
1

5. Symbol Table
5.1 Overview
5.2 Symbols
5.3 Scopes
5.4 Types
5.5 Universe

2

Responsibilities of the Symbol Table
1. It stores all declared names and their attributes

• type
• value (for constants)
• address (for local variables and method arguments)
• parameters (for methods)
• ...

2. It is used to retrieve the attributes of a name
• Mapping: name ⇒ (type, value, address, ...)

Contents of the symbol table
• Symbol nodes: information about declared names
• Structure nodes: information about type structures

=> most suitably implemented as a dynamic data structure
- linear list
- binary tree
- hash table

3

Symbol Table as a Linear List
Given the following declarations

const int n = 10;
class T { ... }
int a, b, c;
void M () { ... }

we get the following linear list for every declared name
there is a Symbol node

+ simple
+ declaration order is retained (important if addresses are assigned only later)

- slow if there are many declarations

Basic interface
public class Tab {

public static Symbol Insert (Symbol.Kinds kind, string name, ...);
public static Symbol Find (string name);

}

"n"
Const

"T"
Type

"a"
Field

"b"
Field

"c"
Field

"M"
Meth

4

Symbol Table as a Binary Tree
Declarations

const int n = 10;
class T { ... }
int a, b, c;
void M () { ... }

Resulting binary tree

+ fast

- can degenerate unless it is balanced
- larger memory consumption
- declaration order is lost

Only useful if there are many declarations"n"
Const

"M"
Meth

"b"
Field

"c"
Field

"a"
Field

"T"
Type

5

Symbol Table as a Hashtable
Declarations

const int n = 10;
class T { ... }
int a, b, c;
void M () { ... }

Resulting hashtable

+ fast

- more complicated than a linear list
- declaration order is lost

For our purposes a linear list is sufficient
• Every scope is a list of its own anyway
• A scope has hardly more than 10 names

"n"
Const

"M"
Meth

"b"
Field

"c"
Field

"a"
Field

"T"
Type

0

1

2

3

6

5. Symbol Table
5.1 Overview
5.2 Symbols
5.3 Scopes
5.4 Types
5.5 Universe

7

Symbol Nodes
Every declared name is stored in a Symbol node

Kinds of symbols in Z#
• constants
• global variables
• fields
• method arguments
• local variables
• types
• methods
• program

public enum Kinds {
Const,
Global,
Field,
Arg,
Local,
Type,
Meth,
Prog

}

What information is needed about objects?
• for all symbols name, type structure, symbol kind, pointer to the next symbol
• for constants value
• for method arguments address (= order of declaration)
• for local variables address (= order of declaration)
• for methods number of arguments and local variables,

local symbols (args + local vars)
• for program global symbols (= local to the program)
• for global vars, fields, types ---

8

Possible Object-oriented Architecture
Possible class hierarchy of objects

However, this is too complicated because it would require too many type casts

Symbol sym = Tab.Find("x");
if (sym is Argument) ((Argument) sym).adr = ...;
else if (sym is Method) ((Method) sym).nArgs = ...;
...

Therefore we choose a "flat implementation": all information is stored in a single class.
This is ok because
• extensibility is not required: we never need to add new object variants
• we do not need dynamically bound method calls

Symbol
name
type
next

Constant
val

Global Type Method
nArgs
nVars
locals

Argument
adr

Program
locals

Local
adr

Field

9

Class Symbol
class Symbol {

public enum Kinds { Const, Global, Field, Arg, Local, Type, Meth, Prog }
Kinds kind;
string name;
Struct type;
Symbol next;
int val; // Const: value
int adr; // Arg, Local: address
int nArgs; // Meth: number of arguments
int nLocs; // Meth: number of local variables
Symbol locals; // Meth: parameters & local variables; Prog: symbol table of program

}

Const
"n"

10
-
-
-
-

const int n = 10;
class T { ... }
int a, b;
void M (int x, int y)

char ch;
{ ... }

kind
name
next
val
adr
nArgs
nLocs
locals

Type
"T"

-
-
-
-
-

Global
"a"

-
-
-
-
-

Global
"b"

-
-
-
-
-

Meth
"M"

-
-
2
1

Arg
"x"

-
0
-
-
-

Example

Local
"ch"

-
0
-
-
-

Arg
"y"

-
1
-
-
-

10

Entering Names into the Symbol Table
The following method is called whenever a name is declared

Symbol sym = Tab.Insert(kind, name, type);

• creates a new object node with kind, name, type
• checks if name is already declared (if so => error message)
• assigns successive addresses to variables and fields
• enters the declaration level for variables (0 = global, 1 = local)
• appends the new node to the end of the symbol table list
• returns the new node to the caller

Example for calling Insert()

VarDecl<↓Symbol.Kinds kind>
= Type<↑type>

ident (. Tab.insert(Obj.Var, name, type); .)
{ ";" ident (. Tab.insert(Obj.Var, name, type); .)
}.

11

Predeclared Names

Which names are predeclared in Z#?
• Standard types: int, char
• Standard constants: null
• Standard methods: ord(ch), chr(i), len(arr)

Predeclared names are also stored in the symbol table ("Universe")
kind
name
val
adr
nArgs
nLocs
locals

Type
"int"

-
-
-
-
-

Type
"char"

-
-
-
-
-

Const
"null"

0
-
-
-
-

Meth
"ord"

-
-
1
0

Meth
"chr"

-
-
1
0

Meth
"len"

-
-
1
0

kind
name
val
adr
nArgs
nLocs
locals

Arg
"ch"

-
0
-
-
-

Arg
"i"
-
0
-
-
-

Arg
"arr"

-
0
-
-
-

12

Special Names as Keywords
int and char could also be implemented as keywords.

requires a special treatment in the grammar

Type<↑Struct type>
= ident (. Symbol sym = Tab.Find(token.str); type = sym.type; .)
| "int" (. type = Tab.intType; .)
| "char" (. type = Tab.charType; .)
.

It is simpler to have them predeclared in the symbol table.

Type<↑Struct type>
= ident (. Symbol sym = Tab.Find(token.str); type = sym.type; .)

+ uniform treatment of predeclared and user-declared names
- one can redeclare "int" as a user type

13

5. Symbol Table
5.1 Overview
5.2 Symbols
5.3 Scopes
5.4 Types
5.5 Universe

14

Scope = Range in which a Name is Valid
There are separate scopes (object lists) for
• the "universe" contains the predeclared names (and the program symbol)
• the program contains global names (= constants, global variables, classes, methods)
• every method contains local names (= argument and local variables)
• every class contains fields

Example

class P
int a, b;

{
void M (int x)

int b, c;
{

...
}
...

}

scope M
(all names declared in M)

scope P
(all names declared in P)

universe
(predeclared names)

• Searching for a name always starts in topScope
• If not found, the search continues in the next outer scope
• Example: search b, a and int

"x"locals "b" "c"

"a" "b" "M"

outer

"int" "char" "P"

topScope

...

15

Scope Nodes
class Scope {

Scope outer; // to the next outer scope
Symbol locals; // to the symbols in this scope
int nArgs; // number of arguments in this scope (for address allocation)
int nLocs; // number of local variables in this scope (for address allocation)

}

Method for opening a scope

static void OpenScope () { // in class Tab
Scope s = new Scope();
s.nArgs = 0; s.nLocs = 0;
s.outer = topScope;
topScope = s;

}

• called at the beginning of a method or class
• links the new scope with the existing ones
• new scope becomes topScope
• Tab.Insert() always creates symbols in topScope

Method for closing a scope

static void CloseScope () { // in class Tab
topScope = topScope.outer;

}

• called at the end of a method or class
• next outer scope becomes topScope

16

Entering Names in Scope
Names are always entered in topScope

class Tab {
Scope topScope; // Zeiger auf aktuellen Scope
...
static Symbol Insert (Symbol.Kinds kind, string name, Struct type) {

//--- create symbol node
Symbol sym = new Symbol(name, kind, type);

if (kind == Symbol.Kinds.Arg) sym.adr = topScope.nArgs++;
else if (kind == Symbol.Kinds.Local) sym.adr = topScope.nLocs++;

//--- insert symbol node
Symbol cur = topScope.locals, last = null;
while (cur != null) {

if (cur.name == name) Error(name + " declared twice");
last = cur; cur = cur.next;

}
if (last == null) topScope.locals = sym;
else last.next = sym;
return sym;

}
...

}

17

Opening and Closing a Scope

Note
• The method name is entered in the method's enclosing scope
• Before a scope is closed its local objects are assigned to m.locals
• Scopes are also opened and closed for classes

MethodDecl (. Struct type; .)
= Type<↑type>

ident (. curMethod = Tab.insert(Symbol.Kinds.Meth, token.str, type);
Tab.OpenScope();

.)
...
"{"
...
"}" (. curMethod.nArgs = topScope.nArgs;

curMethod.nLocs = topScope.nLocs;
curMethod.locals = Tab.topScope.locals;
Tab.CloseScope();

.)
.

global variable

18

Example

class P "int" "char" "P"

topScope

Tab.OpenScope();

...

19

Example

class P
int a, b;

{

"a" "b"

topScope

Tab.Insert(..., "a", ...);
Tab.Insert(..., "b", ...);

"int" "char" "P"...

20

Example

class P
int a, b;

{
void M ()

topScope

Tab.Insert(..., "M", ...);
Tab.OpenScope();

"M""a" "b"

"int" "char" "P"...

21

Example

class P
int a, b;

{
void M ()

int x, y;

topScope

Tab.Insert(..., "x", ...);
Tab.Insert(..., "y", ...);

"x" "y"

"M""a" "b"

"int" "char" "P"...

22

Example

class P
int a, b;

{
void M ()

int x, y;
{

...
} topScope "x" "y"

meth.locals =
Tab.topScope.locals;

Tab.CloseScope();

"M""a" "b"

"int" "char" "P"...

23

Example

class P
int a, b;

{
void M ()

int x, y;
{

...
}
...

}

topScopeprog.locals =
Tab.topScope.locals;

Tab.CloseScope();

"x" "y"

"M""a" "b"

"int" "char" "P"...

24

Searching Names in the Symbol Table
The following method is called whenever a name is used

Symbol sym = Tab.Find(name);

If a name is not found the method returns noSym
• predeclared dummy symbol
• better than null, because it avoids aftereffects

(exceptions)

kind
name
type
val
adr
nArgs
nLocs
locals

Const
"noSymbol"

0
0
0
0

noSym

noType

static Symbol Find (string name) {
for (Scope s = topScope; s != null; s = s.outer)

for (Symbol sym = s.locals; sym != null; sym = sym.next)
if (sym.name == name) return sym;

Parser.Error(name + " is undeclared");
return noSym;

}

• Lookup starts in topScope
• If not found, the lookup is continued in the next outer scope

x b clocals

a b m

outer

int char

topScope

25

5. Symbol Table
5.1 Overview
5.2 Symbols
5.3 Scopes
5.4 Types
5.5 Universe

26

Types
Every object has a type with the following properties
• size (in Z# determined by metadata)
• structure (fields for classes, element type for arrays, ...)

Kinds of types in Z#?
• primitive types (int, char)
• arrays
• classes

Types are represented by structure nodes

class Struct {
public enum Kinds { None, Int, Char, Arr, Class }
Kinds kind;
Struct elemType; // Arr: element type
Symbol fields; // Class: list of fields

}

27

Structure Nodes for Primitive Types

object node

structure node

There is just one structure node for int in the whole symbol table.
All symbols of type int reference this one.
The same is true for structure nodes of type char.

Local
"a"

-
0
-
-
-

int a, b;
char c;

kind
name
type
next
val
adr
nArgs
nVars
locals

Local
"b"

-
1
-
-
-

Local
"c"

-
-
2
-
-
-

kind
elemType
fields

Int
-
-

Char
-
-

28

Structure Nodes for Arrays

The length of an array is statically unknown.
It is stored in the array at run time.

Local
"a"

-
0
-
-
-

int[] a;
int b;

kind
name
type
next
val
adr
nArgs
nVars
locals

Local
"b"

-
-
1
-
-
-

kind
elemType
fields

Arr

-

Int
-
-

29

Structure Nodes for Classes

Field
"x"

-
-
-
-
-

Type
"C"

-
-
-
-
-

class C {
int x;
int y;
int z;

}
C v;

kind
name
type
next
val
adr
nArgs
nVars
locals

Global
"v"

-
-
-
-
-
-

kind
elemType
fields

Class
-

Int
-
-

kind
name
type
next
val
adr
nArgs
nVars
locals

Field
"y"

-
-
-
-
-

Field
"z"

-
-
-
-
-

30

Type Compatibility: Name Equivalence

Two types are equal if they are represented by the same type node
(i.e. if they are denoted by the same type name)

The types of a and b are the same

Name equivalence is used in Java, C/C++/C#, Pascal, ..., Z#

Exception
In C# (and Z#) two array types are the same if they have the same element types!

class T { ... }
T a;
T b;

Type
"T"

...

Global
"a"

...

Global
"b"

...

Class
-
...

31

Type Compatibility: Structural Equivalence

Two types are the same if they have the same structure
(i.e. the same fields of the same types, the same element type, ...)

The types of x and y are equal (but not in Z#!)

Structural equivalence is used in Modula-3 but not in Z# and most other languages!

class T1 { int a, b; }
class T2 { int c, d; }
T1 x;
T2 y;

Type
"T1"

...

Global
"x"

...

Class
-

Field
"a"

...

Field
"b"

...

Type
"T2"

...

Global
"y"

...

Class
-

Field
"c"

...

Field
"d"

...

Int
-
-

32

Methods for Checking Type Compatibility
class Struct {

...
// checks, if two types are compatible (e.g. in comparisons)
public bool CompatibleWith (Struct other) {

return this.Equals(other) ||
this == Tab.nullType && other.IsRefType() ||
other == Tab.nullType && this.isRefType();

}

// checks, if this can be assigned to dest
public bool AssignableTo (Struct dest) {

return this.Equals(dest) ||
this == Tab.nullType && dest.IsRefType() ||
kind == Kinds.Arr && dest.kind == Kinds.Arr && dest.elemType == Tab.objType;

}

// checks, if two types are equal (structural equivalence for array, name equivalence otherwise)
public bool Equals (Struct other) {

if (kind == Kinds.Arr)
return other.kind == Kinds.Arr && elemType.Equals(other.elemType);

return other == this;
}

public bool IsRefType() { return kind == Kinds.Class || kind = Kinds.Arr; }
}

necessary for standard function len(arr)

33

Solving LL(1) Conflicts with the Symbol Table

Method syntax in Z#

void Foo ()
int a;

{
a = 0; ...

}

Actually we are used to write it like this

void Foo () {
int a;
a = 0; ...

}

But this would result in an LL(1) conflict

Block = "{" { VarDecl | Statement } "}".
VarDecl = Type ident { "," ident }.
Type = ident ["[" "]"].
Statement = Designator "=" Expr ";"

|
Designator = ident { "." ident | "[" Expr "]" }.

First(VarDecl) ∩ First(Statement) = {ident}

34

Solving the Conflict With Semantic Information

Block = "{" { VarDecl | Statement } "}".static void Block () {
Check(Token.LBRACE);
for (;;) {

if (NextTokenIsType()) VarDecl();
else if (la ∈ First(Statement)) Statement();
else if (la ∈ {rbrace, eof}) break;
else {

Error("..."); ... recover ...
}

}
Check(Token.RBRACE);

}

static bool NextTokenIsType() {
if (la != ident) return false;
Symbol sym = Tab.Find(laToken.str);
return sym.kind == Symbol.Kinds.Type;

}

35

5. Symbol Table
5.1 Overview
5.2 Symbols
5.3 Scopes
5.4 Types
5.5 Universe

36

Structure of the "universe"

kind
name
type
val
adr
nArgs
nLocs
locals

Type
"int"

-
-
-
-
-

Type
"char"

-
-
-
-
-

Const
"null"

0
-
-
-
-

Meth
"chr"

-
-
1
-

Meth
"ord"

-
-
1
-

Meth
"len"

-
-
1
-

Arg
"i"

-
0
-
-
-

Arg
"ch"

-
0
-
-
-

Arg
"arr"

-
0
-
-
-

Int
-
-

Char
-
-

Class
-
-

Arr

-

Const
"noSymbol"

0
-
-
-
-

None
-
-

intType charType nullType noType

chrSym ordSym lenSym noSym

kind
elemType
fields

object
-
-

objType

37

Interface of the Symbol Table
class Tab {

static Scope topScope; // current top scope

static Struct intType; // predefined types
static Struct charType;
static Struct nullType;
static Struct noType;

static Symbol chrSym; // predefined symbols
static Symbol ordSym;
static Symbol lenSym;
static Symbol noSym;

static Symbol Insert (Symbol.Kinds kind, string name, Struct type) {...}
static Symbol Find (string name) {...}
static void OpenScope () {...}
static void CloseScope () {...}

static void Init () {...} // builds the universe and initializes Tab
}

