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ABSTRACT

Most C programs do not conform strictly to the C standard, and
often show undefined behaviors, for instance, in the case of signed
integer overflow. When compiled by non-optimizing compilers,
such programs often behave as the programmer intended. However,
optimizing compilers may exploit undefined semantics to achieve
more aggressive optimizations, possibly breaking the code in the
process. Analysis tools can help to find and fix such issues. Alter-
natively, a C dialect could be defined in which clear semantics are
specified for frequently occurring program patterns with otherwise
undefined behaviors. In this paper, we present Lenient C, a C dialect
that specifies semantics for behaviors left open for interpretation in
the standard. Specifying additional semantics enables programmers
to make safe use of otherwise undefined patterns. We demonstrate
how we implemented the dialect in Safe Sulong, a C interpreter
with a dynamic compiler that runs on the JVM.
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C is a language that leaves many semantic details open. For ex-
ample, it does not define what should happen in the case of an
out-of-bounds access to an array, when a signed integer overflow
occurs, or when a type rule is violated. In such cases, not only does
the invalid operation yield an undefined result, but — according
to the C standard — the whole program is rendered invalid. As
compilers become more powerful, an increasing number of pro-
grams break because undefined behavior allows more aggressive
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optimization and may lead to machine code that does not behave as
expected. Consequently, programs that rely on undefined behavior
may introduce bugs that are hard to find, can result in security
vulnerabilities, or remain as time bombs in the code that explode
after compiler updates [34, 51, 52].

While bug-finding tools help programmers to find and eliminate
undefined behavior in C programs, the majority of C programs
will still contain at least some non-portable code. This includes
unspecified and implementation-defined patterns, which do not
render the whole program invalid, but can cause unexpected results.
Specifying a more lenient C dialect that better suits programmers’
needs and addresses common programming mistakes has been
suggested to remedy this [2, 8, 13]. Such a dialect would extend the C
standard and assign semantics to otherwise non-portable behavior;
it would make C safe in the sense of Felleisen & Krishnamurthi [15].
We devised Lenient C, a C dialect which, for example,

assumes allocated memory to be initialized,

assumes automatic memory management,

allows dereferencing pointers using an incorrect type,
defines corner cases of arithmetic operators,

and allows pointers to different objects to be compared.

Every C program is also a Lenient C program. However, although
Lenient C programs are source-compatible with C programs, they
are not guaranteed to work correctly when compiled by C compil-
ers.

We implemented Lenient C in Safe Sulong [37], an interpreter
with a dynamic compiler that executes C code on the JVM. Per
default, Safe Sulong aborts execution when it detects undefined
behavior. As part of this work, we added an option to assume the
Lenient C dialect when executing a program to support execution
of incompliant C programs. Implementing Lenient C in Safe Sulong
allowed us to validate the approach without having to change
a static compiler. Although a managed runtime is not a typical
environment for running C, it is a good experimentation platform
because such runtimes typically execute memory-safe high-level
languages that provide many features that we also want for C, for
example, automatic garbage collection and zero-initialized memory.
In this context, Lenient C is a dialect that is suited to execution on
the JVM, .NET, or a VM written in RPython [39]. If Lenient C turns
out to be useful in managed runtimes, a subset of its rules might
also be incorporated into static compilers.

We assume that implementations of Lenient C in managed run-
times represent C objects (primitives, structs, arrays, etc.) using
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Figure 1: The Pyramid of “Undefinedness”

an object hierarchy, and that pointers to other objects are imple-
mented using managed references. This approach enables use of a
GC, which would not be possible if a large byte array were used
to represent C allocations [25]. In terms of language semantics, we
focused on implementing operations in a way most programmers
would expect. Undefined corner cases in arithmetic operations be-
have similarly to Java’s arithmetic operations, which also resemble
the behavior of AMDG64. This paper makes the following contribu-
tions:

e arelaxed C dialect called Lenient C that gives semantics to
undefined behavior and is suitable for execution on a JVM and
other managed runtimes;

e animplementation of this dialect in Safe Sulong — an interpreter
written in Java;

e a comparison of Lenient C with the Friendly C proposal and
the anti-patterns listed in the SEI CERT C Coding Standard.

1 BACKGROUND
1.1 Looseness in the C Standard

The main focus of C is on performance, so the C standard defines
only the language’s core functionality while leaving many cor-
ner cases undefined (to different degrees, see below). For example,
unlike higher-level-languages, such as Java and C#, C does not
require local variables to be initialized, and reading from uninitial-
ized variables can yield undefined behavior [43].! Avoiding storage
initialization results in speed-ups of a few percent [27]. As another
example, 32-bit shifts are implemented differently across CPUs; the
shift amount is truncated to 5 bits and 6 bits on X86 and PowerPC
architectures, respectively [22]. In C, shifting an integer by a shift
amount greater than the bit width of the integer type is undefined,
which allows the CPU’s shift instructions to be used directly on
both platforms.

The C standard provides different degrees of looseness, as illus-
trated by the pyramid of “undefinedness” in Figure 1. Programmers
usually want their programs to be strictly conforming; that is, they
only rely on defined semantics. Strictly-conforming programs ex-
hibit identical behavior across platforms and compilers (C11 4 §5).
Layers above “defined” incrementally provide freedom to compilers,
which limits program portability and results in compiled code that

Note that reading an uninitialized variable produces an indeterminate value, which —
depending on the type — can be a trap representation or an unspecified value.
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often does not behave as the user expected [51, 52]. Implementation-
defined behavior allows free implementation of a specific behavior
that needs to be documented. Examples of implementation-defined
behavior are casts between pointers that underlie different align-
ment requirements across platforms. Unspecified behavior, unlike
implementation-defined behavior, does not require the behavior to
be documented. Since it is allowed to vary per instance, unspecified
behavior typically includes cases in which compilers do not enforce
a specific behavior. An example is using an unspecified value, which
can, for example, be produced by reading padding bytes of a struct
(C11 6.2.6.1 §6). Another example is the order of argument evalua-
tion in function calls (C11 6.5.2.2 §10). Undefined behavior provides
the weakest guarantees; the compiler is not bound to implement
any specific behavior. A single occurrence of undefined behavior
renders the whole program invalid. The tacit agreement between
compiler writers seems to be that no meaningful code needs to
be produced for undefined behavior, and that compiler optimiza-
tions can ignore it to produce efficient code [13]. Consequently,
the current consensus among researchers and industry is that C
programs should avoid undefined behavior in all instances, and a
plethora of tools detect undefined behavior so that the programmer
can eliminate it [e.g., 4, 5, 14, 17, 20, 31, 44, 46, 50]. Examples of
undefined behavior are NULL dereferences, out-of-bounds accesses,
integer overflows, and overflows in the shift amount.

1.2 Problems with Undefined Behavior

While implementing Safe Sulong, we found that most C programs
exhibit undefined behavior and other portability issues. This is
consistent with previous findings. For example, six out of nine
SPEC CINT 2006 benchmarks induce undefined behavior in integer
operations alone [11].

It is not surprising that the majority of C programs is not portable.
On the surface, the limited number of language constructs makes it
easy to approach the language; its proximity to the underlying ma-
chine allows examining and understanding how it is compiled. How-
ever, C’s semantics are intricate; the informative Annex J on porta-
bility issues alone comprises more than twenty pages. As stated by
Ertl, “[p]rogrammers are usually not language lawyers” [13] and
rarely have a thorough understanding of the C standard. This is
even true for experts, as confirmed by the Cerberus survey, which
showed that C experts rely, for example, on being able to compare
pointers to different objects using relational operators, which is
clearly forbidden by the C standard [26].

Furthermore, much effort is required to write C code that cannot
induce undefined behavior. For example, Figure 2 shows an addition
that cannot overflow (which would induce undefined behavior).
Such safe code is awkward to program and defeats C’s original goal
of defining its semantics such that efficient code can be produced
across platforms.

In general, code that induces undefined behavior cannot always
be detected at compile time. For example, adding two numbers
is defined as long as no integer overflows happen. It is also sel-
dom a problem when the program is compiled with optimizations
turned off (e.g., with flag -00). However, it is widely known that
compilers perform optimizations at higher optimization levels that
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signed int sum(signed int si_a, signed int si_b) {
if (((si_b > @) && (si_a > (INT_MAX - si_b))) ||
((si_b < @) & (si_a < (INT_MIN - si_b)))) {
/* Handle error =*/
} else {
return si_a + si_b;
}
}

Figure 2: Avoiding overflows in addition [42]

cause programs to behave incorrectly if they induce undefined be-
havior [22, 34]. For instance, about 40% of the Debian packages
contain unstable code that compilers optimize away at higher opti-
mization levels, often changing the semantics because compilers
exploit incorrect checks or undefined behavior in the proximity of
checks [52]. This is worrisome, since optimizing away checks that
the user deliberately inserted is likely to create vulnerabilities in
the code [2, 12, 52]. Finally, code can be seen as a time bomb [34].
Increasingly powerful compiler optimization can cause programs
to break with compiler updates; if code that induces undefined
behavior does not break now, it might do so in the future [22].

1.3 Calls for a Lenient C

One strategy to tackle portability issues is to detect them and to fix
the relevant code. To this end, a host of static and dynamic tools
enable programmers to detect memory problems [4, 31, 44, 46],
integer overflows [5, 50], type problems [20], and other portability
issues in programs [14, 17]. Another approach is to educate pro-
grammers and inform them about common portability pitfalls in C.
The most comprehensive guide to avoiding portability issues is the
SEI CERT C Coding Standard [42], which documents best practices
for C.

Due to the portability issues described, a more lenient dialect of
C has been called for (see below). Rather than consider common pat-
terns that are in conflict with the C standard as portability problems,
it would explicitly support them by assigning semantics to them in
a way that programmers would expect from the current C standard.
Most code that would execute correctly at -00, even if it induces
undefined behavior, would also correctly execute with this dialect.
For unrecoverable errors, it would require implementations to trap
(i.e., abort the program). This dialect would be source-compatible
with standard C: every program that compiles according to the C
standard would also compile with this dialect. Consequently, such
an effort would be different from safer, C-like languages such as
Polymorphic C [45], Cyclone [18], and CCured [30], which require
porting or annotating C programs.

Three notable proposals for such a safer C dialect can be found.
Bernstein called for a “boring C compiler” [2] that would priori-
tize predictability over performance and could be used for cryp-
tographic libraries. Such a compiler would commit to a specified
behavior for undefined, implementation-defined, and unspecified
semantics. The proposal did not contain concrete suggestions, ex-
cept that uninitialized variables should be initialized to zero. A
second proposal, a “Friendly Dialect of C”, was formulated by Cuoq,
Flatt, and Regehr [8]. The Friendly C dialect is similar to C, except
that it replaces occurrences of undefined behavior in the standard
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either with defined behavior or with unspecified results (which
do not render the whole program or execution invalid). Friendly
C specifies 14 changes to the language, addressing some of the
most important issues, but was meant to trigger discussion and
not to cover all the deficiencies of the language comprehensively.
Eventually, Regehr [35] abandoned the proposal and concluded that
too many variations to a Friendly C standard would be possible to
have experts reach a consensus. Instead, he proposed that reaching
a consensus should be skipped in favor of developing a friendly
C dialect, which could be adopted by more compilers if used by a
broader community. A third proposal, for a “C*” dialect in which
operations at the language level directly correspond to machine
level operations, was outlined by Ertl [13]. Ertl observed that the
C standard gave leeway to implementations to efficiently map C
constructs to the hardware. However, he noted that compiler main-
tainers diverge from this philosophy and implement optimizations
that go against the programmer’s intent, by deriving facts from
undefined behavior that enable more aggressive optimizations. Ertl
believes that C programmers unknowingly write programs that
target the C* dialect because they are not sufficiently familiar with
the C rules. According to him, the effort needed to convert C* to
C programs, however, would have a poor cost-benefit ratio, given
that programmers could hand-tune the C code.

2 LENIENTC

We present Lenient C, a C dialect that assigns semantics to behavior
in the C11 standard that is otherwise undefined, unspecified, or
implementation-defined. Table 1 presents the rules that supersede
those of the C11 standard and specify Lenient C.

A previous study categorized undefined behavior according to
whether it involved the core language, preprocessing phases, or
library functions [17]. We restrict Lenient C to the core language,
and will consider extensions to it as part of future work, memory
management functions being the only exception. We were primarily
interested in undefined behavior that compilers cannot statically
detect in all instances. Consequently, we disregarded problematic
idioms such as writing-through consts [14], where an object with
a const-qualified type is modified by casting it to a non-const-
qualified type (C11 6.7.3 §6). We believe that increased research
into compiler warnings and errors enables elimination of such
bugs [47]. We also excluded undefined behavior caused by multiple
modifications between sequence points [21] — which guarantee
that all previous side effects have been performed - which includes
expressions such as i++ * i++(C11 6.5 §2).

We created this dialect while working on the execution of C
code on the JVM, using Safe Sulong, a C interpreter with a dynamic
compiler. Per default, Safe Sulong aborts execution when it detects
undefined behavior. However, we found that most programs in-
duce undefined behavior or exhibit other portability issues. As an
alternative to fixing such programs, we added an option to execute
programs assuming the less strict Lenient C dialect.

Lenient C was inspired by Friendly C; additionally, we sought
to support many anti-patterns that are described in the SEI CERT
C Coding Standard, as they reflect non-portable idioms on which
programmers rely. While the dialect can be implemented by static
compilers, Lenient C programs are best suited to execution in a
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ID Lenient C SEI CERT Friendly C
General
G1 Writes to global variables, traps, I/O, and program termination are considered to be side effects. 6,13
G2 Externally visible side effects must not be reordered or removed. 6,13
G3  Signed numbers must be represented in two’s complement. INT16-C
G4 Variable-length arrays that are initialized to a length smaller or equal to zero must produce a trap. ARR32-C
Memory Management
M1 Dead dynamic memory must eventually be reclaimed, even if it is not manually freed. MEM31-C
M2 Objects can be used as long as they are referenced by pointers. MEM30-C 1
M3 Calling free() on invalid pointers must have no effect. MEM34-C
Accesses to Memory
A1l Reading uninitialized memory must behave as if the memory were initialized with zeroes. EXP33-C 8
A2 Reading struct padding must behave as if it were initialized with zeroes. EXP42-C
A3 Dereferences of NULL pointers must abort the program. EXP34-C 4
A4 Out-of-bounds accesses must cause the program to abort. MEM35-C 4
A5 A pointer must be dereferenceable using any type. EXP39-C 10
Pointer Arithmetic
P1 Computing pointers that do not point to an object must be permitted. ARR30-C, 9

ARR38-C,
ARR39-C
P2 Overflows on pointers must have wraparound semantics. 9
P3  Comparisons of pointers to different objects must give consistent results based on an ordering of ARR36-C
objects.
P4  Pointer arithmetic must work not only for pointers to arrays, but also for pointers to any type. ARR37-C
Conversions
C1 Arbitrary pointer casts must be permitted while maintaining a valid pointer to the object. MEM36-C, 10, 13
EXP36-C
C2 Converting a pointer to an integer must produce an integer that, when compared with another INT36-C,
pointer-derived integer, yields the same result as if the comparison operation were performed on ARR39-C
the pointers.
C3  When casting a floating-point number to a floating point-number, or when casting between integers FLP34-C
and floating-point numbers, a value not representable in the target type yields an unspecified value.
Functions
F1  Non-void functions that do not return a result implicitly return zero. MSC37-C 14
F3 A function call must trap when the actual number of arguments does not match the number of EXP37-C,
arguments in the function declaration. DCL40-C
Integer Operations
I1  Signed integer overflow must have wraparound semantics. INT32-C 2
12 The second argument of left- and right-shifts must be reduced to the value modulo the size of the INT34-C 3
type and must be treated as an unsigned value.
I3 Signed right-shift must maintain the signedness of the value; that is, it must implement an arithmetic
shift.
I4  If the second operand of a modulo or division operation is 0, the operation must trap. INT33-C 5
I5  Like signed right-shifts, bit operations on signed integers must produce the same bit representation 7
as if the value were cast to an unsigned integer.

Table 1: The rules of Lenient C compared to those of the SEI CERT C Coding Standard and Friendly C

managed environment. In other words, Lenient C makes some
assumptions that hold for managed runtimes such as the JVM or
.NET, but typically not for static compilers, such as LLVM and
GCC, that compile C code to an executable. For example, Lenient
C assumes automatic memory management. Although garbage
collectors (GCs) exist that can be compiled into applications [3, 33],
they are not commonly used. Nonetheless, we believe that many of

Lenient C’s rules might also inspire their implementation in static
compilers.

In the following sections, we describe how we implemented the
Lenient C dialect in Safe Sulong, and expand on its design decisions.
Section 3 describes an object hierarchy suitable for implementing
Lenient C in object-oriented languages. Section 4 addresses mem-
ory management and expands on Lenient C’s memory management
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and memory error handling requirements. Section 5 examines oper-
ations on pointers, and Section 6 discusses how Lenient C envisages
the implementation of arithmetic operations.

3 REPRESENTING C OBJECTS

All our C objects are represented using classes that inherit from a
ManagedObject base class.? We found such an approach to be more
idiomatic than using a single array of bytes to represent memory.
Subclasses comprise integer, floating point, struct, union, array,
pointer, and function pointer types. For example, we represent the
C float type as a Float subclass. To denote values, we use Haskell-
style type constructors. A float value 3.0 is thus expressed as
Float(3.0).

The ManagedObject class specifies methods for reading from
and writing to objects that the subclasses need to implement.
The read operation is expressed as a method object.read(type,
offset) that reads a specific type from an object at a given off-
set. Note that the of fset is always measured in bytes. For exam-
ple, reading a float at byte offset 4 from an object is expressed
as object.read(Float, 4).The write method is expressed as a
method object.write(type, offset, value).The C standard
requires that every object can

e be treated as a sequence of unsigned chars, so every subclass
must implement at least one method that can read and write
the char type (C11 6.2.6.1 §4),

e and can be read using the type of an object, so, for example, an
int object must implement read and write methods for int.

Additionally, we allow objects to be treated using other types, by
concatenating their byte representations (see Section 5.4).

3.1 Integer and Floating-Point Types

Safe Sulong represents primitive types as Java wrapper classes.
In subsequent examples, we assume an LP64 model in which an
int has 32 bits, a long 64 bits, and a pointer 64 bits. However,
our architecture also works for other 64-bit and 32-bit models; we
will point out differences that influence the implementation at the
corresponding places in the text.

For the C types bool, char, short, int, and long we use
wrapped Java primitive types. For example, an int in C corre-
sponds to a 32-bit integer in LP64, and we map it to a Java class 132
that holds a Java int. Note that we do not need separate types for
signed and unsigned integers; for example, we represent both int
and unsigned int using a Java int. However, we need to provide
both signed and unsigned operations (see Section 6).

We also represent float and double types using wrapped Java
equivalents. C has a long double data type that is represented
as an 80-bit floating-point type on AMD64. Since this data type
does not exist in Java, we provide a custom implementation that
emulates the behavior of 80-bit floats.?

2Safe Sulong interprets LLVM IR [23], which is a RISC-like intermediate representation,
and not C code. LLVM IR also contains other integer types (e.g., I33 and 148) that we
map to a wrapped byte array.

3Emulating 80-bit floats is inefficient and error-prone. As part of future work, we plan
to provide a more efficient implementation of this type. However, we found that only
few C programs rely on long doubles.
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int main() {
int val, arr[3];

int *ptrl = &val; // (val, 0)
int *ptr2 = &arr[2]; // (arr, 8)
int *ptr4 = o; // (NULL, @)

Figure 3: Various pointer tuples

3.2 Pointers and Function Pointers

We implement pointers using a class Address. Address has two
fields: a ManagedObject field pointee that refers to its pointee,
and an integer offset that denotes the offset within the object.
The offset must be large enough to hold an integer with the same
bit width as a pointer; assuming LP64, it is 64 bits wide. We denote
a pointer-tuple by (pointee, offset). The idea of representing
pointers as a tuple is not new; for example, formal C models [19, 24]
and also previous implementations of C on the JVM used such a
representation [10, 16]. Figure 3 shows tuples for three different
pointers. ptr1 points to the start of an int; the offset is 0. ptr2
points to the second element of an integer array; the offset is 8 (2
* sizeof (int)). ptr3is a NULL pointer, which is obtainable by an
integer constant @. The C standard specifies that NULL is guaranteed
to be unequal to any pointer that points to a function or object
(C11 6.3.2.3). We implement the NULL constant by an Address that
has a null pointee and an of fset of 0. Note that Section 5.1 gives
a detailed account of pointer arithmetic.

To represent function pointers, we use a class that comprises
a wrapped long that represents a function ID. For every parsed
function, a unique ID starting from 1 is assigned. An ID of 0 rep-
resents a NULL function pointer. For calls, this ID is used to locate
the executable representation of the function. Note that forgotten
return statements in non-void functions induce undefined behavior
(C11 6.9.1 §12). To address this, Safe Sulong implicitly returns a
zero value of the return type when control reaches the end of the
function. Note that another error class is when a function call sup-
plies a wrong number of arguments, for which Lenient C requires
the function call to trap.

3.3 Arrays

We represent C arrays by means of Java classes that wrap Java
arrays. Primitive C arrays are represented by primitive Java ar-
rays. For example, the type int[] is represented as a Java int
array. We represent other C arrays using Java arrays that have a
ManagedObject subtype as their element type. For example, we
represent C pointer arrays as Java Address arrays. In our type hi-
erarchy, arrays and structs are nested objects, which the read and
write operations must take into account. Consequently, a given
of fset value must be decomposed to select the array element and
then the offset within that element. For example, to read a byte
from an I32Array, the I8 read operation computes the value as
the right-most byte taken from values[offset / 4] >> (8 *
(offset % 4)). The division selects the array member, and the
modulo the byte inside the integer.
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struct {
int a;
long b;
Tt

charx val = (charx) &t;
val[9] = 1;

Figure 4: Writing a char into a struct member

3.4 Structs and Unions

Java lacks a struct type. We represent structs using a map [55] that
contains ManagedObjects. A struct member can be accessed us-
ing an operation getfield(offset) that returns a tuple (object,
of fset”). The object denotes the member stored at the byte po-
sition of fset, and of fset’ denotes the offset relative to the start of
this member. Figure 4 shows an example. Note that the struct has a
size of 16 bytes, where the stored int takes up 4 bytes, the padding
values after the int 4 bytes, and the long 8 bytes. To write a byte at
offset 9, Safe Sulong first selects the member using getfield(9);
the tuple returned is (I64(@), 1).It then writes the value to the
selected member object using object.write(I8, 1). The read
operation looks similar.

Safe Sulong also takes into account padding bytes, whose val-
ues are not specified by the standard (C11 6.2.6.1 §6). It initializes
such bytes with a sequence of I8(0). This allows programmers,
for example, to compare structs using byte-by-byte comparison.
Note that an alternative way of representing structs would be to
use classes that represent struct members by fields. In a source-to-
source transformation approach, these classes could be generated
when compiling the program [25]. In interpreters, this would be
more complicated because they would have to generate Java byte-
code at run time.

In this object hierarchy, unions are structs with only one field.
Unions allow programmers to view a memory region under different
types. When reading a value from a union using a type that is
different from the type that was last used when storing to this union,
the standard requires that the union be represented in the new
type (C11 6.5.2.3 §3). To account for this, we allocate a union with a
sub-type that reflects the most general member type: when aliasing
primitive values and pointers, we select Addresses or arrays of
Addresses, since integers and floating-point numbers can be stored
in the of fset field of an address. As an alternative to using a single
type, a map operation writefield(offset, object) could be
introduced that replaces an existing object at the given offset to
store a member with a different type. Such an approach would
resemble tagged unions, which are, for example, used by precise
GCs for C [33].

4 MEMORY MANAGEMENT

Two of our main concerns are how to implement memory man-
agement for C and how to handle memory errors. Allocating stack
objects and global objects is straightforward, since their type is

4Read operations typically always access the same struct field through its name in the
source code. Consequently, we mitigate the map-lookup costs by caching the lookup
result. Note that an index for a struct member is the same across struct objects, so
reading the same struct field from different objects is also efficient.

M. Rigger et al.

known. We map such allocations to one of the types presented in
Section 3. Variable-length array declarations that have a negative
or zero size induce undefined behavior (C11 6.7.6.2 §5). We trap
in such cases, which corresponds to Java’s default behavior when
the size is negative (we still have to explicitly check for zero). For
heap objects (allocated by malloc(), calloc(), or realloc()) we
do not know the type of object that will be stored in it. Thus, we
allocate the corresponding Java object only on the first cast, read, or
write operation (i.e., when the type of the object becomes known).”
Another approach to addressing untyped heap allocations would
be to determine a type using static analysis [20].

4.1 Uninitialized Memory

There is no clear guidance on how a program should behave when
it reads from uninitialized storage, an action which can induce
undefined behavior [43]. There are two contradictory use cases,
one of which we must support in our lenient execution model.

The first use case is that some programs purposefully read from
uninitialized memory to create entropy. The entropy originates
from previously allocated memory; uninitialized stack reads can
read previous activation frames, while uninitialized heap reads can
read malloced and freed heap memory. This pattern is problematic,
and commonly used bug-finding tools such as Valgrind [31] and
MSan [46] report it as a program error. Another issue is that reads to
uninitialized memory make applications prone to information-leak
attacks [27]. While allowing a program to read stale values could
be dangerous, initializing all data structures with random values
(to create entropy) would be overkill.

The second scenario is that programmers read uninitialized stor-
age by accident. When executing programs with Safe Sulong, we
found a number of programs that forgot to initialize memory or as-
sumed that it was zero-initialized. Those programs worked correctly
when uninitialized reads returned zero, which was suggested by
Bernstein [2]. Zero-initialization is also supported by Safelnit [27],
a protection system for C/C++ programs. Like Safelnit, we decided
to support the second scenario, as it does not obviously jeopardize
system security. Our implementation initializes all values to zero
(recursively for nested objects); primitives are initialized to zero val-
ues, while pointers are initialized to NULL. Note that this approach
is close to Java’s default behavior, which initializes fields with an
Object type to zero values if they are not initialized explicitly.

4.2 Memory Leaks and Dangling Pointers

C requires programmers to manually manage heap memory: mem-
ory allocated by malloc() must be freed using free(). Forgetting
to free an object causes a memory leak, which can impact perfor-
mance and can lead to the application running out of memory. Since
Safe Sulong runs on a JVM, the JVM’s GC reclaims objects after they
are no longer needed. Note that automatic memory management
cannot easily be implemented for static compilers; hence, it is also
not covered by Friendly C.

SFor efficiency, we propagate the type back to the allocation site, similarly to allocation
mementos in V8 [7]. Subsequent calls to the allocation function directly allocate an
object of the observed type.
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A dangling pointer is a pointer whose pointee has exceeded
its lifetime. Accessing such a pointer induces undefined behavior.
There are two situations in which a dangling pointer can be created:

e A heap object is freed using free() (C11 7.22.3.3).
e A Cobject with automatic storage duration (i.e., a stack variable)
exceeds its lifetime (C11 6.2.4 §2).

There is no use case for accessing dangling pointers; they are caused
by errors in manual memory management. In our type hierarchy,
we could detect such errors by setting automatic objects to null
after leaving a function scope, and by letting free() calls set the
data of a pointee to null [37]. However, since we strive for lenient
execution, we do not set them to null and retain references to
objects whose lifetimes are exceeded. Consequently, programs can
access dangling pointers as if they were still alive. This is useful to
execute programs which, for example, access a dangling pointer
shortly after a free() call under the assumption that the memory
has not yet been reallocated. Only when the program loses all
references to a pointee does the GC reclaim the pointee’s memory.

Not aborting execution on use-after-free errors is Lenient C’s
most controversial design decision, as many tools strive to find such
errors [29, 49, 58]. Safe Sulong can be used to find such errors, when
executing programs using its default mode (instead of assuming
the Lenient C dialect).

4.3 Buffer Overflows and NULL Dereferences

Besides use-after-free errors and invalid free errors, also buffer
overflows and NULL dereferences are of concern, as they induce un-
defined behavior. For buffer overflows, an out-of-bounds read could
produce a predefined zero value. This would work well when a non-
delimited string was passed to a function operating on it; when
reading zero, the function would assume that it had reached the
end of the string. However, we also found that some programs with
out-of-bounds reads did not terminate when producing a zero value
upon out-of-bounds reads. For example, the fasta-redux benchmark
ran out of bounds while adding up floating-point values. Due to a
rounding error, the number did not add up to 1.00, and the program
only terminated when reading positive garbage values [36]. In gen-
eral, this approach is known as failure-oblivious computing [40],
which ignores out-of-bound writes and produces a sequence of
predefined values to accommodate various scenarios. As there is
no value sequence that works for all programs, we decided to trap
on buffer overflows. This also corresponds to Java’s default seman-
tics. Since we represent C arrays and structs using Java arrays,
Java automatically performs bounds checks on accesses. On most
architectures, NULL dereferences produce traps and usually cause
unrecoverable program errors. Consequently, Lenient C also traps
on NULL dereferences.

5 POINTER OPERATIONS

Pointers and pointer arithmetic are the main difference between C
and other higher-level languages such as Java and C#, which use
managed references instead. Consequently, this section explains
how Safe Sulong implements operations that involve pointers.
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int main() {
int arr[3] = {1, 2, 3};
ptrdiff_t diff1 = &arr[3] - &arr([0];
size_t diff2 = (size_t) &arr[3] - (size_t) &arr[o];
printf("%td %1ld\n", diff1, diff2); // prints 3 12

Figure 5: Computing the pointer difference

5.1 Pointer Arithmetic

Addition or subtraction of integers. The standard defines ad-
ditions and subtractions where one operand is a pointer P and the
other an integer N (C11 6.5.6). Such an operation yields a pointer
with the same type as P which points N elements forward or back-
ward, depending on whether the operation is an addition or sub-
traction. For example, arr + 5 computes an address by taking the
address of arr and incrementing it by five elements. In our hierar-
chy, such an address computation creates a new pointer based on
the old pointee and an updated offset. We compute the pointer as
anew tuple (pointee, oldPointer.offset + sizeof(type) *
N). For example, if arr was an int, we would compute the offset by
sizeof(int) * N.Note that the standard defines these operators
only for pointers to arrays (C11 6.5.6 §8), while Lenient C allows
pointer arithmetic for pointers to any type.

Subtraction of two pointers. The standard defines that sub-
tracting two pointers yields the difference of the subscripts of the
two array elements (C11 6.5.6 §9). Figure 5 shows a code snippet that
subtracts two pointers, where one points to the start and one to the
end of an array; note that the standard requires a common pointee
(or a pointer one beyond the last array element). We implement
pointer subtraction by subtracting the two integer representations
of the pointers (see Section 5.3). Note that it would be sufficient to
subtract the two pointer offsets; however, this could lead to unex-
pected results for different pointees (which is undefined behavior)
with the same offset since the difference would suggest a common
pointee.

Pointer overflow. The C standard allows pointers to point only
to an object or to one element after it (C11 6.5.6 §8). The latter
is useful when iterating over an array in a loop using a pointer.
Lenient C abolishes these restrictions: in Safe Sulong a pointer
is, through the offset field, handled like an integer and is, for
example, allowed to overflow. However, we prohibit dereferencing
out-of-bounds pointers (see Section 4.3).

Pointer comparisons. Two pointers a and b can be compared
using the same comparison operators as integers and floating-point
numbers.

Implementing the equality operators (== and !=) is straightfor-
ward. For example, to determine equality for two pointers, we
check whether they refer to the same pointee and have the same
pointer offset. In Java, we implement the pointee comparison using
a.pointee == b.pointee, which checks for object equality. If the
expression yields true, we also compare the offset using a.offset
== b.offset.

Implementing the relation operators (<, >, <=, and >=) is more diffi-
cult. The C standard defines these operators only for pointers to the
same object or its subobjects (for structs and arrays); comparing
two different objects yields undefined behavior (C11 6.5.8 §5). To
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void *memmove(void xdest, void const *src, size_t n) {
char *dp = dest;
char const *sp = src;
if (dp < sp) {
while (n-- > @) =*xdp++ = *sp++;
} else {
dp += n; sp += n;
while (n-- > @) *--dp = *--sp;
3

return dest;

Figure 6: Non-portable implementation of memmove (adapted
from [48])

implement standard-compliant behavior, comparing the pointer
offset would be sufficient; for example, to implement <, we could
compare a.offset < b.offset. However, we found that programs
often compare pointers to different objects. For example, Figure 6
shows a naive implementation of memmove that potentially com-
pares two pointers to different objects, which is undefined behavior.
For such patterns, comparing only the pointer offsets would give
unexpected results, since it does not order objects. Instead, we es-
tablish an ordering using the integer representations of the pointers
(see Section 5.3).

5.2 Pointer-to-Pointer Casts

In general, casts between pointers are implementation-defined
(C11 6.3.2.3 §7). At the platform level, they are undefined if the
converted pointer is not correctly aligned for the referenced type.
Safe Sulong’s abstracted architecture does not require any pointer
alignments, so we support casts between different pointer types, as
required by Lenient C. Since in our architecture, pointer-to-pointer
casts do not change the underlying object representation, we can
simply achieve the desired behavior by not performing any action.

5.3 Conversions between Pointers and Integers

We found that many applications assume pointers to be regular
integer types. Consequently, some programs arbitrarily convert
pointers to integers, perform computations on the integers, convert
them back and dereference them. Additionally, programmers some-
times craft pointers from integers that are not obviously related.
For example, the Cerberus survey showed that programmers rely
on being able to compute the difference between two pointers, and
using the pointer difference to refer from one object to another [26].
Another example are compressed oops in the Hotspot VM, where
on 64-bit architectures addresses are compacted to 32 bits [41]. Fi-
nally, some popular C applications store information in unused bits
of an address [6].

Such patterns are implementation-defined and discouraged
(C11 6.3.2.3 §5); for example, they often cause vulnerabilities when
upgrading to a platform on which data types have a different bit
width [56]. Approaches that represent C memory as an array can
easily support them, but they cannot rely on the GC to reclaim dead
C objects. When programmers can construct pointers arbitrarily, a
GC cannot securely reclaim any objects. Consequently, GCs for C
must compromise. For example, the Boehm GC assumes all values
to be pointers that, if treated as pointers, refer to a valid memory
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region. The Magpie GC assumes only those values to be reachable
that have a pointer type [33]. Given the tradeoffs, we present two
strategies for converting integers to pointers: the first prohibits
converting integers to pointers, and the second must — like the
Boehm GC and Magpie — rely on heuristics for garbage collection.

The first strategy converts an address to a 64-bit integer value by
concatening the 32-bit hash of the pointee with the of fset ((long)
System.identityHashCode(pointee) << 32 | offset). Once
an address has been converted to an integer, it loses its reference
to its pointee. When converted back to a pointer, we assign the
integer value to of fset, and NULL to the pointee. The pointer can
no longer be dereferenced. This can be a problem if a pointer is
copied byte-wise (e.g., in functions similar to memmove or memcpy),
since only its integer representation is copied. If two pointers re-
ferring to the same object are converted to integers, the ordering
is maintained if the of fset does not exceed 32 bits. For pointers
with a NULL pointee we use the 64-bit pointer offset as an integer
representation to maintain the order relation between pointers that
were converted back and forth to integers. Note that this approach
is unsound for pointers to different pointees, because it can yield
identical or overlapping values for different pointees. This repre-
sentation allows the relation operators to be total and transitive.
However, it violates antisymmetry; that is, two pointers can have
the same integer representation when they refer to different objects.
That is, (long) p == (long) q for two pointers p and g can yield
true, even if the pointers refer to different objects. Nevertheless,
we have not yet found a program that relies on the antisymmetry
property; programs typically use the equality operators on pointers
to determine equality.

The second strategy is to assign a unique ID to every object
when it is converted to an integer. The first strategy could also use
unique IDs if an application requires antisymmetry. This ID is to
be incremented by the size of the object. To support dereferencable
pointers that were obtained by integers, we store “escaping” objects
(i.e., objects whose pointers are converted to integers) in a tree data
structure that associates the range of addressable bytes with an
object. When an integer is converted to a pointer, the conversion
operation looks up the object in this tree. Using the integer repre-
sentation of the first strategy here would be dangerous, since an
application could gain access to another object if they share the
same hash code. Note that escaped objects stored in the tree would
never be collected by the GC. To address this, the GC is allowed to
collect such pointers when the application runs low on memory
(by using a SoftReference). An alternative strategy would involve
using a least-recently-used technique [32] to keep only those map-
pings alive that are used by the application. The drawback is that
object graphs could be collected even though the application still
wants to use them, specifically when the integer value is the only
reference to the object graph, and when the application runs low
on memory.

54 Reading from Memory

Two pointers can alias, which means that they can point to the
same memory location. A frequent source of errors is that compilers
assume that pointers cannot alias when programmers intend them
to do [9]. The best known aliasing restriction is the strict-aliasing
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int func(int *xa, long *b) {

*a = 5;
*b = 8;
return *a;

Figure 7: Example demonstrating strict aliasing

rule: the C11 standard specifies that two pointers of different types
(if neither is a char pointer) cannot alias (C11 6.5 §7). Figure 7 shows
an example that can yield unexpected results for programmers that
are not familiar with this rule. Note that, without optimization,
passing two identical pointers will likely yield a value of 8, since
a and b alias. However, C’s type rules do not allow them to alias,
and when compiler optimizations are enabled, the return value is
typically optimized to always be 5. Consequently, large projects
often disable strict aliasing through the -fno-strict-aliasing
compiler flag in GCC and LLVM [9, 26]. In Lenient C, we explicitly
allow two pointers of different types to alias. Moreover, we allow
that an incompatible type can be used to read from — or write a
value to — the pointee. In Safe Sulong, storing a value or reading a
value maps to a call of the read or write operation on the pointee.

6 ARITHMETIC OPERATIONS

C programmers often do not anticipate the semantics of corner cases
in arithmetic operations. Many approaches try to find program
errors related to arithmetic operations, especially integer-based
errors [5, 11]. Our goal is to define the semantics of integer opera-
tions as programmers would currently expect from the C standard.
To this end, Lenient C largely follows the way how corner cases
are handled in Java, which also corresponds closely to the AMD64
operations. Note that unsigned operations can be implemented with
operations on signed types. For example, we implement unsigned
division on integers using Integer.divideUnsigned provided by
the Java Class Library. Below, we explain how we address the corner
cases in the arithmetic operations.

Data Model. C does not commit to a specific data model (e.g.,
LP64) that assigns sizes to all data types, and neither does Lenient
C. However, in contrast to the C standard, we assume that signed
integers are represented in two’s complement, as is the case in most
programming languages and hardware architectures. Consequently,
we can assign useful semantics to implementation-defined corner
cases in arithmetic operations. We define that right-shifting a neg-
ative value (of a signed type), which is implementation-defined
(C11 6.5.7 §5), behaves like an arithmetic shift; that is, the sign bit
of the value is extended to preserve the signedness of the number.
Signed integer overflow. While integer overflow is defined for
unsigned types, it is undefined for signed integers. Many signed
operations can overflow (+, -, *, /, %, and < (C11 6.5.7 §4)), specif-
ically when the result of the operation cannot be represented in
the data type of the operation. Programs commonly rely on both
signed and unsigned integer overflow, for example, for hashing,
overflow checking, bit manipulation, and random-number gener-
ation [11]. Since in two’s complement the range of representable
positive and negative numbers is asymmetric, overflows can also
occur for division and modulo.
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On architectures that support two’s complement, integer overflow
typically wraps around, as most programmers would expect. GCC
and Clang provide the -fwrapv flag, which enforces this behavior.
For example, the SPEC 2000 197 . parser benchmark requires this
flag, since today’s compilers would otherwise optimize the code
in a way that lets the benchmark go into an infinite loop [11].
Safe Sulong provides wraparound semantics per default, which we
implemented using the standard Java arithmetic operators.
Division by zero. If the second operand of a division or modulo
operation is zero, the result is undefined (C11 6.5.5 §5). In most
languages and on most architectures, division by zero traps.® Since
it is unclear what value a division by zero should return, Lenient C
always traps in such cases, which also corresponds to Java’s default
behavior.

Invalid shift amount. If the shift amount of a left- or right-shift
is negative or greater or equal to the width of the shifted operand,
the result is undefined. As initially demonstrated, architectures
handle negative shift amounts and excessively large shift amounts
differently. We decided to implement the semantics of Java, which
also correspond to those of AMDG64, where the shift amount is
truncated to 5 bits.

Integer and floating-point conversions. Converting between
floating-point numbers and integers or converting between floating-
point numbers with different types can yield undefined behavior
if the value is not representable by the destination type. Examples
include converting NaN to an integer, converting a large double
value to a float, and converting a large long value to a float. To
implement casts efficiently across platforms, execution yields an
unspecified value in such cases.

7 EVALUATION

We evaluated our Lenient C dialect by comparing it with the
Friendly C standard and the SEI CERT C Coding Standard (see Ta-
ble 1). Additionally, we implemented the dialect in Safe Sulong.

Comparison with Friendly C. Of the 14 features that the
Friendly C standard proposes, Lenient C explicitly addresses 12, for
which it mostly requires stricter guarantees. Friendly C aims to be
implemented by a static compiler and makes tradeoffs that enable
its efficient implementation across platforms (see below). Lenient
C prioritizes consistent behavior and safety over speed, and allows
implementers less leeway. Lenient C requires freed objects to stay
alive, which meets Friendly C’s requirement that a pointer’s value
should not change when its lifetime is exceeded (1). It requires trap-
ping upon out-of-bounds accesses and NULL pointer dereferences
(4), whereas Friendly C also allows an unspecified value. Friendly
C demands more lenient treatment for signed-integer overflows
(2), invalid shift amounts (3), division-related overflows (5), and
unsigned left-shifts (7). Lenient C addresses these demands and
leaves less leeway for a compatible implementation; for example,
Friendly C specifies an unspecified result for shift operations with
an invalid shift amount, while Lenient C requires the shift value
to be masked. Like Lenient C, Friendly C requires that externally
visible side effects not be reordered (6), and that a compiler should
not be granted additional optimization opportunities when infer-
ring that a pointer is invalid (13). Additionally, both Lenient C and

In MySQL, however, division by zero yields a NULL result.
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Friendly C abolish the strict aliasing rule (10). While Friendly C
specifies reads from uninitialized storage to yield an unspecified
value (8), Lenient C requires such reads to return 0. Both Friendly
C and Lenient C allow out-of-bounds pointers and arbitrary com-
putations on pointers (9). With respect to functions, Friendly C
requires that, when control reaches the end of a non-void function,
an unspecified value be returned if the return statement is missing
(14); Lenient C requires 0 to be returned.

Both Friendly C and Lenient C are not comprehensive. Of the two
points that Lenient C does not address, one (11) is related to data
races. We will consider extending the Lenient C standard to ad-
dress multithreading issues as part of future work. The other point
(12) proposes memmove semantics for memcpy. Using memcpy with
overlapping arguments is a common error, so Safe Sulong imple-
ments memcpy using memmove. However, we deferred the discussion
of lenient semantics for standard library functions. Lenient C has
additional guarantees compared to Friendly C. It demands addi-
tional lenience on memory management errors (M1, M2, M3) and
requires struct padding to be initialized to 0 (A2). It also estab-
lishes an ordering on objects that should hold when pointers are
converted to integers (P3, C2). Lenient C allows arbitrary pointer
casts (C1) and pointer arithmetic on pointers to non-array objects
(P4). Additionally, it specifies semantics when types or number of
arguments in a function call do not match the function declaration
(F2, F3). Lenient C requires signed numbers to be represented in
two’s complement (G3), an invalid size in variable-length arrays to
trap (G4), and otherwise undefined casts to produce an unspecified
value (C3).

Comparison with the SEI CERT C Coding Standard. The
SEI CERT C Coding Standard is a forward-looking set of best
practices for the C11 language. It comprises 14 chapters with
individual rules, each of which describes a best practice along
with anti-patterns. Our goal in Lenient C is not to rely on
programmers following these practices; instead, we assume that
they have anti-patterns in their code which they assume to work
correctly. Thus, for our evaluation we examined whether Lenient
C addresses such anti-patterns. The SEI CERT C Coding Standard
recommendations are comprehensive, and we excluded a number
of chapters because they do not fall into the scope of our work.
Specifically, we excluded the chapters on the preprocessor (PRE),
library functions (FIO, ENV, SIG, ERR), and concurrency problems
(CON).

The chapter regarding declarations and initialization (DCL) con-
tains several rules of interest to Lenient C. It requires that variables
be declared with appropriate storage durations (DCL30-C); Lenient
C keeps referenced objects alive and thus accepts inappropriate
storage durations. The chapter requires that no incompatible decla-
rations of the same object or function be made (DCL40-C), which
Lenient C partly addresses by trapping when a function is called
with a wrong number of arguments.

The chapter regarding expressions (EXP) consists of rules with
different concerns: it discusses invalid read operations, non-portable
pointer casts, and errors in calling functions. Lenient C allows
programs to read uninitialized memory (EXP33-C) and compare
padding values (EXP42-C), which it requires to be initialized with
zeroes. When NULL pointers are dereferenced, Lenient C specifies
that the implementation must trap (EXP34-C). It enables arbitrary
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pointer casts (EXP36-C) and reading pointers using an incompatible
type (EXP39-C). Lenient C requires trapping when a function is
called with a wrong number of arguments (EXP37-C). The rule also
addresses wrong types in arguments, for which a callee in Safe
Sulong performs automatic conversions.

The chapter on integers (INT) warns against wrong integer conver-
sions (INT31-C), using types with an incorrect precision (i.e., bit
width, INT35-C) and unsigned integer wrapping (which is defined
behavior, INT30-C); these rules are of little concern to Lenient C.
Lenient C specifies wrapping semantics for signed overflow (INT32-
C), traps on division or remainder operations with zero as second
operand (INT33-C), and requires the shift amount to be masked
(INT34-C). One rule is concerned with conversions between point-
ers and integers (INT36-C) and details anti-patterns using crafted
pointers, which are implementation-defined. Lenient C does not
specify the semantics of casts between pointers and integers. Safe
Sulong provides two different standard-compliant strategies, of
which only the second (that stores escaped objects in a map) ad-
dresses user expectations in this context. As part of future work,
we plan to investigate both strategies using a case study of user
programs.

The chapter on floating-point numbers (FLP) is concerned mainly
with issues that are valid for floating-point numbers in general, so
they are of little interest in our evaluation; however, we defined
that otherwise undefined casts between integers and floating-point
numbers yield unspecified values (C3).

We addressed all anti-patterns of the array chapter (ARR), which
primarily discusses pointer arithmetic. Lenient C supports pointer
arithmetic on non-array types (ARR37-C, ARR39-C), creating out-
of-bounds pointers (ARR30-C, ARR38-C, ARR39-C), but traps when
dereferencing an out-of-bounds pointer (ARR30-C). It requires trap-
ping for non-positive variable-length array sizes (ARR32-C). Addi-
tionally, Lenient C supports subtracting and comparing pointers to
different objects (ARR39-C).

The characters and strings chapter (STR) discusses issues which are
statically detectable or which concern the usage of library functions.
All rules of the memory management chapter (MEM), except the
realloc alignment requirement, are of interest to us, and Lenient
C addresses each of them. Lenient C allows dangling pointers
(MEM30-C) to be accessed as if they were still alive and ignores
invalid frees (MEM34-C). It assumes a GC that reclaims memory
that is no longer needed (MEM31-C). Upon out-of-bounds accesses,
Lenient C requires implementations to trap (MEM33-C, MEM35-C).
The miscellaneous chapter (MISC) mostly discusses library func-
tions; however, MSC37-C states that control should never reach the
end of a non-void function, in which case Lenient C specifies a zero
value to be returned.

Implementation in Safe Sulong. We implemented Lenient C
in Safe Sulong, a system for executing LLVM-based languages on
the JVM. It does not directly execute C code, but LLVM IR, which
is the RISC-like intermediate format of the LLVM framework [23].
We implemented Safe Sulong on top of the Truffle language im-
plementation framework [53], which uses the Graal compiler [57]
to compile frequently-executed functions to machine code. Graal
optimizes the code based on Java semantics and thus preserves
side effects such as NULL dereferences, out-of-bounds accesses, and
arithmetic errors. Safe Sulong is based on Native Sulong [38], but it
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represents C objects on the managed Java heap instead of allocating
them in native memory. Its peak performance — reached after a
warm-up phase where Graal compiles frequently executed func-
tions to machine code — is currently around half that of executables
compiled by Clang -03 on small benchmarks. As part of future work
we intend to thoroughly evaluate Safe Sulong’s performance and
lower its overhead.

8 RELATED WORK

ManagedC. We previously worked on a Truffle implementation
for C called ManagedC [16]. ManagedC aimed to detect out-of-
bounds accesses and use-after-free errors, but otherwise assumed
strictly conforming C programs. Note that the implementation of
Lenient C in Safe Sulong is based on ManagedC, in particular in
its representation of pointers. However, while ManagedC had a
relaxed mode which allowed some illegal type casts, it left open
which C dialect it supported and how other portability issues (e.g.,
subtracting pointers to different objects) were addressed. Further,
Lenient C’s main goal is not to find errors in C programs, but
to tolerate them whenever possible. Unlike ManagedC, we also
tolerate use-after-free errors.

Dialects of C. Several C-like languages have been proposed, for
example, Polymorphic C [45], Cyclone [18], and CCured [30]. These
dialects add type safety and/or detection of memory errors to C-like
languages, but are not source-compatible with C. They do not touch
on other aspects of non-portable behavior.

Pointer-to-Integer casts. Kang et. al presented an approach to
using pointer-to-integer casts in formal memory models [19]. Most
formalizations rely on logical memory models (e.g., CompCert [24]),
in which pointers are represented as pairs of an allocation block
and an offset within that block, similar to our pointer pairs. They
extended this approach such that a pointer has two representations:
one in the concrete and one in the logical model. Per default, all
allocation blocks are allocated as logical blocks; only when a pointer
is cast to an integer is the logical pointer realized as an integer. This
approach is similar to ours, where we convert pointers that are cast
to an integer to a concrete representation that takes into account
the hash code and offset.

C to Java converters. Several systems exist for executing C on
the JVM, by converting C programs either to Java or to Java byte-
code [10, 25]. C-to-Java systems are typically used to migrate legacy
code and thus focus on producing readable code at the cost of cor-
rectness (e.g., by not supporting unsigned types [25]). Most of them
do not support non-portable patterns such as casting pointers to in-
tegers. Only Demaine’s approach touched on lenient execution [10];
for example, he stated that pointer comparisons between different
objects could be established by ordering of the heap. These ap-
proaches use an object hierarchy similar to ours, which makes
them suitable for implementing Lenient C.

CHERI. CHERI [54] is a RISC-based instruction set architecture
that provides hardware support for memory safety through un-
forgeable fat-pointers (called capabilities). As with Safe Sulong,
the CHERI authors found that it was straightforward to support
well-behaved C programs, but that it was difficult to compile and
run those with non-portable behavior. They studied problematic
patterns (portable, undefined, and implementation-defined idioms)
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including removing const qualifiers, pointer arithmetic idioms, stor-
ing bits in an address and storing pointers in integer variables [6].
They found many instances of these patterns, and adapted their
execution model to better support such idioms.

9 CONCLUSIONS AND FUTURE WORK

We found that implementing the Lenient C dialect is helpful when
executing C programs that can be found “in the wild”, as it removes
the need to “fix” them to use only standard-compliant C. This di-
alect is best suited for execution on a managed runtime. However,
we hope that some of the rules will be incorporated into static com-
pilers to alleviate the problem of compiler optimizations conflicting
with user assumptions (thus breaking their code). The inspiration
to create this dialect came while executing non-portable programs
with Safe Sulong. However, Safe Sulong is a prototype and cannot
execute large programs, mainly due to unimplemented standard
library functions. Consequently, we have validated Lenient C in-
formally on programs of up to 5000 lines of code. We are currently
adding support for running a complete, well-behaved libc (such as
the musl libc [28]) on top of Safe Sulong. This requires Safe Sulong
to execute inline assembly and provide functionality that is typi-
cally provided by the operating system [37]. Once Safe Sulong has
reached a degree of completeness that enables it to execute larger
applications, we will conduct a case study to determine which fea-
tures of Lenient C are most useful for large real-world programs
and which features are still missing. In particular, we have yet to de-
termine which of the two strategies of converting between pointers
and integers is most suitable in practice. Lenient C still lacks stricter
semantics for standard library functions, preprocessing and other
issues (e.g., related to const and restrict qualifiers). Furthermore,
C/C++ concurrency semantics remain (among others) unsatisfac-
tory [1, 8], and Lenient C currently lacks stricter semantics for
multithreading. We will consider these issues as part of our future
work.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments
and suggestions to improve the quality of the paper. We also thank
Ingrid Abfalter, whose proofreading and editorial assistance greatly
improved the manuscript. We thank all members of the Virtual
Machine Research Group at Oracle Labs and the Institute of Sys-
tem Software at Johannes Kepler University Linz for their support
and contributions. We thank Benoit Daloze and Mike Hearn for
comments on an early draft. The authors from Johannes Kepler
University Linz were funded in part by a research grant from Oracle.

REFERENCES

[1] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and
Peter Sewell. 2015. The Problem of Programming Language Concurrency Se-
mantics. In Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings.
283-307. https://doi.org/10.1007/978-3-662-46669-8_12

[2] Daniel Julius Berstein. 2015. boringcc. (2015). https://groups.google.com/forum/
m/#!msg/boring-crypto/48qalkWignU/o8GGp2K1DAA] (Accessed August 2017).

[3] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage Collection in an Uncoop-
erative Environment. Software: Practice and Experience 18, 9 (Sept. 1988), 807-820.
https://doi.org/10.1002/spe.4380180902

[4] Derek Bruening and Qin Zhao. 2011. Practical Memory Checking with Dr.
Memory. In Proceedings of the 9th Annual IEEE/ACM International Symposium on


https://doi.org/10.1007/978-3-662-46669-8_12
https://groups.google.com/forum/m/#!msg/boring-crypto/48qa1kWignU/o8GGp2K1DAAJ
https://groups.google.com/forum/m/#!msg/boring-crypto/48qa1kWignU/o8GGp2K1DAAJ
https://doi.org/10.1002/spe.4380180902

=

=

[

Manlang 2017, September 27-29, 2017, Prague, Czech Republic

Code Generation and Optimization (CGO ’11). IEEE Computer Society, Washington,
DC, USA, 213-223. https://doi.org/10.1109/CGO.2011.5764689

David Brumley, Tzi-cker Chiueh, Robert Johnson, Huijia Lin, and Dawn Song.
2007. RICH: Automatically protecting against integer-based vulnerabilities. De-
partment of Electrical and Computing Engineering (2007), 28.

David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj
Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann.
2015. Beyond the PDP-11: Architectural Support for a Memory-Safe C Abstract
Machine. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’15). ACM,
New York, NY, USA, 117-130. https://doi.org/10.1145/2694344.2694367

Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. 2015. Memento
Mori: Dynamic Allocation-site-based Optimizations. In Proceedings of the 2015
International Symposium on Memory Management (ISMM °15). ACM, New York,
NY, USA, 105-117. https://doi.org/10.1145/2754169.2754181

Pascal Cuoq, Matthew Flatt, and John Regehr. 2014. Proposal for a Friendly
Dialect of C. (2014). https://blog.regehr.org/archives/1180 (Accessed August
2017).

Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov. 2017. Detecting Strict
Aliasing Violations in the Wild. In Verification, Model Checking, and Abstract Inter-
pretation: 18th International Conference, VMCAI 2017, Paris, France, January 15-17,
2017, Proceedings, Ahmed Bouajjani and David Monniaux (Eds.). Springer Inter-
national Publishing, Cham, 14-33. https://doi.org/10.1007/978-3-319-52234-0_2
Erik D. Demaine. 1998. C to Java: converting pointers into references. Concur-
rency: Practice and Experience 10, 11-13 (1998), 851-861. https://doi.org/10.1002/
(SICI)1096-9128(199809/11)10:11/13<851::AID-CPE385>3.0.CO;2-K

Will Dietz, Peng Li, John Regehr, and Vikram Adve. 2015. Understanding Integer
Overflow in C/C++. ACM Transactions on Software Engineering and Methodology
(TOSEM) 25, 1, Article 2 (Dec. 2015), 29 pages. https://doi.org/10.1145/2743019
Vijay D’Silva, Mathias Payer, and Dawn Song. 2015. The Correctness-Security
Gap in Compiler Optimization. In Proceedings of the 2015 IEEE Security and
Privacy Workshops (SPW ’°15). IEEE Computer Society, Washington, DC, USA,
73-87. https://doi.org/10.1109/SPW.2015.33

M Anton Ertl. 2015. What every compiler writer should know about program-
mers or “Optimization” based on undefined behaviour hurts performance. In
Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS
2015).

[14] Jon Eyolfson and Patrick Lam. 2016. C++ const and Immutability: An Empirical

Study of Writes-Through-const. In 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy. 8:1-8:25. https://doi.
org/10.4230/LIPIcs.ECOOP.2016.8

Matthias Felleisen and Shriram Krishnamurthi. 1999. Safety in Programming
Languages. Technical Report. Rice University.

Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Wiirthinger, and
Hanspeter Mossenbock. 2015. Memory-safe Execution of C on a Java VM. In
Proceedings of the 10th ACM Workshop on Programming Languages and Analysis
for Security (PLAS’15). ACM, New York, NY, USA, 16-27. https://doi.org/10.1145/
2786558.2786565

Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. Defining the Un-
definedness of C. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI'15). ACM, 336-345.
https://doi.org/10.1145/2813885.2737979

Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In Proceedings of the
General Track of the Annual Conference on USENIX Annual Technical Conference
(ATEC °02). USENIX Association, Berkeley, CA, USA, 275-288. http://dl.acm.org/
citation.cfm?id=647057.713871

[19] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve

Zdancewic, and Viktor Vafeiadis. 2015. A Formal C Memory Model Supporting
Integer-pointer Casts. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI °15). ACM, New York,
NY, USA, 326-335. https://doi.org/10.1145/2737924.2738005

Stephen Kell. 2016. Dynamically Diagnosing Type Errors in Unsafe Code. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2016). ACM, New
York, NY, USA, 800-819. https://doi.org/10.1145/2983990.2983998

Robbert Krebbers. 2014. An Operational and Axiomatic Semantics for Non-
determinism and Sequence Points in C. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL '14). ACM,
New York, NY, USA, 101-112. https://doi.org/10.1145/2535838.2535878

Chris Lattner. 2011. What Every C Programmer Should Know
About Undefined Behavior. (2011). http://blog.llvm.org/2011/05/
what-every-c-programmer-should-know.html (Accessed August 2017).

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75-.
http://dl.acm.org/citation.cfm?id=977395.977673

M. Rigger et al.

[24] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason.

43, 4 (Dec. 2009), 363-446. https://doi.org/10.1007/s10817-009-9155-4
Johannes Martin and Hausi A Muller. 2001. Strategies for migration from C
to Java. In Proceedings Fifth European Conference on Software Maintenance and
Reengineering. 200-209. https://doi.org/10.1109/.2001.914988

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David
Chisnall, Robert N. M. Watson, and Peter Sewell. 2016. Into the Depths of C:
Elaborating the De Facto Standards. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’16).
ACM, New York, NY, USA, 1-15. https://doi.org/10.1145/2908080.2908081
Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. 2017. Safelnit: Comprehen-
sive and Practical Mitigation of Uninitialized Read Vulnerabilities. (Feb. 2017).
https://www.vusec.net/download/?t=papers/safeinit_ndss17.pdf

musl libc. 2017. (2017). https://www.musl-libc.org/ (Accessed August 2017).
Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. (2010), 31-40. https:
//doi.org/10.1145/1806651.1806657

George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: Type-safe Retrofitting of Legacy Software. ACM Trans.
Program. Lang. Syst. 27, 3 (May 2005), 477-526. https://doi.org/10.1145/1065887.
1065892

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
’07). ACM, New York, NY, USA, 89-100. https://doi.org/10.1145/1250734.1250746
Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-
K Page Replacement Algorithm for Database Disk Buffering. (1993), 297-306.
https://doi.org/10.1145/170035.170081

Jon Rafkind, Adam Wick, John Regehr, and Matthew Flatt. 2009. Precise Garbage
Collection for C. In Proceedings of the 2009 International Symposium on Memory
Management (ISMM °09). ACM, New York, NY, USA, 39-48. https://doi.org/10.
1145/1542431.1542438

John Regehr. 2010. A Guide to Undefined Behavior in C and C++. (2010).
https://blog.regehr.org/archives/213 (Accessed August 2017).

John Regehr. 2015. The Problem with Friendly C. (2015). https://blog.regehr.org/
archives/1287 (Accessed August 2017).

Manuel Rigger. 2016. Fix for fasta-redux C gec #2 program. (2016). https://alioth.
debian.org/tracker/?func=detail&atid=413122&aid=315503&group_id=100815
(Accessed August 2017).

Manuel Rigger. 2016. Sulong: Memory Safe and Efficient Execution of LLVM-
Based Languages. In ECOOP 2016 Doctoral Symposium. http://ssw.jku.at/General/
Staff/ManuelRigger/ECOOP16-DS.pdf

Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Wiirthinger, and
Hanspeter Méssenbdck. 2016. Bringing Low-level Languages to the JVM: Efficient
Execution of LLVM IR on Truffle. In Proceedings of the 8th International Workshop
on Virtual Machines and Intermediate Languages (VMIL 2016). ACM, New York,
NY, USA, 6-15. https://doi.org/10.1145/2998415.2998416

Armin Rigo and Samuele Pedroni. 2006. PyPy’s Approach to Virtual Machine
Construction. In Companion to the 21st ACM SIGPLAN Symposium on Object-
oriented Programming Systems, Languages, and Applications (OOPSLA ’06). ACM,
New York, NY, USA, 944-953. https://doi.org/10.1145/1176617.1176753

Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor Leu,
and William S. Beebee, Jr. 2004. Enhancing Server Availability and Security
Through Failure-oblivious Computing. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation - Volume 6 (OSDI'04).
USENIX Association, Berkeley, CA, USA, 21-21. http://dl.acm.org/citation.cfm?
1d=1251254.1251275

John Rose. 2012. CompressedOops. (2012). https://wiki.openjdk.java.net/pages/
diffpages.action?pageld=11829259&originalld=26312779 (Accessed August 2017).
Robert C. Seacord. 2008. The CERT C Secure Coding Standard (1st ed.). Addison-
Wesley Professional.

Robert C. Seacord. 2016. Uninitialized Reads. Queue 14, 6, Article 50 (Dec. 2016),
17 pages. https://doi.org/10.1145/3028687.3041020

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Pre-
sented as part of the 2012 USENIX Annual Technical Conference (USENIX ATC
12). USENIX, Boston, MA, 309-318. https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

Geoffrey Smith and Dennis Volpano. 1998. A Sound Polymorphic Type System
for a Dialect of C. Sci. Comput. Program. 32, 1-3 (Sept. 1998), 49-72. https:
//doi.org/10.1016/S0167-6423(97)00030-0

E. Stepanov and K. Serebryany. 2015. MemorySanitizer: Fast detector of uninitial-
ized memory use in C. In 2015 IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO). 46-55. https://doi.org/10.1109/CG0.2015.7054186
Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding and Analyzing Compiler
Warning Defects. In Proceedings of the 38th International Conference on Software
Engineering (ICSE ’16). ACM, New York, NY, USA, 203-213. https://doi.org/10.
1145/2884781.2884879


https://doi.org/10.1109/CGO.2011.5764689
https://doi.org/10.1145/2694344.2694367
https://doi.org/10.1145/2754169.2754181
https://blog.regehr.org/archives/1180
https://doi.org/10.1007/978-3-319-52234-0_2
https://doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13<851::AID-CPE385>3.0.CO;2-K
https://doi.org/10.1002/(SICI)1096-9128(199809/11)10:11/13<851::AID-CPE385>3.0.CO;2-K
https://doi.org/10.1145/2743019
https://doi.org/10.1109/SPW.2015.33
https://doi.org/10.4230/LIPIcs.ECOOP.2016.8
https://doi.org/10.4230/LIPIcs.ECOOP.2016.8
https://doi.org/10.1145/2786558.2786565
https://doi.org/10.1145/2786558.2786565
https://doi.org/10.1145/2813885.2737979
http://dl.acm.org/citation.cfm?id=647057.713871
http://dl.acm.org/citation.cfm?id=647057.713871
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2983990.2983998
https://doi.org/10.1145/2535838.2535878
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1109/.2001.914988
https://doi.org/10.1145/2908080.2908081
https://www.vusec.net/download/?t=papers/safeinit_ndss17.pdf
https://www.musl-libc.org/
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/170035.170081
https://doi.org/10.1145/1542431.1542438
https://doi.org/10.1145/1542431.1542438
https://blog.regehr.org/archives/213
https://blog.regehr.org/archives/1287
https://blog.regehr.org/archives/1287
https://alioth.debian.org/tracker/?func=detail&atid=413122&aid=315503&group_id=100815
https://alioth.debian.org/tracker/?func=detail&atid=413122&aid=315503&group_id=100815
http://ssw.jku.at/General/Staff/ManuelRigger/ECOOP16-DS.pdf
http://ssw.jku.at/General/Staff/ManuelRigger/ECOOP16-DS.pdf
https://doi.org/10.1145/2998415.2998416
https://doi.org/10.1145/1176617.1176753
http://dl.acm.org/citation.cfm?id=1251254.1251275
http://dl.acm.org/citation.cfm?id=1251254.1251275
https://wiki.openjdk.java.net/pages/diffpages.action?pageId=11829259&originalId=26312779
https://wiki.openjdk.java.net/pages/diffpages.action?pageId=11829259&originalId=26312779
https://doi.org/10.1145/3028687.3041020
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1016/S0167-6423(97)00030-0
https://doi.org/10.1016/S0167-6423(97)00030-0
https://doi.org/10.1109/CGO.2015.7054186
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1145/2884781.2884879

Lenient Execution of C on a Java Virtual Machine

[48] What’s the difference between memcpy and memmove? 2017. (2017). http:
//c-faq.com/ansi/memmove.html (Accessed August 2017).

[49] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:
Scalable Use-after-free Detection. In Proceedings of the Twelfth European Con-
ference on Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 405-419.
https://doi.org/10.1145/3064176.3064211

[50] Tielei Wang, Tao Wei, Zhigiang Lin, and Wei Zou. 2009. IntScope: Automati-
cally Detecting Integer Overflow Vulnerability in X86 Binary Using Symbolic
Execution. In NDSS.

[51] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and
M. Frans Kaashoek. 2012. Undefined Behavior: What Happened to My Code?. In
Proceedings of the Asia-Pacific Workshop on Systems (APSYS ’12). ACM, New York,
NY, USA, Article 9, 7 pages. https://doi.org/10.1145/2349896.2349905

[52] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.

2013. Towards Optimization-safe Systems: Analyzing the Impact of Undefined

Behavior. In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (SOSP ’13). ACM, New York, NY, USA, 260-275. https://doi.

org/10.1145/2517349.2522728

Christian Wimmer and Thomas Wiirthinger. 2012. Truffle: A Self-optimizing

Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Pro-

gramming, and Applications: Software for Humanity (SPLASH ’12). ACM, New

York, NY, USA, 13-14. https://doi.org/10.1145/2384716.2384723

Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,

Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Nor-

ton, and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC in

[53

[54

[55

[56

[57

Manlang 2017, September 27-29, 2017, Prague, Czech Republic

an Age of Risk. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 457-468.
http://dl.acm.org/citation.cfm?id=2665671.2665740

Andreas Wo6f3, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer,
and Hanspeter Méssenbdck. 2014, An Object Storage Model for the Truffle
Language Implementation Framework. In Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (PPPJ '14). ACM, New York, NY, USA, 133-144.
https://doi.org/10.1145/2647508.2647517

Christian Wressnegger, Fabian Yamaguchi, Alwin Maier, and Konrad Rieck. 2016.
Twice the Bits, Twice the Trouble: Vulnerabilities Induced by Migrating to 64-
Bit Platforms. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 541-552.
https://doi.org/10.1145/2976749.2978403

Thomas Wiirthinger, Christian Wimmer, Andreas W68, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, New York, NY, USA, 187-204. https://doi.org/10.
1145/2509578.2509581

[58] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabilities

due to dangling pointers. In NDSS. https://doi.org/10.14722/ndss.2015.23190


http://c-faq.com/ansi/memmove.html
http://c-faq.com/ansi/memmove.html
https://doi.org/10.1145/3064176.3064211
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2517349.2522728
https://doi.org/10.1145/2517349.2522728
https://doi.org/10.1145/2384716.2384723
http://dl.acm.org/citation.cfm?id=2665671.2665740
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/2976749.2978403
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.14722/ndss.2015.23190

	Abstract
	1 Background
	1.1 Looseness in the C Standard
	1.2 Problems with Undefined Behavior
	1.3 Calls for a Lenient C

	2 Lenient C
	3 Representing C Objects
	3.1 Integer and Floating-Point Types
	3.2 Pointers and Function Pointers
	3.3 Arrays
	3.4 Structs and Unions

	4 Memory Management
	4.1 Uninitialized Memory
	4.2 Memory Leaks and Dangling Pointers
	4.3 Buffer Overflows and NULL Dereferences

	5 Pointer Operations
	5.1 Pointer Arithmetic
	5.2 Pointer-to-Pointer Casts
	5.3 Conversions between Pointers and Integers
	5.4 Reading from Memory

	6 Arithmetic operations
	7 Evaluation
	8 Related work
	9 Conclusions and Future Work
	Acknowledgments
	References

