
Sandboxed Execution of C and Other Unsafe
Languages on the Java Virtual Machine

Manuel Rigger∗
Johannes Kepler University Linz

Austria
manuel.rigger@jku.at

ABSTRACT
Sulong is a system that tackles buffer overflows and other
low-level errors in languages like C by automatically check-
ing them and aborting execution if an error is detected. Sup-
porting unstandardized elements such as inline assembly and
compiler builtins is a challenge, which we have addressed by
investigating their usage in a large number of open-source
programs. Finally, we have devised an introspection mech-
anism, for which Sulong exposes metadata such as bounds,
which library writers can use to increase the robustness of
their libraries.

CCS CONCEPTS
• Software and its engineering→ Dynamic compilers;
Runtime environments; Interpreters; Software testing and
debugging; • Security and privacy → Virtualization and
security;

KEYWORDS
memory safety, low-level errors, Sulong
ACM Reference format:
Manuel Rigger. 2018. Sandboxed Execution of C and Other Un-
safe Languages on the Java Virtual Machine. In Proceedings of 2nd
International Conference on the Art, Science, and Engineering of Pro-
gramming, Nice, France, April 9–12, 2018 (<Programming>), 3 pages.
https://doi.org/10.1145/3191697.3213795

1 INTRODUCTION
C does not enforce type safety, which can result in critical
low-level errors such as buffer overflows or use-after-free er-
rors. Although there are numerous approaches to tackle these
errors [12, 13, 16], they still frequently occur. My research
tackles this issue by providing a safe execution environment
for executing languages like C. The core idea of my approach
is that the language semantics of unsafe languages can be
mapped to Java semantics, allowing such programs to be
executed in a sandboxed environment on the Java Virtual
Machine (JVM). My research on and contributions to this
topic are divided into three parts:
∗Advisor: Hanspeter Mössenböck, hanspeter.moessenboeck@jku.at, Jo-
hannes Kepler University Linz, Austria

arr: Addressarr: Address

offset = 0

pointee

pointee: I32HeapArraypointee: I32HeapArray

arr = 

int *arr = malloc(sizeof(int) * 3)

Figure 1: Example of pointer arithmetics andmemory
allocation (I32HeapArray is a subclass of I32Array).

(1) the implementation of this safe execution environ-
ment (called Safe Sulong) [4, 8, 9];

(2) empirical studies on unstandardized constructs in C
code (such as inline assembly and compiler builtins)
to prioritize their implementation in Sulong and
other systems [6],

(3) and the design of an introspection interface for li-
brary writers to enhance the robustness of their li-
braries [7].

2 SAFE EXECUTION OF C ON THE JVM
Safe Sulong maps C data structures to Java. For example, a
C struct is represented as a Java object that has a field for
each struct element. A pointer is represented as a Java object
that contains a reference to its pointee as well as an offset
field that is used for pointer arithmetic (see Figure 1). We im-
plemented Safe Sulong as a layered system (see Figure 2), in
which we compile the program and the libraries to LLVM IR,
which is easier to process than C code, and which we obtain
by using LLVM’s C front end Clang [2]. Executing LLVM IR
allows us to handle also other languages including C++ and
Fortran. Safe Sulong’s core is an LLVM IR interpreter based
on the Truffle language implementation framework [5, 14].
Efficiency is a key requirement for users [12], which we
achieve by using the highly-optimizing Graal just-in-time
compiler [15] to produce machine code during execution,
which executes similarly fast as code generated by static
compilers for C.
Our approach does not require instrumentation to find

bugs; instead, it relies on the underlying JVM. JVMs perform
bounds checks to detect out-of-bounds accesses as well as
type and null-pointer checks to guarantee type safety. Ad-
ditionally, JVMs provide automatic memory management,

https://doi.org/10.1145/3191697.3213795
hanspeter.moessenboeck@jku.at


<Programming>, April 9–12, 2018, Nice, France Manuel Rigger

Clang -O0

program.c

LLVM IR

Truffle

Java Virtual Machine

LLVM IR Interpreter

compiles to

runs on

Graal compiler

libc.c

Figure 2: Overview of Safe Sulong.

so that programs cannot corrupt memory. These checks and
mechanisms are automatic and well-specified. Relying on
them when accessing the abstracted C data structures is
more robust than instrumentation-based checks [1, 3, 11] on
a conceptual level, because checks cannot simply be missed.
Indeed, we found bugs in open-source software that were
overlooked by other approaches [9].

3 EMPIRICAL STUDIES ON C PROGRAMS
C code (and LLVM IR) consists of unstandardized elements
such as inline assembly and compiler builtins. Implementing
them in Sulong, by expressing their semantics in Java, is
a large implementation effort, which we prioritized by em-
pirically analyzing the usage of x86-64 inline assembly [6]
and GCC compiler builtins. We downloaded a large number
of GitHub projects and processed them to answer research
questions relevant for tool developers (e.g., how many x86-
64 inline assembly instructions need to be implemented to
support most C projects?). Our findings suggest that both
inline assembly and compiler builtins are widespread, but
that most projects rely only on a small common subset (see
Table 1 and Table 2). Thus, a large number of projects can
be supported by implementing a few selected builtins. We
believe that our findings are useful also for other tools that
process C code.

4 EXPOSING METADATA TO LIBRARIES
Sulong’s Java data structures have metadata attached such
as bounds information or object types. We devised an in-
trospection interface where Sulong exposes this metadata
to library writers who can use it to increase the robustness
of libraries [7]. For example, the size_right() function ex-
pects a pointer and returns the amount of allocated bytes
right to the pointed address. In the spirit of failure-oblivious
computing [10] this metadata can be used, for example, to
make libc functions that process strings robust against miss-
ing NUL terminators by explicitly checking for the end of the
buffer:

Table 1: The three most
frequent x86-64 inline as-
sembly instructions in C
projects

instruction % projects

rdtsc 27.4%
cpuid 25.4%
mov 24.9%

Table 2: The three most
frequent GCC builtins in
C projects

instruction % projects

__builtin_expect 48.2%
__builtin_clz 29.3%
__builtin_bswap32 26.2%

size_t strlen(const char *str) {
size_t len = 0;
while (size_right(str) > 0 && *str != '\0') {
len++; str++;

}
return len;

}

We implemented parts of the introspection interface also in
other bug-finding tools such as LLVM’s AddressSanitizer,
SoftBound, and Intel MPX-based bounds instrumentation.

5 CONCLUSION
My research is about safely executing programs written in
languages like C. To this end, I have been working on Safe
Sulong, which provides a sandboxed execution environment
on the JVM. As part of this effort, I have been analyzing
unstandardized elements in C (such as inline assembly) and
devised an introspection interface that library writers can
use to increase the robustness of their libraries.

REFERENCES
[1] Derek Bruening and Qin Zhao. 2011. Practical memory checking with

Dr. Memory. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Computer
Society, 213–223.

[2] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for
lifelong program analysis transformation. In CGO 2004. 75–86.

[3] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In ACM Sigplan
notices, Vol. 42. ACM, 89–100.

[4] Manuel Rigger. 2016. Sulong: Memory Safe and Efficient Execution of
LLVM-Based Languages. In ECOOP 2016 Doctoral Symposium.

[5] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas
Würthinger, and Hanspeter Mössenböck. 2016. Bringing Low-level
Languages to the JVM: Efficient Execution of LLVM IR on Truffle. In
Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages (VMIL 2016). ACM, New York, NY, USA, 6–15.
https://doi.org/10.1145/2998415.2998416

[6] Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and
Hanspeter Mössenböck. [n. d.]. An Analysis of x86-64 Inline Assembly
in C Programs. In Virtual Execution Environments (VEE 2018). https:
//doi.org/10.1145/3186411.3186418

https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/3186411.3186418
https://doi.org/10.1145/3186411.3186418


Sandboxed Execution of C and Other Unsafe Languages on the JVM <Programming>, April 9–12, 2018, Nice, France

[7] Manuel Rigger, Rene Mayrhofer, Roland Schatz, Matthias Grimmer,
and Hanspeter Mössenböck. 2018. Introspection for C and its Appli-
cations to Library Robustness. Programming Journal 2, 2 (2018), 4.
https://doi.org/10.22152/programming-journal.org/2018/2/4

[8] Manuel Rigger, Roland Schatz, Matthias Grimmer, and Hanspeter
Mössenböck. 2017. Lenient Execution of C on a Java Virtual Ma-
chine: Or: How I Learned to Stop Worrying and Run the Code. In
Proceedings of the 14th International Conference on Managed Languages
and Runtimes (ManLang 2017). ACM, New York, NY, USA, 35–47.
https://doi.org/10.1145/3132190.3132204

[9] Manuel Rigger, Roland Schatz, Rene Mayrhofer, Matthias Grimmer,
and Hanspeter Mössenböck. 2018. Sulong, and Thanks For All the
Bugs: Finding Errors in C Programs by Abstracting from the Native
Execution Model. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). Williamsburg, VA, USA. https://doi.
org/10.1145/3173162.3173174

[10] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, and William S. Beebee, Jr. 2004. Enhancing Server Availability
and Security Through Failure-oblivious Computing. In Proceedings
of the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6 (OSDI’04). USENIX Association, Berkeley,
CA, USA, 21–21. http://dl.acm.org/citation.cfm?id=1251254.1251275

[11] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity
Checker.. In USENIX Annual Technical Conference. 309–318.

[12] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK:
Eternal War in Memory. In Proceedings of SP ’13. 48–62.

[13] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and
Herbert Bos. 2012. Memory Errors: The Past, the Present, and the
Future. In Proceedings of the 15th International Conference on Re-
search in Attacks, Intrusions, and Defenses (RAID’12). 86–106. https:
//doi.org/10.1007/978-3-642-33338-5_5

[14] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-
optimizing Runtime System. In Proceedings of the 3rd Annual Confer-
ence on Systems, Programming, and Applications: Software for Humanity
(SPLASH ’12). 13–14. https://doi.org/10.1145/2384716.2384723

[15] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! 2013). ACM, New
York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

[16] Yves Younan, Wouter Joosen, and Frank Piessens. 2012. Runtime
Countermeasures for Code Injection Attacks Against C and C++ Pro-
grams. ACM Comput. Surv. 44, 3, Article 17 (June 2012), 28 pages.
https://doi.org/10.1145/2187671.2187679

https://doi.org/10.22152/programming-journal.org/2018/2/4
https://doi.org/10.1145/3132190.3132204
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1145/3173162.3173174
http://dl.acm.org/citation.cfm?id=1251254.1251275
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2187671.2187679

	Abstract
	1 Introduction
	2 Safe Execution of C on the JVM
	3 Empirical Studies on C Programs
	4 Exposing Metadata to Libraries
	5 Conclusion
	References

