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ABSTRACT
Sulong is a system that tackles buffer overflows and other
low-level errors in languages like C by automatically check-
ing them and aborting execution if an error is detected. Sup-
porting unstandardized elements such as inline assembly and
compiler builtins is a challenge, which we have addressed by
investigating their usage in a large number of open-source
programs. Finally, we have devised an introspection mech-
anism, for which Sulong exposes metadata such as bounds,
which library writers can use to increase the robustness of
their libraries.
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1 INTRODUCTION
C does not enforce type safety, which can result in critical
low-level errors such as buffer overflows or use-after-free er-
rors. Although there are numerous approaches to tackle these
errors [12, 13, 16], they still frequently occur. My research
tackles this issue by providing a safe execution environment
for executing languages like C. The core idea of my approach
is that the language semantics of unsafe languages can be
mapped to Java semantics, allowing such programs to be
executed in a sandboxed environment on the Java Virtual
Machine (JVM). My research on and contributions to this
topic are divided into three parts:
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Figure 1: Example of pointer arithmetics andmemory
allocation (I32HeapArray is a subclass of I32Array).

(1) the implementation of this safe execution environ-
ment (called Safe Sulong) [4, 8, 9];

(2) empirical studies on unstandardized constructs in C
code (such as inline assembly and compiler builtins)
to prioritize their implementation in Sulong and
other systems [6],

(3) and the design of an introspection interface for li-
brary writers to enhance the robustness of their li-
braries [7].

2 SAFE EXECUTION OF C ON THE JVM
Safe Sulong maps C data structures to Java. For example, a
C struct is represented as a Java object that has a field for
each struct element. A pointer is represented as a Java object
that contains a reference to its pointee as well as an offset
field that is used for pointer arithmetic (see Figure 1). We im-
plemented Safe Sulong as a layered system (see Figure 2), in
which we compile the program and the libraries to LLVM IR,
which is easier to process than C code, and which we obtain
by using LLVM’s C front end Clang [2]. Executing LLVM IR
allows us to handle also other languages including C++ and
Fortran. Safe Sulong’s core is an LLVM IR interpreter based
on the Truffle language implementation framework [5, 14].
Efficiency is a key requirement for users [12], which we
achieve by using the highly-optimizing Graal just-in-time
compiler [15] to produce machine code during execution,
which executes similarly fast as code generated by static
compilers for C.
Our approach does not require instrumentation to find

bugs; instead, it relies on the underlying JVM. JVMs perform
bounds checks to detect out-of-bounds accesses as well as
type and null-pointer checks to guarantee type safety. Ad-
ditionally, JVMs provide automatic memory management,
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Figure 2: Overview of Safe Sulong.

so that programs cannot corrupt memory. These checks and
mechanisms are automatic and well-specified. Relying on
them when accessing the abstracted C data structures is
more robust than instrumentation-based checks [1, 3, 11] on
a conceptual level, because checks cannot simply be missed.
Indeed, we found bugs in open-source software that were
overlooked by other approaches [9].

3 EMPIRICAL STUDIES ON C PROGRAMS
C code (and LLVM IR) consists of unstandardized elements
such as inline assembly and compiler builtins. Implementing
them in Sulong, by expressing their semantics in Java, is
a large implementation effort, which we prioritized by em-
pirically analyzing the usage of x86-64 inline assembly [6]
and GCC compiler builtins. We downloaded a large number
of GitHub projects and processed them to answer research
questions relevant for tool developers (e.g., how many x86-
64 inline assembly instructions need to be implemented to
support most C projects?). Our findings suggest that both
inline assembly and compiler builtins are widespread, but
that most projects rely only on a small common subset (see
Table 1 and Table 2). Thus, a large number of projects can
be supported by implementing a few selected builtins. We
believe that our findings are useful also for other tools that
process C code.

4 EXPOSING METADATA TO LIBRARIES
Sulong’s Java data structures have metadata attached such
as bounds information or object types. We devised an in-
trospection interface where Sulong exposes this metadata
to library writers who can use it to increase the robustness
of libraries [7]. For example, the size_right() function ex-
pects a pointer and returns the amount of allocated bytes
right to the pointed address. In the spirit of failure-oblivious
computing [10] this metadata can be used, for example, to
make libc functions that process strings robust against miss-
ing NUL terminators by explicitly checking for the end of the
buffer:

Table 1: The three most
frequent x86-64 inline as-
sembly instructions in C
projects

instruction % projects

rdtsc 27.4%
cpuid 25.4%
mov 24.9%

Table 2: The three most
frequent GCC builtins in
C projects

instruction % projects

__builtin_expect 48.2%
__builtin_clz 29.3%
__builtin_bswap32 26.2%

size_t strlen(const char *str) {
size_t len = 0;
while (size_right(str) > 0 && *str != '\0') {
len++; str++;

}
return len;

}

We implemented parts of the introspection interface also in
other bug-finding tools such as LLVM’s AddressSanitizer,
SoftBound, and Intel MPX-based bounds instrumentation.

5 CONCLUSION
My research is about safely executing programs written in
languages like C. To this end, I have been working on Safe
Sulong, which provides a sandboxed execution environment
on the JVM. As part of this effort, I have been analyzing
unstandardized elements in C (such as inline assembly) and
devised an introspection interface that library writers can
use to increase the robustness of their libraries.
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