
1

1. Overview
1.1 Motivation
1.2 Structure of a Compiler
1.3 Grammars
1.4 Syntax Tree and Ambiguity
1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

2

Short History of Compiler Construction
Formerly "a mystery", today one of the best-known areas of computing

1957 Fortran first compilers
(arithmetic expressions, statements, procedures)

1960 Algol first formal language definition
(grammars in Backus-Naur form, block structure, recursion, ...)

1970 Pascal user-defined types, virtual machines (P-code)

1985 C++ object-orientation, exceptions, templates

1995 Java just-in-time compilation

We only look at imperative languages
Functional languages (e.g. Lisp) and logical languages (e.g. Prolog) require different
techniques.

3

Why should I learn about compilers?

• How do compilers work?
• How do computers work?

(instruction set, registers, addressing modes, run-time data structures, ...)

• What machine code is generated for certain language constructs?
(efficiency considerations)

• What is good language design?
• Opportunity for a non-trivial programming project

It's part of the general background of a software engineer

Also useful for general software development
• Reading syntactically structured command-line arguments
• Reading structured data (e.g. XML files, part lists, image files, ...)
• Searching in hierarchical namespaces
• Interpretation of command codes
• ...

4

1. Overview
1.1 Motivation
1.2 Structure of a Compiler
1.3 Grammars
1.4 Syntax Tree and Ambiguity
1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

5

Dynamic Structure of a Compiler

character stream v a l = 01 * v a l + i

lexical analysis (scanning)

token stream 1
(ident)
"val"

3
(assign)

-

2
(number)

10

4
(times)

-

1
(ident)
"val"

5
(plus)

-

1
(ident)

"i"

token number

token value

syntax analysis (parsing)

syntax tree

ident = number * ident + ident

Term

Expression

Statement

6

Dynamic Structure of a Compiler

semantic analysis (type checking, ...)

syntax tree

ident = number * ident + ident

Term

Expression

Statement

intermediate
representation

syntax tree, symbol table, ...

optimization

code generation

ld.i4.s 10
ldloc.1
mul
...

machine code

7

Single-Pass Compilers

Phases work in an interleaved way

scan token

parse token

check token

generate code for token

eof?

The target program is already generated while the source program is read.

n
y

8

Multi-Pass Compilers

Phases are separate "programs", which run sequentially

Each phase reads from a file and writes to a new file

characters

scanner

tokens

parser

tree

sem.
analysis ...

code

Why multi-pass?

• if memory is scarce (irrelevant today)
• if the language is complex
• if portability is important

9

Today: Often Two-Pass Compilers

Front End
scanning
parsing
sem. analysis

intermediate
representation

Back End
code generation

language-dependent

Java
C
Pascal

machine-dependent

Pentium
PowerPC
SPARC

any combination possible

Advantages
• better portability
• many combinations between front ends

and back ends possible
• optimizations are easier on the intermediate

representation than on source code

Disadvantages
• slower
• needs more memory

10

Compiler versus Interpreter

Compiler translates to machine code

scanner parser ... code generator loader

source code machine code

Variant: interpretation of intermediate code

... compiler ...

source code intermediate code
(e.g. Common Intermediate

Language (CIL))

VM
• source code is translated into the

code of a virtual machine (VM)
• VM interprets the code

simulating the physical machine

Interpreter executes source code "directly"

scanner parser

source code interpretation

• statements in a loop are
scanned and parsed
again and again

11

Static Structure of a Compiler

parser &
sem. analysis

scanner

symbol table

code generation

provides tokens from
the source code

maintains information about
declared names and types

generates machine code

"main program"
directs the whole compilation

uses

data flow

12

1. Overview
1.1 Motivation
1.2 Structure of a Compiler
1.3 Grammars
1.4 Syntax Tree and Ambiguity
1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

13

What is a grammar?

Example Statement = "if" "(" Condition ")" Statement ["else" Statement].

Four components

terminal symbols are atomic "if", ">=", ident, number, ...

nonterminal symbols are derived
into smaller units

Statement, Expr, Type, ...

productions rules how to decom-
pose nonterminals

Statement = Designator "=" Expr ";".
Designator = ident ["." ident].
...

start symbol topmost nonterminal CSharp

14

EBNF Notation

Extended Backus-Naur form John Backus: developed the first Fortran compiler
Peter Naur: edited the Algol60 report

symbol meaning examples

string
name
=
.

denotes itself
denotes a T or NT symbol
separates the sides of a production
terminates a production

"=", "while"
ident, Statement
A = b c d .

|
(...)
[...]
{...}

separates alternatives
groups alternatives
optional part
repetitive part

a | b | c ≡ a or b or c
a (b | c) ≡ ab | ac
[a] b ≡ ab | b
{ a } b ≡ b | ab | aab | aaab | ...

Conventions
• terminal symbols start with lower-case letters (e.g. ident)
• nonterminal symbols start with upper-case letters (e.g. Statement)

15

Example: Grammar for Arithmetic Expressions

Productions
Expr = ["+" | "-"] Term { ("+" | "-") Term }.
Term = Factor { ("*" | "/") Factor }.
Factor = ident | number | "(" Expr ")".

Expr

Term

Factor

Terminal symbols

simple TS:

terminal classes:

"+", "-", "*", "/", "(", ")"
(just 1 instance)

ident, number
(multiple instances)

Nonterminal symbols
Expr, Term, Factor

Start symbol
Expr

16

Operator Priority
Grammars can be used to define the priority of operators

Expr = ["+" | "-"] Term { ("+" | "-") Term }.
Term = Factor { ("*" | "/") Factor }.
Factor = ident | number | "(" Expr ")".

input: - a * 3 + b / 4 - c

- ident * number + ident / number - ident⇒
- Factor * Factor + Factor / Factor - Factor⇒
-⇒ Term + Term - Term "*" and "/" have higher priority than "+" and "-"

⇒ Expr "-" does not refer to a, but to a*3

Expr = Term { ("+" | "-") Term }.
Term = Factor { ("*" | "/") Factor }.
Factor = ["+" | "-"] (ident | number | "(" Expr ")").

How must the grammar be transformed, so that "-" refers to a?

17

Terminal Start Symbols of Nonterminals
Which terminal symbols can a nonterminal start with?

Expr = ["+" | "-"] Term {("+" | "-") Term}.
Term = Factor {("*" | "/") Factor}.
Factor = ident | number | "(" Expr ")".

First(Factor) = ident, number, "("

First(Term) = First(Factor)
= ident, number, "("

First(Expr) = "+", "-", First(Term)

= "+", "-", ident, number, "("

18

Terminal Successors of Nonterminals
Which terminal symbols can follow after a nonterminal in the grammar?

Expr = ["+" | "-"] Term { ("+" | "-") Term }.
Term = Factor { ("*" | "/") Factor }.
Factor = ident | number | "(" Expr ")".

Follow(Expr) = ")", eof

Follow(Term) = "+", "-", Follow(Expr)
= "+", "-", ")", eof

Follow(Factor) = "*", "/", Follow(Term)

= "*", "/", "+", "-", ")", eof

Where does Expr occur on the
right-hand side of a production?
What terminal symbols can
follow there?

19

Some Terminology
Alphabet

The set of terminal and nonterminal symbols of a grammar

String
A finite sequence of symbols from an alphabet.

Strings are denoted by greek letters (α, β, γ, ...)
e.g: α = ident + number

β = - Term + Factor * number

Empty String
The string that contains no symbol (denoted by ε).

20

Derivations and Reductions
Derivation

α ⇒ β (direct derivation) Term + Factor * Factor

α
⇒ Term + ident * Factor

β

NTS right-hand side of a
production of NTS

α ⇒* β (indirect derivation) α ⇒ γ1 ⇒ γ2 ⇒ ... ⇒ γn ⇒ β

α ⇒L β (left-canonical derivation) the leftmost NTS in α is derived first

α ⇒R β (right-canonical derivation) the rightmost NTS in α is derived first

Reduction
The converse of a derivation:
If the right-hand side of a production occurs in β it is replaced with the corresponding NTS

21

Deletability

A string α is called deletable, if it can be derived to the empty string.
α ⇒* ε

Example

A = B C.
B = [b].
C = c | d | .

B is deletable: B ⇒ ε

C is deletable: C ⇒ ε

A is deletable: A ⇒ B C ⇒ C ⇒ ε

22

More Terminology
Phrase

Any string that can be derived from a nonterminal symbol.
Term phrases: Factor

Factor * Factor
ident * Factor
...

Sentential form
Any string that can be derived from the start symbol of the grammar.
e.g.: Expr

Term + Term + Term
Term + Factor * ident + Term
...

Sentence
A sentential form that consists of terminal symbols only.
e.g.: ident * number + ident

Language (formal language)
The set of all sentences of a grammar (usually infinitely large).
e.g.: the C# language is the set of all valid C# programs

23

Recursion
A production is recursive if A ⇒* ω1 A ω2

Can be used to represent repetitions and nested structures

Direct recursion A ⇒ω1 A ω2

Left recursion A = b | A a. A ⇒ A a ⇒ A a a ⇒ A a a a ⇒ b a a a a a ...

Right recursion A = b | a A. A ⇒ a A ⇒ a a A ⇒ a a a A ⇒ ... a a a a a b

Central recursion A = b | "(" A ")". A ⇒ (A) ⇒ ((A)) ⇒ (((A))) ⇒ (((... (b)...)))

Indirect recursion A ⇒* ω1 A ω2

Example

Expr = Term { "+" Term }.
Term = Factor { "*" Factor }.
Factor = id | "(" Expr ")".

Expr ⇒ Term ⇒ Factor ⇒ "(" Expr ")"

24

How to Remove Left Recursion
Left recursion cannot be handled in topdown syntax analysis

A = b | A a. Both alternatives start with b.
The parser cannot decide which one to choose

Left recursion can be transformed to iteration

E = T | E "+" T.

What sentences can be derived?

T
T + T
T + T + T
...

From this one can deduce the iterative EBNF rule:

E = T { "+" T }.

25

1. Overview
1.1 Motivation
1.2 Structure of a Compiler
1.3 Grammars
1.4 Syntax Tree and Ambiguity
1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

26

Plain BNF Notation
terminal symbols are written without quotes (ident, +, -)
nonterminal symbols are written in angle brackets (<Expr>, <Term>)
sides of a production are separated by ::=

BNF grammar for arithmetic expressions

<Expr> ::= <Sign> <Term>
<Expr> ::= <Expr> <Addop> <Term>

<Sign> ::= +
<Sign> ::= -
<Sign> ::=

<Addop> ::= +
<Addop> ::= -

<Term> ::= <Factor>
<Term> ::= <Term> <Mulop> <Factor>

<Mulop> ::= *
<Mulop> ::= /

<Factor> ::= ident
<Factor> ::= number
<Factor> ::= (<Expr>)

• Alternatives are transformed into
separate productions

• Repetition must be expressed by recursion

Advantages
• fewer meta symbols (no |, (), [], {})
• it is easier to build a syntax tree

Disadvantages
• more clumsy

27

Syntax Tree

Shows the structure of a particular sentence
e.g. for 10 + 3 * i

Concrete Syntax Tree (parse tree)

ε number + * ident

Factor

Term

number

Factor

Term Mulop FactorSign

TermAddopExpr

Expr Would not be possible with EBNF
because of [...] and {...}, e.g.:
Expr = [Sign] Term { Addop Term }.

Also reflects operator priorities:
operators further down in the tree
have a higher priority than operators
further up in the tree.

Abstract Syntax Tree (leaves = operands, inner nodes = operators)

number ident

*

+

ident

often used as an internal program representation;
used for optimizations

28

Ambiguity
A grammar is ambiguous, if more than one syntax tree can be built for a given sentence.

Example
T = F | T "*" T.
F = id.

sentence: id * id * id

Two syntax trees can be built for this sentence:

id

F

T

id

F

T

*

T

id

F

T

*

T

id

F

T

id

F

T

*

T

id

F

T

*

T

Ambiguous grammars cause problems in syntax analysis!

29

Removing Ambiguity
Example

T = F | T "*" T.
F = id.

Only the grammar is ambiguous, not the language.

The grammar can be transformed to

T = F | T "*" F.
F = id.

i.e. T has priority over F

Even better: transformation to EBNF
T = F { "*" F }.
F = id.

id

F

T

id

F

T

*

T

id

F

T

*

T

only this syntax tree is possible

30

Inherent Ambiguity
There are languages which are inherently ambiguous

Example: Dangling Else

Statement = Assignment
| "if" Condition Statement
| "if" Condition Statement "else" Statement
|

Condition Condition Statement Statement

Statement

Statement

if (a < b) if (b < c) x = c; else x = b;

Condition Condition Statement Statement

Statement

Statement
There is no unambiguous
grammar for this language!

C# solution
Always recognize the longest
possible right-hand side of a
production
⇒ leads to the lower of the

two syntax trees

31

1. Overview
1.1 Motivation
1.2 Structure of a Compiler
1.3 Grammars
1.4 Syntax Tree and Ambiguity
1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

32

Classification of Grammars
Due to Noam Chomsky (1956)

Grammars are sets of productions of the form α = β.

class 0 Unrestricted grammars (α and β arbitrary)
e.g: A = a A b | B c B.

aBc = d.
dB = bb.

A ⇒ aAb ⇒ aBcBb ⇒ dBb ⇒ bbb

Recognized by Turing machines

class 1 Contex-sensitive grammars (|α| ≤ |β|)
e.g: a A = a b c.
Recognized by linear bounded automata

class 2 Context-free grammars (α = NT, β ≠ ε)
e.g: A = a b c.
Recognized by push-down automata

class 3 Regular grammars (α = NT, β = T | T NT)
e.g: A = b | b B.
Recognized by finite automata

Only these two classes
are relevant in compiler
construction

33

1. Overview
1.1 Motivation
1.2 Structure of a Compiler
1.3 Grammars
1.4 Syntax Tree and Ambiguity
1.5 Chomsky's Classification of Grammars
1.6 The Z# Language

34

Sample Z# Program
class P

const int size = 10;
class Table {

int[] pos;
int[] neg;

}
Table val;

{
void Main ()

int x, i;
{ /*---------- initialize val ----------*/

val = new Table;
val.pos = new int[size];
val.neg = new int[size];
i = 0;
while (i < size) {

val.pos[i] = 0; val.neg[i] = 0; i++;
}
/*---------- read values ----------*/
read(x);
while (-size < x && x < size) {

if (0 <= x) { val.pos[x]++; }
else { val.neg[-x]++; }
read(x);

}
}

}

main program class; no separate compilation

inner classes (without methods)

global variables

local variables

35

Lexical Structure of Z#
Names ident = letter { letter | digit | '_' }.

Numbers number = digit { digit }. all numbers are of type int

Char constants charConst = '\'' char '\''. all character constants are of type char
(may contain \r and \n)

no strings

Keywords class
if else while read write return break
void const new

Operators + - * / % ++ --
== != > >= < <=
&& ||
() [] { }
= ; , .

Comments /* ... */ may be nested

Types int char arrays classes

36

Syntactical Structure of Z# (1)

Program = "class" ident
{ ConstDecl | VarDecl | ClassDecl }
"{" { MethodDecl } "}".

class P
... declarations ...

{ ... methods ...
}

Programs

Declarations
ConstDecl = "const" Type ident "=" (number | charConst) ";".
VarDecl = Type ident { "," ident } ";".
MethodDecl = (Type | "void") ident "(" [FormPars] ")" Block.

Type = ident ["[" "]"].
FormPars = Type ident { "," Type ident }.

only one-dimensional arrays

37

Syntactical Structure of Z# (2)
Statements

Block = "{" {Statement} "}".
Statement = Designator ("=" Expr ";"

| "(" [ActPars] ")" ";"
| "++" ";"
| "--" ";"
)

| "if" "(" Condition ")" Block ["else" Block]
| "while" "(" Condition ")" Block
| "break" ";"
| "return" [Expr] ";"
| "read" "(" Designator ")" ";"
| "write" "(" Expr ["," number] ")" ";"
| ";".

ActPars = Expr { "," Expr }.

• input from System.Console
• output to System.Console

38

Syntactical Structure of Z# (3)
Expressions

Condition = CondTerm { "||" CondTerm }.
CondTerm = CondFact { "&&" CondFact }.
CondFact = Expr Relop Expr.
Relop = "==" | "!=" | ">" | ">=" | "<" | "<=".

Expr = ["-"] Term { Addop Term }.
Term = Factor { Mulop Factor }.
Factor = Designator ["(" [ActPars] ")"]

| number
| charConst
| "new" ident ["[" Expr "]"]
| "(" Expr ")".

Designator = ident ["[" Expr "]"] { "." ident ["[" Expr "]"] }.
Addop = "+" | "-".
Mulop = "*" | "/" | "%".

no constructors

