Section II
for details), when comparing with the RUCM template given
in the Word editor. We aim to test if the RUCM tool helps to
enhance the user experience and applicability of the RUCM
methodology and to understand which aspects of the current
RUCM editor need to be improved.

C. Usability Engineering and Tool Evaluation

Our work is also related to the evaluation of usability,
i.e., the "capability of the software product to be understood,
learned, used and attractive to the user, when used under
specified conditions" [40], [41]. The field of HCI distinguishes
inspection-based approaches and test-based techniques to us-
ability evaluation [42]: inspection methods aim at improving
the usability of an interface design by checking it against some
standard such as Nielson’s five usability characteristics [43]
or the Cognitive Dimensions framework [44]. For instance,
several software engineering tools have been assessed using
such an inspection-based approach [45]-[47]. However, com-
pared to the tools assessed in these studies, the RUCM editors
used in our experiments have comparably low complexity and
interactivity. Thus, we decided to evaluate RUCM using a test-
based approach directly involving end users. Our aim was to
reveal differences between two editor variants, thus suggesting
an experimental design with questionnaires.

VII. CONCLUSIONS AND FUTURE WORK

Restricted natural languages with specialized tools claim to
facilitate textual use case specifications by reducing ambigu-
ities and facilitating automated generation of other artifacts,
while at the same time maintaining the expressiveness of
such methodologies. However, evidence is needed to support
this claim. Towards this direction, we reported a controlled
experiment, in which we compared a tool dedicated to Re-
stricted Use Case Modeling (RUCM) with a RUCM template
implemented as tables in an Office Word editor. There were
three main findings: first, the usability of the dedicated RUCM
tool needs to be improved to reduce perceived restrictiveness
of the RUCM restrictions. Second, the participants showed
strong willingness to use the RUCM tool and recommend
it to other users in the future. Third, regarding errors, there
were no significant differences between the RUCM tool and
the Word template. Finally, from the results, we observed that
in-depth training eases the application of RUCM, regardless
of the editor. But, the RUCM tool proved more useful for
complex specifications with complex structures and a large
number of sentences. However, further experiments are needed
to confirm this observation. The results of our experiments can
also be used to improve the RUCM tool in the future.

ACKNOWLEDGMENTS

Tao Yue and Shaukat Ali were supported by the Zen-
Configurator and MBT4CPS projects from the Research Coun-
cil of Norway. Shaukat Ali was also supported by ERATO
HASUO Metamathematics for Systems Design Project (No.
JPMIJER1603), JST. Huihui Zhang is supported by Weifang
Science and Technology Bureau (no. 2018GX004) and the
PhD scholarship of Weifang University (no. 2018BS11).

REFERENCES

[1] B. Dobing and J. Parsons, “How UML is used,” Communications of the
ACM, vol. 49, no. 5, pp. 109-113, May 2006.

[2] L. Jacobson, Object-oriented Software Engineering: A Use Case Driven
Approach. Pearson Education India, 1993.

[3] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed.
Addison-Wesley Professional, 2003.

[4] “Papyrus (Eclipse foundation),” Available at https://www.eclipse.org/
papyrus/index.php (02.02.2018).

[5] “IBM Rational Software Architect,” Available at https://www.ibm.com/
developerworks/downloads/r/architect/index.html (02.02.2018).

[6] “Magicdraw,” Available at https://www.nomagic.com/products/
magicdraw (02.02.2018).

[71 J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empir-
ical assessment of MDE in industry,” in Proceedings 33rd International
Conference on Software Engineering. 1EEE, 2011, pp. 471-480.

[8] “Unified Modeling Language version 2.5.1 (Object Management
Group),” Available at http://www.omg.org/spec/UML/2.5.1.

[91 T. Yue, L. C. Briand, and Y. Labiche, “A systematic review of trans-
formation approaches between user requirements and analysis models,”
Requirements Engineering, vol. 16, no. 2, pp. 75-99, 2011.

[10] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.

[11] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Prentice
Hall, 2004.

[12] M. §mialek, J. Bojarski, W. Nowakowski, A. Ambroziewicz, and
T. Straszak, “Complementary use case scenario representations based on
domain vocabularies,” in Proceedings Int’l Conference on Model Driven
Engineering Languages and Systems. Springer, 2007, pp. 544-558.

[13] S. S. Somé, “Supporting use case based requirements engineering,”
Information and Software Technology, vol. 48, no. 1, pp. 43-58, 2006.

[14] T. Yue, L. C. Briand, and Y. Labiche, “Facilitating the transition from
use case models to analysis models: Approach and experiments,” ACM
Trans. Softw. Eng. Methodol., vol. 22, no. 1, pp. 5:1-5:38, 2013.

, “aToucan: an automated framework to derive UML analysis mod-
els from use case models,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 3, p. 13, 2015.

[16] H. Zhang, T. Yue, S. Ali, J. Wu, and C. Liu, “A restricted natural
language based use case modeling methodology for real-time systems,”
in Proceedings of the 9th International Workshop on Modelling in
Software Engineering. 1EEE Press, 2017, pp. 5-11.

[17] “Zen-RUCM Editor,” Available at http://www.zen-tools.com/rucm/
Editors.html (02.02.2018).

[18] T. Yue, S. Ali, and M. Zhang, “RTCM: a natural language based,
automated, and practical test case generation framework,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis.
ACM, 2015, pp. 397-408.

[19] H. Zhang, S. Wang, T. Yue, S. Ali, and C. Liu, “Search and similarity
based selection of use case scenarios: an empirical study,” Empirical
Software Engineering, vol. 23, no. 1, pp. 87-164, 2018.

[20] K. Bittner, Use case modeling. Addison-Wesley Longman Publishing
Co., Inc., 2002.

[21] V. Basili, G. Caldiera, and D. Rombach, “Goal/Question/Metric
paradigm,” in Encyclopedia of Software Engineering, J. Marciniak, Ed.
New York: John Wiley and Sons, 1994, pp. 528-532.

[22] Within-subjects designs. [Online]. Available: https://web.mst.edu/
~psyworld/experimental/within_subjects.html

[23] G. Charness, U. Gneezy, and M. A. Kuhn, “Experimental methods:
Between-subject and within-subject design,” Journal of Economic Be-
havior & Organization, vol. 81, no. 1, pp. 1 — 8, 2012.

[15]

[24]

[25]

[26]

(271

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

A. Greenwald, “Within-subjects designs: To use or not to use?” Psycho-

logical Bulletin, vol. 83, no. 2, pp. 314-320, 3 1976.
T. Grossman, G. Fitzmaurice, and R. Attar, “A survey of software

learnability: Metrics, methodologies and guidelines,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’09. New York, NY, USA: ACM, 2009, pp. 649-658.

F. D. Davis, “Perceived usefulness, perceived ease of use, and user
acceptance of information technology,” MIS Quarterly, vol. 13, no. 3,
pp. 319-340, 1989.

M. Host, B. Regnell, and C. Wohlin, “Using students as subjects—
a comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, pp. 201-214, 2000.

D. L. Sjoberg and E. Arisholm, “Evaluating the effect of a delegated
versus centralized control style on the maintainability of object-oriented
software,” IEEE TSE, pp. 521-534, 2004.

R. Holt, D. Boehm-Davis, and A. Shultz, “Mental representations of
programs for student and professional programmers,” in Empirical
Studies of Programmers: Second Workshop, M. Gary, S. Sylvia, and
E. S., Eds. Ablex Publishing Corp., 1987, pp. 33-46.

I. Jacobson, “Object-oriented development in an industrial environment,”
in ACM SIGPLAN Notices, vol. 22, no. 12. ACM, 1987, pp. 183-191.
D. Kulak and E. Guiney, Use Cases: Requirements in Context. Addison-
Wesley, 2003.

D. Liu, K. Subramaniam, B. H. Far, and A. Eberlein, “Automating tran-
sition from use-cases to class model,” in Proceedings IEEE Canadian
Conference on Electrical and Computer Eng., 2003, pp. 831-834.

C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Igbal, “Automatic
generation of system test cases from use case specifications,” in Pro-
ceedings of the 2015 International Symposium on Software Testing and
Analysis. ACM, 2015, pp. 385-396.

M. Zhang, T. Yue, S. Ali, B. Selic, O. Okariz, R. Norgre, and K. Intx-
austi, “Specifying uncertainty in use case models,” Journal of Systems
and Software, vol. 144, pp. 573-603, 2018.

C. B. Achour, C. Rolland, C. Souveyet, and N. A. Maiden, “Guiding
use case authoring: Results of an empirical study,” in Proceedings of
the 4th IEEE International Symposium on Requirements Engineering.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 36—43.

K. T. Phalp, J. Vincent, and K. Cox, “Improving the quality of use
case descriptions: empirical assessment of writing guidelines,” Software
Quality Journal, vol. 15, no. 4, pp. 383-399, 2007.

K. Cox, “Heuristics for use case descriptions.” Ph.D. dissertation,
Bournemouth University, 2002.

B. Anda, D. Sjgberg, and M. Jgrgensen, “Quality and understandability
of use case models,” in European Conference on Object-Oriented
Programming. Springer, 2001, pp. 402-428.

S. Tiwari and A. Gupta, “Investigating comprehension and learnability
aspects of use cases for software specification problems,” Information
and Software Technology, vol. 91, pp. 22-43, 2017.

A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability meanings
and interpretations in iso standards,” Software Quality Journal, vol. 11,
no. 4, pp. 325-338, Nov 2003.

“ISO 9126-1:2001 — Software engineering — Product quality,” Interna-
tional Organization for Standardization, Tech. Rep., 2001.

A. Holzinger, “Usability engineering methods for software developers,”
Communications of the ACM, vol. 48, no. 1, pp. 71-74, Jan. 2005.

J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993.

A. F. Blackwell and T. R. G. Green, “Notational systems — the cognitive
dimensions of notations framework,” in HCI Models, Theories, and
Frameworks: Toward a Multidisciplinary Science, J. M. Carroll, Ed.
Morgan Kaufmann, 2003, p. 103-134.

D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern modelling
and instantiation using DPML,” in Proceedings of the 40th International
Conference on Tools Pacific: Objects for Internet, Mobile and Embedded
Applications. Australian Computer Society, Inc., 2002, pp. 3—11.

R. Rabiser, M. Vierhauser, and P. Griinbacher, “Assessing the usefulness
of a requirements monitoring tool: a study involving industrial software
engineers,” in Proceedings of the 38th International Conference on
Software Engineering, (Companion Volume), 2016, pp. 122-131.

R. Rabiser, P. Griinbacher, and M. Lehofer, “A qualitative study on user
guidance capabilities in product configuration tools,” in IEEE/ACM Int’l
Conference on Automated Software Engineering, 2012, pp. 110-119.

