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Abstract

In C, memory errors, such as buffer overflows, are among the
most dangerous software errors; as we show, they are still on
the rise. Current dynamic bug-finding tools that try to detect
such errors are based on the low-level execution model of the
underlying machine. They insert additional checks in an ad-
hoc fashion, which makes them prone to omitting checks for
corner cases. To address this, we devised a novel approach
to finding bugs during the execution of a program. At the
core of this approach is an interpreter written in a high-level
language that performs automatic checks (such as bounds,
NULL, and type checks). By mapping data structures in C to
those of the high-level language, accesses are automatically
checked and bugs discovered. We have implemented this
approach and show that our tool (called Safe Sulong) can
find bugs that state-of-the-art tools overlook, such as out-of-
bounds accesses to the main function arguments.
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1 Introduction

C programs are plagued by bugs. In particular, memory er-
rors such as buffer overflows, NULL pointer dereferences, and
use-after-free errors cause critical bugs. Unlike higher-level
languages, the C standard does not define any checks that
could detect such erroneous accesses and then abort the pro-
gram. If not prevented in the application logic, errors induce
undefined behavior; in practice, they can corrupt memory,
leak sensitive data, change the control flow, or crash the
program. In some cases, errors remain undetected because
they can cause delayed failures or do not exhibit any visi-
ble symptoms. Memory errors in C therefore often result in
hard-to-find bugs or enable exploitation by attackers.

To tackle this issue, industry and academia have come up
with a plethora of static and dynamic tools for finding bugs
in C programs [62, 63, 73]. Static tools perform analyses of
source code to detect errors of specific types; they typically
rely on necessarily incomplete heuristics and give rise to both
false positives and false negatives [11, 17, 27]. In contrast,
dynamic tools insert additional checks either as part of the
compilation process or at run time, and find errors during
program execution. Although they only find errors that occur
during a specific run of the program, they are expected to find
all errors and not to produce false positives. Both static and
dynamic bug-finding tools have been widely successful and
have detected numerous bugs in commonly used libraries.

In this paper, we concentrate on dynamic bug-finding
tools and demonstrate that state-of-the-art approaches such
as LLVM’s AddressSanitizer (ASan) [55] and Valgrind [42]
miss real-world errors that programmers would expect to
be found. We argue that this is due to current approaches
not abstracting from the underlying machine’s low-level
execution model; the lack of source information makes it
difficult to find all bugs, and a check can easily be forgotten.
Furthermore, the checks are implemented using inexact tech-
niques, which inherently causes these tools to miss errors.
Dynamic bug-finding tools are either based on static compil-
ers or employed after compilation. It is known that compiler
optimizations at higher optimization levels interfere with
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bug-finding tools [64]; we show that compilers can also op-
timize away memory errors even when explicitly compiling
without optimizations (i.e., with the -00 flag). Finally, bug-
finding tools that support interoperability with native code
usually provide restricted bug-finding coverage, which gives
users a false sense of security. For example, both ASan and
Valgrind cannot detect out-of-bounds accesses to the main()
function’s arguments.

In this paper, we present a novel approach to finding bugs
at run time and to addressing these issues. We implemented
this approach in a tool called Safe Sulong, which can detect
out-of-bounds accesses, use-after-free errors, invalid free
errors, double free errors, NULL dereferences, and accesses
to non-existent variadic arguments. Our approach abstracts
from the underlying machine’s execution model, using an
execution environment for C that is written in a high-level
language. By abstracting pointers and other C data struc-
tures and representing them in the high-level language, we
can rely on well-defined automatic checks of the high-level
language to detect bugs in a C program. While we used
Java for our implementation, the approach also works for
other languages that check and disallow buffer overflows
and NULL pointer dereferences. Our approach is exact (i.e.,
non-heuristic) and can find all errors of a specific category.
To reach native speeds, it uses a dynamic compiler that com-
piles frequently executed functions to machine code. This
compiler does not optimize away bugs, since it optimizes
code based on safe semantics in the sense of Felleisen &
Krishnamurthi [18], where run-time errors in the program
must cause run-time exceptions. We do not provide interop-
erability with pre-compiled native code, because it would
undermine our bug-finding capabilities. We assume that all
C code (including libraries) is executed with our tool, which
makes our approach impractical for programs that use li-
braries for which no source code is available.

In our evaluation we tried to find bugs in small open-
source projects. We detected and fixed 68 errors, 8 of which
were not found by ASan and Valgrind. We argue that these
bugs are due to the lack of abstraction of current-bug finding
tools. Additionally, we conducted a preliminary performance
evaluation; our prototype lacks functionality to execute large
benchmarks such as the ones of SPEC [23] and browsers. The
evaluation demonstrates that Safe Sulong has a higher warm-
up cost than current approaches, but a peak performance
that is better than of other bug-finding tools.

Overall, this paper provides the following contributions:

e We present an alternative approach to bug-finding that
abstracts from the underlying machine.

e We implemented our approach and evaluated its start-
up costs, warm-up costs, and peak performance.

2 Background
2.1 ErrorsinC

To determine which memory errors are relevant in practice
and should therefore be detected by bug-finding tools, we
performed keyword searches of the Common Vulnerabilities
and Exposures (CVE)! and the ExploitDB? databases. Unlike
a previous study of memory errors (up to 2012) [63], we
grouped the errors into different bug categories. Note that
we concentrated only on memory errors (i.e., dereferencing
invalid pointers) and thus did not consider memory leaks,
reading from uninitialized memory, and other C errors.?
Figures 1 and 2 show the results for the period from 2012
to 2017. Note that bug categories with a high number of
vulnerabilities were also exploited more often.

Out-of-bounds accesses. The most common and danger-
ous bug category (as previously shown [9, 54, 63]) consists
of out-of-bounds accesses to objects, which are also known
as spatial memory safety errors. Not only do such bugs con-
tinue to be relevant, they are currently on an all-time high.
We define an out-of-bounds access as a buffer overflow when
it attempts to access memory past the end of an object, and
as a buffer underflow when it accesses memory before the
beginning of an object.* Bug-finding tools typically differ in
whether they can detect out-of-bounds accesses to the stack,
heap, or global (static) data and whether they detect read
and/or write accesses. For example, Valgrind can only find
heap buffer out-of-bounds accesses.

Use-after-free errors. The second-most common bug cat-
egory comprises use-after-free errors (known as temporal
memory errors), where an object allocated by malloc(),
calloc(), or realloc() is freed, but then accessed again.
Such an access is also known as an invalid access to a stale
or dangling pointer.

NULL dereferences. The third-most important bug cate-
gory is a NULL dereference. Note that this error can be de-
tected during normal execution of a program, where derefer-
encing a NULL pointer results in a trap on most architectures.
Other errors. Since the remaining memory errors are less
common, we classified invalid free errors, double free errors,
and accesses to non-existent variadic arguments as “other
errors”. An invalid free error is caused when a pointer to a
stack object or to a global object is passed to free(), or when
the pointer passed points into the middle of an object. Double
free errors occur when a heap object is freed twice. Accesses
to non-existent variadic arguments happen when the number
of passed variadic arguments is smaller than that expected

!https://cve.mitre.org/

Zhttps://www.exploit-db.com/

3We are currently adding support for finding such bugs in Safe Sulong (see
Section 6) and will describe them in a future paper.

4We do not consider out-of-bound accesses in sub objects (e.g., from one
array field member to another), as they are deliberately used in memcpy-like
patterns.
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base (2012-03 to 2017-09).

by the function. One subclass of this error type are format-
string vulnerabilities, where the format string specifies how
many arguments on the stack should be accessed.

2.2 State of the Art

Shadow memory. Most practical bug-finding tools such
as ASan [55], Mudflap [16], Valgrind [42], Dr. Memory [4],
SoftBound+CETS [39, 40], and Purify [22] base their bug-
finding capabilities on the concept of shadow memory: They
maintain metadata about application memory in a separate
memory area referred to as shadow memory, which is used
to verify specific actions; for example, read accesses validate
that a memory cell is accessible (i.e., allocated memory).
Shadow-memory tools are typically combined with red-zone
approaches: when a program allocates memory, the runtime
of the tool marks the shadow-memory area associated with
the program memory as accessible and a region around it as
inaccessible (called a redzone). Most shadow-memory-based
bug-finding tools use this technique to detect out-of-bounds
accesses, use-after-free errors, double free errors, invalid
free errors and NULL dereferences. Some tools also detect
reads of uninitialized memory, use-after-scope errors, and
memory leaks. We further discriminate between shadow-
memory tools based on whether the instrumentation is added
at compile or run time.

Compile-time instrumentation. Compile-time instru-
mentation involves inserting code for tracking allocations
and inserting additional checks when (or before) the program
is compiled. The most widely used compile-time instrumen-
tation approach is LLVM’s AddressSanitizer, which initially
detected out-of-bounds accesses, use-after-free errors, and
NULL dereferences [55] and has been extended to detect in-
valid free, double free, and use-after-scope (including use-
after-return as a special case) errors as well as memory leaks.
Another state-of-the-art tool that is less used in practice is
SoftBound+CETS [39, 40], a bounds checker with a tempo-
ral memory safety tool. Mudflap [16] was used by the GCC
project until GCC 4.9, when it was superseded by Address-
Sanitizer. It was known to have several shortcomings, such as
reporting false positives and not detecting buffer overflows
for neighboring objects in the memory [67]. Commercial

03 to 2017-09).

tools include Purify [22], which is not strictly a compile-
time approach, since it inserts code into object files, and
Insure++ [44].

Dynamic instrumentation. Dynamic instrumentation in-
volves inserting checks at the binary level during program
execution. The advantages of dynamic instrumentation are
that it works for any language that is compiled to machine
code, that all code is checked even if the source code and
meta information (such as debug information) are not avail-
able, and that it does not require recompilation [56]. The
most widely used run-time instrumentation approach is Val-
grind. Other dynamic instrumentation approaches include
Dr. Memory [4] and Intel Inspector [28]. Note that binary
instrumentation approaches cannot detect out-of-bounds
accesses to the stack (unless the top of the stack is exceeded).
Other approaches. A plethora of other approaches tackle
memory errors [62, 63, 73]. For example, Polymorphic C [59],
Cyclone [29], and CCured [41] are well-known approaches
that provide guarantees against memory errors. However,
they require modification of the source code, and are thus
not widely used. Canary-based approaches [35] inserts spe-
cial values (called canaries) next to allocated memory to
detect overflows, and inside freed objects to detect writes to
freed memory. However, canary approaches can detect only
invalid writes, as long as the canary value is not reset again.

2.3 Limitations of Current Approaches

Our main focus is on finding all memory errors in a C pro-
gram. Current approaches to this have several limitations.
We will provide examples for these limitations in our evalu-
ation (see Section 4.1).

Problem 1 (P1): Lack of abstraction from the machine.
Current bug-finding tools do not abstract from the low-level
execution model of the underlying machine: instead of defin-
ing errors at the source level, they define them on the ma-
chine level. They insert additional checks either as part of
a separate phase in an existing compiler (e.g., ASan or Soft-
Bound) or directly into existing native code (e.g., Valgrind).
On this level, the loss of source information makes it concep-
tually challenging (or impossible) to find all bugs that existed



on the source level. Additionally, some approaches need to
instrument all read and write operations, all allocations and
deallocations, and all system calls [42]. The additional com-
plexity when compared to source-level approaches makes
it easy to overlook bugs. A forgotten check cannot easily
be found, since in many cases the program behaves as in-
tended, with the only exception that specific errors have
gone undetected.

Problem 2 (P2): Compiler optimizations. Current bug-
finding tools are built on top of an optimizing compiler such
as Clang or GCC. As previously noted [64], this is an issue
for bug-finding tools, since they implement C semantics that
differ from those of the compiler’s optimizer. For example,
while bug-finding tools report errors for invalid accesses and
abort the program, compilers assume undefined semantics
for errors and sometimes optimize them away. It has been
shown that compilers are increasingly taking advantage of
undefined semantics to optimize code, which leads to more
vulnerabilities [14, 65].

Compiler optimizations can lead to false positives. For exam-
ple, a false positive that was found in an ASan-instrumented
Firefox build was caused by load-widening [55] where a se-
ries of loads is transformed into a single load of several mem-
ory values at once while potentially exceeding the bounds of
an object. Due to platform-specific alignment requirements,
such an optimization can be correct at the system level; how-
ever, ASan classified it as a bug because the access would
be out of bounds in C. While this issue has been fixed by
disabling load-widening [55], such compiler optimizations
can still cause false positives in dynamic-instrumentation
bug-finding tools (such as Valgrind [56]).

A more serious problem is that compiler optimization can
lead to missed errors, that is, false negatives. It is widely
known that at high optimization levels (e.g., with the -02
flag), compilers optimize the code based on the fact that error
semantics are undefined [33, 45]. For example, consider the
(contrived) function in Figure 3. The function initializes ele-
ments of an array without using it further. The array accesses
have no visible side effects, so the compiler optimizes the
function to immediately return 0. The compiler can exploit
the fact that an out-of-bounds access (when length > 10)
has undefined error semantics. Consequently, out-of-bounds
accesses that would have occurred in the original code might
stay undetected at the binary level, and current bug-finding
approaches are unable to find them. It has also been shown
that compilers can remove redundant null-pointer checks,
even at -00 [65]. Further, we have found that Clang can
optimize away memory safety errors at -00.

Since the compiler can optimize away bugs (or cause false
positives), many projects decide to disable optimizations
altogether (with the -00 flag) when testing and accept per-
formance degradations. However, as we will demonstrate,
explicitly disabling optimizations does not stop compilers
from optimizing away bugs.

int test(size_t length) {
int arr[10] = {0};
for (size_t i = @; i < length; i++) {
arr[i] = i;
}

return 90;

Figure 3. A C program with a potential out-of-bounds access
is reduced to return @ by optimizing compilers.

Problem 3 (P3): Inexact approaches. Tools based on shadow-

memory red-zone approaches typically cannot detect all bugs
of a particular category. First, they cannot detect all out-
of-bounds accesses. An access to an object running out of
bounds and landing inside a different object is not detected
as a bug, because the check does not access the redzones next
to the original object. Second, shadow-memory approaches
cannot reliably detect use-after-free errors. When freeing an
object, these approaches mark its shadow memory as unal-
located. If the block is quickly reallocated, subsequent uses
of the dangling pointer stay undetected, since the memory
is again marked as valid. ASan [55] and Purify [22] rely on
heuristics to avoid rapid reallocation of freed memory. Note
that SoftBound+CETS [39, 40] is not susceptible to such false
negatives.

Problem 4 (P4): Finding invalid accesses in libc. Sup-
porting external libraries is a challenge for bug-finding tools.
Run-time instrumentation approaches inherently support ex-
isting machine code. In contrast, compile-time instrumenta-
tion approaches that support native interoperability require
heuristics or special treatment of native functions in order
to maintain a correct state of the shadow memory.

To achieve higher coverage, compile-time instrumentation
approaches recommend creating special instrumented builds
for external libraries [55]. This is a challenge in relation to
libc, where most production-quality implementations con-
tain non-standard C code (or hand-written assembly) that
causes most bug-finding tools (both run-time and compile-
time instrumentation approaches) to report errors. Examples
are optimized versions of strlen() that compute the length
of a string by word-wise comparison [66], which can—like
the load-widening optimization—lead to out-of-bounds ac-
cesses. Current compile-time instrumentation tools disable
instrumentation or checks for such functions, or replace
them altogether.

The pragmatic alternative that compile-time instrumentation
approaches such as ASan and Mudflap provide are so-called
interceptors that wrap the system library functions and call
them only after performing validity checks on the arguments.
This approach is dangerous when users expect these inter-
ceptors to be comprehensive. As we show in Section 4.1, we
found bugs in real-world programs that were not detected
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by ASan due to a missing interceptor. Valgrind and Dr. Mem-
ory also provide replacements for these functions, which,
however, do not work when these calls have already been
inlined at compile time. Thus, Valgrind detects magic con-
stants that point towards a strlen() implementation and
disables checks for that code block [56].

3 Implementation

We developed Safe Sulong to address the four problems men-
tioned in Section 2.3. We designed our tool with a focus on
bug-finding capabilities. Unlike state-of-the-art approaches
that plug into compilers or into native code (see P1), Safe
Sulong abstracts from the underlying machine and imple-
ments a simple execution model; it executes C programs
using an interpreter written in Java that relies on automatic
checks of the language. The interpreter uses an exact ap-
proach (to address P3), so no errors are missed. We do not
provide interoperability with native code, since this could
undermine the bug-finding capabilities (see P3). However,
we provide our own libc that is written in standard C and is
optimized for safety instead of performance (see P4). Unlike
state-of-the-art approaches that rely on compilers that ex-
ploit undefined behavior for compiler optimizations (see P2),
we use a dynamic compiler that optimizes the code based on
safe semantics and cannot optimize away invalid accesses.
In summary, our approach allows us to find errors in C pro-
grams reliably while still reaching a good peak performance.

3.1 System Overview

Figure 4 shows the architecture of Safe Sulong. It comprises
the following components:

Libc. We argued that current libc implementations (which
are optimized primarily for performance) are detrimental
to bug-finding tools. To address this issue, we implemented
a libc that is written in standard C and does not rely on
any GNU extensions. It performs additional checks based on
run-time information [52]. To implement libc, Safe Sulong
exposes functions that are implemented in Java and serve the
same purpose as system calls. For example, when printing

a pointer value using printf("%p"), the printf() imple-
mentation calls a function implemented in Java to retrieve a
textual representation of the pointer. Currently, we support
126 common libc functions, which is sufficient to execute a
large body of programs. However, we still lack support for
threads and synchronization, interprocess communication,
many low-level operations (mmap (), mprotect(), setjmp()
and longjmp()), and less commonly used functions. As part
of future work, we intend to support running an existing
libc that chooses standards-conformance and safety over
performance (e.g., the musl libc) on Safe Sulong. This will
require us, for example, to add support for the safe execution
of inline assembly that libcs use to implement functionality
such as system calls, atomics, and busy-waiting processor
hints.

Clang and LLVM IR. Safe Sulong executes LLVM Interme-
diate Representation (IR), which represents C functions in a
simpler, lower-level format. LLVM is a flexible compilation
infrastructure [34], and we use LLVM’s front end Clang to
compile the source code (our libc and the user application) to
the IR. Note that we do not enable any of Clang’s optimiza-
tions to lower the risk that bugs are optimized away. As part
of future work, we will replace Clang with a non-optimizing
front end, to eliminate this risk completely (see Section 6).
Since LLVM IR retains all C characteristics that are impor-
tant in our context, for simplicity we hereafter refer to LLVM
IR objects as C objects. By executing LLVM IR, Safe Sulong
could execute languages other than C that can be compiled
to this IR, including C++ and Fortran.

Truffle. We used Truffle [68] to implement our LLVM IR
interpreter. Truffle is a language implementation framework
written in Java. To implement a language, a programmer
writes an Abstract Syntax Tree (AST) interpreter in which
each operation is implemented as an executable node. Nodes
can have children that parent nodes can execute to compute
their results.

Graal. Truffle uses Graal [72], a dynamic compiler, to com-
pile frequently executed Truffle ASTs to machine code. Graal
applies optimistic optimizations based on assumptions that
are later checked in the machine code [15, 60, 61]. If an as-
sumption no longer holds, the compiled code deoptimizes [25],
that is, control is transferred back to the interpreter, and the
machine code of the AST is discarded. Graal optimizes based
on safe semantics and cannot introduce false positives or
false negatives with respect to the bugs that Safe Sulong
finds.

LLVM IR Interpreter. The LLVM IR interpreter (approx.
60k lines of Java code) is at the core of Safe Sulong; it ex-
ecutes both the user application and the enhanced libc. It
performs checks while executing the LLVM IR and aborts ex-
ecution with an error when it detects a bug. First, a front end
parses the LLVM IR and constructs a Truffle AST for each
LLVM IR function. The interpreter then starts executing the



main() function’s AST, which can invoke other ASTs. Dur-
ing execution, Graal compiles frequently executed functions
to machine code.

JVM. Safe Sulong’s interpreter can run on any JVM, since
it is written in Java. However, to reach native speeds, it re-
quires a JVM that implements the Java-based JVM compiler
interface (JVMCI [53]). JVMCI will be included in OpenJDK 9
by default and enables Graal as a compiler. Note that our tool
is platform-independent and provides the same bug-finding
capabilities on all platforms. Additionally, Safe Sulong run-
ning on a Windows JVM can execute code that was written
for libc under Linux.

3.2 Managed Objects and Type Safety

We base the execution model of Safe Sulong on an abstraction
of the underlying machine. Our basic idea is to implement
our interpreter in Java (i.e., in a high-level language) and
represent C data structures as Java data structures. Since Java
provides well-specified automatic bounds and type checks,
the interpreter automatically checks and detects invalid ac-
cesses, such as out-of-bounds accesses, use-after-free errors,
and NULL pointer dereferences. As C programs sometimes de-
liberately contain patterns that violate the C standard [6, 38],
we relaxed our type rules (see below). Note that the inter-
preter could also have been implemented in another high-
level language that provides these capabilities.

Figure 5 shows a simplified version of our class hierarchy,
which is based on a previous Truffle implementation of C [21].
The base class for all objects is ManagedObject, from which
subclasses for all primitives, pointers, functions, arrays, and
structs inherit. To represent primitive types, we implemented
classes that wrap a Java primitive. For example, to represent
an LLVM IR 132 object (which corresponds to a C int on
AMDé64), we use a Java int, since both have the same bit
width. For some data types, no equivalent Java primitive
exists; for example, Clang produces LLVM IR code that can
contain integers with uncommon bit widths such as I48.
We implemented such types using a Java byte array. To
represent function pointers, we use a function ID to look up
the AST for a function at a function call site. Note that we
use inline caches to make function pointer calls efficient [24],
and even enable speculative inlining [51]. For arrays, we use
Java arrays. For structs, we employ an array-based map-like
data structure that is provided by the Truffle framework [21,
69], and contains ManagedObjects. To represent pointers,
we implemented an Address class that contains a reference
to its pointee and an integer field of fset used for pointer
arithmetic.

Figure 6 shows an example where malloc() allocates an
int array with three elements. Our interpreter maps this
allocation to an Address that points to an I32HeapArray
which holds a reference to a primitive Java int array (Sec-
tion 3.3 explains on how we determine the allocation type).

The offset in Address is initially @; when pointer arith-
metics compute an address in the middle of an object, the
offset is updated. For example, execution of the expression
arr[2] first sets the of fset to 8, which is computed by mul-
tiplying the size of arr’s type by 2. When the interpreter
executes the load, it takes the offset from Address, divides
it by 4 (since the dereferenced object is an int array), and
uses the value 2 obtained to index the Java array.

In contrast to approaches that represent C objects as raw
bytes that are stored in a large array [36] (e.g., LLJVM®),
the presented type hierarchy guarantees type safety and
restricts invalid pointer casts [10] when the cast pointer is
used to read or write from the object. For example, in our
architecture an integer array can only hold integer values
and no Addresses; storing an Address would require con-
verting it to an int that could be stored in the array. While
strict type safety is beneficial to improve program quality
and finding bugs, it can prevent real-world programs from
executing [6, 31, 38]; for example, we found that many pro-
grams rely on invalid type casts to deliberately violate C’s
type rules. To provide a pragmatic solution, we relaxed the
type safety rules to accommodate common patterns that we
observed in real-world programs. For example, when the
program stores a double in a long array, we simply take the
bit representation of the double, convert it to a long, and
store it in the array. As part of future work, we plan to fur-
ther investigate the trade-offs between executing real-world
programs and finding bugs.

3.3 Memory allocation

Every allocated object is either a stack object, a heap object,
or a global object, that is, automatic, dynamic, or static mem-
ory, respectively. We know the type for stack allocations, and
can thus directly allocate memory of the specified type in the
function prologue. For heap objects (allocated by malloc(),
calloc(), or realloc()) we do not know the type of object
that will be stored in it. Thus, we allocate the corresponding
Java object only on the first cast, read, or write access (i.e.,
when the type of the object becomes known) and propagate
the type back to the allocation site (similar to allocation me-
mentos in V8 [7]). The next time the allocation function is
called, we directly allocate an object of the observed type.
For global objects, the parser allocates objects at the start of
the program.

We have subclasses of each data structure for each stor-
age location. For example, an I32Array has the subclasses
I32AutomaticArray, I32HeapArray, and I132StaticArray.
Each heap object implements the HeapObject interface,
which is used to free objects (see Figure 7). The free()
method sets an object’s data to null so that the garbage
collector can reclaim the memory. Having different classes

Shttps://github.com/davidar/lljvm
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Struct Address AddressArray

value: int

bytes: byte[] || id:int arr: int]]

data: TruffleObject|| offset: int

arr: Address|]

pointee: ManagedObject

Figure 5. Simplified Class Hierachy of ManagedObject.

int *arr = malloc(sizeof(int) * 3)

arr; Address pointee: I32HeapArray

— [ []

Figure 6. Example of pointer arithmetics and memory allo-
cation (I32HeapArray is a subclass of I32Array).

offset=0 arr=
pointee ——

HeapObject 132HeapArray
i-- arrint]
if;i?.(a)ed() free() {arr = null; }
isFreed() { return arr == null; }

Figure 7. The HeapObject interface is used to free heap
objects.

HeapObject obj =
(HeapObject) pointer.pointee;
if (pointer.offset != 0) {
throw new InvalidFreeException();

}
if (obj.isFreed()) {
throw new DoubleFreeException();

}
obj.free();

Figure 8. Implementation of the free method.

for different storage locations also allows us to print mean-
ingful error messages, since we can include the memory type
of an object that is illegally accessed or freed.

3.4 Finding bugs

We implemented our bug-finding capabilities by relying on
the JVM’s automatic checks. In contrast to C, the Java lan-
guage semantics require that illegal loads, stores, and casts
result in an exception. Thus, a JVM cannot simply optimize
invalid accesses away.

Out-of-bounds accesses. We translate load and store ac-
cesses to arrays in C to array accesses in Java. When the
JVM executes the load, it first checks whether the index is
in bounds; an out-of-bounds index access results in a Java

ArrayIndexOutOfBoundsException. Note that such checks
reduce the performance of Java programs. To address this,
Java compilers such as Graal eliminate checks when they
can prove that the index will always be in bounds [71]. As
structs do not exist in Java, we represent them using a cus-
tom data structure [21, 69], for which we have to perform
explicit bounds checks.

Use-after-free accesses. We map C objects that are allo-
cated on the heap to Java objects that have references to
the data objects via the data field. If an object is freed, the
reference to its data is set to null. A subsequent access will
result in a NullPointerException, since Java checks and
prevents dereferences of null.

Double free errors. As shown in Figure 8, we explic-
itly check for double free errors in the AST node of the
free() function using the isFreed() method specified
by HeapObject. This method is implemented by checking
whether the data field has already been set to null.
Invalid free errors. To detect invalid free errors, Safe Su-
long first casts the object to be freed to the HeapObject
interface. If the object was not allocated on the heap, a
ClassCastException is thrown, since Java checks every
type cast. Therefore, invalid free errors with a wrong pointee
are detected. The code verifies next that the pointer offset is
zero, that is, an exception is thrown if the pointer does not
point to the start of the pointee. Only if the checks succeed
is the pointee freed.

Variadic argument errors. Figure 9 shows how we imple-
mented variadic arguments. A call to va_start() sets up
the processing of variadic arguments by allocating space
for a struct that holds a counter and an array of pointers
to the variadic arguments. va_start() can also initialize
this array, since the interpreter exposes the number of vari-
adic arguments via the count_varargs() function, which
can determine this number because the interpreter passes
function arguments as a Java Object array that has a field
for the array length. We do not require the user to specify
the types of the variadic arguments, since we can obtain
pointers to them via the get_vararg() function. When the
user accesses a variadic argument via va_arg(), the current
variadic argument index is used to access the pointer array.
The result is then dereferenced using the user-specified type,
which results in a type error for type violations. We can also
detect an access to a non-existent variadic argument, as it



struct varargs {
int counter;
void #**xargs;

};
#define va_list struct varargs *

#define va_start(ap, last)
ap = (va_list)malloc(sizeof (struct varargs));
ap->args = (void =*x)

malloc(sizeof (void *) * count_varargs());

for (ap->counter = count_varargs() - 1;
ap->counter != -1;
ap->counter--) {
ap->args[ap->counter] =

get_vararg(ap->counter);

ap->counter = 0;

#define va_arg(ap, type) *((type *)
(ap->argsl[ap->counter++]))

Figure 9. Implementation of variadic arguments.

would cause an out-of-bounds read of the malloced array.
This allows our interpreter to detect the classic format-string
problems [8].

4 FEvaluation

In our evaluation, we primarily seek to demonstrate the ef-
fectiveness of Safe Sulong as a bug-finding tool (Section 4.1).
We also show the resource costs of our implementation to
argue that our approach is efficient enough to be used in
practice. Safe Sulong’s run-time performance varies during
execution: at the beginning it is poorer than that of other
tools (Section 4.2) but it improves when warmed up (Sec-
tion 4.3). We performed all measurements on a quad-core
Intel Core i7-6700HQ CPU at 2.60GHz on Ubuntu version
14.04 (with kernel 4.3.0-040300rc3-generic) with 16 GB of
memory.

4.1 Effectiveness

We claimed that Safe Sulong is an effective bug-finding tool.
To test this claim, we selected C projects from Github (see
below) and executed them with Safe Sulong to find errors in
them. We also sought to demonstrate that state-of-the-art ap-
proaches fail to detect common real-world bugs that Safe Su-
long can detect. To this end, we executed each of the known
faulty programs under the same conditions with ASan and
Valgrind, that is, with the most popular compile-time and
run-time instrumentation approaches, to check whether they
could also find the error. Note that SoftBound+CETS [39, 40]

was another candidate in the evaluation; however, it is not
actively maintained and the version of SoftBound+CETS that
is based on a recent LLVM version is still experimental.® Con-
sequently, we restricted our evaluation to ASan and Valgrind.
Although SoftBound+CETS was formally proven to find all
memory-safety violations, we still expect false negatives
because it detects memory errors that exist on the machine-
level and not on the source-level as it applies LLVM’s opti-
mizations both before and after its passes [39, 40]; bugs that
exist on the source-level could be removed by the compiler
(P2).

We primarily selected small programs, ranging from 25
to 4792 (on average 289) lines of code (LOC)” because we
observed that they were more likely to contain errors than
larger projects, as they were often personal “hobby projects”
that had not been tested with bug-finding tools. In some
cases, this enabled us to find bugs simply by using Safe
Sulong to execute the test suite of the project. When the
project lacked a test suite, we executed the program, provid-
ing both expected input and corner cases. Finding bugs in
larger programs would have required us to use automated
testing strategies such as fuzzing [20]. Additionally, small
programs were unlikely to use library functions that were
not yet supported by Safe Sulong (see Section 6). Finally,
many small projects relied only on the C standard library
and were otherwise self-contained, so we did not have to
compile additional dependencies.

In total, we found 68 errors in 63 projects and provided
bug fixes for them, many of which were accepted by the
project maintainers. Table 1 shows the distribution of the
bugs, which roughly follows the distribution of the vulnera-
bility and exploits databases (see Section 2.1). As expected,
the majority of bugs were out-of-bounds accesses caused
by strings not being NUL-terminated, not allocating enough
space for a string to hold the NUL terminator, missing checks,
integer overflows, incorrect hard-coded sizes, performing a
check after an invalid access has already happened (see [65]),
off-by-one errors in comparisons, and other errors. Table 2
shows that the out-of-bounds accesses included both reads
and writes (with almost equal distribution) as well as buffer
underflows and overflows. Most out-of-bounds accesses oc-
curred to stack objects, but we also identified several to heap
objects, global objects, and to the main() function’s argu-
ments. A smaller number of bugs were NULL dereferences
that could also have been found without a bug-finding tool.
We found only 1 use-after-free error and 1 variadic argument
error (where arguments did not match the format string).

We compiled the programs with Clang using no optimiza-
tions (-00), since we aimed to find as many errors as possible.
In order to show that compiling with optimizations results

6See https://github.com/santoshn/SoftBoundCETS-3.9.
"To calculate the LOC, we used cloc, which omits comments and empty
lines.


https://github.com/santoshn/SoftBoundCETS-3.9

Buffer overflows 61
NULL dereferences 5
Use-after-free 1
Varargs 1

Table 1. Error distribution of the detected bugs.

Stack 32

Read 32 Underflow 8 Heap 17
Write 29 Overflow 53 Global 9
Main args 3

Table 2. Distribution of out-of-bounds accesses according
to reads/writes, overflows/underflows, and memory kind.

in the failure to detect specific errors, we also compiled the
programs at optimization level -03 for ASan and Valgrind.
We used standard options to execute Valgrind, but after find-
ing out that ASan does not check zero-initialized global data
by default, we had to enable the -fno-common compiler flag
for ASan.

Valgrind -00 and -03 found slightly more than half of the
errors because Valgrind reliably detects only out-of-bounds
accesses to the heap and misses many of the out-of-bounds
accesses to the stack and to global variables. Note that Val-
grind detects reads of uninitialized values, so it could ar-
guably be used to indirectly identify out-of-bounds reads to
the stack (14 out of 31 stack accesses). However, we found
that this feature is not reliable, and that compiling with either
-00 or -03 reveals different but overlapping sets of bugs.

ASan -00 detected 60 of the 68 errors that Safe Sulong
found. Only 56 errors (a subset of those found with -00)
were also found with -03, since in the other cases Clang
optimized away bugs. From the 68 errors that Safe Sulong
detected, 8 could neither be found by Valgrind nor by ASan
at either optimization level (-00 and -03).

1. Uninstrumented main arguments array (P4, P1). We
argued that to tools that are based on low-level approaches
it is not always obvious whether the programs analyzed
contain uninstrumented native code or data. We found that
neither ASan [49] nor Valgrind detects out-of-bounds ac-
cesses to the main() function’s arguments—a bug that we
discovered in three applications. Figure 10 shows an exam-
ple: the buffer for argyv is created before the program (and
libc) is invoked and is therefore not instrumented. Note that
the main() function can have an additional argument for a
pointer to an array of environment variables (declared as
int main(int argc, char xargv[], char *envp[])); this
array is initialized irrespective of the main() function’s sig-
nature [37]. A missing or incorrect check might allow an
attacker to exploit an out-of-bounds access to leak secrets
contained in an environment variable.

#include <stdio.h>

int main(int argc, char#**x argv) {
printf ("%d %s\n", argc, argv[5]);
3

Figure 10. ASan does not detect out-of-bounds accesses to
the main function.

const char t[2] = " \n";
token = strtok(buf, t);

Figure 11. The delimiter passed to strtok() is not NUL-
terminated.

int counter;
VY
printf("counter: %1d\n", counter);

Figure 12. A wrong format specifier is used, which causes
an out-of-bounds read.

2. Missing interceptors (P1). Two bugs could not be found
by ASan due to missing or incomplete interceptors; Valgrind
did not find them, because the out-of-bounds accesses did
not occur in heap-allocated objects. The first bug was caused
by an unterminated string that the program passed to the
strtok() libc function (see Figure 11). ASan failed to detect
this bug, as it lacked an interceptor for strtok(), which we
consequently implemented [47, 48]. We also found one error
in which the program passed an integer to printf ("%1ld"),
where the format string specified a long (see Figure 12).
Note that Clang detected the bug statically and printed a
warning; however, ASan did not detect the error, because the
interceptor for printf () checks only pointer arguments.
3. Backend compiler optimizations (P2). In one case, a
bug was eliminated by the compiler when compiling with
-00, namely a global array out-of-bounds access similar to
that shown in Figure 13. Clang statically detected the out-
of-bounds access and printed a warning. However, Clang’s
front end had not yet optimized away the bug, so Safe Sulong
was able to detect it while executing the LLVM IR; not until
LLVM’s back end was it optimized away. Thus, ASan was
unable to detect the bug. Valgrind would not have detected
the bug in either case, since the array was not allocated on
the heap. Arguably, a user could have found the bug given the
compiler warning. However, we found cases were Clang -00
optimized bugs away even without emitting a warning [50].
4. Overflowing the redzone (P3). As previously shown,
shadow-memory red-zone approaches are inexact and can-
not find all errors of a particular category. Safe Sulong found
such a case in a program that reads a number and converts



int count[7] = {0, 0, 0, 0, 0, 0, 0};

int main(int argc, char#**x args) {
return count[7];

}

Figure 13. The out-of-bounds error in this program is opti-
mized away, even with optimizations disabled (-00 flag).

non non

const char * strings[] = {"zero","one","two",
three","four","five","six" /x ... x/ };

«

void convert(FILE *input, FILE xoutput) {
int number;
fscanf (input, "%d",
//
fprintf(output, "%s\n", strings[number]);

&number) ;

Figure 14. A large number as user input causes a buffer
overflow that can exceed ASan’s redzone.

it to a string; Figure 14 shows a simplified version of the
program. In this example, the user input is used to index
a global array; if the input number is too large, it causes a
buffer overflow. ASan can only find the buffer overflow if
the index is close to the object, that is, if it does not exceed
the redzone; for our random inputs the access exceeded the
redzone and the program either printed (null) or crashed.
Valgrind could not find the error, since strings is a global
buffer.

5. Missing variadic arguments (P1). In the projects we
evaluated, we found only a few implementations of variadic
functions. However, we identified a missing argument to
the variadic printf () libc function. As in Figure 10, Clang
detected the bug statically, since printf () is a well-known
libc function. However, the bug could also have occurred in
an application-specific function, where Clang would not have
been able to detect it; similar format string vulnerabilities
have recently been identified in libxml2 (CVE-2016-4448), in
Dropbear SSH (CVE-2016-7406), and PHP (CVE-2016-4071).
ASan and Valgrind cannot detect such errors at run time.
Discussion. Safe Sulong detected bugs that Valgrind and
ASan missed. On the one hand, they missed bugs due to
fundamental limitations of their approaches that cannot be
addressed without significant enhancements. These stem
from the limitations of shadow memory and redzones (4) as
well as from their reliance on compilers that optimize based
on unsafe semantics (3). On the other hand, they missed
bugs due to implementation issues that could be addressed
by implementation enhancements or fixes. The uninstru-
mented main() arguments (1) could be addressed by adding
the missing instrumentation. Variadic arguments (5) could
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Figure 15. Warm-up time on the meteor benchmark. The
x-axis shows the time in seconds and the y-axis the number
of iterations an approach could run in the last second. The
dots indicate the numbers of ASTs that Graal compiled up
to that point.

also be instrumented, passing the argument types supplied
at the call site and verifying them in the callee [3]. Missing
or incomprehensive interceptors (2) could be addressed by
comprehensive implementations or by instrumenting a libc
implementation.

We argue that also implementation issues highlight the con-
ceptual advantage of Safe Sulong’s abstraction from the
native execution model; in Safe Sulong, all accesses are
checked automatically, so instrumentation for corner cases
cannot be forgotten. Note that state-of-the-art static check-
ers can detect some of the bugs that were missed by Val-
grind and ASan but detected by Safe Sulong; however, they
suffer from false positives and other issues [30]. More pre-
cise tools such as SoftBound+CETS do not suffer from the
limitations of shadow memory and redzones (4); however,
SoftBound+CETS applies an unsound optimization where
instrumentation for copied memory is omitted [39], which
could result in missed bugs.

4.2 Start-up and Warm-up Costs

Safe Sulong uses a dynamic compilation approach and has
therefore some additional run-time performance costs.

First, the LLVM IR interpreter has a noticeable start-up
cost, which is the time between the user starting the pro-
gram and the program beginning to run. We measured the
start-up time by executing a "Hello, World!" program 100
times for each tool and measuring the execution time us-
ing /usr/bin/time. Safe Sulong needs slightly more than
600 ms to start up, during which the JVM initializes and
starts Safe Sulong, which must then parse libc before calling
the main function. Note that we could improve the start-up
performance by lazily parsing libc and by improving the
performance of our parser, but this was not the focus of our
research. The start-up time of Safe Sulong for this program
is longer than that of Valgrind, which needs around 500 ms
to instrument and execute the program. With less than 10
ms, ASan starts up the fastest.

Second, the LLVM IR interpreter has a high warm-up cost,
which is the time after start-up until the application reaches



peak performance. Figure 15 illustrates the warm-up times of
ASan, Valgrind, and Safe Sulong on the meteor benchmark.
To approximate how Safe Sulong would behave for larger
programs (which Safe Sulong currently fails to execute), we
continuously executed the benchmark and plotted how many
iterations per second the respective approach could execute
over time. Safe Sulong’s warm-up costs can be attributed
mostly to the time the program spends in the interpreter;
not until the interpreter has identified hot functions does
Graal compile them to machine code. The curve shows a
typical VM warm-up [2]. Not until second 6 did Safe Sulong
complete its first execution of the benchmark. During this
time, Graal had compiled the 15 most important functions
to machine code. Afterwards, it soon sped up and executed
more iterations per second than Valgrind (in second 7), and
ASan (in second 11).

Note that the benchmark contains a call to printf () and
to other libc functions, which Safe Sulong also interprets and
compiles to machine code during execution. Even after com-
pilation, the program fails to immediately reach peak perfor-
marce, since we currently lack on-stack replacement [1, 19],
which is used by production VMs to reduce the warm-up
costs by switching from an interpreted method to a compiled
method while executing in a loop [19, 26, 32]. However, our
peak performance is higher than that of other tools as we
demonstrate in Section 4.3. For ASan, we see that compile-
time instrumentation approaches incur almost no warm-up
costs, because checks are inserted during compilation and the
runtime is initialized during start-up. Run-time approaches
can insert checks either during start-up or on demand while
executing the program. Valgrind inserts them while execut-
ing the program; nonetheless, the warm-up costs are not vis-
ible and likely overshadowed by the execution time needed
for one iteration.

To address start-up and warm-up costs, the Graal project
currently explores ahead-of-time compilation for the inter-
preter and the compiler [70, 72]. Applying this approach to
Safe Sulong would allow us to create a standalone tool which
would no longer require a JVM, and would have a smaller
memory footprint and lower warm-up costs, since the parser
and other components would have been compiled before
starting the program.

4.3 Peak Performance

In this section we evaluate the peak performance that Safe
Sulong can reach on long-running programs. Safe Sulong
is a prototype and currently cannot execute large programs
such as the SPEC benchmarks. Thus, we decided to evalu-
ate benchmarks from the Computer Language Benchmark
game [58], which contains smaller benchmarks for compar-
ing the performance of different programming languages.
When we executed this suite’s fastaredux benchmark with
Safe Sulong, we discovered that a loop ran out of bounds
because, due to a rounding error, probabilities did not add

up to the value 1.00. We reported and fixed the bug [46],
and used the fixed version in our evaluation. Additionally,
we included the whetstone benchmark [43].

We measured the performance of executables compiled
by Clang with disabled optimizations (-00) and enabled op-
timizations (-03) as baselines. Since our aim was to find as
many errors as possible, we compiled the benchmarks using
Clang -00 for all bug-finding tools, although Safe Sulong
would also profit from compiler optimizations. In addition to
assessing the performance of Safe Sulong, we also measured
the performance of executables compiled by Clang 3.9 using
ASan based on LLVM version 3.9 and Valgrind version 3.12.
A direct comparison of run-time performance between dif-
ferent tools is not fair, since they provide different features.
Our measurements are therefore intended to demonstrate
that the peak performance of programs under Safe Sulong is
sufficient to make our approach viable in practice. To approx-
imate the performance of larger programs, we had to account
for the adaptive compilation techniques of Truffle and Graal
by setting up a harness that warmed up the benchmarks. By
executing 50 in-process warm-up iterations, we ensured that
every benchmark reached a steady state. We executed each
benchmark 10 times and used the last iteration of each run
as a sample for computing the peak performance. We also
used the same benchmark harness for the other tools, even
though their warm-up costs are minimal.

Figure 16 shows box plots for the peak performance rela-
tive to that of Clang -00. We excluded Valgrind from the
plots because it was 10X to 58X slower than Clang -00 on
5 benchmarks. Its slowdown was lowest on spectralnorm,
fasta, and fannkuchredux (2.3, 3.6 and 5. 1, respectively).
We did not plot the results for the binarytrees benchmark,
since ASan was 14X slower and Valgrind 58% slower than
Clang -00. This slowdown was due to binarytrees being
allocation-intensive, which suggests that current bug-finding
approaches cannot deal well with allocation-intensive bench-
marks. On this benchmark, Safe Sulong was only 1.7x
slower than Clang -00. In almost all benchmarks, Safe
Sulong was faster than ASan -00; they were on a par
only on fastaredux. Safe Sulong was faster than Clang
-00, except on the fastaredux and nbody benchmarks. On
fannkuchredux and mandelbrot, Safe Sulong was even on
a par with Clang -03. Safe Sulong exhibited the poorest per-
formance on fastaredux, where it was 2.5X% slower than
Clang -00. As part of future work, we plan to further reduce
Safe Sulong’s overhead.

5 Limitations

Native interoperability. Interoperability ~with pre-
compiled binaries is a double-edged sword. It is necessary
to execute closed-source libraries [62] and convenient for
users, but it results in overlooked bugs, as our findings
have demonstrated. What sets Safe Sulong apart from
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Figure 16. Execution times relative to Clang -00 (peak performance, lower is better).

state-of-the-art shadow-memory red-zone approaches
(which are inherently inexact) is that our approach is exact
and aims to find all errors of a category. To maintain this
property, Safe Sulong does not provide a native function
interface. This is also the source of Safe Sulong’s most
significant drawback, as this renders it unusable with
programs that require this interoperability. We want to
address this issue in the future by using binary translation to
convert binaries to LLVM IR, which can be executed by Safe
Sulong. Translators that can convert binary code to LLVM IR
already exist; MC-Semantics [13], REVAMB [12], QEMU [5]
support x86, and LLBT [57] support the translation of ARM
code.

Warmup time. As discussed in Section 4.2, Safe Sulong
needs significantly more time to execute small programs
due to warm-up time. Similar to state-of-the-art JVMs, we
start by running the program in an interpreter and only
compile frequently executed functions to machine code. For
approaching the warm-up time of current JVMs, we still
lack on-stack replacement, which would allow us to switch
to a compiled version of a function while executing in its
loop. The Graal project is experimenting with ahead-of-time
compilation of the interpreter and the JIT compiler to provide
a long-term solution that reduces warm-up time. Note that
the JIT compilation approach allows Safe Sulong to reach
better peak performance than other bug-finding tools, which
could make it applicable to long-running server applications
in production.

Programs that rely on non-standard C. Safe Sulong can-
not execute all programs that occur “in the wild”. We assume
that a programmer wants to eliminate undefined behavior
from the execution. Consequently, we also require that a
program does not violate the type rules of the C standard
(e.g., the strict-aliasing rule [10, 31]). Since type violations
continue to be relatively common, we relaxed some of the
type rules to accommodate real-world code. Additionally, a
previous survey discussed certain non-standard-compliant
C patterns that are commonly assumed to work [38]. Cur-
rently, Safe Sulong lacks support for many such patterns, for
example, for tagged pointers where pointers are converted
to integers, values stored in spare bits, and converted back
to an address. We could implement further relaxations to

support such patterns; for instance, we could allow users to
store integers in the of fset field of Address.

6 Future Work

Completeness. Safe Sulong can execute most LLVM IR in-
structions, but is still a prototype that fails to execute larger
programs such as the SPEC benchmarks. Such programs re-
quire system libraries (most importantly libc) which rely on
system calls, inline assembly, compiler builtins, and linker
features. As part of future work, we will extend Sulong to
support these features, and replace our custom, incomplete
libc by an existing, complete one such as musl libc.
Detection of memory leaks. Many bug-finding tools such
as Dr. Memory, Valgrind, Purify, and ASan offer support for
memory-leak detection. Our approach is based on an exact
garbage collector, which reclaims memory when it is no
longer needed, irrespective of whether it has been freed
or not. We plan to add support for detecting objects that
have not been freed by having a background thread that is
notified when the garbage collector collects an object (using
Java’s PhantomReferences). When this thread receives a
notification, we can check whether the object has been freed
manually to print an error in case it has not.

Replace Clang as a front end. As we have demonstrated,
Clang (and other C compilers) can optimize away code with
undefined behavior even with optimizations disabled. We
cannot exclude the possibility that Clang optimized away
other bugs that could then no longer be found by ASan, Val-
grind, and Safe Sulong. To address this issue, we intend to
implement a C front end that does not perform any optimiza-
tions.

7 Conclusion

In this paper, we have presented a novel bug-finding tool
for C programs that is based on abstraction of the underly-
ing machine. We implemented our approach in a tool called
Safe Sulong, which discovered several errors in open-source
projects that current bug-finding tools could not find. By
using dynamic compilation, Safe Sulong reaches a peak per-
formance that is comparable to that of Clang -00, and even
that of Clang -03 in some cases.
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